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Editor’s Note: March 2015 
 
It is my distinct honor, pleasure and privilege to serve as the Editor-in-Chief of the International Journal of 
Computers and Their Applications (IJCA). I have a special passion for the International Society for Computers and 
their Applications.  
 
I would like to begin this volume by giving a review of this past year.  In 2014 we had 67 articles submitted to the 
International Journal of Computers and Their Applications.  We currently have 15 that are still under review.  As a 
reminder, authors are now charged $50 per page and the first two pages are free for ISCA members, and the journal 
will not be accepting articles that are less than 6 pages.  The authors of these papers will be encouraged to submit 
their papers to ISCA conferences.  
 
I look forward to working with everyone in the coming years to maintain and further improve the quality of the 
journal. I would like to invite you to submit your quality work to the journal for consideration of publication. I also 
welcome proposals for special issues of the journal. If you have any suggestions to improve the journal, please feel 
free to contact me. 
 

Frederick C. Harris, Jr. 
Computer Science and Engineering 
University of Nevada, Reno 
Reno, NV 89557, USA 
Phone:  775-784-6571 
Email:  Fred.Harris@cse.unr.edu 

 
This year we have 4 issues planned (March, June, September, and December). We begin with a special issue from 
the best papers at the ISCA Fall Conference cluster (CAINE, and SEDE).  We have a proposal for the best papers 
from the ISCA Spring Conference cluster (CATA/BICOB) which will appear in the September issue.  The other two 
issues (June and December) are being filled with submitted papers.   
 
I would also like to announce that I begun a search for a few Associate Editors to add to our team. There are a few 
areas that we would like to strengthen our board with, such as Image Processing. If you would like to be considered, 
please contact me via email with a cover letter and a copy of your CV. 
 

Frederick C Harris, Jr. 
Editor-in-Chief 
Email: Fred.Harris@cse.unr.edu 
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Guest Editorial: 
Special Issue from ISCA Fall-2014 Conferences 

 
This Special Issue of IJCA is a collection of five refereed papers selected from the following ISCA conferences 

(co-located at the Holiday Inn Downtown Superdome, New Orleans, Louisiana, USA, October 13{15, 2014): 
 

• CAINE 2014: 27th International Conference on Computer Applications in Industry and Engineering 
• SEDE 2014: 23rd International Conference on Software Engineering and Data Engineering 

 
Each paper submitted to the conferences was reviewed by at least two members of the International Program Committee, as well 

as by additional reviewers, judging the originality, technical contribution, significance and quality of presentation.  After the 
conferences, nine best papers were recommended by the Program Committee members to be considered for publication in this 
Special Issue of IJCA.  The authors were invited to submit a revised version of their papers.  After extensive revisions and a 
second round of review, five papers were accepted for publication in this issue of the journal. 

 
The papers in this special issue cover a wide range of research interests in the community of computers and applications.  The 

topics and main contributions of the papers are briefly summarized below. 
 
Zulfiqar Ali, Ghulam Muhammad, Mansour Alsulaiman, and Khalid Al-Mutib of King Saud University, Saudi Arabia, and 

Irraivan Elamvazuthi of Universiti Teknologi Petronas, Malaysia, introduced a speech recognition method called oriented local 
features (OLF) for feature extraction.  They used Hidden Markov model for modeling in the training phase.  The proposed 
approach was applied to a speech recognition system for dysphonic patients.  Their experiments show that the proposed method 
achieved about 95% recognition accuracy. 

 
Bidyut Gupta, Sindoora Koneru, and Shahram Rahimi of Southern Illinois University at Carbondale, USA, presented novel 

approaches (pseudo sub-diameter for static core selection and super pseudo sub-diameter for group-based core selection) for 
networks that use LSR as the unicast routing protocol.  The presented methods select more than one core to achieve fault tolerance.  
Simulation results have shown the superiority of the proposed approach over some other approaches. 

 
Antoine Bossard of Tokyo Metropolitan University, Japan, and Keiichi Kaneko of Tokyo University of Agriculture and 

Technology, Japan, presented an algorithm to solve the node-to-set disjoint paths routing problem in a Torus-Connected Cycles 
(TCC) network topology as the disjoint paths routing problem is critical for the reliability and performance of parallel systems.  
The authors provided theoretical analysis of the complexity of the algorithm. 

 
Hamwira Yaacob, Wahab Abdul of International Islamic University Malaysia, and Norhaslinda Kamaruddin of MARA 

University of Technology, Malaysia, proposed a feature extraction technique using both electroencephalogram (EEG) signals and 
the behavior of neural activations for emotion classification.  The technique is based on the Cerebellar Model Articulation 
Controller (CMAC) model.  The emotion classification process uses Evolving Fuzzy Neural Network (EFuNN). 

 
Yong Shi of Kennesaw State University, USA, studied the dynamic characteristics (distribution) of multidimensional data and 

presented an algorithm to dynamically change the set of clusters and the set of outliers as the data set changes.  His experiments on 
synthetic data sets showed an improved accuracy in comparison to some existing approaches such as CURE. 

 
As guest editors we would like to express our genuine appreciation for the encouragement and support from the editor-in-chief of 

IJCA, Frederick C. Harris, Jr.  We also owe many thanks to the authors and program committees of the conferences from which 
these papers were selected. 

 
We hope you enjoy this special issue of the IJCA and we look forward to seeing you at a future ISCA conference.  More 

information about the ISCA society can be found at http://www.isca-hq.org. 
 
Guest Editors: 
 

Gongzhu Hu, Central Michigan University, USA, CAINE 2014 Conference Chair 
Yan Shi, University of Wisconsin-Platteville, USA, SEDE 2014 Program Chair 

 
January 2015 
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Oriented and Interpolated Local Features for Speech  
Recognition of Vocal Fold Disordered Patients 

 
 

Zulfiqar Ali*,†, Ghulam Muhammad*, and Mansour Alsulaiman* 
King Saud University, Riyadh, SAUDI ARABIA 

 
Irraivan Elamvazuthi† 

Universiti Teknologi PETRONAS, Perak, MALAYSIA 
 

Khalid Al-Mutib** 
King Saud University, Riyadh, SAUDI ARABIA 

 
 

Abstract 
 

A novel technique of oriented local features (OLF) for 
speech recognition has been introduced in this paper.  A 
speech recognition system for dysphonic patients is 
implemented by application of the proposed technique.  The 
developed system is evaluated by performing the training in 
three different ways:  (a) with pathological samples, (b) with 
normal samples, and (c) with pathological and normal 
samples together.  We compare the performance of the 
proposed feature with the most widely used speech feature in 
speech recognition, i.e., Mel-frequency cepstral coefficients.  
The Hidden Markov model is used for recognizing the 
speech.  The proposed technique achieved a 94.98% 
recognition rate, which is almost identical to the recognition 
rate of 95.45% obtained with MFCC.  

Keywords: Vocal fold disorders, automatic speech 
recognition, Arabic digits, MFCC, HMM. 

 
1 Introduction 

 
The number of dysphonic patients having different types of 

voice disorders has increased significantly.  In the United 
States, approximately 7.5 million people have vocal difficulty 
[14].  It has been found that 15% of the total visitors to the 
King Abdul-Aziz University Hospital complain from a voice 
disorder [16].  The complications caused by a voice problem 
in a teaching professional are significantly greater than in a 
non-teaching professional.  Studies revealed that, in the U.S., 
the prevalence of voice disorders during a lifetime is 57.7% 
for teachers and 28.8% for non-teachers [17].  Approximately, 
33% of teachers in the Riyadh area suffer from voice disorders 
[10].  

                                                            
* Department of Computer Engineering, College of Computer  
and Information Sciences.  E-mail:  {zuali, ghulam, 
msuliman}@ksu.edu.sa. 
† Centre for Intelligent Signal & Imaging Research, Department  
of Electrical and Electronic Engineering.  E-mail:  zulfiqar_g02579 
@utp.edu.my, irraivan_elamvazuthi@petronas.com.my. 
‡ Department of Software Engineering.  Email:  muteb@ksu.edu.sa. 

At Communication and Swallowing Disorders Unit, King 
Abdul Aziz University Hospital, a high volume of voice 
disorder cases is examined (almost 760 cases per annum) in 
individuals with various professional and etiological 
backgrounds.  

An automatic speech recognition system for assessment or 
therapy of a voice disorder is suggested in [8].  The 
recognition rate of a speech recognition system can be affected 
by size of the vocabulary, continuity of speech (isolated words 
or continuous speech), the microphone quality and its 
placement, and text-dependence.  Speech varies widely from 
person to person, even if pronunciation is correct.  For 
example, a small change in pitch could result in a rejection by 
a computer.  Extensive work has been done on speech 
recognition systems (SRS) for normal speakers [12, 18-19] but 
few studies have examined speech recognition in dysphonic 
patients [2, 13].  In [13] the patients have six voice disorders:  
Cyst, LPRD, SD, Sulcus, Nodules or Polyp.  Mel-frequency 
cepstral coefficients (MFCC) features alone and with delta 
coefficients are extracted from the Arabic digits and inputted 
to GMM.  The system is trained by normal speakers only, but 
tested with both normal and pathological samples.  The 
recognition rate for normal subjects is 100%, and varies from 
56% to 82.50% for disorder samples.  Another automatic SRS 
is presented in [2].  The database contains 50 male and 21 
female patients.  MFCC, Linear predictive cepstral 
coefficients (LPCC), PLP (Perceptual Linear Prediction) [4] 
and RASTA_PLP (Relative Spectral Transform Perceptual 
Linear Predictive) [5-6] are extracted from the speech samples 
of the dysphonic patients and inputted to the pattern matching 
techniques of Hidden Markov model (HMM) and Gaussian 
mixture model (GMM).The techniques of HMM and GMM 
are implemented with various numbers of states and 
Gaussian’s mixtures.  The database is divided into three parts: 
male only, female only and mixed gender.  The speech 
recognition systems developed in the studies [13] and [2] is 
based on the word model, where whole word is used for the 
training of the system.  In [9], Multi-directional local features 
are used for automatic speaker recognition system. 

In this paper, an automatic phoneme based speech 
recognition system is implemented by using MFCC and the 
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proposed Oriented Local Features (OLF).  The HMM [1, 3, 
11] is implemented with the means of Hidden Markov model 
Toolkit (HTK) [7].  The proposed OLF provided good 
recognition rate, and obtained results comparable with 
conventional features MFCC.  In the developed system, a 
word is divided into its phonemes.  The HMM is built using a 
phoneme based model.    

The rest of the paper is organized as follows:  Section 2 
describes the developed system, including different speech 
features.  Section 3 focuses on experimental results and 
provides analysis on the results.  Finally, Section 4 highlights 
some conclusions.  

 
2 Phoneme Based Automatic Speech Recognition System 

 
A speech recognition system has two major phases:  first is 

the training phase and the second is testing of the developed 
system.  The output of the first step is acoustic models of 
each word in the vocabulary, while the second step uses the 
generated models and makes a comparison of a test utterance 
with each of the models.  The model of a word having 
maximum likelihood with the test utterance is the recognized 
word. 

The first phase consists of two important components:  1) 
feature extraction and 2) acoustic model generation.  The 
features we used are MFCC plus energy, oriented local 
features (OLF), and interpolated OLF.  The modeling 
technique is Hidden Markov model.   

In the phoneme based system, each word of the vocabulary 
is split into its phonemes.  Arabic digits with their IPA 
symbols are listed in Table 1.  This kind of system generates 
accurate acoustic models; hence, produces good recognition 
rates.  The following subsections will describe the pre-
emphasis of the signal, and the feature extraction techniques.  

 
 Table 1:  Arabic Digits with their IPA Symbols 

Digits 
Symbol Arabic IPA 

 /w/, /a/, / ħ/, /i/, /d/ واحد 1
 /i/, /th/, /n/, /a/, /y/, /n/ إثنان 2
 /th/, /a/, /l/, /ā/, /th/, /a/ ثلاثة 3
 /a/, /r/, /b/, /?/, /a/ أربعة 4
 /kh/, /a/, /m/, /s/, /a/ خمسة 5
 /s/, /i/, /t/, /t/, /a/ ستة 6
 /s/, /a/, /b/, /?/, /a/ سبعة 7

 ,/th/, /a/, /m/, /ā/, /n/, /y/ ثمانية 8
/a/ 

 /t/, /i/, /s/, /?/, /a/ تسعة 9
 

2.1 Mel-Frequency Cepstral Coefficients 
 

Before extracting the features, the speech samples are 
passed through a pre-emphasis filter to increase the magni-
tude of high frequencies with respect to the magnitude of 
lower frequencies.  The pre-emphasis filter is implemented by 
using 

 

 ( ) ( )  . ( 1)y n x n x nα= − −  (1) 

Where x(n) and y(n) are the input and output signals, 
respectively, and α = 0.95. 

MFCC simulates human auditory mechanism and performs 
reasonably well under robust conditions.  Figure 1 shows a 
block diagram of the MFCC calculation.  First, digitized wave 
data is divided into overlapping frames, where the frame 
length is 20 milliseconds.  This division is needed to analyze 
the speech in small pseudo-stationary segments.  

 

Frame
 Blocking

Frame
Windowing

FFT
SpectrumMEL Filter 

Bank
Mel

Weighted 
Spectrum

Log 
Compression

DCT MFCC

Continuous 
Speech

 
 

Figure 1:  Block diagram for MFCC extraction 
 
The resultant frame is multiplied by an N-point Hamming 

window to minimize the effect of spectral leakage.  The 
Hamming window has almost zero values towards the both 
ends ensuring the continuity of the signal in successive frames. 

 The windowed signal, snw, is obtained as 
 

 

'20.54 0.46cos   
1

  0 1

nw n
ns s

N
where n N

π⎧ ⎫⎛ ⎞= −⎨ ⎬⎜ ⎟−⎝ ⎠⎩ ⎭
≤ ≤ −

 (2) 

 
Fourier transformation (FT) is applied to the windowed 

signal to convert the time-domain signal into a frequency-
domain signal (spectrum).  Triangular band-pass filters (BPFs) 
are applied to divide the spectrum into certain frequency 
bands.  The center frequencies of the BPFs are spaced on a 
Mel-scale, and the bandwidths correspond to well-known 
auditory perception phenomena called critical bandwidth.  The 
relation between Mel-scale and linear scale (Hz), given by 
Equation 3, is almost linear up to around 800 Hz, and 
logarithmic beyond that  

 

 Pmfm ,...,2,1   ,
700

1log2595 10 =⎟
⎠
⎞

⎜
⎝
⎛ +=  (3) 

 
In Equation 3, m corresponds to Mel’s index (P filters are 

used) and f refers to frequency in Hz.  Therefore, by applying 
26 BPFs (P = 26), N points of the spectrum are converted to 
only 26 values.  Log is applied to the 26 outputs to make the 
convolution components additive and to adjust the dynamic 
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range in the spectrum.  In this way, source excitation signal 
and vocal tract filter response become additive.  The log 
outputs are then passed through discrete cosine transform 
(DCT) to de-correlate the components and reduce the 
dimension.  The output of DCT is called MFCC.  Typically, 
the 0-th coefficient is ignored and the first to 12 coefficients 
are retained to represent 12 MFCC.  

First and second orders derivatives are calculated on these 
12 components to find velocity and acceleration coefficients.  
These derivatives are normally extracted using linear 
regression as     

  

  
∑

∑

=

=
+− −

=∆ B

i

B

i
mitmit

t

i

cci

1

2

1
,,

2

)(
 (4) 

 
Where, ∆t corresponds to a velocity component at t-th 

frame, Ct,m stands for m-th MFCC at t-th frame, and B is the 
length of the regression window.  

In our work, we add the energy to the MFCC coefficients.  
The energy of a signal, s(n), for N number of samples is 
defined as  

 

 
2

1

( )
N

s
n

E s n
=

= ∑  (5) 

 

2.2 Oriented Local Features 
 

Oriented local features (OLF) are calculated by applying 3-
point linear regression along directions 0o, 22.5o, 45o, 67.5o, 
and 90o in the time frequency plane.  In calculating OLF, pre-
processing, frame blocking, windowing, Fourier’s 
transformation, Mel filter bank, and log compression are the 
same as described in the section of MFCC.  A 3-point linear 
regression (LR) is then applied on the log of Mel weighted 
spectrum (LMS) to obtain local features in a specific 
direction.  In each direction, OLF is calculated separately.  
The application of LR on the 7x7 window of LMS matrix to 
calculate OLF in different directions is depicted in Figure 
2(a)-(e).  After applying LR, 12 coefficients from each frame 
are considered.  In total, for all five directions, we will have 
60 features.  In other words, if a voice sample has 100 frames, 
then each frame will have 12 features in each direction, and 
dimensions of OLF will become 100x60.  

Three-point LR is calculated by using following formula  
 

 
( )

3

1
3

2

1

2

c r c r
r

r

i L L
LR

r

+ −
=

=

−
=
∑

∑
 (6) 

 
Lc is the center element of the selected 7x7 window of LMS 

matrix.  Lc+r and Lc-r represent next and previous elements of  
 

 

 

 

 

 

 
Figure 2(a):  OLF at 0o Figure 2(b):  OLF at 45o Figure 2(c):  OLF at 90o 

 
 

  

Figure 2(d):  OLF at 22.50o Figure 2(e): OLF at 67.50o 
 

Figure 2(a)-(e):  OLF at different angles 
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Lc in the direction where LR is going to be calculated.  For 
each value of the LMS, LR is calculated, and it replaces the 
value.  The LR for the values at boundaries is calculated by 
padding the LMS matrix with boundary columns and rows. 

To get OLF at 22.5o and 67.5o, the points for LR at 22.5o, 
67.5o, 202.5o and 247.5o are interpolated by using the points 
of 0o, 45o, 90o, 135o, 180o, 225o, 270o, 315o and 360o.  The 
interpolation of the points along radius 1 is depicted in 
Figure 3.  Similarly, interpolations along radius 2 and 3 are 
calculated.  The interpolated data is obtained by using the 
formula of cubic spline interpolation [15]. 

 used for training the system and the remaining 50% samples 
are used for testing.  

The experiments are performed by using 2, 4, 8, 12, 16, 20, 
32, 50 and 64 Gaussian mixtures in each state, where 
numbers of states in HMM are three.  The size of database is 
not very large.  Therefore, we do not use a high number of 
states because data may not converge. 

The system is evaluated in three different ways:  (1) 
training and testing is performed with pathological samples 
(P - P), (2) training with normal and testing with pathological  

 

 
 

Figure 3:  Interpolation of the values along radius 1 
 

LR at 0o and 90o correspond to change in time and frequency, 
respectively.  LR at 45o, correspond to change in both time and 
frequency.  Similarly, LR along 22.5o and 67.5o also represent 
the change in time and frequency. 
 

3 Experimental Results and Analysis 
 
To evaluate the performance of the phoneme based speech 

recognition system, the developed system is evaluated with a 
database containing 142 subjects, 71 dysphonic patients and 71 
normal persons.  The dysphonic patients have five types of 
voice disorder.  The distribution of samples among various 
disorders is provided in Table 2. 

Each subject has uttered Arabic digits from one to nine.  
Therefore, the total number of samples in the database is 1278.  
Fifty percent of the normal and pathological samples are 
 
   Table 2:  No. of speakers for both types of subjects 

Types of 
subject 

Types of 
disorder 

No. of 
subjects 

Total 

Cyst 12 
GERD 22 

Paralysis 6 
Polyp 10 

Dysphonic 

Sulcus 21 

71 

Normal -- 71 71 
Total  142 

samples (N - P), and (3) training and testing is done with both 
types of the samples (NP - NP). 
 
3.1 Speech Recognition with MFCC and Energy 

 
In this subsection, speech recognition results are obtained by 

using the combination of energy and MFCC features.  The 
experiments are performed with 13 features (static coefficients), 
26 features (13 static and 13 delta coefficients), and 39 features 
(13 static, 13 delta, and 13 delta-delta coefficients).  The bold 
values in each table represent the maximum recognition rate.  

 
3.1.1 Recognition Rate with P – P.  Firstly, the developed   

system is evaluated by using pathological samples for 
training and testing.  The recognition rates (RR) for the 
different number of features are provided in Table 3.  The 
maximum achieved RR is 91.22% with 39 features. 
 

