

A publication of ISCA*:

International Society for Computers
and Their Applications

INTERNATIONAL JOURNAL OF
COMPUTERS AND THEIR

APPLICATIONS

TABLE OF CONTENTS

 Page

Editor’s Note . 1

Guest Editorial . 2

Defining the Paradigm of a Highly Automated System that Protects Against
Human Failures and Terrorist Acts and Application to Aircraft Systems 4

 Maximilian M. Etschmaier and Gordon Lee

Multiple Regression Analysis and Learning System for Estimation of Blood
Pressure Variation Using Photo-Plethysmograph Signals . 12

 Michio Yokoyama, Takumi Negishi, Mitsuru Mizunuma, Kazuya Otani;
Hidenobu Hanaki, and Kozo Nishimura

Measuring the Impact of Network Performance on Cloud-Based Speech Recognition 19
An Empirical Study of Apple Siri and Google Speech Recognition

 Mehdi Assefi, Guangchi Liu, Mike P. Wittie, and Clemente Izurieta

Test Suite Selection in Junit Testing Environment Based on Software Metrics 29

 Shadi Banitaan, Kevin Daimi, Mohammed Akour, and Yujun Wang

Assessing Software Defects Using Nano-Patterns Detection . 35

Ajay K. Deo, Zadia Codaabux, Kazi Zakia Sultana, and Byron J. Williams

Transforming C Applications with Meta-Programing . 57

Songqing Yue and Jeff Gray

Investigating the Relationships between Use Cases Attributes and Source Code Size 69

William Flageol, Mourad Badri, and Linda Badri

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPEC and
Scopus.”

Volume 23, No. 1, March 2016 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…64 White Oak Court, Winona, MN 55987…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2016 by the International Society for Computers and Their Applications (ISCA)
All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Frederick C. Harris, Jr., Professor

Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA

Phone: 775-784-6571, Fax: 775-784-1877

Email: Fred.Harris@cse.unr.edu, Web: http://www.cse.unr.edu/~fredh

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid

University of Houston-Clear Lake,

USA

hisham@uhcl.edu

Dr. Antoine Bossard

Advanced Institute of Industrial

Technology, Tokyo, Japan

abossard@aiit.ac.jp

Dr. Mark Burgin

University of California,

Los Angeles, USA

mburgin@math.ucla.edu

Dr. Sergiu Dascalu

University of Nevada, USA

dascalus@cse.unr.edu

Dr. Sami Fadali

University of Nevada, USA

fadali@ieee.org

Dr. Vic Grout

Glyndŵr University,

Wrexham, UK

v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo

University of Michigan,

Dearborn, USA

magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA

hou@cs.siu.edu

Dr. Ramesh K. Karne

Towson University, USA

rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science and

Technology, USA

ff@mst.edu

Dr. Muhanna Muhanna

Princess Sumaya University for

Technology, Amman, Jordan

m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang

The American University, USA

owrang@american.edu

Dr. Xing Qiu

University of Rochester, USA

xqiu@bst.rochester.edu

Dr. Abdelmounaam Rezgui

New Mexico Tech, USA

rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA

James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology

Kharagpur, India

shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York at

Buffalo, USA

rsridhar@buffalo.edu

Dr. Junping Sun

Nova Southeastern University, USA

jps@nsu.nova.edu

Dr. Jianwu Wang

University of California

San Diego, USA

jianwu@sdsc.edu

Dr. Yiu-Kwong Wong

Hong Kong Polytechnic University,

Hong Kong

eeykwong@polyu.edu.hk

Dr. Rong Zhao

The State University of New York

 at Stony Brook, USA

rong.zhao@stonybrook.edu

http://www.isca-hq.org/
mailto:qzhu@umich.edu

IJCA, Vol. 23, No. 1, March 2016 1

Editor’s Note: March 2016

It is my distinct honor, pleasure and privilege to serve as the Editor-in-Chief of the International Journal of

Computers and Their Applications (IJCA). I have a special passion for the International Society for Computers and

their Applications.

I would like to begin this volume by giving a review of this past year. In 2015 we had 68 articles submitted to the

International Journal of Computers and Their Applications. We currently have 16 that are still under review. The

ISCA Board just voted to change the publication fees from a per page to a flat fee. For ISCA members it is $400 per

article and it is $500 for non-members, and the journal will not be accepting articles that are less than 6 pages. The

authors of these papers will be encouraged to submit their papers to ISCA conferences.

Of great interest is the fact that ISCA conference proceedings and this journal will begin to appear in the Search

Digital Library at searchdl.org. Hopefully, over the next year we will have this volume and also begin working

backwards through previous volumes to get IJCA online.

I look forward to working with everyone in the coming years to maintain and further improve the quality of the

journal. I would like to invite you to submit your quality work to the journal for consideration of publication. I also

welcome proposals for special issues of the journal. If you have any suggestions to improve the journal, please feel

free to contact me.

Frederick C. Harris, Jr.

Computer Science and Engineering

University of Nevada, Reno

Reno, NV 89557, USA

Phone: 775-784-6571

Email: Fred.Harris@cse.unr.edu

This year we have 4 issues planned (March, June, September, and December). We begin with a special issue from

the best papers at the ISCA Fall Conference cluster (CAINE, and SEDE). We have a proposal for the best papers

from the ISCA Spring Conference cluster (CATA/BICOB) which will appear in the September issue. The other two

issues (June and December) are being filled with submitted papers.

I would also like to announce that I begun a search for a few Associate Editors to add to our team. There are a

few areas that we would like to strengthen our board with, such as Image Processing. If you would like to be

considered, please contact me via email with a cover letter and a copy of your CV.

Frederick C Harris, Jr.

Editor-in-Chief

Email: Fred.Harris@cse.unr.edu

mailto:Fred.Harris@cse.unr.edu

2 IJCA, Vol. 23, No. 1, March 2016

Guest Editorial:

Special Issue from ISCA Fall-2015 Conferences

This Special Issue of IJCA is a collection of five refereed papers selected from the following ISCA conferences

(co-located at the Hilton San Diego, Harbor Island, San Diego, California, USA, October 12-14, 2015):

 CAINE 2015: 28th International Conference on Computer Applications in Industry and Engineering

 SEDE 2015: 24th International Conference on Software Engineering and Data Engineering

Each paper submitted to the conferences was reviewed by at least two members of the International Program

Committee, as well as by additional reviewers, judging the originality, technical contribution, significance and

quality of presentation. After the conferences, nine best papers were recommended by the Program Committee

members to be considered for publication in this Special Issue of IJCA. The authors were invited to submit a

revised version of their papers. After extensive revisions and a second round of review, seven papers were accepted

for publication in this issue of the journal.

The papers in this special issue cover a wide range of research interests in the community of computers and

applications. The topics and main contributions of the papers are briefly summarized below.

Maximilian M. Etschmaier and Gordon Lee of San Diego State University have a paper entitled “Defining the

Paradigm of a Highly Automated System That Protects Against Human Failures and Terrorist Acts, And

Application to Aircraft Systems.” In it they present a paradigm and use a case study to show its effectiveness, as

well as discuss several recent crashes.

Michio Yokoyama, Takumi Negishi, Mitsuru Mizunuma, all of Yamagata University in Japan and Kazuya

Otani, Hidenobu Hanaki, and Kozo Nishimura, of TOKAI RIKA Co., Ltd, Japan have a paper entitled “Multiple

Regression Analysis and Learning System for Estimation of Blood Pressure Variation Using Photo-Plethysmograph

Signals.” In this paper they propose a blood pressure estimation system using photo-plethysmograph signals. Their

experiments show the estimates are within 10 mmHg when compared with measures from a traditional cuff.

Mehdi Assefi, Guangchi Liu, Mike P. Wittie, and Clemente Izurieta from Montana State University have a paper

entitled “Measuring the Impact of Network Performance on Cloud-Based Speech Recognition: An Empirical Study

of Apple Siri and Google Speech Recognition.” They measured transcription delay and accuracy with varying

packet loss and presented their results which are statistically significant.

Shadi Banitaan, Kevin Daimi, Mohammed Akour, and Yujun Wang have a paper entitled “Test Suite Selection

in JUnit Testing Environment based on Software Metrics.” The authors are from the University of Detroit, USA and

Yarmouk University, Jordan. In this paper they focus on programs written in Java and tested with Junit. Their

results show that you can significantly reduce the number of test cases needed to detect most of the errors.

Ajay K. Deo, Zadia Codabux, Kazizakia Sultana, Byron J. Williams from Mississippi State University, USA

have a paper entitled “Assessing Software Defects Using Nano-Patterns Detection.” They presented a study that

that evaluated software defects using nano-patterns. They studied three open source systems from Apache and

found that certain nano-patterns are more defect prone than others.

Songqing Yue of the University of Central Missouri, and Jeff Gray of the University of Alabama, USA have a

paper entitled “Transforming C Applications with Meta-programming.” In this paper they describe how to bring

computational reflection to the C programming language through a Meta Object Protocol. They present a Domain-

Specific Language called SPOT to allow developers to specify direct manipulation of C Programs.

William Flageol, Mourad Badri and Linda Badri of the University of Quebec, Trois-Rivières, Quebec, Canada

have a paper entitled “Investigating the Relationships between Use Cases Attributes and Source Code Size.” In this

paper they present a study that investigates the relationship between use case attributes and source code size. An

IJCA, Vol. 23, No. 1, March 2016 3

empirical study of several open source Java projects is presented and the results provide evidence that support their

hypothesis.

As guest editors we would like to express our genuine appreciation for the encouragement and support from the

ISCA. We also owe many thanks to the authors and program committees of the conferences from which these

papers were selected.

We hope you enjoy this special issue of the IJCA and we look forward to seeing you at a future ISCA

conference. More information about the ISCA society can be found at http://www.isca-hq.org.

Guest Editors:

Gongzhu Hu, Central Michigan University, USA, CAINE 2015 Conference Chair

Takaaki Goto, Ryutsu Keizai University, Japan, CAINE 2015 Program Chair

Frederick C Harris, Jr., University of Nevada, Reno, USA, SEDE 2015 Conference Chair

Yan Shi, University of Wisconsin-Platteville, USA, SEDE 2015 Program Co-Chair

Dr. Wenying Feng, Trent University, CANADA, SEDE 2015 Program Co-Chair

March 2016

http://www.isca-hq.org/

4 IJCA, Vol. 23, No. 1, March 2016

ISCA Copyright© 2016

Defining the Paradigm of a Highly Automated System

that Protects Against Human Failures and Terrorist Acts

and Application to Aircraft Systems

Maximilian M. Etschmaier1 and Gordon Lee2

San Diego State University, San Diego, CA 92182 USA

Abstract

There are many systems in which the human plays a role in

the overall performance of the system. In highly automated

systems, the role of the human is to support automatic

processes and procedures to the extent that human input may

only be required to provide high level goals, command

unforeseen changes in the course of the system, or respond to

exceptional system behavior. In general, it is difficult for an

automated system to determine the state of the human’s intent,

except through the impact the control input has on the state of

the system. An effective and efficient protection focuses on

the potential impact and mitigates potential critical failures

before they become a reality. This is the approach taken in this

paper; it is a direct application of a total systems approach.

Defining the paradigm of a “highly automated system,” we

will show how an effective system architecture can be used to

develop protection against failures of the human element. The

architecture obviates many of the complex, expensive and

intrusive measures that have resulted from piecemeal

approaches that are currently in use or under consideration. A

case study of how an airliner can be protected against human

failure in the cockpit, including deliberate, destructive acts by

cockpit personnel or terrorist humans in the cockpit is provided

to illustrate the approach. The effectiveness of the approach is

discussed in the context of several recent crashes.

Key Words: Purposeful systems, human-machine

symbiosis, system security, aircraft safety and security, human

factors, human failures.

1 Introduction

The crash of an airliner on a scheduled flight into the French

Alps on March 24, 2015 has refocused attention of the aviation

community as well as the media on the vulnerability of aircraft

to failures of the human element. The preliminary

understanding of the crash is that the first officer, due to a

psychiatric condition, committed suicide and purposely steered

the aircraft into rising terrain. Even if this scenario ultimately

proves to be incorrect, the question of how to protect aircraft

safety vis-à-vis a member of the cockpit crew intent on taking

1 College of Sciences. Email: metschmaier@mail.sdsu.edu.
2 Dept. of Elec & Comp Engr. Email: glee@mail.sdsu.edu

his life by destroying the aircraft is a valid one that currently

does not have a satisfactory solution. We will examine this

issue in the context of the whole spectrum of failures of the

human element in the cockpit of a modern airliner. These

failures may be voluntary or involuntary. They may include

incapacitation of the cockpit crew by illness, by environmental

conditions created by a failure of the aircraft system, or by

external force, such as a terrorist act. We will also examine

situations where an aircraft malfunction puts the human in a

position of control that he/she is essentially not equipped to

assume.

The level of automation of modern airliners is such that the

term “highly automated system” might appear quite

appropriate. The same is true for complex systems in a wide

variety of other domains, such as surface and marine vehicles,

nuclear and thermal power plants, furnaces, reactors, and other

equipment in the processing industry, discrete manufacturing

systems, as well as information processing networks. The

purpose of automation in these systems goes beyond a machine

substituting for human labor, both physical and mental, and

reaches a point where it is the interaction of the human element

and the machine that assures that sustained system operation

will realize the system purpose. In such a system, then, the

human element constitutes an integral part of a purposeful

system [10].

We present a definition of a highly automated system and

identify the attributes required of such a system. We propose

an architecture for control of highly automated systems that

includes the human element as an integral part and thus makes

it possible to deal with the failures of the human element

through a holistic systems analysis. The architecture

recognizes that it is all but impossible to directly monitor the

condition of the human element. Instead, since in a highly

automated system the human input is in the form of high-level

control inputs, mostly as strategy, it is possible to monitor and

diagnose its impact. For a civilian airliner, we will show that

diagnosis can be limited to evaluating the system state relative

to a small number of “envelopes” of feasible states. The

architecture can be implemented largely by relatively minor

repurposing of existing automation systems.

A prerequisite for the architecture to produce the desired

level of protection is that the existing automation systems are

or can be made to be internally consistent and actually perform

as expected. Complications may arise when failures of the

mailto:metschmaier@mail.sdsu.edu
mailto:glee@mail.sdsu.edu

IJCA, Vol. 23, No. 1, March 2016 5

human element coincide with failures of the “physical” system

since this would leave the system in a state without any

trustworthy authority to fall back on. In this case it may be

necessary to seek recourse with an outside authority or some

form of “deus ex machina,” to mitigate the consequences of an

otherwise catastrophic outcome. An example of how an

incomplete realization of the presented concept of a highly

automated system can lead to a catastrophic outcome is

provided in the discussion of the AF447 accident in Section 5.

2 Highly Automated Systems

In a highly automated system, the role of the human element

is largely restricted to providing higher level (strategic) control

inputs and supervising the operation of the machine. In its role

of controller, the human element is heavily supported by

functions provided by the “physical” system. The role may be

important such as defining the overall goals and performance

objectives or supervising the system when the state of the

system veers towards a critical failure. The research literature

is rich in the analysis and design of automated systems. Much

of the earlier work focused on manufacturing systems (in [5],

for example, Choi and Xirouchakis give an overview of

flexible manufacturing and the issue of production planning)

while current research focuses on intelligent vehicles

(automobiles or aircraft). In [21, 23], for example, Jamson,

Merat, and their colleagues look at the various tasks that a

driver must execute and how highly automated vehicles could

remove some of the “mundane” tasks of keeping the vehicle on

the road and allow the driver to focus on in-vehicle tasks, such

as entertainment or checking one’s smart phone. While

somewhat controversial, these studies do provide an

opportunity for researchers of automated systems to investigate

the boundary between the human and the system, i.e., how

should the tasks associated with the control of a system be

divided between human and machine?

In [30], Vanholme et. al., develop a system architecture and

associated hardware implementation for a platform that allows

the human to select the cooperation between the human and the

vehicle. Some high level tasks such as environmental

mapping, planning a route to a final destination, and traffic

conditions can be generated through multiple sensors and

databases. While interesting, the human must still decide on

the cooperation level between the driver and the vehicle.

This division of cooperation has been recognized by many.

In [13], for example, Frau develops a user-interface that may

aid researchers in capturing data on human-machine

interactions which could be used to define the boundaries of

this cooperation. Gold et. al. [16] investigate at which point

the driver must take back control of a highly automated

vehicle. Issues such as reaction time versus risk level (such as

potential collision) were studied and the authors found that

shorter take-over requests (TOR) led to poorer vehicle

performance. Inagaki and others [19, 20] develop a probability

theoretic model for trading authority when the situational

awareness differs between the human and the machine. Grote

and others [18] provide an excellent overview on the state of

human-machine cooperation and the need for more research in

understanding the boundary between this cooperation. Geyer

and others in [15] take a different approach in addressing the

cooperation boundary by looking at maneuvering commands

rather than stabilization commands for vehicle control. That

is, considering a higher level set of goals that the vehicle

should target may provide a better solution to the human-

machine cooperation. They use a conduct-by-wire principle to

formulate the vehicle guidance. This architecture is the basis

for this paper; however, the principles used here are based on a

systems approach to prevent critical failures rather than a

guidance strategy.

Other approaches address the cooperation between the

human and the machine from the perspective of Ergonomics.

The focus there is on the role of the human in relationship to

the machine and the requirements for the design of the

machine to enable this role. The design issues mostly involve

the mode in which the machine communicates with the human,

i.e., the Gestalt of the user interface. Goodrich and others [17]

employ the synergy between a horse and its rider as a

metaphor for human-machine symbiosis (the “H-metaphor”) in

controlling an aircraft. The centerpiece of the architecture is

haptic feedback through which a human can interact with the

aircraft directly and in an intuitive and often subconscious

way. This enables the human to be in control even if the

attention is focused elsewhere. Similarly, the aircraft will

recognize when the human has stopped providing expected

control inputs and suggest, and eventually initiate, an

emergency landing. The result is a harmonious blending of the

human controller and the aircraft into a mutually supportive

arrangement. The human remains in a position to serve as the

ultimate arbiter of control ambiguity. Abbink and others [1]

describe experiments with limited symmetry in control

authority between the human and the machine based on a

haptic interface. They find that much work remains to be done

to eliminate situations where the human and the machine wind

up fighting each other. Pizziol and others [27-28] discuss

more general situations where the human and the machine are

in conflict, either by choice of the human, which would

include failures of the human element, or by failures of the

machine. In [27] they focus on knowledge conflicts, which are

situations where the goals of the human and the machine are in

agreement, but the information on which to base decisions are

in conflict. Both use a model based on Petri-nets to analyze

and resolve the arising conflicts.

Stensson and Jansson [29] point to the remarkable work of

Bainbridge [4] who identified, some thirty years ago, the

“ironies of automation” that higher levels of automation

required increased cognitive and manual skills of the human

tending to such systems. They use Kant’s theory of the

categorical imperative to identify limits of automation. They

point out the difference between automation and autonomy and

show that, consistent with Bainbridge, the notion of autonomy

would require properties that machines will not possess in the

foreseeable future.

In this paper, the human-machine system is viewed as one

integral whole that is designed from the very beginning to fully

6 JCA, Vol. 23, No. 1, March 2016

integrate the human element into the system. We follow the

definition of a purposeful system of [10] to base the system

design on the functions the system is expected to deliver. Part

of the system design are provisions that assure the prevention

of losses of functions that would have critical, that is

unacceptable, consequences. Specifically, the paper deals with

critical failures of the human element in the system and treats

them very much like failures of physical elements as losses of

functions.

3 An Architecture for Highly Automated Systems

Even though the notion of a “highly automated system” has

been widely used to describe systems with a high degree of

automation, there is little clarity in what exactly differentiates

highly automated from plain automated systems. Clearly,

there cannot be some arbitrary point on a continuum of

automation beyond which a system would become “highly

automated.” Instead, the distinction should be based on

identifiable structural properties.

Let these properties be defined as shown in Figures 1 and 2.

The system consists of a human element, a control computer,

and a machine, all integral parts of the system. The human

element originates the strategic direction of the system and can

also provide direct control. It interacts with the machine

exclusively through the control computer. Direct input of

control instructions to the machine is excluded. Both, the

human element and the control computer are monitoring the

state of the system, including each other’s state and control

input, and the environment.

Figure 1 shows how the control authority over the

operational system element is shared between the human

element and the sum of system elements that can be

summarized as Control Computer. The human element may

provide input at two levels: at the operational level the controls

can be received and executed by the operational system

without interpretation; strategic input requires

operationalization by the control computer in order to be

executable. Balance of the control authority requires that both

forms are monitored and possibly censored (overridden) by the

control computer. To enable the control computer to perform

its censor function, it must not be possible for the human

Figure 1: Shared authority in a highly automated system

element to provide input to the operational system element

without going through the computer. In a symmetrical

manner, the performance of the control computer is monitored,

and possibly overridden, by the human element. Figure 2

provides the architecture and operational perspective on the

arrangement.

Figure 2: Operational definition of a highly automated

system

Our architecture of a highly automated system is similar to

[15]. It differs from [15], however, because it includes a

certain degree of autonomy for the control computer by

providing for the possibility of the control computer to take

supreme system authority away from the human element.

However, this possibility is reserved to situations where the

human control input would inescapably lead to a catastrophic

consequence. And the authority of the control computer is

limited to what amounts to a safe shut down - and in extreme

situations mitigating the consequences of a catastrophic

outcome (i.e., saving human lives). Thus the architecture in

essence preserves the hierarchical order of the system. In

order to exercise any level of control authority, the control

computer needs to possess real time data about its state and a

model through which it can understand the data, identify and

diagnose states, and project a feasible trajectory that avoids

entering unacceptable states.

Situations where supreme control authority is taken away

from the human element are determined through a functional

failure analysis that is part of the functional system design

process defined in [10]. Opposite to the traditional failure

modes and effects analysis, this process starts with the

identification of system functions and determines the potential

consequences of a loss of the function. For seizing authority

from the human element only functions, the loss of which

could lead to catastrophic consequences, are of relevance.

Normally, the analysis then moves upstream to determine

IJCA, Vol. 23, No. 1, March 2016 7

cause and mode (mechanism) of each failure to determine how

to keep the failure from happening. However, since in the

present situation, the failure is ultimately caused by the human,

such analysis would involve monitoring and controlling the

human element. As stated by Bainbridge [27], “in human-

machine systems the human agent is hardly controllable and no

“model” of the human’s decision processes is available.” The

only way to develop measures to prevent critical human

failures is to analyze the way in which failures unfold. This

requires a closer examination of the role of the human element

in the system.

As shown in Figure 2, the control authority of the human

element is exercised in two forms: (1) Strategic (high level)

control, which provides a plan for the future operation of the

system and impacts the system state with a longer horizon; and

(2) Direct but supervised control, with essentially immediate

impact. If the state of the system at any time is defined in

some state space, future system operation appears as a

trajectory in that state space. This is the projection of the

consequences of the strategic control input provided by the

human. A failure can be defined as occurring when the system

state moves beyond the envelope that defines the set of

feasible states.

A strategy to prevent critical failures caused by the human

through the input of strategic control can be formulated as

follows: partition the state space as shown in Figure 3 by

defining three envelopes F, C, and B, and designate the space

outside F as the failure state, the state between F and C as

critical state, and the state between B and C as buffer state.

The state inside B is the normal state within which the human

element enjoys unchallenged control authority. If the system

state is within the buffer state, the control computer will notify

the human element that danger is imminent and corrective

action is necessary. If the system is in the critical state

immediate corrective action is required to keep it from entering

the failure state. The human element has failed to heed the

warning and cannot be trusted to take proper action.

Therefore, passing envelope F requires the control computer to

assume control authority. This transition of authority needs to

be unequivocal and without possibility of human intervention.

The system being in the failure state does not mean that it has

actually failed. Rather, there is no possibility to prevent a

critical failure. Any corrective action in that state is futile.

In a highly automated system, the role of the system operator

Figure 3: State space envelopes

(human controller) is supported by automatic processes and

procedures to the extent that human input is required only to

command unforeseen changes in the course of the system and

to respond to exceptional system behavior. A failure of the

human element in such a system may not be noticed

immediately. In fact, a failure may go on and progress only to

be noticed when a threat to safety or security is imminent. At

that point, the existing system automation may well be capable

of safely and securely controlling the system. However, this

requires that it is properly configured and prepared for such a

situation. Since the system is designed to be under the

authority of the human element, controlling the system when

the human element has failed, by necessity, needs to occur

without involvement of the human element (i.e., overriding

any human input) at least until the human authority can be re-

established. In general it is difficult for an automated system

to determine the state of the human element, except through

the impact the control input has on the state of the system.

Since it is the impact that is of concern to regaining and

assuring control over the system, any impact may be the result

of a variety of control inputs, and protection will not involve

the human element anyway, it is not useful to spend any effort

to determine the nature of the human failure. Instead, an

effective and efficient protection focuses on the potential

impact and mitigating it before it can take its course.

Strategies for preventing critical failures through human

input of direct control can essentially be formulated along the

same lines. However, the time of transition from the normal

state to the failure state, i.e., the reaction of the system to the

control input, is virtually immediate. Any direct control input

is one of many parameters that, together and in combination

with the state of the current system and the environment,

determine the future state of the system. Whereas a strategic

control input is in the form of one unique plan, direct control

input is generally in the form of setting a control parameter

with real or integer value. The control computer can use a

comprehensive (simulation) model of the system in the

environment to create envelopes in the control parameter space

analogous to what is shown in Figure 3. Depending on the

position in the control parameter space, the control computer

will restrict the range of the control input of the human

element. Any restriction may be preceded or accompanied by

a warning to the human element. Since direct control inputs

create emerging long-term trajectories, compliance of those

with the envelopes for strategic controls also needs to be

monitored.

The control architecture described for human input of direct

control differs from what is widely implemented, for example

in transportation vehicles as “fly – or drive by wire,” in two

ways: (1) it covers the entire system through one architecture;

and (2) it does not allow for the human element to override the

control computer after it has taken control.

It is that difference that makes it possible to prevent critical

consequence from the whole range of failures of the human

element.

Current approaches focus on protection against failures

caused by involuntary human actions, like errors, omissions,

8 JCA, Vol. 23, No. 1, March 2016

misperceptions, and misunderstandings. They do not protect

against voluntary or willful actions, or failures caused by

outside force, like sabotage or terrorists gaining access to

controls. Such actions are commonly not considered in the

design of control systems. In the following section, we will

show how the concept of a highly automated system can be

realized in an aircraft. Examination of a number of aircraft

accidents will demonstrate that failures of the human element

in the control of an airliner can be all but eliminated.

4 An Architecture for Protecting an Airliner Against

Critical Human Failures, including Terrorist Acts

In a highly automated airliner, strategic control input can

affect the following functions: the horizontal flight path, the

vertical flight profile (terrain clearance), and movement

relative to other traffic (collision avoidance) or prohibited

sections of airspace. Direct control can affect the following

functions: aircraft attitude, configuration, power settings, and

the landing process. Protection against failures of the human

element in exercising direct control are widely implemented in

modern fly-by-wire aircraft, although only selected aircraft

manufacturers have opted to grant the flight computer the

absolute authority required by highly automated systems. An

example of how this protection can be implemented in

controlling the operation of a landing gear is included in [9].

The paper defines “censors” which limit the human input to a

safe range determined by the state of the aircraft and the

environment.

Failures of the human element that can occur in strategic

control are summarized in Table 1.

Table 1: Critical failure analysis

An examination of the failures shows that every one of them

could involve incapacitation of the human caused by preceding

failures of the aircraft (e.g., failure of the aircraft skin leads to

catastrophic decompression, or smoke or noxious gases

entering the cabin), suicide attempts by the pilot, or acts of

terrorism. As mentioned before, it may not be possible to

identify the ultimate cause. Nor may it be possible to use

knowledge of it to protect against a catastrophic failure.

Instead, the control computer can monitor the aircraft state

relative to the envelopes defined in Figure 3 and initiate the

chain of protective measures identified in Table 1. As shown

in Figure 2, this monitoring occurs also for supervised direct

control. Unsupervised direct control must be excluded because

it would make it impossible to protect against suicidal acts by

the pilot or against terrorists seizing control.

The control computer contains an on-line model to monitor

and control aircraft sustainment (including fuel level) such as

outlined in [8, 10], a model of the aircraft flight state that

includes access to up-to-date navigation charts and identifies

usable airports and excluded airspace. Also, it must be able to

direct a completely automatic landing. All these features are

readily available in most modern airliners or could be

developed within the state of the art. They would obviate

many of the measures currently in place or being discussed to

prevent terrorist and suicidal acts.

In the following section, we will examine how this

architecture would have performed in some of the recent

aircraft disasters and would have provided protection against

terrorist acts.

5 Examination of Failures of the Human Element in

Airliners

The Germanwings Flight 9525 mentioned at the beginning

of this paper was on a controlled flight into terrain [11]. It

would have been possible for the flight computer to determine

that the flight trajectory was leading to a state from which

collision with terrain was unavoidable, warn the pilot, and,

when he failed to respond, seize control from him. A system

to warn of vertical proximity is on all modern airliners. The

envelope protection required of a highly automated aircraft

would include full awareness of surrounding terrain that can be

obtained from navigational charts. There would be no need for

the control computer to know the mental state of the first

officer, or that he was alone in the cockpit, and that the

captain, who might have been able to avert the crash, was

unable to overcome the locked, armored cockpit door.

Accident investigations focus on identifying the cause of the

accident, and on possible ways to prevent similar accidents

from happening in the future. A combination of two factors

was identified as the cause: the mental state of the first officer,

and the inability of the captain to overcome the locked cockpit

door. It is tempting to argue that if either one of those causes

could be ruled out, a repeat of the same accident scenario could

be prevented. Unfortunately, screening persons whose mental

state predisposes them to violent suicidal acts is well beyond

the state of the art. A Swedish study has found that the

percentage of people with depression who commit violent

crimes is extremely low — just 3.7 percent of men and 0.5

percent of women with depression commit such crimes,

compared with 1.2 percent of men and 0.2 percent of women

in the general population. Besides screening would violate

rights to privacy [11, 22].

Ironically, armored doors that are impenetrable without

consent from within the cockpit were mandated as a measure

to protect against a repeat of terrorist acts of September 11,

2001 where terrorists overpowered the pilots. Besides, there is

no assurance that a second person in the cockpit could have

prevented a crash.

IJCA, Vol. 23, No. 1, March 2016 9

The terrorist attacks of September 11, 2001 involved

controlled flights into terrain [7], i.e., the towers of the World

Trade Center and the Pentagon. It could not have happened

had the aircraft been configured in the architecture of a highly

automated system, no matter how the terrorists gained control

of the cockpit. As the aircraft state entered the buffer state, a

warning would have been broadcast; and no matter what the

terrorists would have done, upon entering the critical state, the

computer would have seized authority and brought the aircraft

to a safe emergency landing. In fact, it is unlikely that a group

of sophisticated terrorists would even attempt an action like the

World Trade Center attacks if they knew that aircraft are

configured as highly automated systems.

Flight MH370 stopped communicating with air traffic

control, was observed to make a sharp change in course and

altitude to fly over the open ocean and outside reach of air

traffic control [2, 26]. It is presumed to have crashed after the

fuel was exhausted. The flight path has only been partially

reconstructed, and despite intensive search, a wreckage was

never found. There is speculation that the cause was a

deliberate act by the pilot. Alternately, the pilots might have

been incapacitated by some mechanical failure which also

would have disabled communication, but not affected the

control computer or the operability of the control surfaces.

The aircraft continued flying on autopilot until the fuel was

exhausted.

Efforts are now underway to assure that any aircraft can be

tracked anywhere [6]. However, following the path of the

aircraft would not have prevented an eventual crash. In fact,

several aircraft with disabled pilots, in the past, were followed

by aircraft that could only watch them crash. One widely

observed incident occurred on October 25, 1999 with a Learjet

carrying a highly ranked golf pro. When radio contact with the

flight was lost north of Gainesville, Florida, the airplane was

intercepted by several military aircraft. The military pilots in a

close position found the windshields of the Learjet to be

frosted or covered with condensation and could not see into the

cabin or establish contact with the crew. When the Learjet

reached Aberdeen South Dakota, they observed the airplane

entering a spiral to the ground. All occupants on board the

airplane were killed, and the airplane was destroyed. The

National Transportation Safety Board determined the probable

cause of this accident as incapacitation of the flight

crewmembers as a result of their failure to receive

supplemental oxygen following a loss of cabin pressurization,

for undetermined reasons [25]. In this flight, like in flight

MH370, a highly automated aircraft would have recognized

that it is leaving the normal state of the flight path, and upon

entering the critical state of imminent fuel exhaustion, would

have seized control and brought the aircraft to a safe

emergency landing. This would have been done independent

of the state of the pilots.

The crash of Air France Flight 447 was initiated by the

failure of all three airspeed sensors [31]. The airspeed sensors

are Pitot tubes that provide information that is vital for both the

automated system (flight computer) and the cockpit crew to

control the aircraft. When the flight computer recognized that

the airspeed information was unreliable, it correctly

determined that it could not control the flight through the

autopilot. Since it had no procedures available to determine at

least an approximation of the airspeed through other means, it

was left without a critical piece of information to provide

support and censor functions on direct pilot input. It was

programmed to stop providing the censor function in such

cases. This left the pilot, who had much less situational

awareness, to deal with the situation. The aircraft entered a

stall from which it did not recover.

Ironically, the situation was made more difficult because,

when the airspeed signal did become available again, the

computer intermittently tried to regain control, fighting and

confusing the pilot. A highly automated aircraft in such a

situation would search for alternative sources of information

for the airspeed instead of passing responsibility to the pilot.

Interestingly, an alternate method for determining airspeed

with sufficient accuracy is now included in some aircraft [14].

The examples show that hastily configured measures to

protect against failures of the human element and terrorist

attacks may impose exorbitant cost and inconvenience on an

industry without achieving the intended goal, or possibly even

opening other vulnerabilities.

According to FAA projections, the installation of the

fortified cockpit doors cost the industry up to $112.7 million

plus 27.5 million over ten years for increased fuel consumption

due to the higher weight of the doors [12]. Reference [24] tells

about considerable operational problems caused by the

fortified doors and the operational requirements imposed on

them, as well as serious impact on aircraft safety, and

significantly higher cost figures.

The cost of the installation of global tracking capability on

all current long-haul aircraft in the US transoceanic fleet is

estimated at $35 million, in addition to considerable ongoing

charges for the use of communication facilities [3]. While the

global tracking capability may constitute an important step in

efforts of security agencies, it will not be effective in

preventing the type of incident that motivated its installation.

6 Conclusions

Successful automation requires a system structure that is

internally consistent and properly implemented. Increasing the

level of automation of a system will only yield desired system

performance improvement if it is designed following a holistic

systems approach. We have defined the concept of a highly

automated system through a control architecture that provides

a limited symmetry of control authority between the human

element and a control computer. While the architecture

strengthens the role of the human element as the dominant

authority, it also empowers the computer to seize all control

authority from the human element when it determines that

human control instructions inescapably will lead to a critical

failure. However, the role of the computer in such situations is

strictly limited to charting a course towards a safe shutdown.

This will avoid the much-feared situation of a runaway robot

that is superior in power and resilience to the human element

10 JCA, Vol. 23, No. 1, March 2016

and cannot be stopped from harming humans and damaging

property.

Automation following the architecture of a highly automated

system will yield a step change in performance. In particular,

it enables any system to protect itself against any critical

failures of the human element, irrespective of whether these

failures are the result of negligence, errors in judgement,

accidental impairment, or willful acts of destruction. This

provides direct protection against terrorist acts which depend

on terrorists gaining control over the system. Such protection

would be more effective and less disruptive and expensive than

indirect methods currently deployed or considered. The case

study included shows how the architecture applies to aircraft

safety. The architecture is entirely compatible with state of the

art technology. Analysis of selected examples of human

failures and terrorist acts shows that it would have provided

full protection in every case, obviating the need for indirect

protection measures called for by the public that are extremely

expensive and disruptive without being able to guarantee

protection.

References

[1] David A. Abbink, Mark Mulder, and Erwin R. Boer,

“Haptic Shared Control: Smoothly Shifting Control

Authority,” Cognitive Technology Workshop, 14:19-28,

DOI 10.1007/s10111-011-0192-5, 2012.

[2] Australian Transport Safety Bureau, MH370 – Flight

Path Analysis Update, http://www.atsb.gov.au/

media/5163181/AE-2014-054_MH370%20-FlightPath

AnalysisUpdate.pdf, October 8, 2014.

[3] Aviation Safety, Proposals to Enhance Aircraft Tracking

and Flight Data Recovery May Aid Accident

Investigation, but Challenges Remain, United States

Government Accountability Office, GAO-15-443, April

2015.

[4] L. Bainbridge, “Ironies of Automation,” Automatica,

19(6):775-779, 1983.

[5] Yong-Chan Choi, and Paul Xirouchakis, “A Production

Planning in Highly Automated Manufacturing System

Considering Multiple Process Plans with Different

Energy Requirements,” International Journal of

Advanced Manufacturing Technology, 70:853-867, 2014.

[6] John Croft, “Old and New Issues Inundate IATA Safety

Agenda,” Aviation Week, http://aviationweek.com/

commercial-aviation/old-and-new-issues-inundate-iata-

safety-agenda, May 26, 2015.

[7] Barbara Elias, Ed., Government Releases Detailed

Information on 9/11 Crashes, National Security Archive,

http://nsarchive.gwu.edu/NSAEBB/NSAEBB196/index.h

tm, August 11, 2006.

[8] Maximilian M. Etschmaier, Stuart Rubin, and Gordon

Lee, “On the Use of SOMPA Core Modeling for Systems

Design: A Case Study,” IEEE World Automation

Congress, Kona, Hawaii, August 2014.

[9] Maximilian M. Etschmaier, Stuart Rubin, and Gordon

Lee, “A System of Systems Approach to the Design of a

Landing Gear System: A Case Study,” 27th International

Conference on Computer Applications in Industry and

Engineering, New Orleans, October 13-15, 2014.

[10] Maximilian M. Etschmaier, “Purposeful Systems: A

Conceptual Framework for System Design, Analysis, and

Operations,” International Journal for Computers and

Applications, 22(2):1-13, June 2015.

[11] Seena Wolf Fazel, Zheng Achim Chang, Henrik Larrson,

Guy M. Goodwin, and Paul Lichtenstein, “Depression

and Violence: A Swedish Population Study,” Lancet

Psychiatry, 2:224-32, 2015.

[12] Federal Register, http://www.gpo.gov/fdsys/pkg/FR-

2002-01-15/html/02-965.htm), 67(10), Tuesday, January

15, 2002.

[13] Giuseppe Frau, “User-Interface Design for Highly

Automated Systems a Structured Approach,”

Proceedings of the ACM 3rd International Conference

on Application and Theory of Automation in Command

and Control Systems, pp. 148-151, 2013.

[14] Fred George, Aviation Week Evaluates Boeing 787,

http://aviationweek.com/commercial-aviation/aviation-

week-evaluates-boeing-787, December 10, 2012.

[15] Sebastian Geyer, Stephan Hakuli, Hermann Winner,

Benjamin Franz, and Michaela Kauer, “Development of a

Cooperative System Behavior for a Highly Automated

Vehicle Guidance Concept based on the Conduct-by-

Wire Principle,” Proceedings of the Fourth IEEE

Intelligent Vehicles Symposium, pp. 411-416, 2011.

[16] Christian Gold, Daniel Damböck, Lutz Lorenz, and

Klaus Bengler, “Take Over! How Long Does It Take to

Get the Driver Back into the Loop?” Proceedings of the

Human Factors and Ergonomics Society 57th Annual

Meeting, pp. 1938-1942, 2013.

[17] Kenneth H. Goodrich, Paul C. Schutte, Frank O.

Flemisch, and Ralph A. W. Williams, “Application of

the H-Mode: A Design and Interaction Concept for

Highly Automated Vehicles, to Aircraft.” Proceedings of

the AIAA/IEEE Digital Avionics Systems Conference:

Network-Center Environment - The Impact on Avionics

and Systems, pp. 4A3-1-13, 2006.

[18] Gudela Grote, Johannes Weyer, and Neville A. Stanton,

“Beyond Human-Centered Automation – Concepts for

Human–Machine Interaction in Multi-Layered

Networks,” Ergonomics, 57(3):289-294, DOI:

10.1080/00140139.2014.890748, 2014.

[19] T. Inagaki, Special Issue on Human-Automation

Cogency, Cognitive Technology Workshop, 14:1-2 DOI

10.1007/s10111-011-0197-0, 2012.

[20] Toshiyuki Inagaki and Thomas B. Sheridan, “Authority

and Responsibility in Human–Machine Systems:

Probability Theoretic Validation of Machine-Initiated

Trading of Authority,” Cognitive Technology Workshop,

14:29–37, DOI 10.1007/s10111-011-0193-4, 2012.

[21] A. Hamish Jamson, Natasha Merat, Oliver M. J. Carsten,

and Frank C. H. Lai, “Behavioral Changes in Drivers

Experiencing Highly-Automated Vehicle Control in

Varying Traffic Conditions,” Transportation Research:

http://nsarchive.gwu.edu/NSAEBB/NSAEBB196/index.htm
http://nsarchive.gwu.edu/NSAEBB/NSAEBB196/index.htm
http://www.gpo.gov/fdsys/pkg/FR-2002-01-15/html/02-965.htm
http://www.gpo.gov/fdsys/pkg/FR-2002-01-15/html/02-965.htm

IJCA, Vol. 23, No. 1, March 2016 11

Part C: Emerging Technologies, Elsevier Publishers,

30:116-125, 2013.

[22] Tanya Lewis, “Germanwings Crash: Mental Illness

Alone Does Not Explain Co-Pilots Behavior,” Life

Science, http://www.livescience.com/50291-german

wings-copilot-mental-illness.html, March 2015.

[23] Natasha Merta, A. Hamish Jamson, Frank C. H. Lai,

Michael Daly, and Oliver M. J. Carsten, “Transition to

Manual: Driver Behavior when Resuming Control from

a Highly Automated Vehicle,” Journal on

Transportation Research: Part F: Traffic Psychology

and Behavior, Elsevier Publishers, 27:274-282, 2014.

[24] New Doors Causing Cockpit Problems, LA Times,

http://articles.latimes.com/print/2003/dec/14/nation/na-

doors14, December 14, 2003.