3.1.2 Recognition Rate with N – P.  Secondly, the 
system is trained with normal samples and tested with 
disordered samples.  The results show that performance of 
the system is improved by doing the training with normal 
samples and RR improved to 94.51%.  The results are listed 
in Table 4. 

 
3.1.3 Recognition Rate with NP – NP.  Lastly, the system 

performance is evaluated by considering both types of samples, 
i.e., normal and pathological, for the training.  The results are 
further improved and are presented in Table 5.  The highest 
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   Table 3: Recognition rates with P - P 
Digit recognition for P - P with 

different no. of features No. of 
GMM 13 26 39 

2 88.4 90.91 90.91 
4 87.77 90.6 91.22 
8 86.83 90.28 89.66 

12 86.52 89.66 90.28 
46 88.09 89.34 89.34 
20 85.89 87.77 88.09 
32 86.21 89.97 87.77 
50 86.52 84.95 85.89 
64 86.83 86.52 81.19 

 
  Table 4: Recognition rates N - P 

Digit recognition for N - P with 
different no. of features No. of 

GMM 13 26 39 
2 87.93 93.73 93.26 
4 87.15 94.04 93.89 
8 85.58 94.36 93.89 

12 87.3 94.04 93.57 
46 88.24 93.89 93.89 
20 87.15 93.42 94.51 
32 87.62 92.95 93.26 
50 85.89 93.89 93.1 
64 86.52 94.51 34.64 

 
  Table 5: Recognition rates with NP - NP 

Digit recognition for NP – NP with 
different no. of features No. of 

GMM 13 26 39 
2 91.07 94.83 94.2 
4 92.48 95.14 94.51 
8 92.95 94.51 94.98 

12 91.85 95.14 95.45 
46 92.63 94.51 94.83 
20 92.32 94.51 53.76 
32 92.79 94.51 95.14 
50 91.22 93.89 94.83 
64 91.69 95.45 94.98 

obtained recognition rate is 95.45% and is achieved with 26 
features by using 64 Gaussians, and 39 features by using 12 
Gaussians. 

The confusion matrix for 39 features and 12 Gaussian, 
which provided the highest recognition rate for Energy + 
MFCC, is provided in Table 6.  Diagonal elements represent 
the number of truly recognized samples, while all other 
values correspond to the number of misclassified samples.  
In the last column, the recognition rate for each digit is 
provided.  The highest obtained recognition rate is for digits 
5 and 7, and it is 98.59%.  The trend of the recognition rate 
of all digits is shown in Figure 4. 

To see the effect of the number of features, few experiments 
are performed with 20 features.  The first and second 
derivatives are also calculated and appended, making the total 
number of features 40 and 60, respectively.  The RR is listed in 
Table 7. 

 
3.2 Speech Recognition with Oriented Local Features 

 
Speech recognition is also performed with OLF features.  In 

each direction, we have 12 coefficients.  The experiments are 
done by combining the features of different directions.  The 
experiments are performed by training the system with normal 
samples, and then by using both types of the samples.  The 
case of training with pathology samples is not considered, as it 
did not provide good results in case of MFCC. 

 
3.2.1 Recognition Rate at 0+45 with N – P and NP – NP.  

Table 8 provides the recognition rate for the combination of 0 
and 45 degree (12 features in each direction).  The highest 
result, when trained with normal samples is 92.01%, while a 
RR of 94.98% is achieved when the system is trained with 
both type of samples. 

 
3.2.2 Recognition Rate with NP – NP.  The experiments are 

performed by combining the features of different directions.  
The system is trained with both type of samples as it provided 
good results for the combination 0+45.  

The highest RR obtained for the combination of 0 and 90 
degree (0+90) is 94.51%, for 0+45+90 is 92.63%, and for 
0+45+90+135 is 92.95%.  The results are provided in Table 9.

 
 
Table 6: Confusion matrix of energy+MFCC for 39 features and 12 Guassians  

Digits 1 2 3 4 5 6 7 8 9 RR(%) 
1 67 1 2 0 0 0 0 0 0 95.71 
2 0 66 4 0 0 0 1 0 0 92.96 
3 0 4 65 1 0 0 1 0 0 91.55 
4 0 1 1 67 1 0 0 0 1 94.37 
5 0 0 0 0 70 1 0 0 0 98.59 
6 0 0 0 0 0 69 2 0 0 97.18 
7 0 0 0 0 0 0 70 1 0 98.59 
8 0 3 1 0 0 0 0 66 1 92.96 
9 0 0 0 0 1 0 1 0 69 97.18 
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Figure 4: The trend of recognition rate of all digits for 39 

features and 12 Gaussians 
 

Table 7: Recognition rates with NP - NP with 20, 40 and 60 
features 

Digit recognition for NP – NP with 
different no. of features No. of 

GMM 20 40 60 
2 89.18 94.04 93.89 
4 90.75 93.73 93.89 
8 90.13 94.36 93.26 

12 90.28 92.79 93.42 
46 90.6 92.63 92.79 
20 88.87 92.32 93.1 
32 90.13 93.57 92.63 
50 90.13 89.81 92.16 
64 89.81 92.48 91.69 

 
 Table 8:  Recognition rates with OLF at 0+45 

Digit recognition at 0+45 No. of 
GMM N - P NP-NP 

2 91.69 92.79 
4 91.22 93.1 
8 91.07 94.67 

12 91.07 94.83 
16 92.01 94.83 
20 91.54 93.73 
32 90.91 93.89 
50 88.71 94.04 
64 90.6 94.98 

Table 9:  Recognition rates for NP - NP with OLF 
Digit recognition with NP - NP at different 

orientations 
No. of 

GMM 

0 + 90 0 + 45 
+90 0+45+90+135 

2 94.04 91.54 91.54 
4 94.2 92.01 92.79 
8 94.51 92.32 92.95 

12 93.1 91.38 91.22 
46 92.79 92.16 91.22 
20 93.42 92.63 91.54 
32 92.95 91.38 89.81 
50 90.75 89.81 89.81 
64 93.57 89.66 88.56 

 
 
3.3.2 Best Performance of OLF.  The highest recognition 

rate with OLF is 94.98% obtained with a combination 0+45 by 
using 64 Gaussian mixtures, when the system is trained with 
both type of samples. 

To show the number of truly recognized samples, a confusion 
matrix is provided in Table 10.  All diagonal elements represent 
the number of truly classified samples for each digit.  The 
elements other than diagonal are number of misclassified 
samples.  The last column of Table 10 contains individual 
recognition rates for each digit; they are also plotted in Figure 
5. 
 
3.3 Speech Recognition with Interpolated OLF 

 
OLF are interpolated in two directions, 22.50 and 67.50 

degree.  These features are used in two combinations 
0+22.5+45 and 0+22.5+45+67.5, when training is done by 
normal samples.  The results are presented in Table 11.  The 
highest obtained RR in this case is 89.03%. 

Interpolated OLF are also used in 0+22.5+45 and 
45+67.5+90, when training is done by both types of samples.  
The RR for these combinations are listed in Table 12.  The 
maximum achieved result is 93.57% for this case. 
The overall highest obtained rate for interpolated OLF is 
93.57% with 0+22.5+45 by using four Gaussian.  The 
recognition rate for each digit is depicted in Figure 6. 

 
  
 Table 10: Confusion matrix of OLF for 0+45 with 64 mixtures 

Digits 1 2 3 4 5 6 7 8 9 RR(%) 
1 66 2 1 1 0 0 0 0 0 94.29 
2 0 68 1 0 0 1 1 0 0 95.77 
3 0 2 66 2 0 0 0 1 0 92.96 
4 0 1 1 65 1 0 3 0 0 91.55 
5 0 0 0 0 69 1 0 0 1 97.18 
6 0 0 0 0 0 69 2 0 0 97.18 
7 0 1 0 1 0 0 68 1 0 95.77 
8 0 3 0 0 0 0 0 67 1 94.37 
9 0 1 0 0 0 1 1 0 68 95.77 
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  Figure 5: The trend of recognition rate of all digits for 0+45 

with 12 Gaussians 
 

    Table 11: Recognition rates for N - P with interpolated 
OLF  

Digit recognition at different 
orientations No. of 

GMM 0 + 22.5 + 45 0+22.5+45 + 67.5 
2 89.03 84.33 
4 89.03 87.46 
8 88.09 87.77 

12 88.87 87.62 
16 87.93 84.8 
20 87.15 84.48 
32 87.46 84.64 
50 86.68 84.64 
64 85.27 82.45 

 
   Table 12: Recognition rates for NP - NP with interpolated 

OLF 
Digit recognition at different 

orientations No. of 
GMM 0 + 22.5 + 45 45 + 67.5+90 

2 91.38 85.97 
4 93.57 91.15 
8 91.54 89.58 

12 92.32 91.46 
16 92.01 88.48 
20 93.10 89.74 
32 91.85 89.11 
50 89.03 85.5 
64 90.44 88.33 

 
4 Conclusion 

 
A new type of speech features, OLF, are proposed in the 

study.  A speech recognition system for the dysphonic patients 
is developed by application of the proposed features.  The 
performance of the features is evaluated by carrying out 
different experiments on a database containing both 
pathological and normal samples.  The maximum accuracy is 
provided by the combination of energy and MFCC, and it is 
95.45%.  The maximum accuracies achieved by OLF and 
interpolated OLF are 94.98% and 93.57%, respectively.  

The obtained accuracy of 95% with proposed features is 
encouraging and comparable with the existing features.  The 
performance of the developed system can be improved by 
modifying the proposed features OLF, so that the system could 
be applied in real application to benefit the dysphonic patients.  
By doing so they will be able to take the advantages like normal 
persons by using speech recognition applications. 

 

 
 
 Figure 6: The trend of recognition rate of all digits for 

0+22.5+45 with 4 Gaussians 
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Abstract 
 
Multicasting can be done in two different ways:  source 

based tree approach and shared tree approach.  In shared tree 
approach, a single shared tree is needed for forwarding 
multicast packets and in source based tree approach, 
construction of a minimum cost tree per source is needed for 
packet transfer.  Hence, shared tree multicasting is preferred 
over source based tree approach. Several protocols like Core 
Based Tree (CBT), and Protocol Independent Multicasting 
Sparse Mode (PIM-SM) use shared tree approach.  In this 
paper, we have presented two new concepts named pseudo 
sub-diameter and super pseudo sub-diameter which have been 
used for efficient core selection on networks that use Link 
State Routing protocol as the underlying unicast protocol.  In 
fact, these two concepts are themselves independent of 
whatever underlying unicast protocol is being used.  The 
proposed static core selection method uses pseudo sub-
diameter concept and the group based core selection method 
uses super pseudo sub-diameter concept.  The presented 
methods select more than one core to achieve fault tolerance. 

Key Words:  Core selection, link state routing, pseudo sub-
diameter, super pseudo sub-diameter, shared tree. 

 
1 Introduction 

 
With the increase in the availability of internet, many 

applications such as video/audio broadcasting, video 
conferencing, and resource discovery have become popular.  
Most of these applications work efficiently because of the 
underlying reliable and efficient multicast routing protocols.  
Hence, choosing an effective multicast routing protocol has 
become critical.  Multicasting is preferred over multiple 
unicasts from the viewpoint of better utilization of network 
resources, mainly network bandwidth.  Hence, various 
multicast communication protocols have been developed since 
the 1980s [1, 4-5, 8, 9, 12-13] including flooding, spanning 
tree, reverse path forwarding, and core-based trees (CBT). 

Each multicast routing protocol needs a distribution tree to 
send packets to the receivers.  In general, multicast trees 
generated by multicast routing protocols can be divided into 

                                                      
*  Department of Computer Science.  Email:  [bidyut, 
rahimi]@cs.siu.edu, sindoora.koneru@gmail.com. 

two categories, namely, source based distribution trees [8-9, 
10, 12] and shared trees [1, 4-5].  Among these multicast 
techniques, the shared tree approaches have become more 
efficient compared to source based tree approaches because, 
unlike source based tree approaches, shared tree approaches 
use single shared tree for packet forwarding.  The traditional 
CBT protocol [1] involves having a single node, known as the 
core of the tree, from which the branches stretch.  These 
branches form the shortest paths between the members of the 
multicast group and the core. 

The main disadvantages of the core based tree method are 
core as a single point failure and core selection.  A single point 
failure on the tree will partition the tree and make it difficult, if 
not impossible, to fulfill the requirement of multicasting.  And, 
selection of a core is NP-complete problem.  While various 
solutions have been proposed to address these problems, they 
usually either require knowledge of the entire topology or are 
not always fault tolerant. 

Authors, in [13], have proposed a method for core 
placement.  The key idea of the proposed method has been 
derived from the concept that the paths between cores and 
members are the shortest paths.  In practice there may be a 
number of multicast sessions going on in parallel.  In such 
situations using a single core may become a problem.  Core as 
a single point failure problem is addressed in this work.  When 
load on the current core exceeds a maximum threshold, node 
with next maximum weight is used as a core.  The major 
drawback of this maximum weight method is that it requires 
the knowledge of the entire network topology to calculate the 
shortest paths between nodes.  In addition, the shortest path 
needs to be calculated between all pairs of nodes in the 
network.  This can be exhaustive. 

In [2-3], authors have proposed a multicast core 
management protocol for networks using Link state routing 
protocol (LSR).  Link state core management protocol (LCM) 
uses a Core Binding Server (CBS) which maintains the 
bindings of core-group for all active groups in the network.  A 
node that wishes to join a multicast group sends a core-
mapping message to CBS.  If CBS finds the corresponding 
core, it sends core address to the node.  The node then attaches 
itself to the multicast tree.  Otherwise, CBS selects a core and 
binds it to the group.  In general, initially, the first node in the 
group becomes a core.  Periodically, the core node computes a 
shortest-path tree to reach the members of group, and finds the 
center of the resulting tree.  The major drawback of this 
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approach is the use of one centralized server, CBS, for the 
management of core-group bindings.  This raises the concern 
of the workload overhead at the server.  The Optimal Cost 
Based Tree (OCBT) [11, 14, 19] approach calculates the cost 
(number of links) of the tree rooted at each router in the 
network and selects the one which gives the lowest maximum 
delay over all other roots with lowest cost.  

 
Problem formulation:  In this work, we have extended our 

recent work [16] on static core selection to group based core 
selection.  We consider networks which use Link State routing 
(LSR) protocol for communication.  We shall first present the 
static core selection method based on our recently introduced 
concept of pseudo sub-diameter [10, 16].  After that we shall 
use a second new concept known as super pseudo sub-diameter 
[10] to design a core selection algorithm based on only group 
members of a given multicast group.  This new concept is 
derived from the concept of pseudo sub-diameter.  In addition 
to selecting the primary core we have also considered selection 
of additional cores to add an element of robustness.  The 
proposed methods are also applicable to networks which use 
Distance Vector Routing (DVR) as unicast protocol.  Besides, 
the proposed methods can be applied to both wide area 
networks (WAN) and to inter-domain multicasting (protocol 
independent multicasting sparse mode (PIMSM)). 

We have described, first, the concept of pseudo sub-diameter 
in Section 2.  Static core selection method [16] is presented in 
Section 3.  In Section 4 we present the group based core 
selection method.  In Section 5 performance has been 
discussed.  Finally, Section 6 draws conclusions.  

 
2 Pseudo Sub-Diameter 

 
The routing protocols proposed in [15, 17-18] use a new 

concept called pseudo diameter for networks that use distance 
vector routing (DVR).  It is defined as follows [15, 17-18].  
For a source router ri, based on its DVR table, its pseudo 
diameter is the maximum value among the costs to reach from 
source ri to all other routers in a network.  The implication of 
pseudo diameter is that any other router is reachable from 
source router ri within the distance (i.e., cost/no. of hops) equal 
to the pseudo diameter of router ri.  It directly relates to the 
physical location of router ri. Pseudo diameter is not the actual 
diameter of the network, because it depends on the location of 
router ri in the network.  So, different routers in a network may 
have different values for their respective pseudo diameters. 

Theoretical findings and simulation results have been 
presented in [15, 17-18] to support the claim that pseudo 
diameter-based packet forwarding during broadcasting and 
multicasting improves the utilization of network bandwidth by 
reducing the number of duplicate packets generated.  In [12], 
authors have extended the application of pseudo diameter to 
static core selection when the underlying unicast protocol is 
DVR.  It has been shown that the concept of pseudo diameter, 
when used in static core selection approach, effectively 
determines primary, secondary, tertiary cores etc. by only one 
time broadcast of pseudo diameter.  The selection is 
unanimous because all routers have the same information 

needed for selection and the approach is fault tolerant as 
secondary and tertiary cores can be determined along with the 
primary core.  

In this paper, to make the concept of pseudo diameter 
protocol independent, i.e., independent of the underlying 
unicast protocol, we have extended the idea to networks based 
on LSR.  For LSR, we use pseudo sub-diameter as the 
equivalent term for pseudo diameter.  It is seen in [15, 17-18] 
that, to obtain pseudo diameter, each entry in a DVR table 
must appear as <destination router, next hop router, cost to 
reach destination>.  Hence, in order to acquire pseudo sub-
diameter and for the core selection method to work based on 
this idea, corresponding unicast LSR table entries must also 
appear as a tuple of length 3 as in DVR tables.  In Link State 
Routing, each entry in the Link State Table (LSRx) of any 
router X appears as <destination router, next hop router>.  
‘Cost to reach destination’ is absent in the entries.  However it 
is simple for any router X to include it, because any way router 
X has to determine the least cost path to every other 
destination router Y using topological information; that is, 
eventually X computes such costs.  Therefore, if ‘cost to reach 
destination’ is included in LSRx, the method proposed in [10] 
can be applied for static core selection in LSR based networks.  
We have modified LSR tables by adding the ‘cost to reach 
destination’ field and thus the LSR table entries appear as a 
tuple of length 3.  We define pseudo sub-diameter derived 
from the modified LSR tables as follows. 

Let n be the number of routers in a network with diameter d.  
Let LSRi be the unicast link state routing table used by router 
ri, [1≤ i ≤n] and let <rj, rk, ci,j> be the entry  for destination rj, 
[1 ≤ j ≤n; j ≠ i], and rk be the next hop router along the shortest 
path from ri to rj with cost ci,j.  We define pseudo sub-diameter 
Pd(ri) of router ri as follows: 

 
Pd(ri) = max {ci,j}, where ci,j= cost (ri, rj ), ci,j ∈ LSRi 

 
In words, for a source router ri, based on its LSRi table, its 

pseudo sub-diameter is the maximum value among the costs to 
reach from source ri to all other routers in a network.  Like 
pseudo diameter, the implication of pseudo sub-diameter is 
that any other router is reachable from a source router ri within 
the distance (i.e. cost/no. of hops) equal to the pseudo sub-
diameter of router ri.  

We summarize the characteristics of pseudo sub-diameter 
below. 

 
(1) Pseudo sub-diameter of a router is directly related to the 

physical location of the router in a network. 
(2) So it may be different for different routers. 
(3) Pseudo sub-diameter of a router is not the diameter of a 

network. 
(4) It is always less than or equal to the diameter of a 

network. 
 

3 Static Core Selection in LSR – Based Networks 
 
We have introduced a systematic approach [10, 16]to select 

a static core in networks which use LSR for message 
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communication.  This core selection is independent of any 
multicast group and will involve all routers in a network.  The 
working principle of the method is stated below. 

Let cost ci,j between two routers ri and rj be measured in no. 
of hops.  Let ri be any router in a network of n routers and let 
Ti denote the minimal spanning tree rooted at ri and Ti (L) be 
its number of levels. 

Therefore, 
 
 Ti (L) = Pd(ri) = maximum (ci,j), 1 ≤ j ≤ n, j ≠ i,  ci,j ∈ LSRi 
 
Hence, a router rk will be selected as the primary static core,  
 
if Tk (L) = min {Tj (L)}, ∀j 
 
i.e., Pd(rk) = min {Pd(rj)}, ∀j 
 
Note that even if the cost is measured differently, a router rk 

will be selected as the primary static core, 
 
if Pd(rk) = min {Pd(rj)}, ∀j. 
 
To incorporate core redundancy, a router rm is selected as the 

secondary core, 
 
if Pd(rm) = min {Pd(rj)}, j ≠ k 
 
Similarly a tertiary core (with the next lowest Pd value) can 

be selected to achieve an even higher degree of fault tolerance. 
Note that during core selection in the event of a tie between 

routers, the router with highest IP address is selected as the 
core of choice. 