[25] NTSB Aircraft Accident Brief DCA00MA005,

November 28, 2000.

[26] Office of the Chief Inspector of Air Accidents, Ministry

of Transport, Malaysia, MH370 Preliminary Report,

http://www.dca.gov.my/MH370/Preliminary%20Report.

pdf. April 9, 2014.

[27] Sergio Pizziol, Catherine Tessier, and Frédéric Dehais,

“What the Heck Is It Doing? Better Understanding

Human-Machine Conflicts Through Models, CEUR,”

Proceedings of the 1st Workshop on Rights and Duties of

Autonomous Agents (RDA2), Montpellier, 885:44-49,

August 28, 2012.

[28] Sergio Pizziol, Catherine Tessier, and Frédéric Dehais,

“Petri Net-Based Modelling of Human–Automation

Conflicts in Aviation,” Ergonomics, DOI:

10.1080/00140139.2013.877597, 2014.

[29] Patrik Stensson and Anders Jansson, “Autonomous

Technology – Sources of Confusion: A Model for

Explanation and Prediction of Conceptual Shifts,”

Ergonomics, 57(3):455-470, DOI: 10.1080/00140139.

2013.858777 http://dx.doi.org/10.1080/00140139.2013.

858777, 2014.

[30] Benoit Vanholme, Benoit Lusetti, Dominique Gruyer,

Sébastien Glaser, and Saïd Mammar, “Highly Automated

Driving on Highways: System Implementation on PC

and Automotive ECUs,” Proceedings of the 14th

International IEEE Conference on Intelligent

Transportation Systems, pp. 1465-1470, 2011.

[31] Wikipedia, Air France 447, http://en.wiki

pedia.org/wiki/Air_France_Flight_447, May 27, 2015.

Maximilian M. Etschmaier’s
professional work is focused on the

analysis, design, and operation of

complex systems in a wide variety of

domains. He is currently an Adjunct

Professor in the College of Sciences at

San Diego State University. Previous

positions include, Guest Researcher at

the National Institute of Science and Technology (NIST),

Senior Scientist at the United Technologies Research Center,

Chairman of the Management Board of Joanneum Research in

Graz, Austria, Vice President of Systems and Control at

Bricmont Associates (now Andritz Bricmont), Professor of

Engineering at the Universities of Pittsburgh and

Massachusetts, Head of Operations Research of Deutsche

Lufthansa AG, and Visiting Professor at the University of Graz

and University of Innsbruck. He has advised business and

public sector clients on policy and strategy development, lead

process improvement ventures, and supported international

technology transfer.

Dr. Etschmaier is a native of Austria. He holds a PhD in

Engineering from the Technical University in Graz, Austria,

and an MS in Operations Research from Case Western Reserve

University, where he was a Fulbright Scholar. He has

participated in national and international scientific and

professional organizations, serving in leadership positions,

organizing and hosting meetings and sessions, and presenting

and publishing numerous papers.

Gordon K. Lee was born and raised in

Hawaii. He received his B.S. degree in

Electrical Engineering from the

University of Hawaii in 1972, his

M.S.E.E. degree from the University of

Connecticut in 1974 and his Ph.D.

degree from the University of

Connecticut in 1978. From 1978

through 1989, Dr. Lee was at Colorado State University in the

Department of Electrical Engineering where he rose to the

level of Full Professor. He was also the Director of the

Institute for Robotic Studies.

In 1989, Dr. Lee became a faculty member in the

Department of Mechanical and Aerospace Engineering at

North Carolina State University and also served as Director of

Graduate Programs in the Department of Mechanical and

Aerospace Engineering and later as Assistant Dean for

Research Programs in the College of Engineering. Dr. Lee

joined San Diego State University in December 2000 where he

served as the Associate Dean and Director of the Joint

Doctoral Program for the College of Engineering. He was also

a full Professor in the Department of Electrical and Computer

Engineering and is currently Professor Emeritus in that

department.

His research interests are in the areas of robotics and

intelligent control systems, particularly evolutionary control

algorithms, fuzzy systems and neural networks, as well as in

the applications of these methods to mobile robotic colonies.

His research projects have been funded by government

agencies as well as industry. He has published over 275

technical documents; Dr. Lee is a senior member of IEEE, a

member of AIAA and a senior member of ISCA. He is also

currently an Associate Editor for the International Journal on

Intelligent Automation and Soft Computing.

http://www.livescience.com/50291-german
http://articles.latimes.com/print/2003/dec/14/nation/na-doors14
http://articles.latimes.com/print/2003/dec/14/nation/na-doors14
http://dx.doi.org/10.1080/
http://en.wiki/

12 IJCA, Vol. 23, No. 1, March 2016

ISCA Copyright© 2016

Multiple Regression Analysis and Learning System for Estimation of

Blood Pressure Variation Using Photo-Plethysmograph Signals

Michio Yokoyama†,‡, Takumi Negishi†, Mitsuru Mizunuma†

Yamagata University, Yamagata 992-8510, JAPAN

Kazuya Otani§, Hidenobu Hanaki§ and Kozo Nishimura§

TOKAI RIKA Co., Ltd, Aichi 480-0195, JAPAN

Abstract

In this paper, a blood pressure estimation system is

proposed. Blood pressure variation is estimated by multiple

regression analysis using photo-plethysmograph signals.

Multiple regression analysis has been performed considering

the multicollinearity between explanatory variations.

Furthermore, by changing kinds of parameters of the pulse

wave used for estimation, improvement of accuracy of blood

pressure estimation has been aimed. Experimental results

have shown that the estimated blood pressure values have

been within about ±10mmHg as compared with measured

blood pressure values using a cuff.

Key Words: Blood pressure estimation, multiple

regression analysis, photo-plethysmography, infrared LED

sensor, systolic/diastolic blood pressure, learning system,

correlation, multicollinearity.

1 Introduction

In recent years, the numbers of lifestyle patients and their

preliminary group tend to increase, and this leads to social

problems. The lifestyle patients are predicted to increase

more and more in the future. Since early detection of

lifestyle-related diseases is difficult, it is important to manage

day-to-day individual health conditions. For the prevention

of lifestyle-related diseases, ubiquitous monitoring systems of

physical condition have been noticed nowdays.

As an indicator of daily health management, blood pressure

values are available. Blood pressure measuring devices on

the current market almost always require a cuff. They are too

large to handle and it takes several seconds for each

measurement. Therefore, to try managing daily health with

† Jonan 4-3-16, Yonezawa.
‡ E-mail: yoko@yz.yamagata-u.ac.jp.
§ 3-260 Toyota, Oguchi-Cho, Niwa-gun.

blood pressure monitoring imposes a burden in daily life.

Recently, there have been a few studies on handy blood

pressure measurement without a cuff [2, 3] such as phase shift

method, pulse wave velocity method, etc.

The purpose of our study is to estimate the variation of

blood pressure value with a plurality of parameters obtained

from the photo-plethysmograph [4]. In this paper,

multicollinearity among the parameters is noticed for the

cuff-less blood pressure estimation method with

photo-plethysmography. Then, a novel blood pressure

estimation method is proposed with consideration of

multicollinearity. Moreover, estimated blood pressure values

on the vehicle steering have been evaluated as compared with

the cuff-measured values.

2 Photo-Plethysmography and Pulse Wave Parameters

2.1 The Principle of Photo-Plethysmography

The photo-plethysmography is adopted here for blood pressure

estimation method. Infrared LED/PD with a wavelength of

950nm is utilized. The photo- plethysmography is a method

to observe the pulsations of blood vessels by measuring the

change in the photo absorption of hemoglobin at the blood

vessel flow. Since hemoglobin with/without oxygen has

remarkable absorption change mainly in the near-infrared

band, pulsation is influenced by the transmitted or reflected

light. The near-infrared light emitted from LED is irradiated

to the finger; the photodiode receives the transmitted or

reflected light that is not absorbed by hemoglobin. Figure 1

shows the pulse wave measurement circuits using

photo-plethysmography. The photo-diode (PD) detects the

reflection or transmission light, which includes scattering

information of blood vessel corresponding to pulsation, from

infrared LED through a finger. The detected signal is then

filtered and amplified at the subsequent signal processing

circuits for waveform shaping.

IJCA, Vol. 23, No. 1, March 2016 13

Figure 1: Conceptual diagram of the pulse wave

measurement circuits using photo-

plethysmography

2.2 Pulse Wave Parameters

Since pulse wave is closely related to blood pressure,

characteristic parameters obtained from the pulse wave are

effective for estimating the blood pressure. Multiple

regression analysis with the characteristic parameters is

utilized to estimate the variations of blood pressure.

The number of parameters for multiple regression analysis

is selected among 18 types of pulse wave characteristic

parameters, as follows:

 Pulse rate: The number of times of rippling pulse wave

per minute.

 Top of ejected wave: Maximum amplitude of wave

caused by pumping blood from the heart (A in Figure

2(a)).

 Top of reflected wave: Maximum amplitude of wave

caused by reflection at the peripheral vascular (B in

Figure 2(a)).

 Incisura: Height of chasm which exists between the

ejected and reflected waves (C in Figure 2(a)).

 Reflection Index (RI): Ratio of ejected and reflected

waves; RI(％)＝(B/A)×100

 T: Interval between tops of ejected and reflected waves.

 t1: Interval from generation point of pulse wave to

incisura.

 t2: Interval from incisura to end of pulse wave.

 T: Period of one pulse wave (t1＋t2).

 S1: Partial area of one pulse wave until incisura.

 S2: Partial area of one pulse wave after incisura.

 S: Area of one pulse wave (S1＋S2).

 A/C: Ratio of the maximum amplitude of ejected wave

to the incisura.

 B/C：Ratio of the maximum amplitude of reflected wave

to the incisura.

 t1/t2: Ratio of t1 to t2.

 S1/S2: Ratio of S1 to S2.

(a)

(b)

Figure 2: Pulse wave parameters

The changes between the above parameters are used in

multiple regression analysis. In this paper, the symbol of Δ

represents the changes. The changes are calculated by

subtraction of the two pulse wave parameters. Furthermore,

the ratio of two wave parameters is also used as the

parameters.

 Ejected wave ratio: Increase or decrease ratio of the

ejected wave(A’/A).

 Reflected wave ratio: Increase or decrease ratio of the

reflected wave(B’/B).

Above these 18 types of pulse wave parameters are

candidates for use in blood pressure estimation. Then, 18

types of parameters are narrowed down at the view point of

correlation. More information is described below.

3 Overview of Blood Pressure Variation Estimation

3.1 Blood Pressure Variation Estimation System

In order to estimate the variation of blood pressure with the

photo-plethysmography, the changes and/or ratios in the pulse

14 IJCA, Vol. 23, No. 1, March 2016

wave parameters are used in the estimation equation. The

estimation equation is derived from multiple regression

analysis [1]. In addition, with use of the blood pressure

values measured at the cuff as a reference blood pressure, the

current blood pressure value is estimated by simply measuring

pulse wave. Figure 3 shows an overview of the practical

system. The cuff measured values are also used in the

learning system to improve accuracy of the estimation

equation.

Figure 3: Overview of practical use of the system

Estimated blood pressure value is calculated by the

following formula.

 [Estimated blood pressure value]＝

 [Reference of blood pressure value]

 ＋[Estimated blood pressure variation (ΔBP)]

3.2 Flowchart of Blood Pressure Estimation

Figure 4 indicates the flowchart of blood pressure

estimation.

Variation data of the pulse wave and the blood pressure are

prepared. By multiple regression analysis, the estimation

equation is derived from these data. In addition, blood

pressure and pulse wave for the reference data are also

prepared.

1) A pulse wave is measured for estimation.

2) If there is no blood pressure measurement by the cuff,

estimation of blood pressure is performed. The

changes of parameters from reference data are calculated

after measuring the pulse. The changes in the pulse

wave parameters are substituted for the estimation

equation in order to calculate the estimated variation of

blood pressure. The estimated variation of blood

pressure is added to the reference blood pressure. Then,

this is the estimated blood pressure value.

3) If there is blood pressure measurement by the cuff,

learning system is performed to improve accuracy of

estimation equation. Once in several times, estimation

equation is corrected with cuff value and pulse wave

parameters. At the learning, both cuff value and pulse

wave are measured at the same time. Adding variation

data of pulse wave parameters and the blood pressure to

database, multiple regression analysis is re-performed

for renewal of the estimation equation.

This learning system is described later in detail.

Ⅰ

Ⅱ Ⅲ

* go to Figure 6

Ⅵ

NO YES

Blood pressure

estimation start

Pulse wave
measurement

Reference blood pressure
and reference pulse wave

update

Have blood
pressure

measurement?

Learning*

Blood pressure

estimation end

Output cuff-
measured value

Calculate the
changes of pulse

wave parameters

Assign changes of pulse
wave in the estimation

equation
Calculate change of the

blood pressure

Add estimated blood pressure variation
to reference blood pressure value

Output estimated
blood pressure value

Figure 4: Flowchart of blood pressure estimation

4 The Principle of Blood Pressure Variation Estimation

4.1 Multiple Regression Analysis

The equation used for blood pressure variation estimation is

derived by the multiple regression analysis with variation data

of blood pressure and pulse wave parameters. The multiple

regression analysis is one of the multivariate analysis by using

a plurality of data. It is a calculation to derive the estimation

IJCA, Vol. 23, No. 1, March 2016 15

equation so that the error may become the minimum. In

this work, the changes in pulse wave parameters and blood

pressure correspond to explanatory and explained variations,

respectively.

Figure 5 indicates a conceptual diagram of multiple

regression for blood pressure estimation. Several parameters

such as changes in pulse rate, interval T and so on are utilized

for calculation of multiple regression analysis in order to

estimate the changes in blood pressure (∆BP). The detailed

procedure of estimation equation derivation is the same as the

procedure of the learning described in Section 5.

Figure 5: Conceptual diagram of multiple regression

equation

4.2 Multiple Correlation Coefficients and Coefficient of

Determination

Multiple correlation coefficient here means the correlation

coefficient between “measured value” and “estimated value by

estimation equation calculated from multiple regression

analysis”, as represented by R. R is ranged from 0 to 1. If

the estimation equation is perfect, R is 1. The coefficient of

determination is defined as the squared multiple correlation

coefficient. These two coefficients are used at learning.

5 Construction of Estimation Equation and Learning

5.1 Construction of Estimation Equation

There are individual differences in the correlation between

pulse wave parameters and blood pressure values. Therefore,

the type of pulse wave parameters used for blood pressure

variation estimation should not be fixed. So, a correlation

test of the blood pressure and pulse wave parameters is per-

formed. The pulse wave parameters which have correlation

with the blood pressure are candidates for use in estimating.

The presence of multicollinearity is responsible for lowering

the estimation accuracy. To investigate the presence of

multicollinearity, the coefficient of determination of

parameters should be examined. When the coefficient of

determination is more than a threshold, the combination of

parameters is excluded.

The combination of high estimation accuracy is examined.

Among the remaining combinations, correlation between the

measured and the estimated blood pressure values is tested.

The combination whose determination coefficient is the

highest is selected for estimation.

Construction of estimation equation is performed at the time

of the learning and at the beginning of using the system. In

this work, learning is defined as “to update the estimation

equation at each time of cuff blood pressure measurement.”

5.2 Procedure of Learning

Figure 6 indicates the flowchart of learning.

Figure 6: Flowchart of learning system of estimation

equation

16 IJCA, Vol. 23, No. 1, March 2016

1) In learning, blood pressure and pulse wave are measured

at the same time. These measured values are replaced

as the new reference values. Then, the changes

between the new and old reference values are calculated.

2) The changes are added in the database for multiple

regression analysis.

3) The correlation tests of the blood pressure value and

pulse wave parameter in the database are performed.

Pulse wave parameters with high correlation are

candidates to be used for estimation.

4) In order to examine the presence of multicollinearity in

all possible combinations of candidate parameters, the

coefficients of determination are calculated. One of the

parameters is estimated by the other parameters in

combination. Correlation between the estimated and

the actual parameters is calculated. If there is even one

coefficient of determination of the parameter which is

greater than 0.5, the combinations are excluded.

5) Coefficients of determination of the blood pressure value

are calculated from the measured and the estimated

blood pressure values by the remaining combinations in

4). Among the combinations, when the combination

whose coefficient of determination of blood pressure

values is the highest, this combination is adopted to

estimation.

6) Multiple regression analysis is re-performed with the

combination of parameters adopted in 5) and blood

pressure. Then, a new estimation equation is derived.

5.3 The Test of Correlation

In order to narrow down candidates of the explanatory

variables, the correlation between each pulse wave parameter

and blood pressure value is tested with variation data in

database. The data is assumed to be in accordance with the

normal distribution. Pearson's correlation coefficient to be

used in the present study is represented by -1 to 1. T-test is

used for the test of the correlation; hazard ratio α = 0.05.

Parameters which have no correlation are excluded from the

candidates in this procedure.

5.4 Multicollinearity

Multicollinearity exists when there is a high correlation

among the explanatory variables with each other. The higher

dependence the explanatory variables have, the more accuracy

of estimation equation degrades. The influence of

multicollinearity is predicted by calculating with relationship

between one of the pulse wave parameters and others.

If there is even one coefficient of determination of the

explanatory variable which is greater than 0.5, the

combinations of parameter are excluded for estimation.

6 Experiments

6.1 Experimental Methodology

For the measurement of the photo-plethysmography,

PowerLab4/26(AD instruments Pty Ltd) is used. First, a

sensor mounted on the steering is examined to determine

whether a pulse wave can be measured stably. Then, the

pulse wave of the left hand thumb is measured for 30 seconds.

The finger pressing force on a steering wheel is measured by

means of the force gauge; AD-4932A-50N(A&D Co., Ltd.)

for reference.

For the measurement of systolic and diastolic blood

pressures with cuff, HEM-1020 (Omron Healthcare Co., Ltd.)

is used. Blood pressure values are measured four times in

total. They are measured twice each before and after pulse

wave measurements. The average of four blood pressure

values is calculated. Although correction by cuff values is

once every 10 estimations in this system, cuff values are

measured every time. They are saved for evaluation of the

estimation accuracy.

These measurements are one set, and total of 105 sets are

measured. The first five sets are used to derive the initial

estimation equation. Ten variation data obtained by

calculating the changes and/or the ratios of the first five blood

pressures and pulse wave parameters are used to derive the

initial estimation equation. The estimated blood pressure of

100 sets of data is utilized to evaluate the estimation accuracy.

The learning is performed every 10 estimations.

6.2 Experimental Result

Pulse wave is measured with the sensor on the steering.

Figure 7 is a photograph of the pulse wave sensor. Figure 8

represents measured pulse waves with the mounted sensor.

Figure 8 shows that pulse wave has been successfully

measured with the mounted sensor. The measured finger

pressing force on the steering has ranged from about 1N to 3N.

Since a pulse waveform shape of photo-plethysmography is

affected by finger pressure, the research subject has tried to

keep a moderate grasping force constantly for a period of the

experiment.

IJCA, Vol. 23, No. 1, March 2016 17

Figure 7: Sensor mounted on the steering

Figure 8: Pulse wave measured by the sensor

The result of the systolic blood pressure variation estimation

is shown in Figure 9. Blood pressure values of the target cuff

values are red-solid line, estimated blood pressure values are

blue-solid line, and timing of the learning is yellow-square.

Estimation error of the systolic blood pressure is within ±

10mmHg as shown in Figures 9 and 10. Therefore, it has

been found that this method is effective for systolic blood

pressure estimation.

On the other hand, the result of the diastolic blood pressure

variation estimation is shown in Figure 11. Diastolic blood

pressure values of the target cuff values are red-solid line,

estimated blood pressure values are blue-solid line, and timing

of the learning is yellow-square. The correlation of pulse

wave parameters with diastolic blood pressure value was

tested in addition to that with systolic blood pressure. The

Figure 9: Estimation results of the systolic blood pressure

Figure 10: Estimation error of the systolic blood pressure

selected pulse wave parameters with a high correlation for

diastolic blood pressure estimation analysis were different

from those in the systolic blood pressure estimation case.

Estimation error of the diastolic blood pressure is shown in

Figure 12. The estimation error within ± about 10mmHg has

shown in case of the diastolic blood pressure estimation.

Accordingly, this estimation method is found to be also

effective for diastolic blood pressure estimation. For

improvement of estimation accuracy, research subjects and

measurement experiments should be increased more intensely

from the viewpoints of individual customizing with learning in

estimation equation and selection of correlative pulse-wave

parameters with blood pressures for estimation.

Figure 11: Estimation results of the diastolic blood pressure

Figure 12: Estimation error of the diastolic blood pressure

18 IJCA, Vol. 23, No. 1, March 2016

For influence of finger pressure in grasping a steering on

estimation, the proposed estimation method with the multiple

regression analysis seems to be robust for the fluctuation of

finger pressure to a certain extent. In spite of fluctuation, this

is considered to be caused by the nature of multiple regression

analysis itself with selection of plural correlative parameters

and learning. Moreover, improvement of this estimation

method should be investigated with regard to soft- and/or

hard-ware solution for the pressure fluctuation.

7 Conclusions

It has been found that variations of blood pressure are

estimated with multiple regression analysis of

photo-plethysmograph signals. As a result of consideration

of multicollinearity between explanatory variations and

learning system after using selected pulse wave parameters for

analysis, the estimated systolic and diastolic blood pressure

values have been both within about ±10mmHg as compared

with measured blood pressure values using a cuff.