 
3.1 Algorithm Description 
 

The following notations and data structures are used in the 
algorithm. 

 
n:  total number of routers in a network;  
broad_message (Pd(ri), ri):  broadcast message from router ri 

with its  pseudo sub-diameter Pd;  
LSRi[][]:  LSR table of router ri, [1 ≤ i ≤ n]; 
core[][]:  two dimensional array that contains router ids and 

corresponding pseudo sub-diameters in ascending order of 
pseudo sub-diameter;  

 
Procedure broad() is called by each ri where (1 ≤ i ≤ n) to 

broadcast Pd(ri).  Each router controls the broadcast with its Pd 
value, i.e., a router broadcasts a message to its neighbor only if 
it is within its Pd range. 

Procedure receive_Broad(Pd(ri), ri) is used by each router.  
This procedure has Pd(ri) and ri as input and generates core[][] 
that contains router ids and their respective pseudo sub-
diameter values. 

Procedure Static_core() called by ri, has core[][] as input.  It 
sorts core[][] in ascending order of the Pd values.  If multiple 
routers have the same Pd value, the routers are sorted in the 

descending order of their IP addresses.  At the end of this 
procedure, core[][] contains, in order, primary core, secondary 
core, tertiary core, etc., and the later ones are selected to 
achieve fault-tolerance. 

 
Algorithm Static_Core 
 
Procedure broad() 
Begin 

for each ri [1 ≤ i ≤ n] 
Pd(ri) = max (LSRi[j][2]) [1 ≤ j ≤ n] 
send broad_message (Pd(ri), ri) 

end for   
/* each node broadcasts its pseudo sub-diameter value (Pd 

based broadcast)*/ 
End  
 
Procedure receive_Broad(Pd(ri), ri) 
Begin 

for each ri [1 ≤ i ≤ n] 
for k = 1 to n 

if i ≠ k 
core[k][0]=rk 
core[k][1]=Pd(rk) 

end if 
end for 

end for    
/*core[][], a  two-dimensional array that contains router id 

and  pseudo sub-diameter*/ 
Static_Core(core[][]) 

End 
 
Procedure Static_Core(core[][]) 
Begin  

sort_asc(core[][])  
/*sort core[][] in ascending order of Pd*/ 

if same Pd 
sort_desc(core[][]) 

/*sort core in descending order of router’s IP address*/ 
end if  

end for  
End 
 

3.2 An Example  
 
In static core approach, the selected core is the router that 

has minimum Pd (ri) compared to all other routers in the 
network.  Obtaining static core requires additional information 
about the network, like the next hop and the cost to reach the 
next hop.  This information is present in link state routing 
tables of each router.  Choosing a core, based on topology, is 
attractive and easy as it does not require group member 
information or source information. 

Consider the network in Figure 1.  It shows an 8 router 
network.  Let C, D, G, H be the group members of a multicast 
group g.  Each router in the network initializes the creation of 
link state routing tables by sending link state advertisements.  
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After the exchange of Link State Advertisement packets, each 
router in the network has a summary routing table that is 
shown in Figure 2.  Modified Link State routing tables are 
derived from this summary table.  Figure 3 shows the modified 
LSR tables of the group members from the network provided 
in Figure 1.  These tables contain an additional cost field 
which is not present in the regular LSR tables.  
251660288251659264 
 
 
 
 
 
 
 
 

 
 

Figure 1:  An 8 node network 
 

Router Next  
Hop Cost 

A B 30 
A C 40 
B A 30 
B D 30 
B E 50 
C A 40 
C E 20 
C F 50 
D B 30 
D G 20 
E B 50 
E C 20 
E G 20 
E H 20 
F C 50 
F H 20 
G D 20 
G E 20 
H E 20 
H F 20 

 
Figure 2:  Routing table with LSAs 

 
Static core, in our approach, is a router that has least pseudo 

sub-diameter value compared to all other routers in the 
network.  According to its definition, pseudo sub-diameter of a 
router is the maximum cost present in its LSR table.  So, from 
the modified LSR tables, each router in the network can derive 
its pseudo sub-diameter value.  From Figure 3, pseudo sub-
diameter of routers A, B, C, D, E, F, G, and H are obtained as 
90, 90, 70, 80, 60, 90, 80, and 80, respectively. 

Each router broadcasts its Pd(ri) value to all other routers in 
the network (ri, 1 ≤ i ≤ n).  At the end of the broadcast, each 
  

A  B 
Dest. Next Cost  Dest. Next Cost 

A A 0  A A 30 
B B 30  B B 0 
C C 40  C A 70 
D B 60  D D 30 
E C 60  E E 50 
F C 90  F E 90 
G C 80  G D 50 
H C 80  H E 70 

 
C  D 

Dest. Next Cost  Dest. Next Cost 
A A 40  A B 60 
B A 70  B B 30 
C C 0  C G 60 
D E 60  D D 0 
E E 20  E G 40 
F F 50  F G 80 
G E 40  G G 20 
H E 40  H G 60 

 
E  F 

Dest. Next Cost  Dest. Next Cost 
A C 60  A C 90 
B B 50  B H 90 
C C 20  C C 50 
D G 40  D H 80 
E E 0  E H 40 
F H 40  F F 0 
G G 20  G H 60 
H H 20  H H 20 

 
G  H 

Dest. Next Cost  Dest. Next Cost 
A E 80  A E 80 
B D 50  B E 70 
C E 40  C E 40 
D D 20  D E 60 
E E 20  E E 20 
F E 60  F F 20 
G G 0  G E 40 
H E 40  H H 0 

 
Figure 3:  Modified LSR tables 

 
router contains Pd of every other router in the network as 
shown in Figure 4a.  Observe in Figure 4a that there is more 
than one router with the same Pd value.  For example, routers 
D, G, and H have the same Pd value of 80.  If this situation 
arises, the routers are sorted in descending order of their router 
ids (IP addresses).  Router H has the highest IP address,  
followed by routers G and D respectively. Router ri calls 
Procedure  Static_Core (core[][]) which returns sorted core[][] 
array with primary core, secondary core, tertiary core etc. in 

40 

A

30 

20 

C (g) B

D (g)  E F

H (g) G (g) 

30 20 

20 20 

50 

20 

50 
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order as shown in Figure 4b.  According to Figure 4b, router E 
is the primary static core, as it is the one with the least pseudo 
sub-diameter value of 60.  That is, the maximum # hops (cost) 
to reach any router from this core is its Pd value which is 60 
and since this Pd is less than the pseudo sub-diameters of all 
other routers, it is the best choice.  Similarly, to maintain fault 
tolerance, router C and H can be chosen as the secondary and 
tertiary cores respectively as they are the ones with next least 
pseudo sub-diameter value.  Note that H has been selected as 
the tertiary core because it has the highest IP address among 
the routers D, G, and H.  Observe that the information present 
in the LSR tables is sufficient for selecting the core. 

 
 
 
 
 
 

 
 
 
 
 

 
Figure 4a:  Content in a route ri after broadcast 

 
 
 

 
 
 
 
 
 
 

 
Figure4b:  Static cores selected by any router ri 

 
4 Super Pseudo Sub-Diameter 

 
Super pseudo sub-diameter of a router ri, denoted as Pd

s(ri) is 
defined as follows. 

 
Pd

s(ri) = max {ci,j},   where      ci,j = cost (ri, rj ),  rj ∈ g 
  and ci,j ∈ LSRi 

 
In words, for a source router ri, based on its unicast LSR 

table, LSRi, its super pseudo sub-diameter denoted as Pd
s(ri) is 

the maximum value among the costs to reach from source ri 
only those routers which are connected to group members of a 
given multicast group g.  Therefore, like pseudo sub-diameter, 
super pseudo sub-diameter of any router ri also directly relates 
to the physical location of the router and we have used this 
interpretation of such diameter to determine a group based 
core.  The important point to note is that the information 
present in the LSR tables is sufficient for selecting the core. 

The information about costs is collected from the source 
router’s LSR routing table.  The portion of LSRi containing 
only the routers attached to group members along with the 

respective next hops / cost-information is termed as the sub-
LSR table of router ri and is denoted as sub-LSRi.  Therefore, 
sub-LSRi⊆LSRi.  Observe that super pseudo sub-diameter of a 
router is always less than or equal to its pseudo sub-diameter, 
since the router computes the value of its super pseudo sub-
diameter from a subset of the routers (which are connected to 
group members) in its LSR routing table.  Hence, it is very 
likely that super pseudo sub-diameter will be less than the 
network diameter most of the time.  

 
Theorem 1:  ∀i, Pd(ri) ≥ Pd

S(ri) 
 
Proof follows directly from the above discussion. 
Static core can co-exist with group based core mechanisms.  

Group based core takes precedence over statically configured 
cores [16].  Group membership information needs to be known 
in order to select a core and the chosen core is to be a group 
member.  In certain scenarios, based on the distribution of 
group members, group member based core may be the same as 
the static core.  Below we informally state the working 
principle of the group based core selection approach and 
explain how it works with an example.  Later, we formally 
present the group based core selection algorithm. 

 
4.1 Working Principle  

 
Step 1. Each router, ri connected to a group member sends its 

membership-query request with its id  
  (IP address) to static core, say, x. 
Step 2. x forwards all received ids to each ri. 
Step 3. If x is a group member 

Step 3.1.  x derives its sub-LSR table, say, sub-LSRx 
Step 3.2. x obtains its super pseudo sub-diameter, 

Pd
S(x) from its sub-LSRx table. 

Step 4. Each ri derives its sub-LSRi, containing ids of all 
routers connected to group members. 

Step 5. Each ri obtains its super pseudo sub-diameter, Pd
S(ri)  

Step 6. Each ri unicasts Pd
S(ri) to x. 

Step 7. x identifies the router rk with lowest Pd
S(rk) as the 

primary core.  
 Next lowest one is the secondary core, and similarly 

 the following one is the tertiary core.  
   In case of a tie, x prioritizes the one with highest id. 
Step 8. Static core x forwards the ids of primary core, 

secondary core, and tertiary core to all group members. 
 
An Example:  In group core based shared tree approach, the 

router that is chosen as core is a group member.  Consider the 
network in Figure 1.  Let C, D, G, and H be the routers 
connected to group members of a given multicast group 
denoted as ‘g’ in the diagram.  Each such router sends a 
membership-query request with its id to the static core E.  
Static core E, after receiving all membership requests from the 
group members generates a data structure, which contains 
group member ids.  If static core is a group member, it derives 
its sub_LSR table and obtains its super pseudo sub-diameter.  
Static core sends the data structure with ids of group members 
to all group members.  Figure 5a shows the initial data 

ri Pd(ri) 
A 90 
B 90 
C 70 
D 80 
E 60 
F 90 
G 80 
H 80 

ri Pd(ri)
E 60 
C 70 
H 80 
G 80 
D 80 
F 90 
B 90 
A 90 

Tertiary 
core 

Primary 
core Secondary 

core
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structure that static core E sends to the group members.  Each 
group member, upon receiving the information from static 
core, derives its own sub-LSR table.  It then obtains its Pd

S 
value.  Figure 5b shows sub-LSR tables of each group 
member.  Their Pd

S values are highlighted.  Each group 
member then unicasts this information to the static core.  Static 
core, upon receiving Pd

S values from all the group members, 
updates the data structure with corresponding super pseudo 
sub-diameter values.  It then sorts the data structure in the 
ascending order of the Pd

S values.  If there are multiple routers 
with the same Pd

S value, data structure is sorted in descending 
order of routers’ IP addresses.  Figure 5c shows the final sorted 
data structure.  So, according to Figure 5c, G is the primary 
core as it has the lowest Pd

s value.  Since C, D, and H have the 
same Pd

s value, assuming H has the highest IP address among 
them followed by D and C, we consider H as the secondary 
core.  Similarly, D is chosen as the tertiary core.  E forwards 
this information to all the group members.  Now each group 
member has the same information about the primary group 
core, secondary group core and tertiary group core.  Thus, the 
group based core is determined considering only the routers 
connected to group members.  

 
 

 
 

 
 
 
 
 Figure 5a: Initial data structure from static core containing 

group Ids 
 

C  D 
Dest. Next Cost  Dest. Next Cost

D E 60  C G 60 
G E 40  G G 20 
H E 40  H G 60 

 
G  H 

Dest. Next Cost  Dest. Next Cost
C E 40  C E 40 
D D 20  D E 60 
H E 40  G E 60 

 
Figure 5b:  Sub-LSR tables of group members 

 
  
 

 
 
 
 
 
 
Figure 5c: Final data structure from static core containing 

sorted group cores information 

4.2 Algorithm Description  
 
The following notation and data structures are used in the 

algorithm. 
 
SC:  static core;  
G:  a multicast group;  
rp: a router є G; 
unicast (SC, rp):  unicast message from group member rp to 

static core, SC; 
core[][]:  an array with group members ids and their 

corresponding super pseudo sub-diameter values;  
core(rp)[][]:  sub-LSR table of group member rp;  
core(SP)[][]:  sub-LSR table of static core;  
Pd

S(rp):  super pseudo sub-diameter of group members rp 
 
Procedure unicast() is called by every router rp (є G).  Each 

rp unicasts router ids to the static core.  
Procedure SC_SubLSR (rp) is called by static core, SC, 

which has rp as input.  If SC є G, it generates sub_LSR table, 
core(SP)[][], and core[][] with group ids. Otherwise, it 
generates core[][].  SC forwards core[][] to all group members. 

Procedure GM_SubLSR (rp) is called by every router rp that 
є G upon receiving core[][] from static core, SC.  This 
procedure generates super pseudo sub-diameter of each group 
member, Pd

S(rp) as output from its corresponding sub_LSR 
table, core(rP)[][].  Each group member then sends its Pd

S(rp)  
to the static core, SC. 

Procedure Group_Core (rp, Pd
S(rp)) is executed by the static 

core, SC.  It has router id and corresponding super pseudo sub-
diameter value of each group member as input and generates 
core[][] containing primary Group-core, secondary group-core, 
tertiary group-core, etc., as output, to provide fault tolerance. 

 
Algorithm Group_Core 
Procedure unicast() 
Begin 

for each rp  є G 
sends unicast(SC, rp) 

end for 
/* all group members send their id to static core*/ 
End 
 
Procedure SC_SubLSR(rp) 
Begin 
∀ rp є G 

receives unicast(rp) 
if SC є G  

derives core(SP)[][] 
generates core[][] 

end if 
else 

generates core[][] 
end else 

/*if SC є G, it derives sub-LSR tables and core[][] with 
group member ids; otherwise SC derives core[][]*/ 

∀rp є G 

Group 
id 
C 
D 
G 
H 

Group 
id 

Pd
S 

G 40 
H 60 
D 60 
C 60 



    ISCA, Vol. 22, No. 1, March 2015 

 

18 

sends core[][] 
/* Static core, SC sends group membership information to 

all the group members*/ 
End 
 
Procedure GM_SubLSR(rp) 
Begin 

for each rp є G 
receives core[][] 
derives core(rp)[][] 

obtains Pd
s(rp)          

/*derives sub-LSR tables and obtains its super pseudo sub-
diameter value*/ 

 unicasts (rp, Pd
S(rp)) to SC 

/*group members send their Pd
S(rp) value to the Static core, 

SC */ 
End 
 
Procedure Group_Core(rp, Pd

S(rp)) 
Begin 
for each rp є G 

receives (rp, Pd
S(rp))  

updates core[][] with Pd
S(rp) 

end for 
/*adds super pseudo sub-diameter values of group 

members to core[][] */ 
sort_asc(core[][])  

/*sort core[][] in ascending order of Pd
S */ 

if same Pd
S 

sort_desc(core[][]) 
/*sort core in descending order of router’s IP address*/ 

end if  
∀rp є G 

sends core[][]  
/*Static Core, SC, sends core[][]to all group members */ 
End 
 
In our approach each group member has the same 

information about primary, secondary, and tertiary cores.  This 
helps in selecting new core when there is primary core failure.  
We assume that these cores periodically exchange hello 
messages. 

 
Consideration of Primary Core failure.  Core replacement 

during Primary core failure follows the steps stated below. 
 
• If secondary core does not hear from primary core during 

one such interval, it unicasts primary core failure 
information to all group members. 

• Primary core is deleted from the final data structure.  Next 
entry in the order is chosen as secondary core.  This 
choice is unanimous because all routers have the same 
final data structure. 

 
In a similar way, if the secondary core fails while it is 

working as a primary core, the tertiary core can take care of the 
primary core’s responsibility.  In this context, it is worth 

mentioning that in the event of the primary core leaving the 
group, it must send a group_leave() message to inform all 
other group members about its leaving. 

 
5 Performance 

 
It is clear that the complexity of static core based approach is 

O(n2) since each router sends its Pd to all other routers; n being 
the total number of routers in the network.  Similarly, for 
group based approach, the message complexity is O(m) where 
m is the number of group members in the network.  Both static 
core selection method and group based core selection method 
are compared with some important core selection methods.  

We now briefly state the complexities of each of these 
methods.  Maximum path count core selection method [6] 
finds the shortest paths for all pairs of nodes in the given 
network.  The nodes are then sorted in descending order of 
their path counts.  The first nodes are selected to be the 
candidate cores.  The complexity of this approach is O(n2) 
where n is the number of nodes in the network.  Minimum 
average distance method [6] finds the average distance along 
the shortest paths from each node to all other nodes in the 
network.  The nodes are sorted in ascending order of their 
average distance.  The first nodes are selected to be the 
candidate cores.  The complexity of this approach is O(n2), 
where n is the total number of nodes in the network. 

In Delay Variant Multicast Algorithm (DVMA) [7] it is 
assumed that the complete topology is available at each node 
(router).  The algorithm starts with a spanning tree satisfying 
the delay constraint only, which may not include some 
destination nodes.  Then the algorithm searches through the 
candidate paths satisfying the delay and delay-variation 
constraints from a non-tree member node to any of the tree 
nodes.  It works on the principle of k-shortest paths to the 
group of destination nodes concerned.  If these paths do not 
satisfy a delay constraint, then it may find a longer path, which 
is a shortfall of DVMA.  The spanning tree built by DVMA 
satisfies both delay and delay-variation constraints.  However, 
due to the very high time complexity, it does not fit in a 
modern high-speed computer network environment.  The worst 
case complexity of DVMA is O(kldn4), where k and l are the 
number of paths satisfying the delay bound between any two  
nodes, |D| = d and |N| = n represents the number of multicast 
receptor nodes and total number of nodes in the topology 
network, respectively. 

Tournament [3, 7] core selection method operates in four 
stages.  During the first level of tournament, the process 
involves the comparison of distances between the node pairs 
for the matching process, and takes square time in the group 
size, i.e., O(|M|2), where M is the number of multicast group 
members.  Triggering the pair leader requires transmission of 
pair knowledge to it from the coordinator.  The number of 
messages transmitted in Step 2 is half the number of 
candidates at current tournament level and hence O(|M|).  The 
process of locating the node closest in cost-distance to the 
midpoint of a pair in Step 3 merely requires the knowledge of 
nodes that lie on the shortest path connecting the pair available 
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to the pair leader, requiring transmission of O(|V|) messages, 
where V is the number of nodes in the network, and compar-
ison of node distances of the intermediary nodes is done in 
O(|V|) time at the pair leader.  In Step 4, as many messages as 
in part (2) are transmitted back to the coordinator.  Throughout 
the tournament, the steps (1 to 4) are iterated in n levels where 
n = log2(|M|).  Since the matching process at coordinator 
operates in time O(|M|2) at the first level and O(|M|) at 
subsequent levels, the overall complexity of the tournament 
coordinator is, therefore, O(|M|2 +|M|+log2(|M|)) = O(|M|2). 

OptTree [7] method suggests optimization criteria which can 
be computed for one core in the iteration that the core is 
examined as a candidate, without changing the structure of 
their proposed greedy algorithm [7].  If we consider a 
combination of Node-count, Delay-residue, aveHop and 
Degree as the optimization criterion of the algorithm, the 
additional complexity to the greedy algorithm is clearly that of 
the one among four with the highest complexity.  In Node-
count, Delay-residue and aveHop of optTree, each candidate 
core is examined for its rank depending on the receiver set they 
are potentially dominating—repeating at most as many times 
as the number of receivers.  Delay-residue and aveHop also 
examine the distances of the core from the sources for residue 
in delay and hop-distances to the receivers.  Therefore, the 
complexity of optTree is O(|M|3|C|) where M is the number of 
multicast group members and C is the number of candidate 
cores. 