Furthermore, in order to improve the estimation accuracy,

there still exist several problems to be solved such as selection

of highly-correlative parameters, stable measurement of pulse

wave under finger pressures fluctuation, and so on.

References

[1] R. E. Ogunsakin, R. B. Ogunrinde, O. Omotoso, and O. B.

Adewale, “On Regression Analysis of The Relationship

Between Age and Blood Cholesterol on Blood Pressure,”

Michio Yokoyama was born in

Yamagata, Japan, on March 1, 1967.

He received his B.E. degree in

Electrical Engineering from Yamagata

University, in 1989, and his M.E.

degree in Electrical Engineering and

his Ph.D. degree in Electronic

Engineering from Tohoku University

in 1991 and 1994. In 1994, he joined Research Institute of

Electrical Communication, Tohoku University, Sendai, Japan,

where he was engaged in research design and development of

RF-CMOS circuits for digital cellular phone system. In 2001,

he joined Yamagata University, where he has engaged in

research on ubiquitous healthcare system. He is a member

of Japan Electronics Packaging, Japan Society of Applied

Physics, Institute of Electrical Engineers of Japan and Institute

of Electronics, Information and Communication Engineers.

International Journal of Scientific & Technology Research,

1(9):92-94, October 2012.

[2] S. Omata and M. Haruta, “Development of Cuff-Less

Blood Pressure Measuring Instrument and Its Institute of

Application to Telemedicine,” Jpn. Society for Medical

and Biological Engineering, Japan, (in Japanese), 2014.

[3] S. Suzuki and K. Oguri, “Cuffless Blood Pressure

Estimation by Error-Correcting Output Coding Method

Based on an Aggregation of AdaBoost with a

Photoplethysmograph Sensor,” Engineering in Medicine

and Biology Society, 2009.

[4] T. Tamura, “Blood Pressure Variation Estimation Using

Photo-Plethysmography”, Master's Thesis, Yamagata

University, Japan, 2014 (in Japanese)

Takumi Negishi received his B.E.

degree in Bio-Systems Engineering

from Yamagata University in 2014.

He is currently a student for M.E.

degree in Bio-Systems Engineering at

Graduate School of Science and

Engineering, Yamagata University.

His research interests include

ubiquitous healthcare system, vital signal sensing & analysis.

Mitsuru Mizunuma was born in

Yamagata, Japan, on July 15, 1950.

He received the Associate degree in

engineering from Technical College,

Yamagata University, Japan, in 1973.

He became a technical official of the

Department of Electronic Engineering,

Faculty of Engineering, Yamagata

University in 1970, where he engaged in research on

electronic circuits, distributed constant circuits, image

processing, fuzzy theory, and digital/analog integrated circuits

design. He is currently a technical staff member in the

Department of Bio-System Engineering, Faculty of

Engineering, Yamagata University. His research interests

include the design of the ubiquitous physical condition grasp

support system, and it includes the design of motion sickness

simple measurement, evaluation and warning system.

Kazuya Otani (photo and bio not available).

Hidenobu Hanaki (photo and bio not available).

Kozo Nishimura (photo and bio not available).

IJCA, Vol. 23, No. 1, March 2016 19

Measuring the Impact of Network Performance on Cloud-Based Speech
Recognition

An Empirical Study of Apple Siri and Google Speech Recognition

Mehdi Assefi*, Guangchi Liu†, Mike P. Wittie‡, Clemente Izurieta§

Montana State University, Bozeman, MT 59715, USA

Abstract

Cloud-based speech recognition systems enhance Web
surfing, transportation, health care, etc. For example, using
voice commands helps drivers search the Internet without
affecting traffic safety risks. User frustration with network
traffic problems can affect the usability of these applications.
The performance of these type of applications should be robust
in difficult network conditions. We evaluate the performance
of several client-server speech recognition applications, under
various network conditions. We measure transcription delay
and accuracy of each application under different packet loss
and jitter values. Results of our study show that performance
of client-server speech recognition systems is affected by jitter
and packet loss, which commonly occur in WiFi and cellular
networks.

An experimental study on client-server speech recognition
applications is reported in Impact of the network performance
on cloud-based speech recognition systems, in which a solution
that uses network coding to improve the performance of
cloud-based speech recognition applications has been proposed.
The aforementioned paper is published in ICCCN 2015 [8].
Designing and implementing of experimental testbeds by
using TCP and UDP connections and also designing and
implementing another testbed that uses fountain codes on UDP
connection has been introduced in the paper. In this paper, we
design and implement an extensive experimental evaluation of
five client-server speech recognition applications to compare
the performance of these applications under different network
conditions.

Key Words: Cloud Speech Recognition, Quality of
Experience, Software Measurement, Streaming Media, Real-
time Systems.

1 Introduction

Performance evaluation of cloud-based speech recognition
systems under different network conditions has received much

*Department of Computer Science, Email: mehdi.assefi@msu.montana.edu.
†Department of Computer Science, Email: guangchi.liu@msu.montana.edu.
‡Department of Computer Science, Email: mwittie@montana.edu.
§Department of Computer Science, Email: clemente.izurieta@montana.edu.

less attention than other streaming systems. Although Apple
Siri and Google Speech Recognition (GSR) are popular
applications that help users to interact with search engines
using voice commands, an experimental evaluation of these
applications is noticeably missing.

Delay and accuracy of the voice recognition process is
an important parameter that affects the quality of a user’s
experience with cloud-based speech recognition applications.
Streaming voice from the client to the server and converting it
to text are two phases of this process and should have the low
delay and high accuracy in order to satisfy the quality of a user’s
experience. Delays of this process should also be consistent
under all different network conditions.

In this paper, we describe the design and implementation
of an experimental evaluation of Siri and GSR. We also
evaluate three client-server speech recocgintion systems using
TCP, UDP, and network coding over UDP. We evaluate these
applications under different packet loss and jitter values and
measure the delay and accuracy of each under different network
conditions. Specifically, we employ four statistical models to
evaluate the effects of packet loss and jitter, respectively. Each
model is designed to evaluate two factors (jitter and packet loss)
with two blocking variables on the response variable - delay
and accuracy. The blocking variable is the application for all
experiments. The ANOVA test is used to evaluate effects of
packet loss and jitter for each experiment respectively. Results
of our study show that delays in all applications are affected by
packet loss and jitter. Results also show that the accuracy of
three applications is affected by packet loss and jitter.

The remainder of this paper is organized as follows: In
Section II we explore related work. In Section III we describe
our experimental methods. In Section IV we describe overall
results. In Section V we describe our experimental design
and the mathematical model used to analyze experimental
data. Section VI discusses results. Finally, in Section VII we
discusses threats to validity of our experiment and conclude in
Section VIII.

2 Related Work

Yang Xu et al. performed a measurement study on Google+,
iChat, and Skype [31]. They explored the architectural features

ISCA Copyright© 2016

20 IJCA, Vol. 23, No. 1, March 2016

of these applications. Using passive and active experiments, the
authors unveiled some performance details of these applications
such as video generation and adaption techniques, packet loss
recovery solutions, and end-to-end delays. Based on their
experiments the server location had a significant impact on user
performance and also loss recovery in server-based applications.
They also argued that using batched re-transmissions was a good
alternative for real time applications instead of using Forward
Error Correction (FEC) –an error control technique in streaming
over unreliable network connections.

Te-Yuan Huang et al. did a measurement study on the
performance of Skype’s FEC mechanism [21]. They studied the
amount of the redundancy added by the FEC mechanism and
the trade-offs between the quality of the users’ experience and
also the resulting redundancy due to FEC. They tried to find an
optimal level of redundancy to achieve the maximum quality of
the users’ experience.

Te-Yuan Huang et al. also performed a study on voice
rate adaption of Skype under different network conditions [20].
Results of this study showed that using public domain codecs
was not the ideal choice for users’ satisfaction. In that
study, they considered different levels of packet loss in their
experiments and created a model to control the redundancy
under different packet loss conditions.

Kuan-Ta Chen et al. proposed a framework for user QoE
measurement [11]. Their proposed framework, OneClick,
provided a dedicated key that could be pressed by users
whenever they felt unsatisfied by the network conditions
with streaming media. OneClick was implemented on two
applications – instant messaging applications and shooter
games.

Another framework that quantified the quality of a user’s
experience was proposed by Kuan-Ta Chen et al [12]. The
proposed system was able to verify participants’ inputs, so
it supported crowd-sourcing. Participation is made easy
in this framework. The framework generates interval-scale
scores. They argue that researchers can use this framework for
measuring the quality of a users’ experience without affecting
quality of the results and achieve a higher level of diversity in
users’ participation while also keeping cost low.

Budzisz et al. proposed and developed a delayed-based
congestion control system [10]. The proposed system offers
low standing queues and delay in homogeneous networks, and
balanced delay-based and loss-based flows in heterogeneous
networks. They argue that this system can achieve these
properties under different loss values, and outperform TCP
flows. Using experiments and analysis, they demonstrate that
this system guarantees aforementioned properties.

Hayes et al. proposed an algorithm which tolerates non-
congestion related packet loss [18]. They proved experimentally
that the proposed algorithm improves the throughput by 150%
under packet loss of 1% and improves the ability to share the
capacity by more than 50%.

Akhshabi et al. proposed an experimental evaluation of
rate adaption algorithms for streaming over HTTP [4, 5].

They experimentally evaluated three common video streaming
applications under a range of bandwidth values. Results of this
study showed that congestion control of TCP and its reliability
requirement does not necessarily affect the performance of such
streaming applications. Interaction of rate-adaption logic and
TCP congestion control is left as an open research problem.

Chen et al. experimentally studied performance of multipath
TCP over wireless networks [13]. They measured the latency
resulting from different cellular data providers. Results of this
study show that Multipath TCP offers a robust data transport
under various network traffic conditions. Studying the energy
costs and performance trade-offs should be considered as a
possible extension of this study.

Google is currently working on a new transport protocol
for the Internet called QUIC (Quick UDP Internet
Connections) [25]. QUIC uses UDP and solves problems
of packet delay under different packet loss values in TCP
connections. QUIC solves this problem by multiplexing and
FEC.

An experimental investigation on the Google Congestion
Control (GCC) in the RTCWeb IETF WG was performed by
Cicco et al. [14]. They implemented a controlled testbed for
their experiment. Results of this experimental study show that
the proposed algorithm works well but it does not utilize the
bandwidth fairly when it is shared by two GCC flows or a GCC
and a TCP flow.

Cicco et al. have also experimentally investigated the High
Definition (HD) video distribution of Akamai [15]. They
explained details of Akamai’s client-server protocol which
implements the quality adaption algorithm. Their study shows
that the proposed technique encodes any video at five different
bit rates and stores all of them at the server. The server selects
the bit rate that matches the bandwidth that is measured based on
the signal received from the cilent. The bitrate level adaptively
changes based on the available bandwidth. Authors of the paper
also evaluated the dynamics of the algorithm in three scenarios.

Winkler et al. ran a set of experiments to asses quality of
experience on television and mobile applications [28, 29]. Their
proposed subjective experiment considers different bitrates,
contents, codec, and network traffic conditions. Authors of
the paper used Single Stimulus Continous Quality Evaluation
(SSCQE) and Double Stimulus Impairment Scale (DSIS) on the
same set of materials and compared these methods and analyzed
results of experiments in view of codec performance.

A mesh-pull-based P2P video streaming using Fountain
codes is proposed by Oh et al. [24]. The proposed
system offers fast and smooth streaming with low complexity.
Experimental evaluations show that the proposed system
has better performance than existing buffer-map-based video
streaming systems under packet loss values. Considering jitter
as another important factor and evaluation of behavior of the
proposed system considering jitter values can be a potential
extension of this study.

Application of Fountain Multiple Description Coding (MDC)
in video streaming over a heterogeneous peer to peer network is

IJCA, Vol. 23, No. 1, March 2016 21

considered by Smith et al. [26]. They conclude that Fountain
MDC codes are favorable in such cases, but there are some
restrictions in real-world P2P streaming systems.

Finally, Vukobratovic et al. proposed a novel multicast
streaming system that is based on Expanding Window Fountain
(EWF) codes for real-time multicast [27]. Using Raptor-like
precoding has been addressed as a potential improvement in this
area.

3 Experimental Testbeds

We design and implement our experimental testbed to study
the performance of cloud-based speech recognition systems
under loss and jitter. Clients of such systems transmit voice
data through a network traffic shaper, where we change jitter
and packet loss values in the communication network. We set a
bandwidth to 2Mbps which is typical on 3G connections [19].
The server receives voice data, translates the voice into text,
and sends the text and search results based on the converted
text to the client. The client calculates the delay of the server
response. To calculate the accuracy of transcription we use
Levenshtein distance [32]. Accuracy is measured as the match
percentage of the original string used to generate the voice and
the resulting transcription. The client uses Wireshark Version
1.12.4 to timestamp the traffic of voice transmission to and
from the server [6]. We developed a Windows application using
Visual C# to timestamp the voice playback. All experiments
are performed on a Windows 7 platform for GSR, and on iOS
7.0 for Siri. The traffic shaper is a netem box which runs the
Fedora Linux operating system. We ran our experiment 30
times for each value of loss and jitter and for each cloud speech
recognizer.

3.1 Experimental Testbed for GSR

We use the GSR service available in Google Chrome. There
is also another alternative for using Google voice recognition.
Google offers a voice recognition Web service that can be used
in Windows applications. Figure 1 shows the architecture of our
experimental setup.

Clients transmit voice packets to the Google server through
the netem box that changes network traffic performance. We
used a recorded voice with a length of 26.4 seconds for all
experiments in order to have a consistent measurement. Google
starts to recognize voice as soon as it receives the first voice
packet, and sends converted text back to the client. The client
records the time of each packet and also voice transmission time
to calculate the transcription time of the experiment. The client
also compares the resulting text to the original string which was
used to generate the voice command and calculates transmission
accuracy using the Levenshtein distance [32].

3.2 Experimental Testbed for Siri

The experimental setup for Siri is similar to GSR. We use an
iPhone as the client. A client is connected to the Internet through

Figure 1: Experimental testbed for GSR.

a WiFi router then to a netem box. Here we also used Wireshark
to timestamp the transmission of voice packets and reception of
results from the Siri server. Figure 2 depicts this setup.

3.3 Experimental Testbed for Nuance Dragon

We consider key characteristics of Siri and GSR to design
an in-lab testbed that shows the same behavior. Siri and GSR
both use TCP transport protocol [7, 17]. To replicate speech
recognition algorithms we used Nuance technology which uses
the same algorithms to convert the voice to the text as Siri [1, 3].
Nuance technology is available as Dragon Naturally Speaking
software [2].

Our testbed consists of a client that is connected to a speech
recognition server through netem. Client streams the voice over
a TCP connection that goes through the netem box. The server
starts to convert voice to the text as soon as it receives the first
voice packet. The server sends the resulting text back to the
client. We record the accuracy of the returning text and the
round trip time of the process to evaluate the performance of
the system. We repeat the experience 30 times for each traffic
setup. Figure 3 shows the architecture of the TCP streaming
testbed.

The program timestamps when the voice playback starts and
finishes. We call these timestamps fct and lct (first client
transfer and last client transfer), respectively. Network traffic
conditions are controlled by netem. A logger on the server is
responsible for keeping the timestamp of packets and storing
the first and last timestamps in a file. We call these timestamps
fsr and lsr (first server packet received and last server packet
received), respectively. In order to timestamp the transcription
delay, we developed a text editor to collect the Dragon’s output
and timestamp the time when the first and last character was
created by Dragon. We call these timestamps ffr and lfr (first
text file character received and last text file character received),
respectively. Every time a new character is created by dragon,
our text editor sends that character to the sender and a program
on the sender collects the received characters and stamps the
time of the first and the last received character. We call these
timestamps fcr, and lcr (first client received and last client
received), respectively. Figure 4 shows the data flow from the
client to the server and also the data flow from Dragon’s output
to the client. This figure also shows the relative order of the
timestamp variables used for our evaluation.

22 IJCA, Vol. 23, No. 1, March 2016

Figure 2: Experimental testbed for Siri.

Figure 3: Experimental testbed for TCP.

The recorded timestamps for each round of the experiment
monitor the behavior of different parts of the testbed. (ffr -
fsr) represents response time of the Dragon, (lfr - fsr) represents
the total time of the speech recognition on the server, (lcr - fct)
represents the total time of each round of experiment. We used
(lcr - lct) as the delay of the remote speech recognition system.

3.4 Experimental Testbed for UDP

TCP waits for each packet to be received and retransmits
lost packets. Reliable transmission is not necessarily a good
choice for real-time communications, in which transmission
delay reduces the feeling of interactivity. UDP is a good
alternative when the application tolerates moderate packet loss.
We changed our TCP testbed to send UDP packets to observe
the effect of packet loss and jitter on delay and accuracy of the
speech recognition software. The UDP testbed has the same
architecture as TCP, but the streaming part of the testbed has
been changed to use UDP packets. We ran the UDP testbed
with the same conditions as the TCP.

3.5 Experimental Testbed for UDP with Network Coding

We implemented a P2P streaming system using a linear
fountain and replaced it with the standard UDP stream. Other
parts of the testbed are the same.

3.5.1 Fountain Codes

Fountain codes are used in erasure channels such as the
Internet. Channels with erasure transmit files in multiple small
packets and each packet is either received without error or is
lost [23]. Coded packets sent to the receiver are combinations

Figure 4: Timestamp Variables.

of original packets. Once the receiver receives enough coded
packets it is able to decode and extract the original packets.
Figure 5 illustrates the mechanism behind the fountain codec
that is used in our solution [26]. Sender takes a group of
packets, creates a number of coded packets, and sends them to
the receiver along with information needed for their decoding.
The receiver extracts the original packets after receiving enough
coded packets by solving a linear equation created by the
received information.

3.5.2 Fountain Encoder

The Fountain encoder generates an unlimited number of
encoded packets using original ones. In order to decode packets
of a stream, we group every X consecutive original packets
together. Fountain encoder generates enough number of coded
packets using original packets of the group, and we will find this
number later in this section. Each encoded packet is a bit-wise
sum of packets of group:

EPn = ∑
X
x=1 PxGxn, (1)

where Gxn is a random binary number consisting of X bits
and P’s are original packets. The sum operation is done by
XOR-ing packets. The resulting packet is sent to the receiver
and Gxn is also put in the header for the decoder to be able
to extract original packets after receiving enough number of
coded packets. Figure 6 demonstrates the process of coding
and sending packets over a lossy network. Grey shaded packets
are not received. The sender creates and sends n coded packets
from each group. In order to have enough information to extract
the original packets, n should be greater than X. The number of
coded packets required to be received by the receiver to have
probability 1-δ of decoding success is ≈ X+log2 1/δ [23].

3.5.3 Fountain Decoder

With enough number of received packets, the receiver is able
to extract original packets. Lets say there are X original packets
and the receiver has received K packets. The binary numbers
that we used in our encoder make a K-by-X matrix. If K<X, the
decoder does not have enough information to extract the original

IJCA, Vol. 23, No. 1, March 2016 23

Figure 5: Coding and sending packets over a lossy network [8].

Figure 6: The generator matrix of the linear code [8].

packets. If k=X, it is possible to recover packets. If the resulting
K-by-K matrix is invertible, the decoder is able to calculate the
inverse of G−1 by Gaussian elimination and recover

tx = ∑
K
k=1 tkG−1

kx . (2)

The probability that a random K-by-K matrix is invertible is
0.289 for any K greater than 10 [23]. The decoder should
receive extra packets to increase the probability of having
an inversible matrix. The time complexity of encoding and
decoding of linear Fountain codes are quadratic and cubic in
number of encoded packets but this is not important when
working with packets less than a thousand [23]. Using faster
versions of fountain codes, like the LT code or Raptor codes
offers less complexity [16].

4 Overall Results

To investigate the effect of packet loss and jitter on delay and
accuracy, we generate packet loss from 1% to 5% and jitter from
20 ms to 200 ms respectively on our testbeds and observe the
resulting accuracy and delay. Siri and GSR both keep 100%
accuracy under high values of packet loss and jitter, so we just
consider accuracy values for the other three testbeds. The effect
of packet loss and jitter on roundtrip delay of applications is
shown in Figures 7 to 16, where the y axis displays delay(s),
and the x axis displays packet loss (percentile). and jitter (ms),
respectively. There are increasing trends as packet loss and
jitter increases, for all applications. For GSR, an increase of
1 packet loss unit (percentile), leads to delay increases in the
range of 0-100 ms. An increase of 1 unit (20 ms) in jitter

leads to increases in delay from 0-100 ms. In addition, the
variance of delay also increases as packet loss and jitter increase,
indicating a trend of instability. For Siri, the increase in 1 unit
(percentile) packet loss leads to increases in delay of 200 ms;
which is worse than GSR. On the other hand, jitter has less
impact on delay. In addition, the variance of delay is unchanged,
compared to GSR. For Dragon under TCP, packet loss and jitter
both affect the roundtrip delay. Variance of delay increases as
jitter increases, indicating a trend of instability in the case of
high values of jitter. For Dragon under UDP, packet loss does
not affect the roundtrip delay, but variance of delay increases as
we increase the packet loss. Jitter, on the other hand, affects the
roundtrip delay of Dragon testbed under UDP. Variance of delay
also increases with increasing jitter. Figures 19 and 22 show
that using the network coding with UDP improves the accuracy
of UDP when packet loss increases. Comparing the results
from Figure 18, we can say that the accuracy of Dragon under
UDP with using Fountain codes has been improved by about
30% in the existence of high values of packet loss. Comparing
the results from Figures 22 and 20 shows that the accuracy of
Dragon under UDP improves under different values of jitter,
if we apply Fountain coding. Results show that the accuracy
of Dragon has been improved to 85% with 200ms jitter, and
this value is 30% when we do not use Fountain coding. From
Figures 17 and 20, we can see the effect of increasing packet
loss and jitter on the accuracy of Dragon under TCP. Accuracy
of Dragon under TCP decreases by 15% when jitter is 200ms.
Figure 20 also shows that the accuracy does not change when
jitter is between 0 to 100ms and after this point, system starts
to lose the accuracy. Variances of accuracy also start to increase
from this point.

5 Experiment Design

5.1 Model

Since our data is collected by varying jitter and packet
loss respectively, we designed four statistical models to assess
the effect of jitter and packet loss on delay and accuracy,
respectively. Also, since our data is collected from five
applications (i.e. Siri, GSR, fontain, TCP and UDP), we take
the application as a blocking variable. Each model contains
one factory and one blocking variable. For the first model,
the response variable is delay, the independent variable is jitter
and the blocking variable is application. Also, to guarantee the
assumptions still hold for the following ANOVA tests, we apply
log transformation on the response variable. Hence, the first
model can be expressed as:

log(ydi j) = µ +αi +β j + ei j (3)

where α is jitter, β is application.
For the second model, the response variable is delay, the

independent variable is packet loss and the blocking variable
is application. The model can be expressed as:

24 IJCA, Vol. 23, No. 1, March 2016

Figure 7: Impact of packet
loss on delay of
GSR

Figure 8: Impact of packet
loss on delay of
Siri

Figure 9: Impact of packet
loss on delay of
Dragon with TCP

Figure 10: Impact of packet
loss on delay
of Dragon with
UDP

Figure 11: Impact of packet
loss on delay
of Dragon with
UDP by using
network coding

Figure 12: Impact of jitter
on delay of GSR

Figure 13: Impact of jitter
on delay of Siri

Figure 14: Impact of jitter
on delay of
Dragon with
TCP

Figure 15: Impact of jitter
on delay of
Dragon with
UDP

Figure 16: Impact of jitter
on delay of
Dragon with
UDP by using
network coding

Figure 17: Impact of packet
loss on accuracy
of Dragon with
TCP

Figure 18: Impact of packet
loss on accuracy
of Dragon with
UDP

IJCA, Vol. 23, No. 1, March 2016 25

Figure 19: Impact of packet
loss on accuracy
of Dragon with
UDP by using
network coding

Figure 20: Impact of jitter
on accuracy of
Dragon with
TCP

Figure 21: Impact of jitter
on accuracy of
Dragon with
UDP

Figure 22: Impact of jitter
on accuracy of
Dragon with
UDP by using
network coding

log(ydi j) = µ + γi +β j + ei j (4)

where γ is packet loss, β is application.
For the third model, the response variable is accuracy, the

independent variable is jitter and the blocking variable is
application. The model can be expressed as:

log(yai j) = µ +αi +β j + ei j (5)

where α is jitter, β is application.
For the fourth model, the response variable is accuracy, the

independent variable is packet loss and the blocking variable is
application. The model can be expressed as:

log(yai j) = µ + γi +β j + ei j (6)

where γ is packet loss, β is application.
For model 3, the factor (jitter) has 10 alternatives, which are

the jitter duration ranging from 20 to 200 ms. For model 4, the
factor (packet loss) has 5 alternatives, which are the proportion
of lost packet ranging from 1% to 5%. The blocking variable for
both models 4 and 3 have 5 alternatives, which are SiRi, GSR,
fontain, TCP and UDP, respectively. For model 5, the factor
(jitter) has 10 alternatives, which are the jitter duration ranging
from 20 to 200 ms. For model 6, the factor (packet loss) has
5 alternatives, which are the proportion of lost packet ranging
from 1% to 5%. The blocking variable for both models 6 and
5, however, have only three alternatives, which are fontain, TCP
and UDP, respectively. The reason is that for SiRi and GSR,
the accuracy is always 100%, no matter how the factor changes.
Therefore, we ignore them for accuracy.

5.2 Assumptions

To guarantee the effectiveness of ANOVA test, some
assumptions should be checked before conducting the ANOVA
tests. In this paper, the interaction of dependent variables, the
normality of errors and the constant variance of errors are tested.
All of these assumptions hold for an effective ANOVA test on

the collected data and models (Eq. 3, 4, 5, and 6). Hence, we
can conduct ANOVA tests, whose result will be shown in the
next section.

Table 1: Statistical Findings of Effect on Delay: Jitter and
Packet Loss

Jitter Df Sum Sq Mean Sq F value Pr(<F)
Jitter 9 2.30 0.255 29.97 <2e-16
App 4 49.02 12.255 1437.63 <2e-16

Residuals 905 7.71 0.009 – –
Packet Loss Df Sum Sq Mean Sq F value Pr(<F)
Packet Loss 4 1.87 0.467 60.17 <2e-16

App 4 40.04 10.009 1290.49 <2e-16
Residuals 535 4.15 0.008 – –

Table 2: Statistical Findings of Effect on Accuracy: Jitter and
Packet Loss

Jitter Df Sum Sq Mean Sq F value Pr(<F)
Jitter 9 29.16 3.24 62.84 <2e-16
App 2 23.94 11.972 232.21 <2e-16

Residuals 920 47.42 0.052 – –
Packet Loss Df Sum Sq Mean Sq F value Pr(<F)
Packet Loss 4 0.7102 0.1775 53.52 <2e-16

App 2 1.0846 0.5423 163.49 <2e-16
Residuals 299 0.9918 0.0033 – –

6 ANOVA: Results and Conclusions

As can be seen in Table 1 there is conclusive evidence
that delay is affected by both jitter and packet loss. More
specifically, the f-values of jitter and application are 29.97 (df.
= 9, p-value = 2e-16) and 1437.63 (df. = 4, p-value = 2e-16)
while the f-values of packet loss and application are 60.17 (df.
= 4, p-value = 2e-16) and 1290.47 (df. = 4, p-value = 2e-16),

26 IJCA, Vol. 23, No. 1, March 2016

respectively. The underlying reasons are as follows. As we
mentioned before, jitter causes packets to arrive out of order
and TCP needs to reorder packets before delivering them to
the application layer. TCP also re-transmits lost packets. Both
packet loss and jitter reduce the voice stream quality and this
affects the performance of the speech recognition. On the other
hand, the application affects the delay more seriously. The
f-values of application for jitter and packet loss are 1437.63
and 1290.47, respectively. In other words, Siri causes much
more delay than GSR. This is because Siri generates accurate
transcription by starting the speech recognition process just after
receiving the whole voice. That means Siri needs to receive the
whole stream before starting to generate the text. That increases
the delay in processing the whole text and accounts for the
majority of total delay. GSR, on the other hand, keeps the result
accurate by interaction between the transport and application
layers and so it offers less delay even under high values of packet
loss and jitter, compared to Siri.

As can be seen in Table 2, there is conclusive evidence that
accuracy is affected by both jitter (p-value = 2e-16, f-value
=62.84 on 9 df.) and packet loss (p-value = 2e-16 , f-value
=53.52 on 4 df.). More specifically, the f-values of jitter and
application are 62.84 (df. = 9, p-value = 2e-16) and 232.21
(df. = 4, p-value = 2e-16) while the f-values of packet loss and
application are 53.52 (df. = 4, p-value = 2e-16) and 163.49 (df.
= 4, p-value = 2e-16), respectively. Interestingly, for accuracy,
the impact of jitter and packet loss begin is greater than that for
delay. However, their impacts are still less than application.

7 Threats to Validity

7.1 Conclusion Validity

Conclusion validity makes sure that there is a statistical
relationship between the experiment and results, with a given
significance [30]. A perfect experiment would be conducted
in randomly selected locations around the world and using
randomly selected Internet providers. The experiment should
repeat many times in each location. Our testbeds for Apple
Siri and Google Speech Recognition were limited to a campus
network, thus limiting the statistical strength of the results.
Selecting the location and Internet provider randomly, as well
as increasing the number of sites can increase the conclusion
validity.

7.2 Internal Validity

Internal Validity refers to the causal effects between
independent and dependent variables, and for any relationship
to exist, we should make sure that it is not as a result of
a factor that there is no control over or that it has not been
measured [30]. One of the possible threats to internal validity
is the hardware limitations of the devices running GSR and
Siri. More specifically, the processing speed of memory and
CPU will affect the processing of data streams in a PC. Another
possible threat is the status of the PC. For example, when the

OS is busy, it does not have enough time to respond to the
interruptions generated from GSR or Siri, hence generating and
thus affecting delay.

7.3 Construct Validity

Construct validity refers to the relationship between theory
and study. Experiments need to be set up such that to the
highest degree possible, they are representative of the theory
under test. The experiments reflect the construct of cause and
results reflect the construct of effects well [30]. Since the delay
generated by the Internet (e.g., router, DNS, etc.) is complicated
and unpredictable, it is hard to say the extent to which packet
loss and jitter impact delay. Also, the transportation and
routing layers employ self-adaptive mechanisms to adjust the
performance of specific applications, e.g., GSR and Siri. In the
end, both the jitter and the packet loss are generated by a specific
program (i.e., simulated), rather than real network conditions.
It is hard to know whether the simulated impact has the same
effects of real jitter or packet loss.

7.4 External Validity

The external validity is all about generalization. Can we
generalize the result of the treatment outside the scope of our
study in case of a causal relationship between cause and the
construct [30]? All of the experiments were conducted in our
lab and through our campus network. It is likely that the
configuration of our campus network is different from other
networks, such as firewalls and TCP/UDP controls. Hence, the
conclusion obtained from the experiment cannot be generalized
to common network environments. In addition, the available
bandwidth of different regions in United States is different.
It is possible that this diversity affects the conclusion that it
cannot be applied to the other regions in United States. Finally,
the sample is small (the evaluation is run on one desktop in
a laboratory setting). A larger scale experiment running on
more desktops, as well as laptops and smart phones, will lessen
external threats.

8 Conclusions and Future Work

We designed and implemented experimental evaluations of
Siri and GSR, and Dragon. Using experiment data, we designed
four models to evaluate the effects of jitter and packet loss
separately. After conducting ANOVA tests for each experiment,
we found that the effects of packet loss and jitter on delay are
statistically significant but the impact is not important compared
to the one that comes from the application, because from the
tables we can see that the application generated most of the
impact. In addition, we found that GSR performs better than
Siri in respect to delay. Results from the Dragon testbeds
shows that the effects of packet loss and jitter on delay and
also accuracy are statistically significant but the impact is not
important compared to the one that comes from the application.

IJCA, Vol. 23, No. 1, March 2016 27

Statistical findings of effect of jitter and loss on the accuracy and
delay show that the application generated most of the impact.

Delay of all applications is affected by packet loss and
jitter. In order to design and implement real-time cloud speech
recognition applications for more critical tasks, there should be
mechanisms to measure loss/jitter tolerant systems. Network
coding is a possible solution to reduce the effect of packet loss
and jitter [8, 24, 26, 27]. Using TCP keeps these applications
accurate under packet loss and jitter values, but as we saw
in our results, it affects the roundtrip delay. By using UDP
and network coding, we can keep the system accurate under
different values of jitter and packet loss while we reduce
the resulting delay. Future cloud based speech recognition
applications that use cellular networks are still required to
overcome this problem; which is due to the presence of jitter
from packet transmission over different paths.

This experiment can also be extended by running Siri and
GSR over different cellular networks, and adding the celluar
data provider as another blocking variable.

Running the experimental setup over a wide geographical
range of clients and also using different cellular data providers
can result in more accurate results. Considering clients with
a diversity of hardware and software configurations can be
another extension for this research.

Acknowledgements

We thank the National Science Foundation for supporting this
work through grant NSF CSR-1527097.

References

[1] Nuance Communications. http://www.nuance.com/

news/pressreleases/2009/20091005_ecopy.asp.

[2] Nuance Technologies. http://research.nuance.com/
category/speech-recognition/.

[3] Siri. https://support.apple.com/en-us/ht4992.

[4] Saamer Akhshabi, Ali C. Begen, and Constantine
Dovrolis. An experimental evaluation of rate-adaptation
algorithms in adaptive streaming over http. In Proceedings
of the Second Annual ACM Conference on Multimedia
Systems, MMSys ’11, pages 157–168, New York, NY,
USA, 2011. ACM.

[5] Saamer Akhshabi, Sethumadhavan Narayanaswamy, Ali C
Begen, and Constantine Dovrolis. An experimental
evaluation of rate-adaptive video players over http. Signal
Processing: Image Communication, 27(4):271–287, 2012.

[6] Jay Beale Angela Orebaugh, Gilbert Ramirez and Joshua
Wright. Wireshark and ethereal network protocol analyzer
toolkit. Syngress Media Inc, 2007.

[7] Apple. iOS: Multipath TCP Support in iOS 7, 2014. http:
//engineering.purdue.edu/~mark/puthesis.

[8] Mehdi Assefi, Mike P. Wittie, and Allan Knight. Impact
of network performance on cloud speech recognition.
ICCCN, IEEE. Aug. 2015.

[9] Mehdi Assefi, Mike P. Wittie, Guangchi Liu, and Clemente
Izurieta. An experimental evaluation of apple siri and
google speech recognition. SEDE, ISCA. Oct. 2015.

[10] Ł Budzisz, Rade Stanojević, Arieh Schlote, Fred Baker,
and Robert Shorten. On the fair coexistence of loss-and
delay-based tcp. IEEE/ACM Transactions on Networking
(TON), 19(6):1811–1824, 2011.

[11] Kuan-Ta Chen, Cheng-Chun Tu, and Wei-Cheng Xiao.
Oneclick: A framework for measuring network quality
of experience. In INFOCOM 2009, IEEE, pages 702–710.
IEEE, 2009.

[12] Kuan-Ta Chen, Chen-Chi Wu, Yu-Chun Chang, and
Chin-Laung Lei. A Crowdsourceable QoE Evaluation
Framework for Multimedia Content. In Proceedings of the
17th ACM international conference on Multimedia, pages
491–500. ACM, 2009.

[13] Yung-Chih Chen, Yeon-sup Lim, Richard J Gibbens,
Erich M Nahum, Ramin Khalili, and Don Towsley. A
measurement-based study of multipath tcp performance
over wireless networks. In ACM IMC, Oct. 2013.

[14] Luca De Cicco, Gaetano Carlucci, and Saverio Mascolo.
Experimental investigation of the google congestion
control for real-time flows. In SIGCOMM workshop on
Future human-centric multimedia networking, Aug. 2013.

[15] Luca De Cicco and Saverio Mascolo. An experimental
investigation of the Akamai adaptive video streaming.
Springer, 2010.

[16] M Eittenberger, Todor Mladenov, and Udo R Krieger.
Raptor codes for p2p streaming. In Parallel, Distributed
and Network-Based Processing (PDP), Feb. 2012.

[17] Google. Performing speech recognition over a network
and using speech recognition results. http://www.

google.com/patents/US8335687.

[18] David A Hayes and Grenville Armitage. Improved
coexistence and loss tolerance for delay based tcp
congestion control. In Local Computer Networks (LCN),
2010 IEEE 35th Conference on, pages 24–31. IEEE, 2010.

[19] Junxian Huang, Qiang Xu, Birjodh Tiwana, Z Morley
Mao, Ming Zhang, and Paramvir Bahl. Anatomizing
application performance differences on smartphones. In
ACM Mobile systems, applications, and services, Jun.
2010.

[20] Te-Yuan Huang, Kuan-Ta Chen, and Polly Huang. Tuning
skype’s redundancy control algorithm for user satisfaction.
In INFOCOM, Apr. 2009.

28 IJCA, Vol. 23, No. 1, March 2016

[21] Te-Yuan Huang, Polly Huang, Kuan-Ta Chen, and Po-
Jung Wang. Could skype be more satisfying? a qoe-
centric study of the fec mechanism in an internet-scale
voip system. Network, IEEE, 24(2):42–48, 2010.

[22] Xin Lei, Andrew Senior, Alexander Gruenstein, and
Jeffrey Sorensen. Accurate and compact large vocabulary
speech recognition on mobile devices. In INTERSPEECH,
pages 662–665, 2013.

[23] David JC MacKay. Fountain codes. IEE Proceedings-
Communications, 152(6):1062–1068, Dec. 2005.

[24] Hyung Rai Oh and Hwangjun Song. Mesh-pull-based p2p
video streaming system using fountain codes. In Computer
Communications and Networks (ICCCN), Jul. 2011.

[25] J. Roskind. QUIC: Design Document and
Specification, Dec. 2013. https://docs.

google.com/a/chromium.org/document/d/

1RNHkxVvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34.

[26] Guillaume Smith, P Tournoux, Roksana Boreli, Jérôme
Lacan, and Emmanuel Lochin. On the limit of fountain
mdc codes for video peer-to-peer networks. In World of
Wireless, Mobile and Multimedia Networks (WoWMoM),
Jun. 2012.

[27] Dejan Vukobratovic, Vladimir Stankovic, Dino
Sejdinovic, Lina Stankovic, and Zixiang Xiong. Scalable
video multicast using expanding window fountain codes.
IEEE Transactions on Multimedia, 11(6):1094–1104, Oct.
2009.

[28] Stefan Winkler and Ruth Campos. Video quality
evaluation for internet streaming applications. In
Electronic Imaging 2003, pages 104–115. International
Society for Optics and Photonics.

[29] Stefan Winkler and Frédéric Dufaux. Video quality
evaluation for mobile streaming applications. In Visual
Communications and Image Processing 2003, pages 593–
603. International Society for Optics and Photonics, 2003.

[30] Claes Wohlin, Per Runeson, Martin Höst, Magnus C
Ohlsson, Björn Regnell, and Anders Wesslén.
Experimentation in Software Engineering. pages 102–104.
Springer Science & Business Media, 2012.

[31] Yang Xu, Chenguang Yu, Jingjiang Li, and Yong Liu.
Video telephony for end-consumers: measurement study
of google+, ichat, and skype. In Proceedings of the 2012
ACM conference on Internet measurement conference,
pages 371–384. ACM, 2012.

[32] Li Yujian and Liu Bo. A normalized levenshtein distance
metric. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 29(6):1091–1095, Jun. 2007.

Mehdi Assefi is a graduate student in
the Computer Science department at
Montana State University. Born in
Mashhad, Iran, his research interests
include cloud computing, network
performance evaluation, and real-
time streaming. Mehdi Assefi has
approximately 11 years teaching and
research experience.

Guangchi Liu is currently a Ph.D
candidate in the department of
computer science, Montana State
University, Bozeman, MT, USA.
He received his B.E. in biomedical
engineering, and M.E. in electrical
and computer engineering from
Southeast University, China in 2009
and 2012, respectively. His research

interests include Internet of things, trust assessment, social
network, and wireless sensor network.

Dr. Mike P. Wittie is a
RightNow Technologies Assistant
Professor and a co-director of the
Networks+Algorithms Lab at the
Montana State University Computer
Science Department since Fall
2011. His research interests focus
on latency reduction, network
measurement, and content delivery
in wide-area networks. He received

his PhD in Computer Science from the Computer Science
Department at the University of California, Santa Barbara, and
MSE in Computer Science and BA in Cognitive Science from
the University of Pennsylvania. He worked professionally on
military datalink integration for Anzus Inc. (now Rockwell
Collins).

Dr. Clemente Izurieta is an
Assistant Professor in the Computer
Science department at Montana State
University and holds a PhD from
Colorado State University. Born
in Santiago, Chile, his research
interests include empirical software
engineering, design and architecture
of software systems, the measurement
of software quality, and technical
debt. Dr. Izurieta has approximately
16 years experience working for

various RD labs at Hewlett Packard and Intel Corporation and
currently directs the Software Engineering Laboratories (SEL)
at Montana State. SEL has funding from NSF, DoD, and the
State of Montana and supports 3 PhD and 6 MS students.

IJCA, Vol. 23, No. 1, March 2016 29

ISCA Copyright© 2016

Test Suite Selection in JUnit Testing Environment

Based on Software Metrics

Shadi Banitaan*, Kevin Daimi*

University of Detroit Mercy, Detroit, Michigan USA

Mohammed Akour‡

Yarmouk University, JORDAN

Yujun Wang*

University of Detroit Mercy, Detroit, Michigan USA

Abstract

As software systems evolve, test suites become very large.

The size of test suites has a direct impact on both the cost and

the effort of software testing. To reduce the cost of software

testing, researchers have proposed different test case selection

techniques. Test case selection techniques aim to identify test

cases that are not needed to run based on some criteria. In this

work, we propose an approach for test case selection using

software metrics. We examine the ability of several complexity

and size metrics to find the most complex and error-prone

classes. Testers can then run test cases that are associated with

the complex classes only. We focus our experiments on systems

written in Java and tested with the JUnit testing framework. The

results reveal that the proposed approach significantly reduces

the number of test cases needed while detecting most of seeded

errors.

Key Words: Test case selection, software metrics, unit

testing, software testing.