 
Topology Setup.  In our experimental setup we have used the 

NS2 simulator.  BRITE topology generator is used to create 
flat random graphs.  In BRITE topology, we have chosen  the 
Waxman model for topology generation which uses Waxman’s 
probability model for interconnecting the nodes of the 
topology.  From the provided heavy-tailed and random 
approach for node placement, we have used random placement 
approach in which each node is placed in a randomly selected 
location of the plane. BRITE offers the choice of degree of 
connectivity for the nodes.  Without any loss of generality we 
have arbitrarily chosen 4 links per node and nodes are added to 
the smallest degree non-leaf node to form the network.  Nodes 
are connected using duplex links. BRITE assigns bandwidths 
to links according to one of four possible distributions, namely 
constant, uniform, exponential, and heavy-tailed. BRITE also 
offers to choose arbitrarily the values of minimum and 
maximum bandwidth; for example, they can be 1Kbps and 10 
Mbps, respectively.  Without any loss of generality we have 
chosen the above mentioned values and used uniform 
bandwidth assignment on the links where a value is distributed 
uniformly between minimum and maximum bandwidth values.  
We have used UDP to send packets of size ranging from 500 
bytes to 1 Kbyte randomly at a Constant Bit Rate (CBR) of 
800 Kbps. 

 
Topology Generation.  We have experimented with 10 

different 30 router topologies, 40 router topologies, and 50 
router topologies.  In each topology group size varies from 5 to 
25.  For each 30 router topology multiple routers are chosen as 
sources for each group.  We have measured the total number of 

packets generated for core selection in our approach.  We have 
then compared it with some existing important related 
approaches.  Figure 6 shows the average number of packets 
generated on all 30 router topologies for group based core 
selection approaches considered in this work as well as for the 
methods with which we are comparing.  In a similar way 
average numbers of packets generated for 40 and 50 router 
network topologies are shown in Figures 7 and 8, respectively.  
Simulation results have shown the superiority of our approach 
to these other approaches. 

 

 
 

Figure 6:  30 node network 
 

 
 

Figure 7:  40 node network 
 

 

 
 

Figure 8:  50 node network 
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6 Conclusion 
 

In this paper we have presented novel approaches for core 
selection for networks that use LSR as the unicast routing 
protocol.  Both the core selection approaches have been made 
fault tolerant, i.e., in addition to primary core the presented 
methods also determine a secondary, tertiary core etc. to 
achieve fault tolerance.  The most noteworthy point of the 
presented work is that the routing information present in the 
LSR tables is sufficient for core selection, be it static core or 
group-based core.  We have given a new interpretation of the 
information present in the LSR tables, which have resulted in 
the two new concepts, namely, pseudo sub-diameter and super 
pseudo sub-diameter.  These two concepts have been used to 
design the core selection approaches.  The importance of these 
two concepts lies in the fact that these are directly related to 
the physical locations of the routers; therefore it justifies their 
use in the core selection approaches.  In fact, these two 
concepts are themselves independent of whatever underlying 
unicast protocol is being used.  The proposed methods can also 
be applied in PIMSM for inter-domain multicasting as well as 
multicasting in WANs.  The simulation results show the 
superiority of our proposed core selection approaches to some 
related important existing approaches from the viewpoint of 
lower message complexity.   
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Abstract

Parallel processing and distributed computing are being
actively researched, and multiple topologies have been
described in the literature as the interconnection network
of all the processors involved in such parallel systems.
Considering the huge number of nodes involved in modern
multicomputers, such network topologies frequently rely on
hierarchical structures, being in this case called Hierarchical
Interconnection Networks (HIN). We have recently introduced
the Torus-Connected Cycles (TCC) network topology which is
such a HIN since it realizes the combination of an n-dimensional
torus and 2n-cycles, arranged into two separate layers, cycles
forming clusters. We propose in this paper a node-to-set
disjoint paths routing algorithm in a TCC, and formally show
its correctness and performance through complexity analysis.

Key Words: Multicomputer; interconnection network;
parallel processing; fault-tolerant routing; performance
evaluation.

1 Introduction

Parallel processing is an increasingly hot topic. Effectively,
due to its numerous applications and continuous advances on the
hardware front such as VLSI, modern supercomputers such as
the Fujitsu K [19] are massively parallel systems. Because these
systems include hundreds of thousands of computing nodes
(CPU), node interconnection is a critical topic, and several
network topologies have been proposed as interconnection
networks [4, 8, 16, 17, 18, 24]. It is worth noticing that
most of the topologies proposed for interconnection networks
of modern parallel systems are now hierarchical structures; they
are hierarchical interconnection networks (HIN).

In this paper, we describe a node-to-set disjoint paths routing
algorithm in a k-ary n-dimensional torus-connected cycles
network TCC(k,n). Concretely, in a TCC(k,n), given a node

∗An extended abstract of this paper has been published in [7].
†Advanced Institute of Industrial Technology. Email: abossard@aiit.ac.jp.
‡Graduate School of Engineering.

source sss and a set of three destination nodes D = {ddd1,ddd2,ddd3},
the proposed algorithm generates three mutually node-disjoint
(simply “disjoint” hereinafter) paths (at the exception of the
node sss which is shared amongst the paths) connecting sss and dddi
(1 ≤ i ≤ 3). We then formally show the algorithm correctness
and performance through complexity analysis.

Node-to-set disjoint paths routing is one problem amongst
other disjoint paths routing problems. For instance, node-
to-node disjoint paths routing (a.k.a. the container problem)
and set-to-set disjoint paths routing are two related routing
problems. The former is about generating disjoint paths
between two distinct nodes, while the latter is about generating
disjoint paths between multiple source nodes and multiple
destination nodes. A variant of the latter fixes the source-
destination node pairs to be connected; this is k-pairwise
disjoint paths routing. Disjoint paths routing is indeed an
important issue with respect to parallel systems inter-node
communication, which explains the numerous related research
works.

We detail a few of these previous works. The container
problem has been solved in a hypercube [22], a pancake graph
[23], a burnt pancake graph [14], and a torus-connected cycles
network [6]. The node-to-set disjoint paths routing problem has
been solved in a hypercube [21], a torus [10], a star graph [12],
a pancake graph [15], a burnt pancake graph [13], a perfect
hierarchical hypercube [1], and a hierarchical cubic network [3].
The set-to-set disjoint paths routing problem has been solved
in a hypercube [9], a star graph [11], a pancake graph [20],
a perfect hierarchical hypercube [2], and a hierarchical cubic
network [5].

The rest of this paper is organized as follows: we first recall
in Section 2 definitions and notations. In Section 3, we describe
a node-to-set disjoint paths routing algorithm in a TCC network.
The correctness and performance of this algorithm are formally
established in Section 4. Finally, this paper is concluded in
Section 5.

ISCA Copyright c© 2015
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2 Preliminaries

In this section, we begin by recalling the definition of the
torus-connected cycles HIN, before giving several notations and
previous results used throughout this paper.

Definition 1. A k-ary n-dimensional torus-connected cycles
network TCC(k,n) is an undirected graph that has 2nkn nodes.
Each node aaa has a cluster ID ccc(aaa) = (a0,a1, . . . ,an−1) and
a processor ID p(aaa) = paaa, and the node consists of the pair
(ccc(aaa), p(aaa)) where 0 ≤ ai ≤ k− 1 and 0 ≤ paaa ≤ 2n− 1. Each
node aaa has three neighbor nodes nnn1(aaa), nnn2(aaa) and nnn3(aaa):

nnn1(aaa) = (ccc(aaa),(paaa +(−1)paaa) mod 2n)
nnn2(aaa) = (ccc(aaa),(paaa− (−1)paaa) mod 2n)
nnn3(aaa) = (a0,a1, . . . ,(abpaaa/2c + (−1)paaa) mod k, . . . ,
an−1, paaa +(−1)paaa)

If n = 1, each node aaa has degree two as nnn1(aaa) = nnn2(aaa). If
n≥ 2, each node has degree three. For any node aaa, the edges in
Definition 1 (aaa,nnn1(aaa)) and (aaa,nnn2(aaa)) are called internal, while
the edge (aaa,nnn3(aaa)) is called external. If all the external edges
from a TCC(k,n) are removed, the remaining graph consists
of nk disjoint cycles. Each cycle consists of 2n nodes. The
cycle (a.k.a. cluster) that includes a node aaa is denoted by C(aaa).
Also, if each of the nk cycles of a TCC(k,n) is contracted into a
single node, a k-ary n-dimensional torus (a.k.a. (k,n)-torus) is
obtained.

Definition 2. Two clusters C1 and C2 of a TCC(k,n) are adjacent
if and only if there exists an external edge between them. The
set of the adjacent clusters of a cluster C is denoted by N(C).

As an example, a 3-ary 2-dimensional torus-connected cycles
network TCC(3,2) is given in Figure 1. For instance, the node
(0, 0, 3) is adjacent to the two nodes (0, 0, 0) and (0, 0, 2) by
internal edges, and adjacent to the node (0, 2, 2) by an external
edge.

(0, 0, 0)
(0, 0, 1)

(0, 0, 2)
(0, 0, 3)

Figure 1: A 3-ary 2-dimensional torus-connected cycles
network TCC(3,2)

We give a few additional definitions. In a graph,
a path is an alternate sequence of nodes and edges
aaa1,(aaa1,aaa2),aaa2, . . . ,aaak−1,(aaak−1,aaak),aaak, and the length of a path
corresponds to its number of edges. For a path P, the length of
P is denoted by L(P). An edge (aaa,bbb) and a path from aaa to bbb can
also be written as aaa→ bbb and aaa ; bbb, respectively.

Let us recall the theorem by Gu and Peng [10] relating to
torus disjoint paths routing.

Theorem 1. [10] In a (k,n)-torus, given two nodes sss and ddd, a
set of 2n disjoint paths sss ; dddi (1 ≤ i ≤ 2n) of lengths at most
nbk/2c+1 can be found in O(n3) time.

3 Node-to-Set Disjoint Paths Routing Algorithm

We describe in this section an algorithm solving the node-to-
set disjoint paths routing problem in a TCC(k,n). Given a source
node sss and a set of destination nodes D = {ddd1,ddd2,ddd3} with sss,
ddd1, ddd2, and ddd3 all distinct, this algorithm generates mutually
node-disjoint paths (except for sss) sss ; dddi (1≤ i≤ 3).

The case n = 1 is special. Effectively, since each node of
a TCC(k,1) has only two neighbor nodes, three disjoint paths
cannot be found. So, let us assume that n≥ 2. Also, algorithms
that solve the container problem and the node-to-set disjoint
paths routing problem in an n-dimensional torus are used. If
k = 2, as each of these algorithms constructs 2n paths, then each
node in the torus only has n neighbor nodes. Therefore, it is
impossible to find 2n disjoint paths in this case as well. So, let
us assume that k ≥ 3. According to the relative positions of the
nodes sss = (ccc(sss), psss), ddd1 = (ccc(ddd1), pddd1),ddd2 = (ccc(ddd2), pddd2), and
ddd3 = (ccc(ddd3), pddd3), eight cases are distinguished.

3.1 Case 1: D⊂C(sss)

We discuss in this subsection the case where D⊂C(sss).
Step 1 Without loss of generality, we can assume that sss, ddd1, ddd2,

and ddd3 are located in the cluster C(sss) in this order. In C(sss),
construct two disjoint paths from sss to ddd1 and ddd3.

Step 2 Select the external edge sss→ nnn3(sss).
Step 3 In C(nnn3(sss)), construct the shortest path nnn3(sss) ;

(ccc(nnn3(sss)), pddd2).
Step 4 Select the external edge (ccc(nnn3(sss)), pddd2) → sss′ =

nnn3(ccc(nnn3(sss)), pddd2).
Step 5 In C(sss′), construct the shortest path sss′; (ccc(sss′), pnnn3(sss)).
Step 6 Select the external edge (ccc(sss′), pnnn3(sss)) →
(ccc(nnn3(ddd2)), psss).

Step 7 In C(nnn3(ddd2)), construct the shortest path
(ccc(nnn3(ddd2)), psss); nnn3(ddd2).

Step 8 Select the external edge nnn3(ddd2)→ ddd2. An illustration is
given in Figure 2.

C(sss) sss

ddd1ddd2

ddd3
C(nnn3(sss))

nnn3(sss)

(ccc(nnn3(sss)), pddd2 )

C(sss′)

sss′

(ccc(sss′), pnnn3(sss))

C(nnn3(ddd2))
(ccc(nnn3(ddd2)), psss)

nnn3(ddd2)

Figure 2: The three internally disjoint paths selected in Case 1
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3.2 Case 2: |D∩C(sss)|= 2

In this subsection, we discuss the case where |D∩C(sss)|= 2.

Step 1 Without loss of generality, we can assume that ddd1,ddd2 ∈
C(sss). In C(sss), construct two disjoint paths from sss to ddd1 and
ddd2.

Step 2 Apply the node-to-node disjoint paths routing algorithm
in the (k,n)-torus where the source node is ccc(sss) and the
destination node is ccc(ddd3) to obtain a set of 2n disjoint paths
P from ccc(sss) to ccc(ddd3).

Step 3 Let p (∈ P) be the path that includes the node ccc(nnn3(sss)).
Convert p into the path p′ : sss ; ddd′3(∈C(ddd3)) in TCC(k,n).

Step 4 In C(ddd3), construct the shortest path ddd′3 ; ddd3. An
illustration is given in Figure 3.

C(sss) sss
ddd1

ddd2

p′

C(ddd3)

ddd3

ddd′3

C(nnn3(sss))

nnn3(sss)

Figure 3: The three internally disjoint paths selected in Case 2

3.3 Case 3: |D ∩C(sss)| = 1 and ∃aaa(6= sss) such that |D ∩
C(aaa)|= 2

We now discuss the case where |D∩C(sss)| = 1 and ∃aaa(6= sss)
such that |D∩C(aaa)|= 2.

Step 1 Without loss of generality, we can assume that ddd1 ∈
C(sss). In C(sss), construct the shortest path from sss to ddd1. We
can also assume that the path includes nnn1(sss) but not nnn2(sss).

Step 2 Apply the node-to-node disjoint paths routing algorithm
in the (k,n)-torus where the source node is ccc(sss) and the
destination node is ccc(aaa) to obtain a set of 2n disjoint paths
P from ccc(sss) to ccc(aaa).

Step 3 Let p2 and p3 (∈ P) be the paths that include ccc(nnn3(sss))
and ccc(nnn3(nnn2(sss))), respectively. Convert p2 and p3 into the
paths p′2 : sss ; ddd′2(∈ C(aaa)) and p′3 : nnn2(sss) ; ddd′3(∈ C(aaa)) in
TCC(k,n), respectively.

Step 4 Select the internal edge sss→ nnn2(sss).
Step 5 In C(aaa), construct the disjoint paths ddd′2 ; ddd2 and

ddd′3 ; ddd3, or ddd′2 ; ddd3 and ddd′3 ; ddd2 depending on the relative
positions of ddd′2, ddd2, ddd′3, and ddd3. An illustration is given in
Figure 4.

C(sss) sssddd1

nnn2(sss)
C(aaa)

ddd3ddd′3

ddd2ddd′2

nnn3(sss)

nnn3(nnn2(sss))

p′2

p′3

Figure 4: The three internally disjoint paths selected in Case 3

3.4 Case 4: |D ∩C(sss)| = 1 and ∀aaa(6= sss) such that |D ∩
C(aaa)| ≤ 1

Now we discuss the case where |D∩C(sss)| = 1 and ∀aaa(6= sss)
such that |D∩C(aaa)| ≤ 1.
Step 1 Without loss of generality, we can assume that ddd1 ∈

C(sss). If D∩C(nnn3(ddd1)) 6= /0, go to Step 7.
Step 2 Select a set of 2n clusters C so that the following

conditions are satisfied.

1. (C \{C(ddd2),C(ddd3)})⊂ N(C(sss)).
2. If C(nnn3(sss)) /∈ {C(ddd2),C(ddd3)}, C(nnn3(sss)) /∈ C .
3. C(nnn3(ddd1)),C(ddd2),C(ddd3) ∈ C .

Step 3 In the (k,n)-torus, apply the node-to-set disjoint paths
routing algorithm to obtain a set of 2n disjoint paths P where
the source node is ccc(sss) and the destination nodes are the nodes
induced by the clusters in C .

Step 4 Let p2, p3 (∈ P) be the paths from ccc(sss) to ccc(ddd2) and
ccc(ddd3), respectively. Convert p2, and p3 into the paths in
TCC(k,n), p′2 : sss′2 ; ddd′2, and p′3 : sss′3 ; ddd′3, respectively. We
can assume without loss of generality that sss′2 = sss.

Step 5 In C(sss), construct two disjoint paths sss ; ddd1 and sss ; sss′3.
Step 6 Construct the shortest paths ddd′2 ; ddd2 and ddd′3 ; ddd3 in

C(ddd2) and C(ddd3), respectively. Terminate. An illustration is
given in Figure 5a.

Step 7 We can assume without loss of generality that ddd2 ∈
C(nnn3(ddd1)). Select a node bbb such that ccc(bbb) 6= ccc(sss),ccc(bbb) 6=
ccc(ddd3), and there is an external edge eee1 → eee2 between C(ddd2)
and C(bbb) where eee1 ∈C(ddd2) and eee2 ∈C(bbb).

Step 8 Select a set of 2n clusters C so that the following
conditions are satisfied.

1. (C \{C(bbb),C(ddd3)})⊂ N(C(sss)).
2. If C(nnn3(sss)) 6=C(ddd3),C(nnn3(sss)) /∈ C .
3. C(ddd2),C(bbb),C(ddd3) ∈ C .

Step 9 In the (k,n)-torus, apply the node-to-set disjoint paths
routing algorithm to obtain a set of 2n disjoint paths P where
the source node is ccc(sss) and the destination nodes are the nodes
induced by the clusters in C .

Step 10 Let p2, p3 (∈ P) be the paths from ccc(sss) to ccc(bbb) and
ccc(ddd3), respectively. Convert p2, and p3 into the paths in
TCC(k,n), p′2 : sss′2 ; ddd′2(∈C(bbb)),and p′3 : sss′3 ; ddd′3, respectively.
We can assume that sss′2 = sss without loss of generality.

Step 11 In C(sss), construct the disjoint paths sss; ddd1 and sss; sss′3.
Step 12 In C(bbb), construct the shortest path ddd′2 ; eee2.
Step 13 Select the edge eee2→ eee1.
Step 14 In C(ddd2), construct the shortest path eee1 ; ddd2.
Step 15 In C(ddd3), construct the shortest path ddd′3 ; ddd3. An

illustration is given in Figure 5b.

3.5 Case 5: ∃aaa(6= sss) such that |D∩C(aaa)|= 3

We now discuss the case where ∃aaa(6= sss) such that |D ∩
C(aaa)|= 3.
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C(sss)

sss

sss′3

ddd1
p′3

C(ddd3)

ddd3
ddd′3

p′2

C(ddd2) ddd2

ddd′2

(a)

p′3

C(ddd3)

ddd3
ddd′3

C(sss)

sss

sss′3

ddd1

C(ddd2)eee1

nnn3(ddd1)
ddd2

C(bbb)

p′2

eee2

ddd′2

(b)

Figure 5: The three internally disjoint paths selected in Case 4

Step 1 In the (k,n)-torus, apply the node-to-node disjoint paths
routing algorithm to obtain a set of 2n disjoint paths P
where the source and destination nodes are ccc(sss) and ccc(aaa),
respectively.

Step 2 Assume that p1 (∈ P) is the path that includes ccc(nnn3(sss)).
Convert p1 into the path p′1 : sss ; ddd′1 in TCC(k,n). Without loss
of generality, we can assume that ddd1 is the nearest node from
ddd′1 in C(aaa).

Step 3 Let p2 and p3 (∈ P) be the paths that include ccc(nnn3(ddd2))
and ccc(nnn3(ddd3)), respectively. Convert p2 and p3 into the paths
p′2 : sss′2(∈ C(sss)) ; ddd2(∈ C(aaa)) and p′3 : sss′3(∈ C(sss)) ; ddd3(∈
C(aaa)), respectively.

Step 4 In C(sss), construct two disjoint paths sss ; sss′2 and sss ; sss′3.
An illustration is given in Figure 6.

C(sss)

sss
sss′2

sss′3

nnn3(sss)
C(nnn3(sss))

C(nnn3(ddd2))

C(nnn3(ddd3))

C(aaa)

ddd3

ddd2ddd1
ddd′1

p′1

p′2

p′3

Figure 6: The three internally disjoint paths selected in Case 5

3.6 Case 6: D∩C(sss) = /0 and ∃aaa(6= sss) such that |D∩C(aaa)|=
2

We discuss in this subsection the case where D∩C(sss) = /0 and
∃aaa(6= sss) such that |D∩C(aaa)|= 2.
Step 1 We can assume without loss of generality that ddd1,ddd2 ∈

C(aaa). Select a node bbb such that ccc(bbb) 6= ccc(sss),ccc(bbb) 6= ccc(ddd3),
and there is an external edge eee1→ eee2 between C(bbb) and C(aaa)
where eee1 ∈C(bbb) and eee2 ∈C(aaa).

Step 2 Select a set of 2n clusters C so that the following
conditions are satisfied.

1. (C \{C(aaa),C(bbb),C(ddd3)})⊂ N(C(sss)).
2. If C(nnn3(sss)) /∈{C(aaa),C(bbb),C(ddd3)}, C(nnn3(sss)) /∈C .
3. C(aaa),C(bbb),C(ddd3) ∈ C .

Step 3 In (k,n)-torus, apply the node-to-set disjoint paths
routing algorithm to obtain a set of 2n disjoint paths P where
the source node is ccc(sss) and the destination nodes are induced
by the clusters in C .

Step 4 Let p1, p2, p3 (∈ P) be the paths from ccc(sss) to ccc(aaa), ccc(bbb),
and ccc(ddd3), respectively. Convert p1, p2, and p3 into the paths
in TCC(k,n), p′1 : sss′1 ; ddd′1, p′2 : sss′2 ; ddd′2, and p′3 : sss′3 ; ddd′3,
respectively.

Step 5 Without loss of generality, we can assume that sss′1 = sss,
sss′2 6= sss, and sss′3 6= sss. In C(sss), construct two disjoint paths sss ; sss′2
and sss ; sss′3.

Step 6 Without loss of generality, we can assume that ddd′1 ∈
C(aaa), ddd′2 ∈ C(bbb), and ddd′3 ∈ C(ddd3). In C(ddd3), construct the
shortest path ddd′3 ; ddd3.

Step 7 In C(bbb), construct the shortest path ddd′2 ; eee1. Select the
edge eee1→ eee2.

Step 8 In C(aaa), construct the disjoint paths ddd′1 ; ddd1 and
eee2 ; ddd2, or ddd′1 ; ddd2 and eee2 ; ddd1 depending on the relative
positions of ddd′1, ddd1, eee2, and ddd2. An illustration is given in
Figure 7.

C(sss)

sss
sss′2

sss′3

nnn3(sss)
C(nnn3(sss))

C(bbb)
ddd′2 eee1

C(ddd3)
ddd3ddd′3

C(aaa)

ddd2

eee2ddd1
ddd′1

p′1

p′2

p′3

Figure 7: The three internally disjoint paths selected in Case 6

3.7 Case 7: D ∩C(sss) = /0, ∀aaa, |D ∩C(aaa)| ≤ 1, and D ⊂
N(C(sss))\{C(nnn3(sss))}

Now we discuss the case where D ∩C(sss) = /0, ∀aaa, |D ∩
C(aaa)| ≤ 1, and D⊂ N(C(sss))\{C(nnn3(sss))}.
Step 1 Let sss′2(∈ C(sss)) → ddd′2(∈ C(ddd2)) be the external edge

between C(sss) and C(ddd2), and sss′3(∈ C(sss))→ ddd′3(∈ C(ddd3)) be
the external edge between C(sss) and C(ddd3). Select a node
bbb such that C(bbb) ∈ N(C(ddd1)) and ccc(bbb) 6= ccc(sss). Let eee1(∈
C(ddd1))→ eee2(∈C(bbb)) be the external edge between C(ddd1) and
C(bbb).

Step 2 Let C = (N(C(sss))\{C(nnn3(sss))})∪{C(bbb)}.
Step 3 In the (k,n)-torus, apply the node-to-set disjoint paths

routing algorithm to obtain a set of 2n disjoint paths P where
the source node is ccc(sss) and the destination nodes are induced
by the clusters in C .

Step 4 Let p (∈ P) be the path from ccc(sss) to ccc(bbb). Convert p
into the path in TCC(k,n), p′ : sss ; ddd′1.

Step 5 In C(bbb), construct the shortest path ddd′1 ; eee2.
Step 6 Select the external edge eee2→ eee1.
Step 7 In C(ddd1), construct the shortest path eee2 ; ddd1.
Step 8 In C(sss), construct two disjoint paths sss ; sss′2 and sss ; sss′3.
Step 9 Select the external edge sss′2→ ddd′2.
Step 10 In C(ddd2), construct the shortest path ddd′2 ; ddd2.
Step 11 Select the external edge sss′3→ ddd′3.
Step 12 In C(ddd3), construct the shortest path ddd′3 ; ddd3. An

illustration is given in Figure 8.
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C(sss)

sss

sss′2

sss′3

C(ddd1) ddd1

eee1
C(bbb)

eee2

ddd′1

C(nnn3(sss))

nnn3(sss)
p′

C(ddd2)

ddd2 ddd′2

C(ddd3)
ddd3

ddd′3

Figure 8: The three internally disjoint paths selected in Case 7

3.8 Case 8: D ∩C(sss) = /0, ∀aaa, |D ∩C(aaa)| ≤ 1, and D 6⊂
N(C(sss))\{C(nnn3(sss))}

We now discuss the case where D∩C(sss)= /0, ∀aaa, |D∩C(aaa)| ≤
1, and D 6⊂ N(C(sss))\{C(nnn3(sss))}.
Step 1 Select a set of 2n clusters C so that the following

conditions are satisfied.

1. (C \{C(ddd1),C(ddd2),C(ddd3)})⊂ N(C(sss)).
2. If C(nnn3(sss)) /∈{C(ddd1),C(ddd2),C(ddd3)}, C(nnn3(sss)) /∈C .
3. C(ddd1),C(ddd2),C(ddd3) ∈ C .

Step 2 In the (k,n)-torus, apply the node-to-set disjoint paths
routing algorithm to obtain a set of 2n disjoint paths P where
the source node is ccc(sss) and the destination nodes are induced
by the clusters in C .

Step 3 Let p1, p2, p3 (∈ P) be the paths from ccc(sss) to ccc(ddd1),
ccc(ddd2), and ccc(ddd3), respectively. Convert p1, p2, and p3 into the
paths in TCC(k,n), p′1 : sss′1 ; ddd′1, p′2 : sss′2 ; ddd′2, and p′3 : sss′3 ; ddd′3,
respectively.

Step 4 We can assume that sss′1 = sss without loss of generality. In
C(sss), construct disjoint paths sss ; sss′2 and sss ; sss′3.

Step 5 In C(ddd1), construct the shortest path ddd′1 ; ddd1.
Step 6 In C(ddd2), construct the shortest path ddd′2 ; ddd2.
Step 7 In C(ddd3), construct the shortest path ddd′3 ; ddd3. An

illustration is given in Figure 9.

C(sss)

sss
sss′2

sss′3

nnn3(sss)
C(nnn3(sss))

C(ddd2)
ddd′2 ddd2

C(ddd3)
ddd3ddd′3

C(ddd1)

ddd1

ddd′1p′1

p′2

p′3

Figure 9: The three internally disjoint paths selected in Case 8

4 Performance Evaluation

In this section, we prove the correctness of our algorithm,
estimate the maximum length of the disjoint paths obtained and
the algorithm time complexity. Note that we use the notation κ

to represent bk/2c.

Lemma 1. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,

the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1≤ i≤ 3) of lengths at most 3n+4 in O(n) time in Case 1.

Proof. Since the two paths sss; ddd1 and sss; ddd3 traverse the cycle
of C(sss) in opposite directions, they are disjoint except for sss. In
addition, they do not include ddd2 because of the relative positions
of sss, ddd1, ddd2, and ddd3. The path sss ; ddd2 is outside of C(sss) except
for the terminal nodes sss and ddd2. Therefore, the three paths sss ;
dddi (1≤ i≤ 3) are disjoint except for sss.

The lengths of the two paths constructed in Step 1 are at most
2n− 3. The length of the path constructed in Steps 2 to 8 is at
most 1+n+1+n+1+n+1= 3n+4. Therefore, the maximum
path length in Case 1 is 3n+4.

It takes O(n) time to construct two disjoint paths sss ; ddd1 and
sss ; ddd3 in C(sss) in Step 1. Each selection of the edges in Steps
2, 4, 6 and 8 takes O(1) time. Each construction of the shortest
paths in Steps 3, 5 and 7 takes O(n) time. Hence, the total time
complexity of Case 1 is O(n).

Lemma 2. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,
the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1≤ i≤ 3) of lengths at most κn2 +(κ +1)n+1 in O(n3 +kn2)
time in Case 2.

Proof. Since the two paths sss; ddd1 and sss; ddd2 traverse the cycle
of C(sss) in opposite directions, they are disjoint except for sss. The
path sss ; ddd3 is outside of C(sss) except for the terminal node sss.
So, the three paths sss ; dddi (1 ≤ i ≤ 3) are disjoint except for
sss. The lengths of two paths constructed in Step 1 are at most
2n−2.

From Theorem 1, the path p obtained in Step 3 has length
L(p) of at most κn+ 1. Therefore, the converted path p′ has
length L(p′) of at most L(p)+ (L(p)− 1)× n = κn2 +κn+ 1.
The length of the sub path ddd′3 ; ddd3 constructed in Step 4 is at
most n. Hence, the length of the path sss ; ddd′3 ; ddd3 is at most
(κn2 +κn+1)+n = κn2 +(κ +1)n+1. If k ≥ 3, κn2 +(κ +
1)n+1≥ 2n−2. Therefore, the maximum path length in Case
2 is κn2 +(κ +1)n+1.

It takes O(n) time to construct two disjoint paths sss ; ddd1 and
sss ; ddd2 in C(sss) in Step 1. From Theorem 1, the time complexity
of Step 2 is O(n3). In Step 3, p can be found in O(n) time
by checking the second nodes of 2n disjoint paths. Since L(p)
is O(kn), conversion of p into p′ in Step 3 takes O(kn2) time.
Construction of the shortest paths in Step 4 takes O(n) time.
Hence, the total time complexity of Case 2 is O(n3 + kn2).

Lemma 3. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,
the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1≤ i≤ 3) of lengths at most κn2 +(κ +2)n−1 in O(n3 +kn2)
time in Case 3.

Proof. Since the path sss ; ddd1 and the edge sss→ nnn2(sss) traverse
the cycle of C(sss) in opposite directions, they are disjoint except
for sss. The sub paths sss ; ddd′2 and nnn2(sss) ; ddd′3 visit different
clusters except for C(sss) and C(aaa). In C(aaa), the sub paths
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ddd′2 ; ddd2 and ddd′3 ; ddd3 (or ddd′2 ; ddd3 and ddd′3 ; ddd2) are disjoint.
Hence, the paths sss ; ddd2 and sss ; ddd3 are disjoint except for sss.
They are also disjoint with the path sss ; ddd1 except for sss.

The length of the path sss ; ddd1 constructed in Step 1 is at most
n. Similarly to the proof for Case 2, L(p′2) and L(p′3) are both at
most κn2 +κn+1. Here we assume that the sub paths ddd′3 ; ddd3
and ddd′2 ; ddd2 are taken in Step 5 without loss of generality. Since
the path sss ; ddd′2 ; ddd2 includes the sub path ddd′2 ; ddd2 of length
at most 2n− 3, its length is at most (κn2 + κn + 1) + (2n−
3) = κn2 +(κ +2)n−2. Since the path sss→ nnn2(sss); ddd′3 ; ddd3
includes the edge sss→ nnn2(sss) and the sub path ddd′3 ; ddd3 of length
at most 2n−3, its length is at most 1+(κn2 +κn+1)+(2n−
3) = κn2 +(κ + 2)n− 1. Therefore, the maximum path length
in Case 3 is κn2 +(κ +2)n−1.

It takes O(n) time to construct the shortest path in C(sss) in Step
1. From Theorem 1, the time complexity of Step 2 is O(n3).
In Step 3, p2 and p3 can be found in O(n) time by checking
the second nodes of 2n disjoint paths. Since L(p2) and L(p3)
are both O(kn), their conversion into p′2 and p′3 in Step 3 takes
O(kn2) time. Selection of the edge in Step 4 takes O(1) time.
Construction of the two paths in Step 5 takes O(n) time. Hence,
the total time complexity of Case 3 is O(n3 + kn2).

Lemma 4. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,
the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1 ≤ i ≤ 3) of lengths at most κn2 +(κ + 2)n+ 2 if n = 2 and
κn2 +(κ +3)n−1 otherwise in O(n3 + kn2) time in Case 4.

Proof. First, we consider the sub case where D∩C(nnn3(ddd1)) 6=
/0. Since the path sss ; ddd1 and the sub path sss ; sss′3 traverse the
cycle of C(s) in opposite directions, they are disjoint except for
sss. The path sss ; ddd2 and the sub path sss′3 ; ddd3 visit different
clusters except for C(sss). Hence, the paths sss; ddd2 and sss; ddd3 are
disjoint except for sss. They are also disjoint with the remaining
path sss ; ddd1 except for sss.

From Theorem 1, the maximum length of the disjoint paths
obtained in Step 3 is κn+ 1. Then the maximum length of the
two disjoint paths p′2 and p′3 obtained in Step 4 is κn2 +κn+
1. The lengths of the path sss ; ddd1 and the sub paths sss ; sss′3
constructed in Step 5 are both at most 2n− 2. In Step 6, the
lengths of the sub paths ddd′2 ; ddd2 in C(ddd2) and ddd′3 ; ddd3 in C(ddd3)
are both at most n. Hence, the maximum path length in this
sub case is attained by the path sss ; sss′3 ; ddd′3 ; ddd3, and it is
(2n−2)+(κn2 +κn+1)+n = κn2 +(κ +3)n−1.

It takes O(1) time to check if D∩C(nnn3(ddd1)) 6= /0 or not in
Step 1. It takes O(n) time to select 2n clusters that satisfy the
conditions in Step 2. From Theorem 1, the time complexity of
Step 3 is O(n3). In Step 4, p2 and p3 can be found in O(n) time
by checking the final nodes of 2n disjoint paths. Since L(p2)
and L(p3) are both O(kn), their conversion into p′2 and p′3 takes
O(kn2) time in Step 4. Construction of two disjoint paths in
C(sss) in Step 5 takes O(n) time. Construction of two shortest
paths in C(ddd2) and C(ddd3) in Step 6 takes O(n) time. Hence, the
time complexity of this sub case is O(n3 + kn2).

Next, we consider the sub case where D∩C(nnn3(ddd1)) = /0.
Since the path sss ; ddd1 and the sub path sss ; sss′3 traverse the cycle
of C(sss) in opposite directions, they are disjoint except for sss. In
the (k,n)-torus, ccc(ddd2) is included in C . Therefore, the set of
2n disjoint paths P obtained by the node-to-set disjoint paths
routing algorithm includes the path ccc(sss) ; ccc(ddd2) though it is
discarded later. Hence, the cluster C(ddd2) cannot be visited by
the sub paths sss ; ddd′2 and sss′3 ; ddd′3. Also, the path sss ; ddd2 and
the sub path sss′3 ; ddd3 visit different clusters except for C(sss). So,
the paths sss ; d2 and sss ; ddd3 are disjoint except for sss. They are
also disjoint with the remaining path sss ; ddd1 except for sss.

Again, from Theorem 1, the maximum length of the disjoint
paths obtained in Step 9 is κn+ 1. Then the maximum length
of the two disjoint paths p′2 and p′3 obtained in Step 10 is κn2 +
κn+1. The lengths of the path sss ; ddd1 and the sub path sss ; sss′3
constructed in Step 11 are both at most 2n− 2. In Step 12, the
length of the sub path ddd′2 ; eee2 in C(sss) is at most n. The shortest
path eee1 ; ddd2 in C(ddd2) constructed in Step 14 has length of at
most n. The length of the shortest path ddd′3 ; ddd3 in C(ddd3) in
Step 15 is at most n. Hence, the lengths of the paths sss ; ddd1,
sss ; ddd′2 ; eee2 → eee1 ; ddd2, and sss ; sss′3 ; ddd′3 ; ddd3 are at most
2n− 2, (κn2 + κn+ 1)+ n+ 1+ n = κn2 +(κ + 2)n+ 2, and
(2n−2)+(κn2+κn+1)+n= κn2+(κ+3)n−1, respectively.
Therefore, the maximum path length in this sub case is κn2 +
(κ +2)n+2 if n = 2 and κn2 +(κ +3)n−1 otherwise.

It takes O(1) time to check if D∩C(nnn3(ddd1)) 6= /0 or not in
Step 1. It takes O(n) time to select the node bbb and the edge
eee1 → eee2 that satisfy the conditions in Step 7. It takes O(n)
time to select 2n clusters that satisfy the conditions in Step 8.
From Theorem 1, the time complexity of Step 9 is O(n3). In
Step 10, p2 and p3 can be found in O(n) time by checking the
final nodes of 2n disjoint paths. Since L(p2) and L(p3) are both
O(kn), their conversion into p′2 and p′3 takes O(kn2) time in Step
10. Construction of two disjoint paths in C(sss) in Step 11 takes
O(n) time. Construction of the shortest path in C(bbb) in Step 12
takes O(n) time. Selection of the edge in Step 13 takes O(1)
time. Construction of the shortest path in C(ddd2) in Step 14 takes
O(n) time. Construction of the shortest path in C(ddd3) in Step 15
takes O(n) time. Hence, the time complexity of this sub case is
O(n3 + kn2).

Consequently, the path length in this case is at most κn2 +
(κ + 2)n+ 2 if n = 2 and κn2 +(κ + 3)n− 1 otherwise. Also,
Case 4 is O(n3 + kn2) total time.

The remaining cases are proved similarly. So, we skip the
proofs of Lemmas 5, 6, 7 and 8 below.

Lemma 5. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,
the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1≤ i≤ 3) of lengths at most κn2 +(κ +2)n−1 in O(n3 +kn2)
time in Case 5.

Proof. Since the sub paths sss ; sss′2 and sss ; sss′3 traverse the cycle
of C(sss) in opposite directions, they are disjoint except for sss.
Because the sub paths sss ; ddd′1, sss′2 ; ddd2, and sss′3 ; ddd3 are based
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on the disjoint paths generated by the node-to-node disjoint
paths routing algorithm in the (k,n)-torus, they visit different
clusters except for C(sss) and C(aaa). In C(aaa), the sub path ddd′1 ; ddd1
does not include ddd2 nor ddd3 since ddd1 is assumed to be the nearest
destination node from ddd′1. Hence, the paths sss ; dddi (1 ≤ i ≤ 3)
are disjoint except for sss.

From Theorem 1, the maximum length of the disjoint paths
obtained in Step 1 is κn+1. The length of the path p′1 obtained
in Step 2 is at most κn2 + κn + 1. Similarly, the maximum
length of the paths p′2 and p′3 obtained in Step 3 is κn2+κn+1.
The lengths of the two disjoint paths sss ; sss′2 and sss ; sss′3 in
Step 4 are both at most 2n− 2. Therefore, the lengths of the
paths sss ; ddd′1 ; ddd1, sss ; sss′2 ; ddd2, and sss ; sss′3 ; ddd3 are at most
(κn2 +κn+ 1)+ (n− 1) = κn2 +(κ + 1)n, (2n− 2)+ (κn2 +
κn+1) = κn2 +(κ +2)n−1, and (2n−2)+(κn2 +κn+1) =
κn2 + (κ + 2)n− 1, respectively. Hence, in this case, the
maximum path length is κn2 +(κ +2)n−1.