1 Introduction

Software is an essential part in several of the devices and the

systems that we use in our daily life. It is very crucial for

software to be very reliable, especially the one that is attached

with mission critical devices such as pacemakers. Software

failure (i.e., incorrect software behavior) may lead to risky

harms such as aircraft crashes. Moreover, software failure may

have a direct impact on economy. Therefore, software under

development should be evaluated first prior to delivery to

customers. Software testing is the main method that is usually

used to test and evaluate software under development [13]. The

primary goal of testing is to find defects before customers find

them out [13].

Unit testing is the first phase of testing. The goal of unit

* Computer Science and Software Engineering. Email: (banitash,

daimikj, wangyu6)@udmercy.edu.
‡ Computer Information Systems. Email: mohammed.akour

@yu.edu.jo

testing is to ensure that all software units are working correctly

in isolation. In Object oriented (OO) software, the class is the

smallest testable unit and class testing is determined by the

methods and the behavior of the class [19]. To apply unit

testing, both white box and black testing techniques can be used.

White box testing techniques involve access to software code

while black box testing techniques do not involve access to

software code. In white box unit testing, software developers

write test cases to make sure that classes behave as intended.

Unfortunately, it is not possible to comprehensively test large

software products. In addition, Software developers do not find

enough time to conduct unit testing. Also, unit testing is very

costly. One of the solutions to the aforementioned problems is

to focus the unit testing on the most complex and error-prone

classes.

Complex classes can be identified using software metrics.

Software metrics are quantitative measures of some properties of

software. They are extensively used to control the software

development and measure the quality of software products (e.g.,

integrity and maintainability). Chidamber and Kemerer [11]

proposed six metrics of OO design such as lack of cohesion in

methods (LCOM) and number of children (NOC). Whitmire

[22] explained measurable characteristics of an OO design [19].

Some of these characteristics are size, complexity, coupling, and

cohesion. Binder [8] proposed several design metrics that

contribute to a systems testability. In this work, we identify

complex classes using both size and complexity metrics.

Identifying complex classes helps the testing team to focus their

testing effort on just part of the classes to save time and

resources. The premise is that errors are most likely to occur on

the more complex classes. To summarize, this paper makes the

following contributions:

 Propose an approach for test case selection using

complexity and size metrics.

 Conduct an experimental study on two Java applications.

 Evaluate the proposed approach using the error seeding

technique.

 Compare the proposed work with one of the state-of-the-art

approaches.

30 IJCA, Vol. 23, No. 1, March 2016

The rest of the paper is organized as follows: Section 2

discusses the related work. Section 3 describes the proposed

approach. The experimental evaluation and discussion are

presented in Section 4. Section 5 concludes the paper.

2 Related Work

Software testing is very costly. Therefore, reducing the cost

of testing is a big challenge. Three main branches have been

proposed in literature to reduce the cost of testing that include

test prioritization [14, 21, 24], test selection [6, 10, 17], and test

minimization [9, 16, 20]. Test prioritization aims to rank test

cases so that test cases that are more effective according to such

criteria will be executed first to maximize fault detection. Test

selection aims to identify test cases that are not needed to run on

the new version of the software. Test minimization aims to

remove redundant test cases based on some criteria in order to

reduce the number of tests to run. Our approach belongs to the

test selection category.

Several researchers used the optimization search techniques to

solve the test selection problem [7, 12, 18, 23]. Mansour and El-

Fakih [18] used simulated annealing and genetic algorithms for

regression test case selection. Their results revealed that

simulated annealing and genetic algorithms can find the optimal

or near-optimal number of retests within a reasonable time. Yoo

and Harman [23] presented a study that investigated the

effectiveness of three algorithms for Pareto efficient multi

objective test case selection. Their results showed that greedy

algorithms are not always Pareto efficient in the multi-objective

paradigm.

Recently, some approaches were proposed to reduce the cost

of testing by reducing the number of developed test cases using

software metrics. Bouchaib [15] used a set of complexity

metrics at class, method, and statement level to target test cases.

The experimental results showed that the developed test cases

using the proposed approach detected 100% of seeded errors and

at least 60% of mutants. Banitaan et al. [5] proposed an

approach to select the test focus in integration testing. Their

approach used a combination of dependency and complexity

metrics to give a weight for each method-pair connection. After

that, the approach predicted the number of test cases needed to

test each connection. They evaluated their approach using error

seeding technique. Their experimental results on several Java

applications showed that the small number of developed test

cases (half the number of method-pair connections) detected at

least 80% of integration errors. In this work, we investigate the

use of several complexity and volume metrics to solve the test

case selection problem.

3 The Proposed Approach

In this paper, we propose a simple approach to reduce the cost

of unit testing using class-level software metrics. Figure 1

illustrates the activity diagram for the proposed approach. The

first step is to calculate the metric from the source code. When

calculate metric function completes, it produces the values of the

calculated metrics. After that, Rank all Classes function ranks

classes based on the metric values for all classes. Then, test

cases associated with the top ranked 25% of classes will be

selected in the first iteration. The next step is to run the selected

test cases against the faulty versions of the application and the

error detection rate is calculated. The process of selecting test

cases is an iterative process. We stop if the selected test cases

achieve 70% error detection rate. Otherwise, we select more test

cases until the 70% error detection rate is achieved. For

example, if the error detection rate using the 25% of the ranked

classes is less than 70% then we compute the error detection rate

using the test cases associated with the top 30% of the ranked

classes. The iterative process continues by adding additional 5%

of the test classes until the 70% error detection rate is achieved.

All steps are applied and repeated using each of the selected

metrics. It is noteworthy to mention that the aim is to detect a

large percentage of errors using a small number of test cases.

We use 70% as a threshold for the percentage of detected errors

to stop the test selection process.

 Figure 1: The proposed test selection approach

3.1 Metrics

In this section, we define the selected complexity and size

metrics. We selected four complexity metrics; SumCyclomatic,

AvgCyclomatic, MaxCyclomatic, and SumEssential. The

cyclomatic complexity measures the number of independent

IJCA, Vol. 23, No. 1, March 2016 31

paths through the source code. The higher the complexity the

more difficult the program becomes to test. The essential

measures the amount of unstructured code. We selected four

size metrics; AvgLineCode, CountLine, CountDeclMethodAll,

and CountDeclInstanceVariable. The idea of this selection is to

investigate if complexity and size metrics can be used to

identify the more error-prone classes. We use the Understand

tool by SciTools [4] to calculate the complexity and size

metrics. Table 1 presents the description of the selected

metrics.

 Table 1: Description of metrics

Metric Description

SumCyclomatic The sum of cyclomatic

complexity of all nested

functions or methods

AvgCyclomatic The average cyclomatic

complexity for all nested

functions or methods

MaxCyclomatic The maximum cyclomatic

complexity of all nested

functions or methods

SumEssential The sum of essential

complexity of all nested

functions or methods

AvgLineCode The average number of lines

containing source code for all

nested functions or methods

CountDeclMethodAll The number of methods,

including inherited ones

CountDeclInstanceVariable The number of instance

variables

CountLine The number of all lines

3.2 Subjects

In this work, we focus our experiments on systems written in

Java and tested with the JUnit testing framework. Therefore, we

selected two open-source applications implemented in Java that

have JUnit test suites. The first case study subject is Commons

Math [1]. Commons Math is a library of lightweight, self-

contained mathematics and statistics components addressing the

most common problems not available in the Java programming

language or Commons Lang. The second subject is Commons

IO [2]. Commons IO is a library of utilities to assist with

developing IO functionality. It includes six main areas: utility

classes, input, output, filters, comparators, and file monitor.

Table 2 shows a summary of the selected systems where

Classes denotes the number of classes, Methods denotes the

number of methods, and Test Cases denotes the number of test

cases.

 Table 2: Summary of subjects

Application Classes Methods Test Cases

Commons Math 161 1728 1578

Commons IO 97 884 1213

4 Evaluation

In this section, the performance of the proposed approach is

evaluated with respect to the error detection capabilities. The

two Java applications do not have errors. Therefore, errors

should be injected into the applications. Researchers usually use

two approaches to inject errors: mutation and error seeding.

The mutation approach produces a large number of errors but

these errors may not be descriptive of actual errors [14]. Error

seeding cannot create a large number of errors practically and

efficiently, but it can generate actual errors [14]. Therefore, the

error seeding technique is used in this work. Errors are placed in

the source code by a graduate student. The error seeder injects

different types of errors based on his experience with real

programs. The error seeder injects 40 errors in each application.

The error detection rate, the savings, and the score are

calculated. The error detection rate is calculated by dividing the

number of detected seeded errors by the total number of seeded

errors. The savings metric measures the percentage of saving of

test cases. It can be calculated using the following formula.

100

T

selectTT
Savings

Where T is the total number of test cases available for the

application while Tselect is the number of selected test cases. The

formula assumes that all test cases have uniform costs. The

score metric takes both error detection rate and number of test

cases in consideration. The score is computed as follows:

SelectT

RateDetectionError
Score

Table 3 shows the results of applying the proposed approach

on the two Java applications. It reports the number of selected

test cases based on the eight class-level metrics, the savings, the

score, the error detection rate, and the percentage of classes that

are tested. The results show that the SumCyclomatic metric is

the only metric that gives an error detection rate higher than or

equal to 70% on the first iteration (i.e., by testing the highly

ranked 25% of classes). In terms of savings, the SumCyclomatic

metric gives the best results while the MaxCyclomatic metric

gives the worst results for the Commons Math application. For

Commons IO, the maximum percentage of savings is obtained

by using the AvgLineCode metric while the minimum

percentage of savings is obtained by using the

CountDeclInstanceVariable metric. In terms of score, the

highest score is obtained by using SumCyclomatic while the

lowest score is obtained by using MaxCyclomatic for the

Commons Math application. For the Commons IO application,

the highest score is obtained by using AvgLineCode while the

lowest score is obtained by using CountDeclInstanceVariable.

The results of the Commons IO application also show that the

best error detection rate is obtained by using AvgLineCode and

CountLine. However, AvgLineCode has a higher score than

CountLine because it produces much more savings. As a

32 IJCA, Vol. 23, No. 1, March 2016

Table 3: Results of the proposed approach

CountLine. However, AvgLineCode has a higher score than

CountLine because it produces much more savings. As a

result, the proposed approach is effective in detecting at least

70% of seeded errors by testing the highly complex classes

ranked by the selected complexity and size metrics. The

results indicate that the highly ranked classes comprehend

most of the errors. Moreover, the proposed approach reduces

the number of test cases needed to detect most of the errors

(i.e., high percentage of savings). We also compared our work

with the method coverage approach where test suites are

ranked based on the number of methods they cover. The

EclEmma code coverage tool [3] is used to collect the method

coverage of the test suites. Figure 2 shows the comparison in

terms of savings and score. For Commons Math, the selected

metrics outperform the coverage based approach in terms of

savings. For Commons IO, all selected metrics except

CountDeclInstanceVariable outperform the coverage based

approach in terms of savings. For Commons Math, the score

of the selected metrics outperforms the coverage based

approach. For Commons IO, the score of all selected metrics

except CountDeclInstanceVariable outperforms the coverage

based approach. Based on the results of the comparisons, we

notice that using the complexity and size metrics give better

results as compared with the coverage based approach.

5 Conclusion

In this paper, we introduced an approach for test case

selection. We examined the ability of several complexity and

size metrics to detect the most complex and error-prone object-

oriented classes. After identifying the most complex and

error-prone classes, testers can then execute test suites that are

associated with those classes only. We applied the proposed

approach on two open-source Java applications, namely

Commons Math and Commons IO. Error seeding technique is

used to inject errors. The results revealed that the proposed

approach is effective in detecting at least 70% of seeded errors

by focusing the testing on the most complex classes. As a

result, the proposed approach is feasible in reducing the

number of test cases needed.

References

[1] The Apache Commons Mathematics Library.

http://commons.apache.org/math/.

[2] Commons io. http://commons.apache.org/io/.

[3] Eclemma: Java Code Coverage for Eclipse.

http://eclemma.org/.

[4] Understand your code. http://scitools.com/.

[5] Shadi Banitaan, Mamdouh Alenezi, Kendall Nygard,

and Kenneth Magel, “Towards Test Focus Selection for

Application Metric # Of

Test Cases

Savings Score Detectio

n Rate

% of Tested

Classes

Commons

Math

SumCyclomatic 490 68.95 0.143 70% 25%

AvgCyclomatic 586 62.86 0.119 70% 50%

MaxCyclomatic 713 54.82 0.105 75% 40%

SumEssential 589 62.67 0.127 75% 30%

AvgLineCode 544 65.53 0.129 70% 30%

CountDeclMethodAll 554 64.89 0.126 70% 30%

CountDeclInstanceVariable 652 58.68 0.110 72% 50%

CountLine 618 60.84 0.118 73% 30%

Commons

IO

SumCyclomatic 562 53.67 0.114 75% 25%

AvgCyclomatic 840 30.75 0.087 73% 40%

MaxCyclomatic 653 46.17 0.112 73% 35%

SumEssential 665 45.18 0.105 70% 30%

AvgLineCode 465 61.67 0.172 80% 30%

CountDeclMethodAll 490 59.61 0.143 70% 30%

CountDeclInstanceVariable 923 23.91 0.076 70% 50%

CountLine 669 44.85 0.120 80% 30%

http://commons.apache.org/math/
http://commons.apache.org/io/
http://eclemma.org/
http://scitools.com/

IJCA, Vol. 23, No. 1, March 2016 33

 (a)Savings of Commons Math (b) Savings of Commons IO

 (c) Score of Commons Math (d) Score of Commons IO

Figure 2: The results of comparing the proposed work with the coverage based approach

Integration Testing using Method Level Software

Metrics,” Proceedings of the 10th International

Conference on Information Technology: New

Generations, pp. 343-348, April 2013.

[6] Shadi Banitaan, Kevin Daimi, Yujun Wang, and

Mohammed Akour, “Test Case Selection using

Software Complexity and Volume Metrics,” 24th

International Conference on Software Engineering and

Data Engineering (SEDE), ISCA, 2015.

[7] Kevin Barltrop, Brad Clement, Greg Horvath, and Cin-

Young Lee, “Automated Test Case Selection for Flight

Systems using Genetic Algorithms,” Proceedings of the

AIAA Infotech@ Aerospace Conference, pp. 1-8, 2010.

[8] Robert V Binder, “Design for Testability in Object-

Oriented Systems,” Communications of the ACM,

37(9):87-101, 1994.

[9] Dale Blue, Itai Segall, Rachel Tzoref-Brill, and Aviad

Zlotnick, “Interaction-Based Test-Suite Minimization,”

Proceedings of the 2013 International Conference on

Software Engineering, pp. 182-191. IEEE Press, 2013.

[10] L. C. Briand, Y. Labiche, and S. He, “Automating

Regression Test Selection Based on Uml Designs,” Inf.

Softw. Technol., 51:16-30, Jan 2009.

[11] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite for

Object Oriented Design, IEEE Transactions on

Software Engineering, 20:476-493, 1994.

[12] Luciano S de Souza, Ricardo Bastos Cavalcante

Prudencio, and Fl_avia de Almeida Barros, “A

Constrained Particle Swarm Optimization Approach for

Test Case Selection,” SEKE, pp. 259-264, 2010.

[13] Srinivasan Desikan and Gopalaswamy Ramesh,

Software Testing: Principles and Practices, Pearson

Education India, 2012.

[14] Hyunsook Do, Gregg Rothermel, and Alex Kinneer,

“Prioritizing Unit Test Cases: An Empirical

Assessment and Cost-Benefits Analysis,” Empirical

Software Engineering, 11(1):33-70, 2006.

[15] Bouchaib Falah, Test Case Selection Based on a

Spectrum of Complexity Metrics, PhD Dissertation,

North Dakota State University, 2011.

[16] H. Y. Hsu and A. Orso, “Mints: A General Framework

and Tool for Supporting Test-Suite Minimization,”

34 IJCA, Vol. 23, No. 1, March 2016

IEEE 31st International Conference on Software

Engineering, 2009, ICSE 2009, IEEE, pp. 419-429,

2009.

[17] Y. Ledru, G. Vega, T. Triki, and L. Bousquet, “Test

Suite Selection Based On Traceability AnnoTations,”

Proceedings of the 27th IEEE/ACM International

Conference on Automated Software Engineering, pp.

342-345. ACM, 2012.

[18] Nashat Mansour and Khalid El-Fakih, “Simulated

Annealing and Genetic Algorithms for Optimal

Regression Testing,” Journal of Software Maintenance,

11(1):19-34, 1999.

[19] Roger Pressman, Software Engineering: A

Practitioner's Approach, 7th Edition, McGraw-Hill,

Inc., New York, NY, USA, 2010.

[20] Sriraman Tallam and Neelam Gupta, “A

Concept Analysis Inspired Greedy Algorithm for Test

Suite Minimization,” Proceedings of the 6th “ACM

SIGPLAN-SIGSOFT Workshop on Program Analysis

for Software Tools and Engineering, PASTE '05, pp.

35-42, New York, NY, USA, 2005.

[21] Stephen W Thomas, Hadi Hemmati, Ahmed E Hassan,

and Dorothea Blostein, “Static Test Case Prioritization

using Topic Models,” Empirical Software Engineering,

19(1):182-212, 2014.

[22] Scott A Whitmire, Object Oriented Design

Measurement, John Wiley & Sons, Inc., 1997.

[23] Shin Yoo and Mark Harman, “Pareto Efficient Multi-

Objective Test Case Selection,” Proceedings of the 2007

International Symposium on Software Testing and

Analysis, ACM, pp. 140-150, 2007.

[24] Z. Zhang, Y. Mu, and Y. Tian, Test Case Prioritization

for Regression Testing Based on Function Call Path,”

2012 Fourth International Conference on Computational

and Information Sciences (ICCIS), IEEE, pp. 1372-

1375, 2012.

Shadi Banitaan is currently an

Assistant Professor at the Mathematics,

Computer Science, and Software

Engineering department at the

University of Detroit Mercy. His

research interests include data mining,

mining software repositories, software

testing, and software engineering. He is

a member of the Association for Computing Machinery

(ACM), a member of the Institute of Electrical and Electronic

Engineers (IEEE), and a member of the IEEE Computer

Society. He received a B.S. degree in Computer Science from

Yarmouk University, an M.S. degree in Computer and

Information Sciences from Yarmouk University, and a Ph.D.

degree in Computer Science from North Dakota State

University. He worked as a lecturer at the University of Nizwa

from 2004 to 2009. He joined the University of Detroit Mercy

in 2013.

Kevin Daimi received the B.S. degree

from the University of Baghdad, Iraq,

in 1971, the M.S. and Ph.D. degrees

from the University of Cranfield,

Bedford, England, in 1980 and 1983

respectively. He is currently a Full

Professor of Computer Science and

Software Engineering, and Director of

Computer Science and Software

Engineering Programs at the University of Detroit Mercy

(UDM), Detroit, Michigan. His research interests include

computer and network security, software engineering,

computer science and software engineering education, and data

mining. He is the recipient of the 2013 Faculty Excellence

Award at UDM. He has worked as programmer, senior

systems analyst, computer manager, computer consultant,

director of computer center, and head of computer science

department. He is a fellow of the British Computer Society

(BCS), a senior member of the Association for Computing

Machinery (ACM), and a senior member of the Institute of

Electrical and Electronics Engineers (IEEE).

Mohammed Akour is an Assistant

Professor in the Department of Computer

Information System at the Yarmouk

University (YU). He received his

Bachelor (2006) and Master (2008)

degree from Yarmouk University in

Computer Information System with

honor. He joined YU as a Lecturer in August 2008 after

graduating with his Master in Computer Information System.

In August 2009, he left YU to pursue his PhD in Software

Engineering at the North Dakota State University (NDSU). He

joined YU again in April 2012 after graduating with his PhD in

Software Engineering from NDSU with honor. He serves as a

reviewer for several conferences and Journals. He has

participated as a co-chair for several conferences.

Yujun Wang is currently a graduate

student in the Mathematics, Computer

Science, and Software Engineering

department at the University of Detroit

Mercy. His research interests include

component based software engineering

and software development life cycle.

He received a Bachelor's Degree (‘08)

in Computer Science from Neusoft University, China.

IJCA, Vol. 23, No. 1, March 2016 35

ISCA Copyright© 2016

Assessing Software Defects Using Nano-Patterns Detection

Ajay K. Deo*, Zadia Codabux*, Kazi Zakia Sultana*, and Byron J. Williams*

Mississippi State University, Starkville, MS, 39762, USA

Abstract

Improving software quality and reliability is important for

sustained software development efforts. Defect tracking has

traditionally been used to measure quality throughout the

software lifecycle. Various techniques have been used to

identify code fragments containing defects. Locating code

smells is one increasingly popular approach to identifying

vulnerable code, but techniques relying on code smell

identification have drawbacks. These techniques use

ambiguous thresholds of traditional metrics to determine where

the code smells exist in the code. There is a need for a more

reliable, exact approaches that are consistent across software

systems. Traceable patterns, such as method-level nano-

patterns provide a direct binary assessment of code. This study

evaluates software defects using nano-patterns by

demonstrating that certain categories of nano-patterns are more

defect-prone than others. We studied three open source

systems from the Apache Software Foundation and found that

ObjectCreator, FieldReader, TypeManipulator, Looping,

Exceptions, LocalReader, and LocalWriter nano-patterns are

more defect-prone than others. Apart from assessing software

defects, we expect this new finding will contribute to further

research on other applications of nano-patterns and improve

coding practices.

Key Words: Software patterns, traceable patterns, nano-

patterns, defect detection, software quality.

1 Introduction

Software systems are becoming more complex with an

increasing project lifespan. Software quality has emerged as an

important aspect of software development. However, software

quality is an elusive concept which cannot be physically

measured [12]. One simple measure of quality is the number

of defects contained in a release. These defects directly impact

a product’s quality and overall customer satisfaction.

Achieving zero software defects and zero software

maintenance cost would be an unrealistic expectation for most

software systems. Minimizing defects represents a tangible

improvement in software development. Therefore, software

* Department of Computer Science and Engineering. Email

akd175@msstate.edu, zc130@msstate.edu, ks2190@msstate.edu,

williams@cse.msstate.edu.

developers strive to minimize the number of defects to

improve software quality and lower development costs.

Releasing software containing defects can damage the

reputation of the software development company resulting in

customers’ loss of confidence in the product. This research

focuses on understanding software quality using traceable

software patterns to assess defects.

Software maintenance is a never-ending process. Changes

made during a maintenance phase are often critical and can be

expensive. Maintenance cost outweighs other development

costs by a substantial margin [5]. Maintenance activities

include defect fixes, enhancements, optimizations, refactoring,

etc. Some of these activities (e.g., adding new functionality)

are planned in advance. Maintenance due to environment

changes is inevitable. However, other activities (e.g., defect

fixing and optimization) are mostly the result of poor software

quality. Cost incurred engaging in these maintenance activities

can be minimized.

Changes are inevitable in software development. Rigorous

testing of the entire code base for every single change is

impractical as it can be tedious and expensive. To locate the

defect-prone areas of software, developers use static analysis

tools to identify code smells and other development

irregularities. Software metrics are often used to determine the

quality of the software. However, many metrics are vaguely

defined or can have multiple definitions. Some metrics are not

reliable in the sense they do not accurately represent the current

state of the software system [6]. For example, the definition of

number Lines of Code (LOC) can be with or without comments

and with or without spaces. The same code written in two

different styles may differ in LOC. LOC is difficult to use as it

is not practical to restrict the developer within a certain number

of LOC as a way to ensure software quality [12]. Therefore,

using these metrics as quality indicators is often ambiguous.

Fowler et al. [15] came up with a concept of code smells for

identifying bad code. “A code smell is a surface indication that

usually corresponds to a deeper problem in the system” that

may slow down software development or increase the risk of

bugs [15]. Detecting code smells is an effective way of

improving code quality by identifying bad components and

identifying opportunities for refactoring. Code smells are

detected by using a combination of threshold values of

standard software metrics [14]. However, a lack of consensus

on the threshold values of these metrics results in discrepancies

mailto:akd175@msstate.edu

36 IJCA, Vol. 23, No. 1, March 2016

in the detection of code smells. Changing these threshold

values has a great impact on the number and accuracy of

detected smells [14]. In consequence, the use of code smells as

a pointer to assess the likelihood of software defects with high

accuracy is difficult.

Gil et al. [16] introduced the concept of traceable patterns.

Traceable patterns are similar to design patterns but at a lower

level of abstraction. These patterns are automatically

(mechanically) recognized as they are tied to a specific

language and are related to a single software element.

Traceable patterns are of various types depending upon their

level of abstraction. Class-level traceable patterns are called

micro-patterns (MP), whereas method-level traceable patterns

are called nano-patterns. Gil et al. [16] defined 24 micro-

patterns organized into 8 categories. Similarly, Singer et al.

[29] listed 17 fundamental nano-patterns organized into 4

groups.

Micro-patterns can be used to capture good or bad program

elements (i.e., whether the code represents acceptable coding

practices or not). They can help developers identify those

classes that belong to those categories of micro-pattern that are

fault-prone [11]. Micro-patterns are an important tool for

assessing software quality by spotting bad program

components. Similarly, good program elements can be

highlighted and encouraged as they make up good

programming practices.

This study uses nano-patterns to evaluate software defects in

OO systems. We demonstrate that certain categories of nano-

patterns are more fault-prone than others and provide

guidelines for programming practices on the use of nano-

patterns. To the best of our knowledge, no study has examined

nano-patterns to assess software system defects. This research

builds upon existing work using traceable patterns while

introducing new ways to view these method-level patterns and

their ability to locate potentially defective areas of code.

The rest of the document is structured as follows. Section 2

describes micro-patterns, nano-patterns, and code smells.

Section 3 gives an overview of related work. Section 4 focuses

on the methodology of this study. We present our results in

Section 5. Section 6 provides insights on the results. Section 7

lists the threats to validity, and Section 8 concludes and

outlines the future work.

2 Background

This section gives an overview of traceable patterns and

describes the two types of traceable patterns: micro-pattern

which are class level patterns and nano-patterns which are

methods level patterns.

2.1 Traceable Patterns

Gil et al. [16] came up with the notion of traceable patterns

for Java code. Traceable patterns are similar to design patterns.

However, they can be mechanically (automatically) recognized

and stand at lower level of abstractions than design patterns.

Traceable patterns are tied to the implementation language and

“can be expressed as a simple formal condition on the

attributes, types, name and body of a software module and its

components”. They impose a condition on a single software

module; for example, a class in which all fields is static, a

method that only returns void, etc. The following conditions

qualify a pattern as traceable [16]:

 Patterns should not occur at random

 Patterns must capture a non-trivial idiom of the

programming language

 Patterns should serve a concrete purpose

Traceable patterns can be of various types depending upon

their level of abstraction (e.g., micro-patterns, nano-patterns,

etc.). Class level patterns are called micro-patterns (MP),

whereas method level traceable patterns are called nano-

patterns.

2.1.1 Micro-Patterns. Gil et al. [16] defined a catalog of

27 micro-patterns organized into 8 categories relating to

various programming practices in Java. Figure 1 shows a

global map of the catalog where 27 micro-patterns are placed

in 8 categories. The X-axis in the figure corresponds to class

behavior while the Y-axis in the figure corresponds to class

state. Categories on the left are those patterns that are more

restrictive than those on the right, and categories of patterns

on the top are more restrictive than those at the bottom. It can

be seen that some patterns are placed in more than one

category. Their empirical study shows micro-patterns to be

found consistently in abundance (about 75% of code) in the

software systems examined. Authors claimed that micro-

patterns can enhance design, code learning and reuse, training,

and automation [16].

The beauty of micro-patterns is that they are mechanically

recognized and therefore can be a good way to assess the

quality of software. Two studies, one by Destefanis et al. [11]

and other by Giulio et al. [9] were conducted to find the

relationship between fault-proneness and micro-patterns.

Destefanis found certain micro-patterns to be more fault-prone

than others, while Giulio found classes that did not match any

micro-patterns were more likely to be fault-prone. Fontana et

al. [14] investigated the correlations between code smells and

micro-patterns and found Data Class to have some relation

with the Data Manager, Extender, Immutable and Function

Objection micro-patterns. They also found co-location of

Duplicate Code with Data Manager, Extender, Outliner and

Sink micro-patterns. Though micro-patterns look like a good

candidate to assess software’s quality, the number of studies

conducted so far is minimal.

2.1.2 Nano-Patterns. A nano-pattern is a method level

traceable pattern. They are traceable patterns because, “they

can be expressed as a simple formal condition on the

attributes, types, name and body” of methods written in the

Java programming language [16, 29]. Nano-patterns have

following properties [29]:

IJCA, Vol. 23, No. 1, March 2016 37

Figure 1: A map of the micro-patterns catalog [16]

Notes: “Rounded rectangles denote pattern categories in which state, behavior, or construction is degenerate, rectangles

denote categories of patterns for containment, while trapezoids denote patterns used for inheritance” [16].

 Simple: Can be detected by manual inspection or the

process can be easily automated

 Static: Should be detectable on bytecode analysis,

without any program execution context

 Binary: Each property is either true or false

Høst et al. [18] initially came up with simple Java method

attributes. Singer et al. [29] termed these attributes as

fundamental nano-patterns. They also extended Høst et al.’s

[18] attribute set to give a catalogue of 17 fundamental nano-

patterns grouped into four intuitive categories as shown in

Table 1. Boldface names in the table are for original patterns

devised by Singer et al. [29]. All other patterns are derived

from Høst et al.’s [18] catalogue. Fundamental nano-patterns

can also be combined logically to derive composite nano-

patterns as shown below where PureMethod composite nano-

pattern is derived from FieldWriter, ArrayWriter,

ObjectCreator, ArrayCreator, and Leaf fundamental nano-

patterns [29].

PureMethod = ˥FieldWriter Λ˥ ArrayWriter Λ˥ ObjectCreator

Λ˥ ArrayCreator Λ Leaf

Nano-patterns seem to have various potential applications.

It can be used to find the similarity between methods, as

similar methods should have similar patterns. They provide a

good framework for quantitative analysis of large Java

applications and are of great help for the techniques like data

mining and clustering [29]. Combinations of nano-patterns

with micro-patterns can be an aid to design, documentation

and software comprehension [16]. Some combinations of

low-level patterns can be potential indicator to high-level

patterns. Therefore, nano-patterns can be utilized for

detecting high level patterns like design patterns, code smells,

etc., whose detection in general is acknowledged to be

difficult. Like micro-patterns, it can be an important tool for

assessing software quality. However, nano-patterns being a

relatively new concept have not been explored in depth.

38 IJCA, Vol. 23, No. 1, March 2016

Table 1: Catalogue of fundamental nano-patterns [29]

Category Name Description

Calling

NoParams

NoReturn

Recursive

SameName

Leaf

takes no arguments

returns void

calls itself recursively

calls another method with the same name

does not issue any method calls

Object-

Orientation

ObjectCreator

FieldReader

FieldWriter

TypeManipulator

creates new objects

reads (static or instance) field values from an object

writes values to (static or instance) field of an object

uses type casts or instance of operations

Control Flow
StraightLine

Looping

Exceptions

no branches in method body

one or more control flow loops in method body

may throw an unhandled exception

Data Flow

LocalReader

LocalWriter

ArrayCreator

ArrayReader

ArrayWriter

reads values of local variables on stack frame

writes values of local variables on stack frame

creates a new array

reads values from an array

writes values to an array

3 Related Work

The idea of using software metrics and patterns to assess

software defects is not new. In this section, we report on

relevant research that addresses these concepts. After

conducting a literature search, we were not able to find any

studies evaluating the practical use of nano-patterns for

software engineering applications. There was no prior work

using nano-patterns to assess software defects. There are

other techniques reported on in the literature and we highlight

those studies in this section.

3.1 Metrics and Software Quality

Basili et al. [4] conducted an empirical study to investigate

the suite of object-oriented design metrics. They were

interested in learning if these metrics can be used as predictors

of fault-prone classes and to determine if the metrics are

suitable as early quality indicators. They reported that five out

of the six Chidamber and Kemerer (CK) metrics (i.e.,

Weighted Methods per Class (WMC), Depth of Inheritance

Tree of a class (DIT), Number of Children of a Class (NOC),

Response for a Class (RFC), and Coupling between Objects

classes (CBO)) were useful for predicting class fault-

proneness during the high and low level design phase. They

also noted that CK metrics were better predictors than the best

set of traditional code metrics at the time.

Thwin et al. [32] showed the application of neural networks

for estimating software quality using OO metrics (i.e., DIT,

NOC, CBO, RFC, Inheritance Coupling (IC), Coupling

Between Methods (CBM), Weighted Methods per Class

(WMC), Number of Objects/Memory Allocations (NOMA)).

Quality was derived from the number of defects in a class and

number of lines changed per class (i.e., the higher the defect

number, the lower the quality). It was concluded that the OO

metrics used in the study were useful in predicting software

quality.

Tahvildari et al. [31] proposed a framework that used a

catalogue of object-oriented metrics for improving the quality

of an OO legacy systems by suggesting potentially useful

transformations (i.e., meta-patterns) for correcting potential

design flaws. Initial experiments with this approach have

demonstrated its feasibility and usefulness.

Abreu et al. [7] evaluated the impact of OO design

(inheritance, polymorphism, coupling, etc.) on software

quality attributes (reliability and maintainability) using a suite

of metrics for OO design (MOOD). It was an empirical

evaluation, and quality was measured on the basis of number

of software defects and the amount of rework. They

concluded that design alternatives may have a strong influence

on resulting quality.

These studies used standard CK metrics and software design

to assess defects and quality mostly at the class level. Though

the results were positive, there is still a need for mechanisms

that can assess software quality more accurately at lower

levels of granularity (e.g., the method level).

3.2 Code Smells and Software Quality

Yamashita et al. [34] conducted a study to find out which

code smells reflect the factors that affect code maintainability.

Two sources for the analysis were used. In one source,

observation and interviews with professional developers were

carried out and, in the other, expert-based maintainability

assessment was considered. The study provided insights on

various maintainability factors. During the course of the

study, some new factors like design consistency, duplicated

code, etc. were also reported.

Foutse et al. [21] empirically investigated if the classes

suffering from code smells are more change-prone than

classes without code smells. The study found that in most of

the cases, classes with code smells are more likely to change

IJCA, Vol. 23, No. 1, March 2016 39

than classes without code smells. They also found that certain

code smells are strongly correlated with change-proneness

compared to others.

Olbrich et al. [24] studied god class code smells and brain

class code smells in relation to change likelihood and defect

likelihood. The results indicated a higher rate of changes and

software defects for both god and brain class code smells

compared to other classes. However, when the data was

normalized both god and brain class code smells suffered a

lower rate of changes and defects.

In 2010, Marco et al. [10] conducted an empirical study on

six open source systems to evaluate the relationship between

design flaws of software systems and software defects.

Frequency of design flaws and correlation of flaws with post-

release defects were analyzed.

Yamashita et al. [30] investigated how code smells were

related to maintenance effort. With the help of an eclipse IDE

plugin, the exact amount of time developers spent maintaining

files was collected from six developers who performed three

maintenance tasks. The study concluded that all 12

investigated code smells had limited effect on the maintenance

effort. The authors suggest that reducing file size and

improving work processes to reduce the number of revisions

would reduce maintenance effort. However, the authors claim

these suggestions are not trivial to implement. For example,

reducing the amount of functionality from one class either

increases the total number of files in a system or adds burden

for other files.

Code smells are design flaws that are thought to lower the

quality of software. It was expected that code smells would be

associated with high defect likelihood and high change

likelihood. However, results from various empirical studies

are unable to definitively support such conjecture. For

example, Olbrich et al. [24], initially found God and Brain

classes to contain more defects and changes more frequently

than other areas of the code. But when they normalized the

measured effects by size, they found God and Brain classes to

have fewer defects and changes less often. They further went

on to state that these classes may serve as an efficient way of

organizing code. In another study, Yamashita et al. [30] found

that no code smells (among 12 investigated) were associated

with increased effort when adjusting by file size and number

of changes. Similarly, Zhang et al. [35] showed Duplicated

code smells had more faults while Data Clumps, Switch

Statements, Speculative Generality, and Middle Man smells

were not likely to be fault-prone. Considering these studies,

the use of code smells alone as an indicator of high defect

likelihood does not seem appropriate.

4 Methodology

This section elaborates on the research goals and associated

research questions, the tools used in this study, the experi-

mental design, the selected open source software for collecting

the historical data and finally, the data collection process.

4.1 Research Goals

The goals of this research are formatted using the Goal

Question Metric (GQM) approach. In GQM [33],

measurements are defined in a top-down fashion and research

goals are defined first. Based on the goal, questions are

generated that must be answered for the goals to be achieved.

The questions require identifying metrics with the data that

supports answers to the questions. The research goals for this

study are presented below. The metrics are elaborated in the

remaining subsections of Section 4.

G1: Analyze the distribution and likelihood of various

nano-patterns occurring in defective methods.

The aim is to examine how nano-patterns are distributed in

defective code and examine the relationship between nano-

patterns.

RQ1: How frequently do nano-patterns occur in software

defects?

RQ2: How are nano-pattern distributed in software defects?

RQ3: What is the co-occurrence between various nano-

patterns in software defects?

G2: Determine which nano-patterns are more defect-

prone.

Some of the nano-patterns are easier to understand and

implement than others. Therefore, it is likely that some nano-

patterns are more vulnerable to defects than others.

RQ4: Are certain nano-patterns disproportionately involved

with defective methods?

RQ5: How are nano-patterns associated with a defect’s

priority?

RQ6: Does the frequency of nano-patterns in defect

methods affect the priority rating?

4.2 Experimental Tools

The Nano-Pattern Detector and JIRA Extractor are the two

tools mainly used for data extraction. Figure 2 shows the high

level diagram of these tools. The Nano-Pattern Detector is a

command line tool developed by Singer et al. [29] whereas the

JIRA Extractor was developed internally for this research.

4.2.1 Nano-Pattern Detector. The Nano-Pattern Detector

detects nano-patterns in Java bytecode class files [29]. The

tool is based on ASM bytecode analysis toolkit [8]. The tool

reads in Java files and outputs a bitstring of nano-patterns for

each method in a class. The tool uses ASM API extensively

with 600 lines of code written in Java. The tool operates in

the following ways [29]:

 Simple iteration over a method bytecode array for

searching specific bytecode instruction matched with

particular nano-patterns.

 Simple regular expressions match on method signatures.

40 IJCA, Vol. 23, No. 1, March 2016

Figure 2: Nano-pattern detector and JIRA extractor

We modified the original source code to take input of the

Java classes through ‘properties’ files instead of command line

arguments. We additionally added new functionality to store

results into a MySQL database (instead of simply displaying

results to the console).

4.2.2 Jira Extractor. In its current state, the tool is able to

extract issues from JIRA and get a list of all the classes and

methods from SVN that were changed to address the issue.

The tool makes extensive use of external libraries like JIRA

REST Java Client (JRJC), SVNKit, Java parser, etc.

Figure 3 shows the high level workflow of the tool. The

tool gets a list of issues from JIRA. For each issue, a revision

number is extracted from SVN Log or by making a query to

FishEye based on the issue number. FishEye is an Atlassian

Figure 3: High level flowchart of JIRA extractor

product that can be used to integrate source code with JIRA

and also provides a read only access to Subversion [13].

From the revision number, unified diff content is generated

using SVNKit. The unified diff content is then parsed to

extract information about the set of classes that were changed.

For each class, a set of hunk (hunks are set of changes in a

unified diff file where change was effective) is also extracted.

Finally, the content of a class corresponding to the extracted

revision number is retrieved which is then parsed using Java

Parser [20] to get the list of methods (along with their

contents) whose content were changed.

In this study, the Nano-Pattern Detector was used to detect

nano-patterns for a method and the JIRA Extractor was used

to extract list of classes and methods responsible for a JIRA

issue.

4.3 Experimental Design

The study is conducted in two steps:

 Identify nano-patterns of the methods in the source code.

 Search issue tracking systems for bugs and extract

methods from source code repositories that were changed

to fix the bugs.

Figure 4 illustrates our experimental design. First, we use

the Nano-Pattern Detector tool to scan the entire source code

of a software project and store the nano-pattern information

for each method in the database. Then, we use the JIRA

Extractor tool to search for issues in the issue tracking system

(JIRA) and extract a list of methods that were changed to fix

these issues. JIRA Extractor uses information like revision

number, version number, issue type, etc. from issues to pull

methods from the SVN repository. These methods are then

matched with methods stored in the database to get their nano-

patterns.

IJCA, Vol. 23, No. 1, March 2016 41

Figure 4: Experimental design

4.4 Historical Data

We chose open source software systems as our initial targets

as their source code and issues list are openly available and the

systems represent real-world, multi-developer, software

intensive systems. Source code is managed through a version

control system. A version control system keeps track of every

single commit made on the source code repository. Project

issues are managed by the JIRA issue tracking system. We

selected three Java based open-source software projects from

the Apache Software Foundation using the following criteria:

 Projects are written in Java

 Source code is publicly accessible

 Project issues are publicly accessible

 Source code is managed using SVN

 Project issues are managed using JIRA

 Project should have multiple release versions (at least 5

versions)

 Should have at least 1500 issues

4.4.1 Apache Hive. Apache Hive [2] is an open source

volunteer software project under the Apache Software

Foundation that facilitates querying and managing large

datasets residing in distributed storage. There are over 8000

Hive issues logged in JIRA. We ran the static analysis tool

Understand on the ‘/src’ folder of different versions of Hive

downloaded from “https://archive.apache.org/dist/hive/” to get

the details of the source code as shown in Table 2.

4.4.2 Apache Lucene Core. Apache Lucene [1] is a “full-

featured text search engine library” written in Java. It is an

open source project from Apache Foundation and available for

free download. It is released under the Apache Software

License. Though originally written in Java, it has been ported

to other programming languages like C++, python, Ruby,

PHP, etc. There are over 5000 Lucene issues logged in JIRA.

We ran the static analysis tool Understand on the ‘/src’ folder

of different versions of Lucene downloaded from

“https://archive.apache.org/dist/lucene/java/” to get the details

of the source code as shown in Table 3.