From Theorem 1, the time complexity of Step 1 is O(n3). In
Step 2, p1 can be found in O(n) time by checking the second
nodes of 2n paths. Since L(p1) is O(kn), its conversion into
p′1 takes O(kn2) time in Step 2. The nearest destination node
ddd1 from ddd′1 can be found in O(1) time in Step 2. In Step 3,
p2 and p3 can be found in O(n) time by checking the semi-
final nodes of 2n disjoint paths. Their conversion into p′2 and
p′3 in Step 3 takes O(kn2) time since L(p2) and L(p3) are both
O(kn). Construction of two disjoint paths in C(sss) in Step 4 takes
O(n) time. Consequently, the total time complexity of Case 5 is
O(n3 + kn2).

Lemma 6. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,
the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1≤ i≤ 3) of lengths at most κn2 +(κ +5)n−4 in O(n3 +kn2)
time in Case 6.

Proof. Since the sub paths sss ; sss′2 and sss ; sss′3 traverse the cycle
of C(sss) in opposite directions, they are disjoint except for sss.
Because the sub paths sss ; ddd′1, sss′2 ; ddd2, and sss′3 ; ddd3 are based
on the disjoint paths generated by the node-to-set disjoint paths
routing algorithm in the (k,n)-torus, they visit different clusters
except for C(sss). The sub paths ddd′2 ; eee1 and ddd′3 ; ddd3 are disjoint
with other paths since they are inside the clusters C(bbb) and
C(ddd3), respectively. There is only one external edge eee1 → eee2
between C(bbb) and C(aaa). Therefore, eee2 6= ddd′1. The sub paths
eee2 ; ddd1 and ddd′1 ; ddd2 (or eee2 ; ddd2 and ddd′1 ; ddd1) are disjoint.
Hence, the paths sss ; dddi (1≤ i≤ 3) are disjoint except for sss.

From Theorem 1, the maximum length of the disjoint paths
obtained in Step 3 is κn+1. The lengths of the three sub paths
p′1 : sss ; ddd′1, p′2 : sss′2 ; ddd′2, and p′3 : sss′3 ; ddd′3 are both at most
κn2 +κn+1. The lengths of the disjoint paths sss ; sss′2 and sss ;
sss′3 constructed in Step 5 are both at most 2n− 2. The shortest
path ddd′3 ; ddd3 constructed in Step 6 has length of at most n. The
shortest path ddd′2 ; eee1 constructed in Step 7 has length of at most
n. The maximum lengths of the two disjoint paths, say eee2 ; ddd1
and ddd′1 ; ddd2 constructed in Step 8 are both 2n− 3. Hence,
the lengths of the paths sss ; s′2 ; eee2 ; ddd1, sss ; ddd′1 ; ddd2, and

sss ; sss′3 ; ddd′3 ; ddd3 are at most κn2 +(κ +2)n−2, κn2 +(κ +
5)n−4,and κn2 +(κ +3)n−1, respectively. Consequently, the
maximum path length in Case 6 is κn2 +(κ +5)n−4.

It takes O(n) time to select the node bbb and the edge eee1→ eee2
that satisfy the conditions in Step 1. It takes O(n) time to select
2n clusters that satisfy the conditions in Step 2. From Theorem
1, the time complexity of Step 3 is O(n3). In Step 4, p1, p2
and p3 can be found in O(n) time by checking the final nodes of
2n disjoint paths. Since L(p1), L(p2), and L(p3) are all O(kn),
their conversion into p′1, p′2, and p′3 in Step 4 takes O(kn2) time.
Construction of two disjoint paths in C(sss) in Step 5 takes O(n)
time. Construction of the shortest path in C(ddd3) in Step 6 takes
O(n) time. Construction of the shortest path and selection of the
edge in Step 7 take O(n) and O(1), respectively. Construction of
two disjoint paths in C(aaa) in Step 8 takes O(n). Consequently,
the total time complexity of Case 6 is O(n3 + kn2).

Lemma 7. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,
the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1≤ i≤ 3) of lengths at most κn2 +(κ +2)n+2 in O(n3 +kn2)
time in Case 7.

Proof. Since the sub paths sss ; sss′2 and sss ; sss′3 traverse the cycle
of C(sss) in opposite directions, they are disjoint except for sss. In
the (k,n)-torus, ccc(ddd1) is included in C . Therefore, the set of
2n disjoint paths P obtained by the node-to-set disjoint paths
routing algorithm includes the path ccc(sss) ; ccc(ddd1) though it is
discarded later. Hence, the cluster C(ddd1) cannot be visited by
the sub path sss ; ddd′1. The sub path ddd′1 ; ddd1 visits C(bbb) and
C(ddd1), which are not visited by other paths. Also, the path sss ;
ddd2 and the sub path sss′3 ; ddd3 visit different clusters except for
C(sss). Hence, the paths sss ; ddd2 and sss ; ddd3 are disjoint except
for sss. They are also disjoint with the remaining path sss ; ddd1
except for sss.

The maximum length of the disjoint paths obtained in Step 3
is κn+1 from Theorem 1. The path length L(p′) of p′ : sss ; ddd′1
obtained in Step 4 is at most κn2 +κn+ 1. The lengths of the
four shortest paths ddd′1 ; eee2 in C(bbb) in Step 5, eee2 ; ddd1 in C(ddd1)
in Step 7, ddd′2 ; ddd2 in C(ddd2) in Step 10, and ddd′3 ; ddd3 in C(ddd3)
in Step 12 are all at most n. The maximum length of the disjoint
paths sss ; sss′2 and sss ; sss′3 in C(sss) constructed in Step 8 is 2n−2.
Therefore, the lengths of the paths sss; ddd′1 ; eee2→ eee1 ; ddd1, sss;
sss′2→ ddd′2 ; ddd2, and sss ; sss′3→ ddd′3 ; ddd3 are at most (κn2 +κn+
1)+n+1+n = κn2 +(κ +2)n+2, (2n−2)+1+n = 3n−1,
and (2n− 2)+ 1+ n = 3n− 1, respectively. Consequently, the
maximum path length in Case 7 is κn2 +(κ +2)n+2.

It takes O(n) time to select the node bbb and the edge eee1→ eee2
that satisfy the conditions in Step 1. C can be constructed in
O(n) in Step 2. From Theorem 1, the time complexity of Step 3
is O(n3). In Step 4, p can be found in O(n) time by checking the
final nodes of 2n disjoint paths. Conversion of p into p′ takes
O(kn2) time since L(p) is O(kn). Construction of the shortest
paths in Steps 5, 7, 10 and 12 takes O(n) time. Construction of
two disjoint paths in C(sss) in Step 8 takes O(n) time. Selection
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of edges in Steps 6, 9 and 11 takes O(1) time. Consequently,
the total time complexity of Case 7 is O(n3 + kn2).

Lemma 8. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,
the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1≤ i≤ 3) of lengths at most κn2 +(κ +3)n−1 in O(n3 +kn2)
time in Case 8.

Proof. Since the sub paths sss ; sss′2 and sss ; sss′3 traverse the cycle
of C(sss) in opposite directions, they are disjoint except for sss.
Because the sub paths sss ; ddd′1, sss′2 ; ddd′2, and sss′3 ; ddd′3 are based
on the disjoint paths generated by the node-to-set disjoint paths
routing algorithm in the (k,n)-torus, they visit different clusters
except for C(sss). The sub paths ddd′1 ; ddd1, ddd′2 ; ddd2, and ddd′3 ; ddd3
are disjoint with other paths since they are inside the clusters
C(ddd1), C(ddd2), and C(ddd3), respectively. Hence, the paths sss ; dddi
(1≤ i≤ 3) are disjoint except for sss.

The maximum length of the disjoint paths obtained in Step 2
is κn+1 from Theorem 1. Then, the lengths of the sub paths p′1 :
sss′1 ; ddd′1, p′2 : sss′2 ; ddd′2, and p′3 : sss′3 ; ddd′3 that are obtained in Step
3 are at most κn2 + κn+ 1. The maximum lengths of the sub
paths sss ; sss′2 and sss ; sss′3 in C(sss) constructed in Step 4 are both
2n−2. The shortest paths ddd′1 ; ddd1 in C(ddd1) constructed in Step
5, ddd′2 ; ddd2 in C(ddd2) constructed in Step 6, and ddd′3 ; ddd3 in C(ddd3)
in Step 7 have lengths of at most n. Hence, the lengths of the
paths sss ; ddd′1 ; ddd1, sss ; sss′2 ; ddd′2 ; ddd2, and sss ; sss′3 ; ddd′3 ; ddd3
are at most (κn2+κn+1)+n = κn2+(κ +1)n+1, (2n−2)+
(κn2+κn+1)+n = κn2+(κ +3)n−1, and (2n−2)+(κn2+
κn+ 1)+ n = κn2 +(κ + 3)n− 1, respectively. Consequently,
the maximum path length in Case 8 is κn2 +(κ +3)n−1.

It takes O(n) time to select 2n clusters that satisfy the
conditions in Step 1. From Theorem 1, the time complexity of
Step 2 is O(n3). In Step 3, p1, p2 and p3 can be found in O(n)
time by checking the final nodes of 2n disjoint paths. Since
L(p1), L(p2), and L(p3) are all O(kn), their conversion into p′1,
p′2, and p′3 in Step 3 takes O(kn2) time. Construction of two
disjoint paths in C(sss) in Step 4 takes O(n) time. Construction
of the shortest paths in Steps 5, 6 and 7 takes O(n) time.
Consequently, the total time complexity of Case 8 is O(n3 +
kn2).

Finally, we can recapitulate this discussion into the following
theorem.

Theorem 2. For a source node sss and a set of three destination
nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n) where n ≥ 2 and k ≥ 3,
the algorithm of Section 3 generates three disjoint paths sss ; dddi
(1≤ i≤ 3) of lengths at most κn2 +(κ +5)n−4 in O(n3 +kn2)
time.

Proof. This can be directly deduced from Lemmas 1 to 8.

5 Conclusion

Disjoint paths routing is critical for reliability and
performance of parallel systems. In this paper, we have

proposed a new algorithm that solves the node-to-set disjoint
paths routing problem in a TCC. For any source node sss and a
set of three destination nodes D = {ddd1,ddd2,ddd3} in a TCC(k,n)
where n ≥ 2 and k ≥ 3, the algorithm constructs three disjoint
paths sss ; ddd1, sss ; ddd2, and sss ; ddd3. The maximum length of
the constructed paths and the time complexity of the algorithm
are proved to be κn2 + (κ + 5)n− 4 where κ = bk/2c and
O(n3 + kn2), respectively. Regarding previous works, it would
be interesting to solve the set-to-set and pairwise disjoint paths
routing problems in a TCC network. Also, cluster fault-
tolerance is an important topic.
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Abstract 

 
Emotion is postulated to be generated at the brain.  To 

capture the brain activities during emotional processing, 
several neuro-imaging techniques have been adopted, 
including electroencephalogram (EEG).  In the existing 
studies, different techniques have been employed to extract 
features from EEG signals for emotion classification.  
However, existing feature extraction techniques do not 
consider spatial and temporal neural-dynamics of emotion.  
Furthermore, the non-linearity of EEG and self-adaptive of 
neural activations are disregard.  Therefore, the classification 
accuracy of any feature extraction technique is inconsistent 
when applied with different classifiers.  Hence, in this study, a 
new feature extraction technique that inculcates the qualities of 
EEG signal and the behavior of neural activations is proposed 
based on Cerebellar Model Articulation Controller (CMAC) 
model.  The accuracy of classifying calm, fear, happiness and 
sadness emotional states using Evolving Fuzzy Neural 
Network (EFuNN) classifiers are reported based on subject-
dependent and subject-independent validations.  The classifica-
tion performance of using features from power spectral density 
(PSD), kernel density estimation (KDE) and mel-frequency 
ceptral coefficients (MFCC) are also compared and reported.  
It is observed that the proposed technique is able to yield 
accuracy of above 50% to above 90% for subject-dependent 
classification.  For subject-independent approach, the highest 
accuracy is barely 40%.  The results suggest that this approach 
is comparable as a feature extraction technique for classifying 
emotions. 

Key Words:  Affective computing, encephalogram (EEG), 
cerebellar model of articulation controller (CMAC), evolving 
fuzzy neural network (EFuNN), valence, arousal. 
 

1 Introduction 
 

A circumplex model of affect [34] defines emotion based on 
two affective dimensions, namely valence and arousal.  It can 
be represented as a two dimensional space, in which the 
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horizontal axis is the valence and the vertical axis is for arousal.  
The level of valence defines the positive and negative of an 
emotional state.  On the other hand, the arousal axis determines 
the intensity of emotion from inactive to aroused states.  The 
model can be adapted to identify emotion from different 
emotional expressions including automatic nervous systems 
(ANS) responses, behaviors (i.e., facial expressions, voice and 
speech, body language and posture as well as text) and the brain 
states [5].   

Evidences based on over a decade of studies have suggested 
that the generations of emotion are also reflected at the brain.  
One of the earliest observations reported the change in 
personality of a construction worker, Phineas P. Gage, after 
recovering from surgery to remove an iron bar that passed 
through his head at a work incident in 1848 [14].  During the 
surgery, small parts of his brain were removed.  Despite fully 
recovering physically, it was observed that he had become 
irreverent, impatient, quick to anger and unreliable.  From a 
different observation, changes in emotional behaviors were also 
noticed in a number of cats that also experienced brain lesions 
[2].  More of the history and future directions of the studies 
concerning with the underlying neural correlates of emotions 
are discussed in [9]. 

With the emergence of more sophisticated non-invasive 
neuro-imaging techniques, studies of the brain no longer require 
an  invasive technique that performs physically cutting open the 
skull and implanting electrodes on the brain.  Among different 
non-invasive techniques, electroencephalogram (EEG) has 
become a prominent technique to capture brain activities since 
it is less costly compared to the others.  Although EEG resolves 
poorly in capturing spatial information, relatively it has the 
highest temporal resolution.  It captures brain activation up to 
milliseconds, which is comparable with the temporal dynamic 
of emotion [8].  Therefore, EEG has been widely employed for 
emotion recognition. 

Recognizing emotion is seen as a pattern recognition 
problem.  That is, a supervised learning method is implemented 
to classify emotion from features that are extracted using 
different techniques.  Many techniques have been adapted to 
extract features from EEG signals including fractal dimension 
analysis [22, 40], power spectral density [3, 13, 21, 38], wavelet 
transform [27], statistical features [6, 24] and fusion of brain 
signal features and peripheral features.  Such techniques do not 
consider the spatial and temporal dynamics of emotion 
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generation in the brain.  Furthermore, the non-linearity of EEG 
and self-adaptive of neural activations are not implemented.  
Therefore, the classification accuracy of any feature extraction 
technique is dependent upon selected classifiers.  

Hence, in this paper, a new feature extraction technique 
based on a neural inspired computational model, namely 
Cerebellar Model Articulation Controller (CMAC), is 
introduced.  CMAC is considered because it is inculcated with 
the capabilities to perform self-organization feature mapping 
(SOFM) for non-linear problems.  These qualities are also 
identified in brain signals that are captured by EEG based on 
the theory of chaotic system [41] as explained by the concepts 
of non-linear dynamic systems [17].  Thus, the proposed feature 
extraction technique is called CMAC-based Computational 
Model of Affect (CCMA-Type I). 

Furthermore, Evolving Fuzzy Neural Network (EFuNN) is 
employed to perform emotion classification based on subject-
dependent and subject-independent validations.  A brief 
literature review is presented in Section 2.  Section 3 elaborates 
the structure and functionalities of the proposed model.  The 
methodology is presented in Section 4.  The remainder of the 
paper discusses the results and conclusion in Section 5 and 
Section 6, respectively. 

 
2 Previous Works 

 
Most of emotional recognition studies that use EEG signals 

as the input involve several steps, including signal acquisition, 
pre-processing, feature extraction and classification.  EEG 
signals are acquired by presenting the corresponding stimuli to 
the participants while EEG electrodes are attached at the scalp 
for recording the brain activation activities.  Different numbers 
of electrodes are used in different studies.  Stimuli presented to 
the participants during the signal acquisitions to elicit emotions 
include facial images, video clips, music pieces, speeches and 
many more.  

In the pre-processing step, noise in the brain signals is 
removed either through visual inspection or existing 
computational techniques.  At this point, the corresponding 
frequency bands are selected among delta (δ: 1–3 Hz), theta (θ: 
4–7 Hz), alpha (α: 8–13 Hz), beta (β: 14–30 Hz), and gamma 
(γ: 31–50 Hz).  No specific frequency bands are applied for the 
emotion recognition problem.  For example, all bands are 
included in the studies conducted by [21, 23, 26, 40].  In 
different studies, only a few bands are selected.  From the 
literatures cover in this study, in most studies used alpha and 
beta bands are commonly included. 

To extract features from EEG signals, many techniques have 
been adapted, such as fractal dimension analysis [22, 40], 
power spectral density [3, 13, 21, 39], wavelet transform [27], 
statistical features [6, 24] and fusion of brain signal features and 
peripheral features.  Extracted features are trained to produce 
model for the corresponding problems.  However, in some 
studies, feature selection step [21, 23, 39] is performed to 
reduce dimensionality of the problem, hence reduce the training 
complexity. 

Classification of emotional states is performed by machine 
learning classifiers.  Output of the classifiers is determined 

based on the emotion classification techniques derived from 
psychological understandings.  Emotions are perceived to be 
either discreet or continuous.  According to the theories of basic 
emotions, emotions are discreet, such that each emotional state 
is different than other emotions as perceived from 
psychological and physiological manifestations.  Different 
researchers have come up with different lists of basic emotions, 
as discussed in [11, 29, 32, 44].  

Other researchers believe that an emotional state can be 
determined by the position of an intersecting point of several 
continuous dimensions in a space.  Several dimensional models 
have been proposed in [4, 25, 32, 34, 36] to define the affective 
space.  However, most commonly a two-dimensional affective 
space of valence and arousal is commonly adapted.  Summary 
of the previous works in emotion classification using EEG is 
presented in Table 1. 

 
3 CMAC-based Computational Model of Affect 

(CCMA) from Self-Organizing Feature Map 
 
Cerebellar Model Articulation Controller (CMAC) is inspired 

by the functions of human cerebellum.  It was initially proposed 
to model non-linear functions of robotic controllers [1].  
However, over time, the original architecture and processes of 
CMAC have evolved.  Pseudo-self-evolving CMAC 
(PSECMAC) [43] was proposed to overcome some limitations 
of the original CMAC such as poor memory utilization and 
generalization accuracy dilemma.  In short, PSECMAC is just 
an implementation of a single-layered quantitization function 
CMAC.  

Figure 1(a) illustrates the learning map of single-layered 
CMAC with two dimensional inputs, X1 and X2. Each input 
dimension is quantized into 5 discrete quantitization levels.  
Represented in a 2-dimensional matrix, 121 weighted memory 
cells are formed as the learning map.  The aim of CMAC 
learning is to extract an optimal learning map that produces 
minimum errors between the observed output and the estimated 
output.  Estimated outputs are calculated from the aggregation 
of memory contents associated with the activated input vectors. 

Similar to other supervised learning approaches, the error 
between the calculated output and the desired output, , of 
the corresponding cell is calculated to improve the predictive 
performance of a model.  In CMAC, the learning process 
involves the weights updates in the associative memory.  

In contrast to the conventional CMAC network 
implementation, instead of only one winner cell determined for 
a particular instance, the adaptive learning of feature map in 
CCMA involves winner cells that are determined based on the 
coordinates of all EEG electrodes that are projected onto the 
feature map.  In addition to that, each winner cell activates 
several neighboring cells based on an arbitrary radius, , 
which delineates the region of activations. The activated region 
is defined as a square matrix which edge is  cells away from 
the winner cell along the horizontal and the vertical axis in both 
directions.  Moreover, the activation factor intensity decreases 
from the center of the activated region towards the edge. 

Features are extracted using the proposed CMAC-based 
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Sources Stimuli Emotion  
model EEG features Feature Extraction    Classifiers Accuracy 

[45] Music 
 

Neutral to 
arousal  
 

Theta,  Alpha, 
Beta 

• Normalized EEG power SVM About 
80% 

[6] Facial images Discrete 
 

 • EEG statistical features MLP 49.17%  
to 90% 

[13] Music Like - dislike Beta, Gamma • Time-Frequency Distributions 
• PSD,  
• the Zhao-Atlas-Marks 

method,  
• the Hilbert-Huang spectrum 

kNN 
SVM 

 

[3] Database for Emotion 
Analysis using 
Physiological Signal 
(DEAP) 

Valence-arousal 4.0 to 45.0 Hz • Statistical characteristics, 
• PSD (Power Spectral 

Density)  
• HOC (High Order Crossings) 

kNN 69.59% to 
70.1% 

[39] Video  Arousal - 
valence 

Theta, Alpha, 
Beta, Gamma 

• Logarithms of the PSD SVM 50.5% to 
62.1% 

[26] Facial images 
 

Discrete Delta, Theta, 
Alpha, Beta, 
Gamma 

• Common Spatial Patterns 
(CSP) 

Bayesian; Linear 
SVM  
 

72.8% to 
97.9% 
 

[24] Academic emotions 
induced through 
modified Wisconsin 
Card Sorting Task 
(WCST), Berg’s 

Discrete 8Hz-30Hz • EEG statistical features SVM; MLP; 
kNN 

40.72% to 
54.09% 

[47] Images 
 

Valence – 
arousal 

Theta, Alpha, 
Beta, Gamma 

• FFT with a Hamming 
window  

ANOVA 
 

About 
90%  

[40] Music  & sound Valence-arousal Delta, Theta, 
Alpha, Beta, 
Gamma 

• Fractal dimension (FD) 
 

SVM 70 % to  
100 % 

[33] Facial images Valence – 
arousal 

Alpha 
 

• Kernel Density Estimation 
(KDE) 

 60.74% to 
71.84% 

[31] Images Valence - 
arousal 

Alpha, Beta • High-order crossing 
• Cross-correlation 

SVM 62.58% to 
94.40%  

[22] Songs and other audio Valence – 
arousal 

2 to 42 Hz  • Fractal dimension 
 

SVM 84.9% 

[21] Soundtrack valence-arousal Delta, Theta, 
Alpha, Beta, 
Gamma 

• PSD 
 

MLP;  SVM 82.29%±3
.06% 

[30] Facial image 
 

Discrete Alpha , Beta • Higher Order Crossings 
(HOCs) EEG statistical 
features 

QDA; k-NN; 
MD; SVM 

77.66 % 
to 85.17% 

[19] Visual and aural 
stimulus 
 

Discrete  • EEG statistical features  RVM; MLP; 
Decision Tree; 
SVM; Bayesian 

Above 
86% 

[23] Images Valence -
arousal 

Delta, Theta, 
Alpha, Beta, 
Gamma 

• EEG statistical features 
 

Bayesian Average 
76% 

[20] Facial images   • Common Spatial Patterns 
(CSP)  

SVM About 
93%  

[16] Music  Theta, Alpha • Kernel Density Estimation 
(KDE) 

• Gaussian Mixture Model 
(GMM) 

Bayesian; MLP; 
One-Rule; 
Random Tree; 
RBF 

Around 
90% 

[27] Movie clips Discrete 
emotions 

Alpha • Wavelet FCM  

[7] Images Arousal 4-45Hz • EEG statistical features Bayesian; FDA Around 
53% to 
72% 
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method as discussed in Section 2.  The CMAC learning map is 
a 15-by-15 matrix which is derived based on the coordinates of 
8 EEG channels as specified in EEGLab Toolbox [10], as 
shown in Figure 1(b.)  

Initially, weights of the learning map are set to 0.  As shown 
in the flowchart of adaptive learning in Figure 2, at each 
training cycle, the weights of the activated region, which are 
derived from each of the winner cells and the corresponding 
neighboring cells, are selected and updated.  This is based on 
the error between calculated output, , of the corresponding 
activated region and the desired output, . 

The calculated output of the CMAC network for one channel 
corresponds to the k-th activated neighbor at i-th cycle and is 
 

 

calculated as Equation 1: 
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Where 

 
  is the winner cell, 
K  is the total number of activated neighboring cells, 

 is the activation factor at k-th neighboring cell of , 
  is the feature map weights at -th cycle.

 

  

1
2
3
4 F3 F4
5
6
7
8 T7 C3 C4 T8
9
10
11
12 P3 P4
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 
  (a) (b) 
 

Figure 1: (a) Single-layered CMAC learning map of two-dimensional input.  As the input of respective dimensions, X1 and X2 
determine the winner cell (as shaded in gray), (b) Projection of EEG channels on CMAC learning map 

 

 
 

Figure 2:  Adaptive learning of feature map for one instance 
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Thus, the local error, , is defined as: 
 

  (2) 
 

where 
 

 is the desired output based the power spectral density 
of each EEG  

signal at channel  for -th cycle, 
 is the calculated output the corresponding input, , at 

-th cycle. 
 

The weight update is described in Equation 1. 
 

  
(3)

 
 

Where 
 

  is the feature map weights correspond to the -th 
activated neighbor at -th cycle 
 is the feature map weights correspond to the -th 

activated neighbor at -th cycle 
 is the local error corresponds to the -th activated 

neighbor at -th cycle, 
 is the activation factor at k-th neighboring cell of ,   

 is the total number of activated neighboring cells, 
 is an arbitrary learning rate constant.  
 

 
 

 

After the weights of all winner cells and the corresponding 
neighboring cells of one instance have been updated, the 
global error, , is calculated based on the mean of local 
errors,  An arbitrary threshold, , is used to define the 
final by fulfilling the following condition: 

 

  
(6)

 
 

As a result, a feature set of the corresponding sample is 
extracted based on the region of activations which are defined 
by the corresponding activation radius, R.  Next, an arbitrary 
supervised learning algorithm is implemented to perform 
classification for profiling emotions from the extracted feature 
vector.  Based on the dimensional view of emotions, two 
supervised learning classifiers are employed representing the 
valence and arousal dimensions. 

 
4 Methodology 

 
By adapting the affective computing approach, this study 

implements several steps included to perform emotion 
classification, as depicted in Figure 3.  The steps are data 
collection, signal pre-processing, feature extraction and 
classification.  

 
4.1 Data Collection 

 
EEG signals are recorded using the BIMEC from 

Brainmarker BV.  It consists of eight channels which are placed 
on the participants’ scalp based on the international 10-20 EEG 
electrode positioning system [28], namely: C3, C4, F3, F4, P3, 
 

 
 

Figure 3:  Methodology 
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P4, T7 and T8.  As shown in Figure 4, the corresponding 
electrodes that are placed on the scalp are connected to the EEG 
electrode box which captures electrical discharge during the 
stimulated brain activities.  The electrical discharges are then 
amplified through the BIMEC amplifier.  The signals are 
recorded and stored at the signal analysis machine.  Moreover, 
the stimuli presentation screen is placed in front the 
participants.  In addition, a digital camera is also used to 
capture the behavior of participants. 
 

 
 

Figure 4: Placements of 8 electrodes based on 10-20 EEG 
electrodes positioning standard system 

 
In this study, EEG signals are recorded from 11 normal and 

healthy children of both genders aged between 4 to 6 years old 
with written consent from the parents or guardian.  It is started 
by recording 1 minute of eyes closed and another minute of 
eyes open to bring the participants to a resting state.  Later, 10 
facial images of happiness, sadness, calm and fear from 
Radboud Faces Database (RafD) [18] are presented to the 
participants for 1 minute per emotion to elicit the corresponding 
emotional states.  The stimuli presentation protocol is 
summarized in Figure 5. 
 

Duration 
(minutes) 

Subject’s 
states Stimuli presentation 

1  Eyes close Null 

1  Eyes open Blank screen 

4  Observing 
stimuli 

 

Figure 5:  Stimuli presentation protocol 
 
4.2 Signal Pre-Processing 

 
EEG signals comprised of 5 frequency bands including delta 

(2.5 Hz to 4 Hz), theta (4Hz to 8 Hz), alpha (8 Hz to 13 Hz), 
beta (13 Hz to 30 Hz) and gamma (30 Hz to 60 Hz).  In this 

study, signal pre-processing involves selecting frequency bands 
within 8 Hz to 60 Hz which includes alpha, beta and gamma 
bands.  Signals in the lower frequency bands are discarded 
because normally such range represents inactive brain activity 
[35].  As a result, it produces the power spectral density of each 
channel, as depicted in Figure 6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Generation of power spectral density (PSD) for 

frequency ranged from 8HZ to 60HZ (alpha, beta, 
theta) at channel C3 during elicitation of calm 
emotion by a subject 

 
 
4.3 Feature Extraction 

 
For this study, the proposed CMAC feature extraction 

techniques are compared with other existing techniques 
including Power Spectral Density (PSD) calculation, Kernel 
Density Estimation (KDE) and Mel Frequency Cepstral 
Coefficients (MFCC): 
 
a) Kernel density estimation (KDE) 

 
Kernel density estimation (KDE) is an approach for finding 
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the probability distribution function of random variables 
without having to assume the distributions (i.e., normal or 
skewed) of data samples.  As a non-parametric approach, this 
estimation technique is also more flexible in the sense that the 
estimation is extracted directly from the data.  Furthermore, 
KDE is able to portray a good representation of a continuous 
population [37]. 

For a given input with the sample point   x1 , x 2 ,K x n( )  the estimate 
of the kernel density ( )xf̂  is defined as: 

 
ˆ f h x( ) =

1
n

K h x − x i( )
i=1

n

∑ =
1

nh
K x − x i

h
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

i=1

n

∑  

 
where  
 
 K kernel function, which is taken as normal 

distribution for our experiment 
 n number of samples per frame 
 h window width or bandwidth 
 K kernel function, which is taken as normal 

distribution for our experiment 
 n number of samples per frame 
 h window width or bandwidth 

 
The kernel K satisfies several conditions summarized in 

[37]. 
 

b) Mel Frequency Cepstral Coefficients (MFCC) 
 

The Mel Frequency Cepstral Coefficients (MFCC) method 
for feature extraction.  MFCC are commonly used as input 
features for solving pattern recognition and machine learning 
tasks.  These coefficients are obtained by calculating the mel 
frequency bands which are ranged according to the frequency 
band of EEG signal.  Although MFCC is more popular in 
speech processing, it is considered feasible for the processing 
of brainwaves [38].   

 
4.4 Classification 

 
Based on the dimensional outlook of emotion, calm, fear, 

happiness and sadness can be analyzed as the composites of 
valence and arousal in an affective space model, as depicted at 
the right most of Figure 3. The affective space model is 
constructed based on the generalization of quadrants containing 
each of the emotional states in the circumplex model of affect 
[34].  Hence, happiness lies on the positive valence and positive 
arousal quadrant.  Fear is considered as an emotional state with 
negative valance and positive arousal.  For the negative arousal, 
sadness and calm are placed at the negative and positive 
valence quadrants, respectively.  Thus, for classification based 
on the supervised learning approach, positive cases are labeled 
as 1 and negative cases are labeled as -1. 

In this study, Evolving Fuzzy Neural Network (EFuNN) was 
used to perform emotion classification.  It is the first breed of  
 

evolving connectionist system (ECoS) complying with the 
seven requirements for an intelligent system [46].  As a variant 
of ECoS, structure of EFuNN is modified as the training 
instances are presented.  Typically, the EFuNN architecture 
consists of five neuron layers as illustrated in Figure 7. 

 

 
 

Figure 7:  EFuNN architecture 
 
The first layer is the input layer containing neurons of the 

same number of features in corresponding problem space.  The 
second layer is the condition layer, in which fuzzification of 
input is performed based on the membership function defined 
by each neuron. Hence, neurons in this layer are not fully 
connected to the input layer, but each input neuron is only 
connected to its own subset of condition neurons. The third 
layer is the rule layer which evolves (grows and adapts) itself as 
the response to the incoming data. The fourth layer contains 
neurons of fuzzy membership functions that produce the fuzzy 
output values. In the fifth layer, the fuzzy outputs are 
defuzzified into the corresponding crisp outputs. 

With that, two evolving fuzzy neural networks classifiers 
corresponding to valence and arousal are adapted.  Each 
network consists of 8 input nodes representing the number of 
extracted features.  The classifiers are evaluated based on 
several categories, as illustrated in Figure 8.  For subject- 
dependent evaluation, a classifier is constructed and tested on 
the same subjects.  On the other hand, for subject-dependent 
evaluation, the training set and the testing set are derived from 
entirely different subjects.  Furthermore, a homogenous model 
is constructed based on the instances that are derived from only 
one subject.  While for the heterogeneous case, the classifiers 
are trained from a certain number of subjects.  In addition, for 
the memory testing, a model is tested using the same dataset 
that is used in the learning process.  The result indicates how 
well the model is learned on the same instances.  However, it 
does not consider such instances that are not included in the 
training set. 
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Figure 8: Validation schemes adapted in this study 
 
 

5 Results 
 

The results that are presented in Figure 9 show the average 
accuracy of emotional classification of 11 subjects using 
EFuNN on features from power spectral density, kernel density 
estimation, mel-frequency cepstral coefficients, as well as the 
CCMA (Type i). 

Classification results of subject-dependent homogenous 
memory testing using EFuNN on features that are extracted 
based on the CCMA (Type I) and others are shown in Figure 
9(a).  The highest accuracy is obtained from MFCC features 
with a perfect classification.  The minimum accuracy that is 
produced by MFCC features is 97.5%.  S Slightly lower than 
that, classification accuracy that is obtained from features of 
CMAC weights ranges from 91.23% to 99.64%.  Other than 
that, classification of KDE features and PSD features are 
averaged at 70.88% and 75.75%, respectively.  

As shown in Figure 9(b), CCMA (Type I) produces the 
highest accuracy range in subject-dependent homogenous cross 
validation using EFuNN (between 77.4% and 99.52%).  
Compared to the previous case in Section 6.3.2.1, the 
classification accuracy from MFCC features drops 
tremendously from the previous highest accuracy of barely 
60%.  The lowest accuracy that is obtained by using MFCC 
features is 21.15%, which is only 2% higher than the lowest 
accuracy of KDE features.  On the other hand, PSD features 
produce accuracy at the middle range from 33.17% to 74.04%.  
In short, it is observed that the classification performance of 
EFuNN on CCMA (Type I) is competitive with any other 
features on subject-dependent homogenous cross validation. 

As mentioned, in subject-dependent heterogeneous memory 
testing, a training set is composed of instances of a certain 
number of subjects, which are also used for testing.  In this 
research, heterogeneous testing is performed by using 6 
subjects.  Results of subject-dependent heterogeneous memory 
testing using EFuNN as the classifier are displayed in Figure 
9(c).  From the box plots, it is observed that classification of 
features from CCMA (Type I) produces the highest accuracy at 
78.85%.  That is followed by classification of MFCC features 
with classification accuracy between 54.33% and 69%.  In 
addition, the classification of emotions using power spectral 

density and the classification of emotions using kernel density 
estimate features are observed to be below 50% with an average 
of 34.6% and 38.44%, respectively. 

For subject-dependent heterogeneous cross validation, a 
subject is partitioned into 5 folds.  With that, the training set is 
composed of 4 folds from 6 different subjects.  Hence, the 
classification performance is determined based on the number 
of correctly identified instances in the remaining fold of each 
subject.  Figure 9(d) presents the subject-dependent 
heterogeneous 5-fold cross validation using EFuNN.  Based on 
the results, the best performance is obtained by the 
classification of emotions from CCMA (Type I) with the 
highest accuracy of 77.88%.  The lowest accuracy from this 
feature is 44.71% which is still higher than the classification 
accuracy of other features.  In relation to that, the performance 
of CMAC features is followed by features from power spectral 
density with the accuracy from 21.63% to 44.23%.  Following 
that is MFCC features with classification accuracy between 
19.23% and 43.18%.  Classification of emotions using KDE 
features falls within the range of the accuracy obtained by 
MFCC features, which is from 22.12% to 29.33%. 

Lastly, Figure 9(e) shows the classification accuracy of 
different features on subject-independent blind testing using 
EFuNN.  The highest accuracy is obtained from MFCC features 
with 33.17% correctly classified instances.  The lowest 
accuracy from that feature is 9.62%, which is also the lowest 
among the others.  Despite that, the average accuracy for all 
features is very low (25.33%). 

In addition, Figure 10 presents the classification results of the 
same subjects using features that are extracted using 
CCMA(Type I).  It is indicated that subject-dependent 
homogenous memory classifications of 11 subjects produce 
accuracy between 91.23% and 99%.  A wider range is observed 
on subject-dependent homogenous cross validation with the 
lowest accuracy of 77.4%.  

For the heterogeneous case, classifying samples that are also 
used for the construction classifiers produces accuracy between 
54.81% and 78.85%.  Through cross validation, average 
classification accuracy from 44.71% to 77.88% is achieved.  
Similar to homogeneous, well performed classifications of 
heterogeneous cases can be useful for profiling emotions of a 
group of subjects.  However, when classifying emotions using 
classifiers that are constructed based on samples of different 
subjects, the highest accuracy is barely 40%. 

 
6 Conclusion 

 
Overall, the classifications of emotions using features that are 

extracted using CMAC perform better than the classifications 
of power spectral density for subject-dependent homogenous 
and heteregeneous analysis.  With that, the results support the 
viability for adapting such approach in other applications.  One 
of the potential applications is the visualization of the 
underlying brain activations which currently can only be 
analyzed by experts in neurology.  The resources are not only 
scarce but also complex.  Because this model is applicable for 
brain signals that are captured using EEG, the costs of 
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employing other more expensive brain imaging tools can be 
reduced. 

This is possible because the features are derived from the 
CMAC learning map which reflects the physical locations of 
the EEG electrodes positions.  Thus, the visualization of  the 
learning map may be analyzed to understand the 
underlyingneural correlates of brain activities.  Going further, 
expanding the CMAC learning map into a 3-dimensional 
learning space is envisaged to produce a 3-dimensional brain 
model which can then estimate the source of the brain 
activations. 

Furthermore, outstanding results of the homogenous 
classification can be useful for analyzing the dynamic of 
emotions on the corresponding subjects, as emotions do not 
occur abruptly [8] and changes over the course of time.  

On the other hand, the classification performance for both 
features based on subject-independent blind tests are equally 
poor.  The poor performance of subject-independent 
classification is not worse than the results that are reported in 
other studies [15, 24].  This is because the individual 
differences may influence the emotion processing [12] and can 
be captured at the brain [42]. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

 

Figure 9: (a) Subject-dependent homogenous memory test, (b) Subject-dependent homogenous cross 
validation, (c) Subject-dependent heterogeneous memory test, (d) Subject-dependent heterogeneous 
croos validation, and (e) Subject-independent  
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Figure 10:  Classification performance of using CMAC-based features for different evaluation scenarios using EfuNN 
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Outliers for Multi-Dimensional Data Sets
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Abstract

Nowadays a large amount of data are generated in many
research and industry fields, such as bioinformatics, social
media exchange, meteorology, etc. Many of the real data sets
contain dynamic contents. In this paper, we discuss the data
distribution of data sets that change constantly. We analyze the
change of the distribution in multi-dimensional data space, and
propose an approach to efficiently and effectively process the
multi-dimensional data sets. Real data sets contain outliers and
clusters. Outlier detection is concerned with discovering the
exceptional behaviors of certain objects. Clustering algorithms
separate data points into different groups, in a way that data
points in the same group have high similarity and data points
from different groups are different from each other. We analyze
the meaning of clusters and outliers and propose an algorithm to
dynamically change the set of clusters and the set of outliers as
the data set changes. The reconstructed clusters and outliers can
help improve the performance of data analysis such as nearest
neighbor search and dimension reduction.

1 Introduction

Cluster and outlier detection has always been one of the
focuses of data mining research. Outlier detection is an
important branch in the field of data mining with numerous
applications, such as credit card fraud detection, discovery
of criminal activities, discovery of computer intrusion, data
cleaning, network intrusion detection, clinical diagnosis of
diseases, etc. An outlier is a data point that does not follow the
main characteristics of the input data [15]. Outlier detection is
concerned with discovering the exceptional behaviors of certain
objects. There are numerous studies on outlier detection. E. M.
Knorr etc. [6] detected a distance-based outlier. Ramaswamy
etc. [14] further extended it based on the distance of a data point
from its kth nearest neighbor. Orair etc. [10] assess distance-
based outlier detection approaches and evaluate them, with
the conclusion that the combination of optimization strategies
enables significant gains. Last etc. [7] apply the fuzzy set theory

∗Department of Computer Science. Email: yshi5@kennesaw.edu. 1000
Chastain Road.

to model the human perception of exceptional values in order to
find outliers in a data set.

Cluster analysis is used to identify homogeneous and well-
separated groups of objects in data sets. It provides a way to
learn about the structure of complex data and acquire useful
information from data sets. In clustering, some details are
disregarded to simplify the data. Clustering can be viewed
as concise summaries of the data, and it is related to many
disciplines and plays an important role in a broad range of
applications which deal with large data sets and data with many
attributes. Automatic cluster detection is an important tool for
unsupervised knowledge discovery. Many methods have been
proposed in the literature. Well known approaches include
partitioning, hierarchical, grid-based, density-based algorithms,
and more [4, 8] . For example, grid-based algorithms divide
the space into grids and perform all operations on the grids to
improve the processing time, no matter what the size of a data
set. Partitioning algorithms requires K as the input information,
which is the number of clusters, and gradually partition the data
sets into K groups. Hierarchical algorithms present the clusters
on different levels of details, helping users decide the scale of
the clusters they need. Density-based algorithms decide the
membership of each data point in a data set based on how close
it is to a certain data point. All existing clustering algorithms
have advantages and disadvantages.

A lot of the algorithms do not perform well when the
dimensional goes higher. One of the solutions to this problem
is dimension reduction which tries to find sub-clusters in
a low-dimensional subspace. For example, Kim etc. [5]
adopt dimension reduction methods to reduce the dimension
of the document vectors. In order to handle the classification
problem where a document may belong to multiple classes, they
design decision functions for the centroid-based classification
algorithm and support vector classifiers. Ding etc. [3] design an
approach which combines linear discriminant analysis and K-
means clustering to select the most discriminative subspace, and
generate class labels simultaneously. Boulesteix [2] compares
the classification procedure consisting of Partial Least Squares
dimension reduction and linear discriminant analysis with well-
known classification methods, and proposes a procedure to
choose the number of Partial Least Squares components.

Many algorithms have been presented to process data sets

ISCA Copyright© 2015



44 IJCA, Vol. 22, No. 1, March 2015

Figure 1: A dynamic data set with clusters and outliers a two dimensional data space

with constant changes. These algorithms use various strategies
to efficiently and effectively keep track of the change of
the data sets, and adjust the cluster information dynamically
to keep it consistent with the data change. Some of them
use certain motion models to track clusters, and others use
dissimilarity measurement and provide dynamic procedures
of splitting and merging. For example, Peng etc. [12]
introduce class rate, based on which a dynamic clustering
algorithm is designed to divide the entire data set into all
possible classes, with the clustering strategy which results in
the minimum class ratio being chosen. Papadogiannis etc. [11]
present a dynamic clustering approach for the formation of the
clusters of cooperating base stations for a cellular network.
It incorporates multi-cell cooperative processing, which uses
linear beamforming for the sum-rate maximization of the
uplink. Omran etc [9] present a dynamic clustering algorithm
for image segmentation, which automatically determines the
number of clusters and simultaneously clusters the data set with
minimal user interference. Qing etc. [13] introduce a distributed
energy-efficient clustering scheme for heterogeneous wireless
sensor networks, which selects the clusters based on the ratio
between residual energy of each node and the average energy of
the network.

2 Dynamically Adjusting Clusters and Outliers

Figure 1 shows an example of a two dimensional data set.
This data set contains two clusters: cluster1 and cluster2. It also
contains numerous outliers: O1, O2, O3, O4, and O5. A lot
of data points in this data set change their positions constantly.
The arrows in the figure show the direction of the movement of
some data points. From the figure, we can see that data points
d1 and d2 are moving out of cluster1, outlier O5 is moving
towards the centroid of cluster1, and will soon become a new
data point of cluster1. Data points d3 and d4 are moving out of

cluster2, and outlier O4 is moving into cluster2 to become a part
of it. Outliers O1, O2, O3 are moving in different directions, but
their movement makes them become closer and closer, possibly
forming a new cluster. Data point d3 is also moving towards
them, and it may become a new member of the new cluster as
well. From Figure 1 we can see that there are many different
situations in terms of the movement of data points within a data
set, so it is crucial to carefully analyze different movement, and
make adjustment of the data distribution accordingly.

When dimensionality changes, the movement of the data
points, the relationship between clusters and the relationship
between outliers can all be changed. Figure 2 shows an example
of a three dimensional data set. It has a cluster named cluster2
that appears similarly to the one in Figure 1. However, since
the dimensionality changes, the direction d3 is moving to might
not be the same direction outliers O1, O2, O3 are moving to
anymore, so d3 will not become a new member of a new cluster
O1, O2, O3 will form.

Based on the observation and discussion above, we propose
an approach to clustering and outlier detection problems. We
analyze data sets with constant changes, and keep track of the
status of clusters and the movement of data points, as well as
the updated group of outliers. Different from the traditional
approaches which are focused on two-dimensional or low-
dimensional data spaces, we aim to analyze data sets in multi-
dimensional data spaces. We also propose to adjust the clusters
and outliers simultaneously, since they are two concepts that are
closely related.

Before the discussion of our approach we will first introduce
a few notations and definitions. Letn denote the total number
of data points andd be the dimensionality of the data space. Let
Dl be thelth dimension, where l = 1, 2, ..., d. Let the input
d-dimensional data set DS containX

X = {X1,X2, ...,Xn}, (1)
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Figure 2: A dynamic data set with clusters and outliers in a three dimensional data space

which is normalized to be within the hypercube[0,1]d ⊂ Rd.
Each data pointXi (i=1,2,...,n) is ad-dimensional vector:

Xi = [xi1,xi2, ...,xid ]. (2)

Data pointXi has theid numberi.
Given a data set DS, we will first generate original clusters

and outliers. Any existing approach can be used to acquire the
original set of clusters and the original set of outliers.

Let the original number of clusters bekc, and the original
number of outliers beko. Let the set of clusters beC =
{C1,C2, ...,Ckc}, and the set of outliers beO = {O1,O2, ...,Oko}.
Figure 3 shows an example of a data set with a group of clusters
and a group of outliers in a two dimensional data space. We can
see that in clusterC1, data points d1, d2, d3 are moving out of the
cluster. Data point d1 is moving towardsC3, and might become
a new member ofC3 soon; data point d3 is moving towards
C2, and might become a new member ofC2 soon; data point
d2 is moving and soon will become a new outlier. In cluster
C2, data point d4 is moving towardsC3, and might become
a new member ofC3 soon. In clusterC3, data point d5 is
moving towardsC4, and might become a new member ofC4

soon. In clusterC4, data point d6 is moving towardsC3, and
might become a new member ofC3 soon. In clusterCkc, data
points d7, d8, d9 are moving out of the cluster. Data point d7
is moving towardsC4, and might become a new member ofC4

soon; data point d8 is moving towardsC3, and might become
a new member ofC3 soon; data point d9 is moving and soon
will become a new outlier. Outlier O1, O2, O3 are moving
towards a direction that may form a new cluster. Outlier O4
is moving towardsC3, and might become a new member ofC3

soon. OutlierOko is moving, but will not become a new member
of a cluster soon. Since quite a few data points are moving out

for bothC1 andCkc, these two clusters might be dismissed in
the near future when they no longer contain enough data points.
A lot of data points and outliers are moving towardsC3, andC3

might soon contain more than half of the data points in the data
set. It then needs to be split, in order to keep the balance of
the cluster size. The number of data points inC2 andC4 do not
change significantly, so they might stay the same.

In order to keep track of the relationship between dynamically
moving data points and clusters, for each clusterCi ∈ C ,
i=1,2,...,kc, we define its size. LetDk be thekth dimension,
where k = 1, 2, ..., d. Letpk andqk be the lower bound and
upper bound of the value range onDk , k = 1, 2, ..., d. We define
the size of a cluster C as:

d size(C) = ((q1− p1)∗ (q2− p2)∗ ...∗ (qd− pd))1/d, (3)

When the dimensionality goes higher, we only need to
recalculate the average size of C on each dimension. This design
avoids the problem of increasing the volumes of the clusters
nonlinearly when the dimensionality goes higher.

We also define the centroid of C as:

centroid(C) = (
q1 + p1

2
,
q2 + p2

2
, ...,

qd + pd

2
), (4)

For a given data point DP, ifd(DP,centroid(C)) <=
d size(C)/2, DP is in C.

We also define the “relationship” between a cluster C and an
outlier O as:

rel(C,O) =
d(centroid(C),O)

d size(C)
, (5)
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Figure 3: A data set with a group of clusters and a group of outliers in a two dimensional data space

In our approach, we closely keep track of the change of
clusters and outliers based on the movement of the data points
in a data set DS. Based on how fast the data points in DS change
their positions and availabilities, a time intervalt is assigned to
DS.

At each time intervalt:
Step 1) For each clusterCi ∈ C , we check the change of

position for each data pointXp ∈ Ci , and count the numberni

of data points inCi whose new value(s) on a certain dimension
or certain dimensions are no long withind size(C). If a data
point no longer exists in DS, i.e., it is deleted from DS, it will
also be counted intoni .

If ni exceeds a certain threshold, we will modify the size
d size(Ci) so it will still contain the majority of data points in
Ci . If ni does not exceed the threshold, they should be removed
from Ci .

Step 2) For each outlierO j in O, we first find the minimummj

of rel(Ci ,O j ), i=1,2,...,kc. If mj is less than a threshold T1,O j

will be a new data point ofCi ; otherwise, we find its neighbors.
If O j has enough neighbors, we will form a new clusterCj ′ that
containsO j and all its neighbors.

Step 3) If there are two clustersCi and Cj , d size(Ci) +
d size(Cj) >= d(centroid(Ci ,Cj), that means these two clusters
are really close, or they even overlap each other. In this case, we
need to mergeCi andCj , and form a new clusterCi j = Ci

⋃
Cj .

Step 4) If there is a clusterCi , so that the number of the data
points inCi is less than a threshold T, we need to dismissCi , and

its data points become new outliers.
Step 5) If there is a clusterCi , so that the number of the data

points inCi is larger than half of the data set size, we need to
split Ci into Ci1 andCi2, in order to keep the clusters balanced.
Only the largest cluster in the entire cluster set possibly contains
the number of data points larger than half of the data set size.
We find two data pointsDPk andDPm so that d(DPk , DPm) is
the largest among all the possible pairs of data points inCi . Ci1

containsDPk, andCi2 containsDPm. Data points closer toDPk

will be contained inCi1, and Data points closer toDPm will be
contained inCi2.

3 Algorithm

In this section we present our algorithm to adjust the clusters
and outliers as a given data set constantly changes.

Figure 4 presents our algorithm. Given a data set DS, we first
generate the original cluster set and outlier set. We then define a
time intervalt based on the frequency of change of the dynamic
data set. For each interval, we modify the clusters and outliers
as described in the previous section.

At each interval, we calculate the size of each cluster, and
then calculate rel(Ci ,O j ) for each pair of cluster and outlier.
Next we adjust the size of clusters, and decide if we need to
include an outlier in a cluster. We also check if we should merge
two clusters, as well as if we should dismiss some clusters. We
also check if a cluster becomes too big, in which case we need
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Algorithm Dynamic Data Processing (DS: data set, D: dimensions, the original
cluster setC = {C1,C2, ...,Ckc}, the original outlier setO = {O1,O2, ...,Oko})
Begin

1) Define a time intervalt based on the frequency of change for positions and
availabilities of data points in DS;

2) Monitor and record the change of data points’ positions and availabilities
dynamically;

3) At each intervalt,
a) for each clusterCi ∈ C , i=1,2,...,kc, we calculate its sized size(Ci), and

centroid ofCi : centroid(Ci);
b) calcluate rel(C,O) for each cluster C and each outlier O;
c) check if we should changed size(Ci) for i=1,2,...,kc;
d) check if an outlierO j should be included in a cluster, or should form a new

cluster with its neighbors;
e) check if two clustersCi andCj should be merged;
f) check if a clusterCi , i=1,2,...,kc, should be dismissed;
g) check if we need to split the largest cluster inC ;

5) Keep performing the algorithm until the data set no longer changes or the user
interrupts the process;

End.

Figure 4: Proc: dynamically adjusting clusters and outliers

to split it into two smaller ones to keep the balance of the data
distribution.

4 Experiments

Experiments are run on Intel(R) Pentium(R) 4 with CPU of
3.39GHz and Ram of 0.99 GB, to test our algorithm. We use
both synthetic data sets and real data sets.

A synthetic data generator is designed for the experiments.
The generator produces data sets with normalized distributions.
The sizes of the data sets vary from 1,000, 2,000, ... to 9,000,
with the gap of 1,000 between each two adjacent data set sizes.
The dimensions of the data sets vary from 3, 6, ... to 60, with
the gap of 3 between each two adjacent numbers of dimensions.

Figure 5 shows, as time goes on, how the number of the
clusters in a synthetic 5-dimensional data set changes. This data
set contains 2000 data points.

Figure 6 shows, as time goes on, how the number of the
outliers in a synthetic 5-dimensional data set changes. This data
set contains 2000 data points.

Figure 7 shows, as time goes on, how the average size of the
clusters in a synthetic 5-dimensional data set changes. This data
set contains 2000 data points.

We next evaluate the effectiveness of our proposed approach
on real data sets. We obtained the real data sets from UCI
Machine Learning Repository [1]. Several real data sets are
selected including: 1) Glass data set containing 214 data points
with 9 dimensions. There are 7 classes in the glass data, class
1 to class 7; 2) Wine Recognition data set containing 178
instances. The dimensionality of the data set is 13. It contains
three natural clusters with the sizes of 59, 71 and 48; 3) Iris
data set containing 150 data points with 4 dimensions. There

are 3 classes in the iris data: Iris-setosa, Iris-versicolor, and
Iris-virginica; 4) Ecoli data set containing 8 clusters and 336
instances, each of which having 7 features; 5) Ionosphere data
set containing 351 data points with 34 dimensions. There are
two classes in the ionosphere data: g as good, and b as bad.

We useprecisionand recall to measure the accuracy of a
detected cluster. For a clusterCs

i detected by an algorithm and
a real clusterCo

i , we define the precision ofCs
i with respect to

Co
i as

|Cs
i
⋂

Co
i |

|Cs
i | and the recall as

|Cs
i
⋂

Co
i |

|Co
i | . We choose theCs

i as a

corresponding cluster ofCo
i if the precision and recall ofCs

i with
respect toCo

i are high.
We compare the accuracy of our algorithm with existing

algorithms such as CURE. As Table 1 indicates, the average
accuracy rate of our algorithm is 90.16%, which is higher than
the accuracy rate of CURE (89.33%).

5 Conclusion and Discussion

In this paper, we present an approach to dynamically
adjusting clusters and outliers as a data set constantly changes.
We change the content and size of clusters and outliers based
on various conditions. The reconstructed clusters and outliers
can help improve the effectiveness and efficiency of future data
processing such as similarity search and dimension reduction.

References

[1] S. D. Bay, The UCI KDD Archive [http://kdd.ics.uci.edu],
University of California, Irvine, Department of
Information and Computer Science, 2013



48 IJCA, Vol. 22, No. 1, March 2015

Figure 5: Change of cluster numbers as time goes on

Figure 6: Change of outlier numbers as time goes on



IJCA, Vol. 22, No. 1, March 2015 49

Figure 7: Change of average cluster size as time goes on

Table 1: Comparison of clustering result of CURE and out approach for real data sets
CURE Our approach

Average precision(%) 89.12 90.09
Average recall(%) 89.54 90.23

[2] A. Boulesteix, “PLS Dimension Reduction for
Classification with Microarray Data,” Statistical
Applications in Genetics and Molecular Biology 3,
1(33):1–33, 2004.

[3] C. Ding and T. Li, “Adaptive Dimension Reduction Using
Discriminant Analysis and K-means Clustering,” ICML
’07, Corvalis, Oregon, USA, pp. 521–528, 2007.

[4] L. Kaufman and P. Rousseeuw,Finding Groups in Data:
An Introduction to Cluster Analysis, John Wiley & Sons,
1990.

[5] H. Kim, P. Howland, and H. Park, “Dimension Reduction
in Text Classification with Support Vector Machines,” J.
Mach. Learn. Res., 6:37–53, 2005.

[6] E. Knorr and R. Ng, “Algorithms for Mining Distance-
Based Outliers in Large Datasets,”Proceedings of the
24th VLDB Conference, New York, NY, USA, pp. 392-
403, 1998.

[7] M. Last and A. Kandel “Automated Detection of Outliers
in Real-World Data,” Proc. of the Second International
Conference on Intelligent Technologies, pp. 292–301,
2001.

[8] J. MacQueen, “Some Methods for Classification and
Analysis of Multivariate Observations,”Proceedings of
the Fifth Berkeley Symposium on Mathematical Statistics
and Probability. Volume I, Statistics, 1967.

[9] M. Omran, A. Salman, and A. Engelbrecht, “Dynamic
Clustering using Particle Swarm Optimization with
Application in Image Segmentation,” Pattern Analysis and

Applications, 8:332–344, 2006.

[10] G. Orair, C. Teixeira, W. Meira, Y. Wang and
S. Parthasarathy, “Distance-based Outlier Detection:
Consolidation and Renewed Bearing,” Proc. VLDB
Endow. 3:1469–1480, 2010.

[11] A. Papadogiannis, D. Gesbert, and E. Hardouin, “A
Dynamic Clustering Approach in Wireless Networks with
Multi-Cell Cooperative Processing,” ICC ’08, Beijing,
China, pp. 4033-4037, 2008.

[12] T. Peng, M. Jiang, and M. Hu, “A Dynamic Clustering
Algorithm Based on Small Data Set,” CGIV ’09, Tianjin,
China, pp. 410-413, 2009.

[13] L. Qing, Q. Zhu, and M. Wang, “Design of a Distributed
Energy-efficient Clustering Algorithm for Heterogeneous
Wireless Sensor Networks ,” Computer Communications,
pp. 29:2230–2237, 2006.

[14] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient
Algorithms for Mining Outliers from Large Data
Sets,” Proceedings of the ACM Sigmod Conference on
Management of Data, Dallas, Texas, USA, pp. 427–438,
2000.

[15] M. Wu and C. Jermaine, “Outlier Detection by Sampling
with Accuracy Guarantees,” KDD ’06, New York, NY,
USA, pp. 767-772, 2006.



50 IJCA, Vol. 22, No. 1, March 2015

Yong Shi received the BS and MS
degrees, both in Computer Science,
from the University of Science and
Technology of China in 1996 and
1999, respectively. He received Ph.D.
in Computer Science from the State
University of New York at Buffalo in
2006. He is currently an Associate
Professor in the Department of

Computer Science in Kennesaw State University. His research
interests include data mining, database, machine learning, and
information retrieval.



Instructions For Authors 
 

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of 
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as 
current innovative activities in the applications of computers.  In contrast to other journals, this journal focuses on 
emerging computer technologies with emphasis on the applicability to real world problems.  Current areas of particular 
interest include, but are not limited to:  architecture, networks, intelligent systems, parallel and distributed computing, 
software and information engineering, and computer applications (e.g., engineering, medicine, business, education, 
etc.).  All papers are subject to peer review before selection. 

 

A. Procedure for Submission of a Technical Paper for Consideration  
1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr.,  Fred.Harris@cse.unr.edu.  
2. Illustrations should be high quality (originals unnecessary). 
3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence. 

Also, please include email, telephone, and fax information should further contact be needed. 
 

B. Manuscript Style:  

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11 
inch pages. 

2. An informative abstract of 100-250 words should be provided. 
3. At least 5 keywords following the abstract describing the paper topics. 
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first 

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and 
year.  

5. Figures should be captioned and referenced.  

C. Submission of Accepted Manuscripts  
1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word 

format should be submitted to the Editor-in-Chief. 
2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should 

be included:  
• Paper text (required).  
• Bios (required for each author).  Integrate at the end of the paper. 
• Author Photos (jpeg files are required by the printer, these also can be integrated into your paper).  
• Figures, Tables, Illustrations.  These may be integrated into the paper text file or provided separately 

(jpeg, MS Word, PowerPoint, eps).  
3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper. 
4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are 
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain.  Also, 
letters of permission for inclusion of non-original materials are required.  

Publication Charges  

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of 
$50.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication.  For ISCA 
members, $100 of publication charges will be waived if requested.   

January 2014 



ISC
A

 IN
TER

N
A

TIO
N

A
L JO

U
R

N
A

L O
F C

O
M

PU
TER

S A
N

D
 TH

EIR
 A

PPLIC
A

TIO
N

S 
V

ol. 22, N
o. 1, M

arch 2015 
 