Table 2: Hive details

Hive

0.14.0

Hive

1.0.0

Hive

 0.8.0

Hive

0.10.0

Hive

0.12.0

Classes 8,305 8,289 2,379 3,559 5,872

Code Lines 672,725 668,363 220,218 283,829 465,026

Executable Statements 276,896 275,082 91,468 119,175 188,878

Files 3,408 3,395 1,277 1,461 2,527

Functions 59,457 58,599 20,127 25,142 42,130

42 IJCA, Vol. 23, No. 1, March 2016

Table 3: Lucene details

Lucene

2.9.4

Lucene

3.1.0

Lucene

3.3.0

Lucene

3.5.0

Lucene

3.6.2

Classes 1,285 1,407 1,543 1,678 4,690

Code Lines 92,725 105,153 115,353 129,984 382,400

Executable Statements 44,230 46,578 51,221 56,189 148,750

Files 655 693 751 817 2,527

Functions 8,200 8,482 9,185 10,028 24,877

4.4.3 Apache Hadoop MapReduce Project. Apache

Hadoop [17] is an open source software framework for storing

and processing of large amounts of data. Hadoop Common,

Distributed File System, Yarn, MapReduce, etc. are some of

important modules of Apache Hadoop framework. Hadoop

MapReduce was created at Google for parallel processing of

large data sets. There are over 5000 MapReduce issues logged

in JIRA. We ran the static analysis tool Understand on the

mapreduce project inside ‘/src’ folder for version ‘1.0.0’ and

‘1.2.0’, and on ‘/src’ folder inside Mapreduce project module

for version ‘2.0.0 – alpha’ and ‘2.0.2 – alpha’ to get the details

of source code as shown in Table 4. All the versions were

downloaded from “https://archive.apache.org/dist/hadoop/

common/”.

4.5 Data Collection

Initially JIRA Extractor tool extracted 4619, 2022, and 1566

defect methods from JIRA issues labelled as ‘bug’ for Hive,

Lucene, and Mapreduce, respectively. Table 5 summarizes

the data reduction method. Uniqueness of the method was

based on the combination of its ‘issue id’, ‘class name’,

‘method name’, ‘type signature’, and ‘version’ where:

 ‘issue id’ is the JIRA issue number

 ‘class name’ is the name of java class including its

package where the method exists

 ‘method name’ is the name of method

 ‘type signature’ is the java signature of method

 ‘version’ is the project’s version number

We then filtered methods by their package name to make

sure we include only those methods that belonged to the

software projects in which we are interested. For Hive, all

those methods were included whose package name contained

“org.apache.hadoop.hive” or “org.apache.hive”. Similarly,

Lucene and Mapredure were filtered by “org.apache.lucene”,

and “org.apache.hadoop.mapred”, respectively.

Some of the versions had very few methods. So we

removed all versions that had less than 30 defect methods.

Consequently, we had 11, 17, and 9 versions with 4612, 1868,

and 613 methods for Hive, Lucene, and Mapreduce,

respectively. All other methods were excluded from the study.

5 Results

This section will present the experimental results. We have

two sets of results. The first set of results relates to the

distribution and likelihood of nano-patterns in defect methods.

The second set of results assists in understanding which nano-

patterns are more defect-prone.

Table 4: Hadoop MapReduce details

Mapreduce

1.0.0

Mapreduce

1.2.0

Mapreduce

2.0.0 - alpha

Mapreduce

2.0.2 - alpha

Classes 624 723 970 715

Code Lines 47,231 54,266 74,576 57,898

Executable Statements 17,157 19,584 27,842 22,396

Files 311 370 469 326

Functions 4,430 5,006 5,280 4,075

Table 5: Data reduction

 Hive Lucene Mapreduce

Initial count of defect methods 4619 2022 1566

Count of defect methods after filtering by package name 4612 2015 915

Count of versions with defect count > 30 11 17 9

Cumulative count of defect method for version with defect count>30 4612 1868 613

IJCA, Vol. 23, No. 1, March 2016 43

RQ1: How frequently do nano-patterns occur in

software defects?

We counted the occurrence of each pattern in defect

methods and calculated their proportion for all projects under

study (Hive, Lucene, and Mapreduce). Table 6 shows, for

each nano-pattern, its count and its proportion in percentage.

It can be seen from the table that the presence of Recursive

and Leaf nano-patterns is negligible. The likelihood of

patterns in all the three projects shows a similar trend. With

respect to data, the following patterns have a high presence:

 LocalReader with 95.97%, 98.93%, and 94.62% presence

in Hive, Lucene, and Mapreduce, respectively.

 LocalWriter with 76.52%, 72.16%, and 83.69% presence in

Hive, Lucene, and Mapreduce, respectively.

 ObjectCreator with 70.21%, 68.47%, and 76.02% presence

in Hive, Lucene, and Mapreduce, respectively.

 FieldReader with 75.05%, 86.24%, and 68.19% presence in

Hive, Lucene, and Mapreduce, respectively.

RQ2: How are nano-patterns distributed in software

defects?

For each defect method, we counted the number of nano-

patterns found in a method. Figure 5, 6, and 7 show the

Table 6: Occurrence percentage of each nano-pattern in defect method list

 Hive Lucene Mapreduce

Nano-Patterns

Patterns

Count

Percentage Patterns Count Percentage Patterns

Count

Percentage

NoParams 883 19.15 700 37.47 286 46.66

NoReturn 1984 43.02 939 50.27 426 69.49

Recursive 160 3.47 7 0.37 1 0.16

SameName 689 14.94 326 17.45 53 8.65

Leaf 288 6.24 86 4.60 7 1.14

ObjectCreator 3238 70.21 1279 68.47 466 76.02

FieldReader 3461 75.04 1611 86.24 418 68.19

FieldWriter 1132 24.54 529 28.32 84 13.70

TypeManipulator 2377 51.54 641 34.31 192 31.32

StraightLine 1146 24.85 516 27.62 199 32.46

Looping 1823 39.53 703 37.63 218 35.56

Exceptions 2879 62.42 1159 62.04 422 68.48

LocalReader 4426 95.97 1848 98.93 580 94.62

LocalWriter 3529 76.52 1348 72.16 513 83.69

ArrayCreator 814 17.65 314 16.81 130 21.21

ArrayReader 969 21.01 346 18.52 108 17.62

ArrayWriter 623 13.51 291 15.58 111 18.11

Figure 5: Frequency distribution of Hive (number of methods [y-axis] that contain the specified number of nano-patterns [x-axis])

44 IJCA, Vol. 23, No. 1, March 2016

Figure 6: Frequency distribution of Lucene (number of methods [y-axis] that contain the specified number of nano-patterns

[x-axis])

Figure 7: Frequency distribution of Mapreduce (number of methods [y-axis] that contain the specified number of nano-patterns

[x-axis])

distribution of the number of nano-patterns in a method for

Hive, Lucene, and Mapreduce, respectively. The x-axis

represents the number of nano-patterns contained in a

method. The y-axis shows the number of methods that

contain that number of nano-patterns. All the methods

have at least one nano-pattern (i.e., there is not a method

without any of the 17 defined nano-patterns). The number

of patterns in a majority of the methods is between 4 and 9.

In very few methods, the number of patterns is 1 or 2 or

>12. In Hive, no methods have more than 14 nano-patterns

and in Lucene, no methods have more than 13 patterns.

Similarly, in Mapreduce, no methods have more than 12

nano-patterns. No method across all 3 projects has all the

17 nano-patterns.

IJCA, Vol. 23, No. 1, March 2016 45

RQ3: What is the co-occurrence between various nano-

patterns in software defects?

A Pearson Chi-Square test at 95% confidence interval was

conducted. Tables 7, 8, and 9 represent the Chi-Square test

value for Hive, Lucene, and Mapreduce, respectively. All the

values significant at 95% are shown highlighted in red. In

most of the cases nano-patterns are significantly correlated in

all the 3 projects under study.

The value of Chi Square is a function of both the proportion

of observation in each cell of the contingency table and the

total sample size [28]. In fact, the magnitude of the chi square

value is directly proportional to the total sample size [28].

However, the degree of association between variables is only a

function of the cell proportion and is independent of the

sample size [28]. Because of the large sample size across all

the three systems in our study, it is very likely the chi square

Table 7: Pearson Chi-Square test for Hive

Table 8: Pearson Chi-Square test for Lucene

46 IJCA, Vol. 23, No. 1, March 2016

Table 9: Pearson Chi-Square test for Mapreduce

value was affected by the sample size. As a part of further

analysis, we computed the phi coefficient (φ) to measure a

degree of association between nano-patterns. The Phi

coefficient is a measure of association for 2x2 contingency

table and is independent of sample size [28]. The use of phi

coefficient is most commonly endorsed for 2x2 contingency

table. The strength of association is determined by the

following criteria [28]:

 Small association (.10 <= φ <.30)

 Medium association (.30 <= φ < .50)

 High association (φ >= .50)

Tables 10, 11, and 12 represent the phi coefficient values for

Hive, Lucene, and Mapreduce, respectively. Values in red

represent high association and values in green represent

medium association. With respect to data in Tables 10, 11,

and 12, the following nano-patterns have high association:

 ArrayWriter and ArrayCreator nano-patterns have high

association across all the three software systems.

 LocalWriter and StraightLine nano-patterns have high

negative association in Hive and Mapreduce.

 Looping and TypeManipulator, and LocalWriter and

ObjectCreator nano-patterns have high association only in

Hive whereas LocalWriter and LocalReader, and Looping

and StraightLine nano-patterns have high association only

in Mapreduce.

The results from RQ4 suggest that ObjectCreator,

FieldReader, TypeManipulator, Looping, Exceptions,

LocalReader, and LocalWriter nano-patterns are highly prone

to defects. Tables 13, 14, and 15 (subset of Tables 10, 11, and

12, respectively) present the association between these 7

defect-prone nano-patters for Hive, Lucene, and MapReduce,

respectively. Values in red are high associations and values in

green are medium associations. With respect to data in 0, 14,

and 15, we see the following observations:

 Almost all these 7 nano-patterns have positive association

 ObjectCreator and LocalWriter nano-patterns have high

association in Hive and medium association in Lucene, and

Mapreduce.

 TypeManipulator and Looping nano-patterns have high

association in hive and medium association in Lucene, and

Mapreduce.

 Looping and LocalWriter nano-patterns have medium

association across all the three software systems.

 RQ4: Are certain nano-patterns disproportionately

involved with defective methods?

 Some nano-patterns are abundantly present in the source

code and therefore the likelihood of their presence in

defect code is also abundant. To avoid this bias, we

compared the proportion of each nano-pattern with itself -

between defect methods and the entire source code.

Figure 8, 9, and 10 show the comparison of the average

defect proportion of each nano-pattern between defect

methods and the entire source code for Hive, Lucene,

Mapreduce, etc. The average defect proportion is the

average of the proportion of each nano-pattern in the

selected version’s defect methods. Similarly, average

source code proportion is the average of proportion of

each nano-pattern in the selected version’s source code. It

IJCA, Vol. 23, No. 1, March 2016 47

can be observed in the Figures 8, 9, and 10 that

proportions of ObjectCreator, FieldReader,

TypeManipulator, Looping, Exceptions, LocalWriter,

ArrayCreator, ArrayReader, and ArrayWriter are much

higher in defect methods than the entire source code

across all projects under study. Similarly, the proportion

of SameName and StraightLine looks much lower in

defect methods than the entire source code across all the

projects under study. There is no significant difference in

the proportion of other nano-patterns between defect code

and entire source code.

We conducted the z-test to analyze if the proportions of

nano-patterns in defect methods are significantly different

from the overall source code at 95% confidence (i.e. α = 0.05).

Tables 16, 17, and 18 show the result of z-test for propor-

tion for Hive, Lucene, and Mapreduce, respectively where:

Table 10: The phi coefficient for Hive

Table 11: The phi coefficient for Lucene

48 IJCA, Vol. 23, No. 1, March 2016

Table 12: The phi coefficient for MapReduce

Table 13: The phi coefficient of seven defect-prone nano-patterns in Hive

Table 14: The phi coefficient of seven defect-prone nano-patterns in Lucene

Table 15: The phi coefficient of seven defect-prone nano-patterns in MapReduce

IJCA, Vol. 23, No. 1, March 2016 49

Figure 8: Comparison of average defect proportion vs. average source code proportion for each nano-pattern in Hive

Figure 9: Comparison of average defect proportion vs. average source code proportion for each nano-pattern in Lucene

 L= proportion of nano-pattern that is significantly lower

in defect methods

 H = proportion of nano-pattern that is significantly higher

in defect methods

 NS = z-test result not significant

 F = Normality check for z-test failed

From data in Tables 16, 17, and 18, the following results are

observed:

 Proportion of SameName and StraightLine nano-patterns

is significantly lower in defect methods in a majority of

the cases

 Proportion of ObjectCreator, FieldReader,

TypeManipulator, Looping, Exceptions, LocalReader, and

LocalWriter are significantly higher in defect method in a

majority of the cases

 For all other nano-patterns, no specific trend is observed

RQ5: How are nano-patterns associated with a defect’s

priority?

There are 5 levels of priority for issues in JIRA: Blocker,

Critical, Major, Minor, and Trivial. To avoid any confusion

and misunderstanding while creating an entry for defect in

50 IJCA, Vol. 23, No. 1, March 2016

JIRA, we grouped closely related priorities together. We

categorized priority into 3 levels: High, Medium, and Low.

Blocker and Critical were grouped as High, Major was

Medium, and Minor and Trivial were grouped as Low. We

calculated Pearson Chi-Square test between each nano-pattern

and defect’s priority (High, Medium, and Low). Table 19

gives Pearson Chi-Square test value between each nano-

pattern and each defect’s priority. The test was conducted at

95% confidence interval. Significant Chi-Square values (i.e.,

values greater than critical value (3.841) are shown as bold in

Table 19. It can be seen that in many cases, nano-patterns are

significantly associated with a defect’s priority. Most of the

patterns have association with priority across all levels

(high, medium, low). However, no clear pattern is observed

between any particular nano-pattern and particular defect’s

priority except for TypeManipulator. TypeManipulator is only

Figure 10: Comparison of average defect proportion vs average source code proportion for each nano-pattern in Mapreduce

Table 16: z-test proportion result for Hive

Patterns/Versions 0
.1

3
.1

0
.1

3
.0

0
.1

2
.0

0
.1

1
.0

0
.1

0
.0

0
.9

.0

0
.8

.1

0
.8

.0

0
.7

.1

0
.7

.0

0
.6

.0

NoParams L L L L L L L L L L L

NoReturn NS L L L NS H L L L NS NS

Recursive H F F F F F F F F F F

SameName L L L L L L NS L L L L

Leaf L L L L L L L L L L L

ObjectCreator H H H H H H H H H H H

FieldReader H H H H H H H H H H H

FieldWriter H H L NS NS L L L L NS NS

TypeManipulator H H H H H H H H H H H

StraightLine L L L L L L L L L L L

Looping H H H H H H F H H F H

Exceptions H H H H H H H H H H H

LocalReader H H H H H H F NS NS F H

LocalWriter H H H H H H H H H H H

ArrayCreator H H H H H H F F H F F

ArrayReader H H H H H H F H H F H

ArrayWriter H H H H H H F F H F F

IJCA, Vol. 23, No. 1, March 2016 51

Table 17: z-test proportion result for Lucene

Patterns/Versions 4
.9

.0

4
.8

.1

4
.8

.0

4
.7

.1

4
.7

.0

4
.6

.0

4
.5

.0

4
.4

.0

4
.3

.1

4
.2

.1

4
.2

.0

4
.1

.0

4
.0

-B
E

T
A

4

.0
-

A
L

P
H

A

4
.0

.0

3
.6

.0

3
.5

.0

NoParams NS NS NS H NS L L NS L NS L L L NS NS L NS

NoReturn H NS NS H NS NS NS L L NS L NS NS NS NS H L

Recursive F F F F F F F F F F F F F F F F F

SameName L NS NS L NS L L L L NS L L L NS L L L

Leaf L L L L L L L L L L L L L NS L L NS

ObjectCreator H H H H H H H H H H H H H H H H H

FieldReader H H H H H NS H H NS H H H H H H H H

FieldWriter L NS H L NS NS NS NS L H NS NS NS NS H NS NS

TypeManipulator H H F H H H H NS F H H H H H H H NS

StraightLine L L L L L L L L L L L L L L L L L

Looping H H F H H H H H F H NS H H H H H H

Exceptions H H H H H H H H H H H H H H H H H

LocalReader H H F H F H F H F F H H H H H H H

LocalWriter H H H H H H H H H H H H H H H H H

ArrayCreator H H F H F F F NS F F F H H F F H NS

ArrayReader H H F H F H F NS F F NS NS NS NS NS H H

ArrayWriter H H F H F F F NS F F F H H F F NS NS

Table 18: z-test proportion result for Mapreduce

Patterns/Versions 2
.4

.0

2
.3

.0

2
.1

.1
-b

et
a

1
.1

.2

1
.1

.1

1
.0

.0

0
.2

3
.7

0
.2

3
.4

0
.2

3
.1

NoParams NS L L NS H H L NS NS

NoReturn H H H NS H H NS L L

Recursive F F F F F F F F F

SameName L NS L L L L L L L

Leaf L L L L L L L L L

ObjectCreator H H H H H H H H H

FieldReader H H H H H NS H H H

FieldWriter NS H NS NS NS L NS NS NS

TypeManipulator H H H H H H H H H

StraightLine L L L L L L L L L

Looping F F F H H H F F F

Exceptions H H H H H H H NS NS

LocalReader F F F H NS NS F NS NS

LocalWriter H H H H H H H H H

ArrayCreator F F F F F H F F F

ArrayReader F F F F F H F F F

ArrayWriter F F F F F H F F F

52 IJCA, Vol. 23, No. 1, March 2016

Table 19: Pearson Chi-Square test (nano-patterns vs. defect’s priority)

Hive Lucene Mapreduce

Patterns/Priority High Medium Low High Medium Low High Medium Low

NoParams 1.65 1.9 0.36 2.13 12.68 10.92 10.21 7.78 0.12

NoReturn 5.5 0.74 9.84 1.08 4.34 13.15 14.60 15.76 0.81

Recursive 2.09 2.51 0.51 0.95 5.53 4.72 0.22 0.29 0.04

SameName 1.98 0.01 1.89 1.29 0.69 0 3.91 7.71 3.85

Leaf 8.59 22.72 11.57 0.26 12.59 17.13 0.08 0.27 0.31

ObjectCreator 0.64 0.1 1.22 4.84 3.36 0.16 5.01 2.45 1.10

FieldReader 0.16 0 0.12 1.16 4.45 13.65 0.13 2.05 5.14

FieldWriter 12.56 2.54 1.25 2.89 1.97 0.09 0.65 6.53 14.07

TypeManipulator 3.41 7.02 2.89 3.34 6.34 2.64 0.48 0.78 0.24

StraightLine 2.04 2.29 9.93 0.59 0.02 0.26 0.09 0.03 0.06

Looping 7.95 4.82 0.08 1.66 0.05 2.07 2.92 4.14 0.88

Exceptions 0.82 13.55 29.29 8.71 14.4 5.16 4.22 6.28 1.57

LocalReader 9.03 0 6.59 0.02 0.07 0.22 3.48 3.60 0.13

LocalWriter 4.01 0.91 0.32 12.97 20.29 6.82 0.41 0.02 2.24

ArrayCreator 6.95 24.03 14.67 0.07 2.08 2.67 2.98 8.42 7.31

ArrayReader 31.07 11.78 0.35 0.96 0.13 0.17 1.05 1.82 0.69

ArrayWriter 30.22 39.06 9.04 1.64 5.06 3.11 2.91 6.29 3.72

only associated with Medium priority for Hive and Lucene.

RQ6: Does the frequency of nano-patterns in defect

methods affect priority rating?

As explained in RQ5, the 5 levels of priority were categorized

into 3 levels (High, Medium, and Low). Figure 11 gives the

proportion of each priority in defect methods for Hive,

Lucene, and Mapreduce. The proportion of medium priority is

much more than high and low priority. Their proportion is

more than 78% in all projects. The proportion of low and high

priority is comparatively small. In two cases, the proportion

of low priority is slightly higher than the proportion of high

priority and, in one case, the proportion of high priority is

fairly higher than the proportion of low priority.

Figure 12 represents a line chart for the number of nano-

patterns in a method and their count in the defect method list.

X-axis is the number of nano-patterns in a method and Y-

axis is the count of such method in defect method list. It is

obvious to notice that medium priority dominates the

frequency of defects. However, if we see a trend of the line

moving from one point to another along X-axis, it looks

similar for all three priority levels (high, medium, and low).

Analysis of Variance (ANOVA) test was conducted to see if

the mean number of nano-patterns in a method is significantly

different for high, medium, and low priority defect methods.

The test was conducted at 95% confidence interval with the

help of statistical software SPSS version 22. Table 20 shows

the result of ANOVA test for Hive, Lucene, and Mapreduce

where:

 S = significantly different

 NS = not significantly different

Figure 11: Pie chart of defect’s priority proportion

IJCA, Vol. 23, No. 1, March 2016 53

Figure 12: Line chart of number of nano-patterns in a method vs. their count in defect methods list

From Table 20, we can see that for Hive, the mean number

of nano-patterns was significantly different between high and

medium priority defect methods than between medium and

low priority defect methods. For Lucene, the mean number of

nano-patterns was significantly different between low and

medium priority defects while the mean number of nano-

patterns for Mapreduce was significantly different between

high and medium priority levels.

Table 20: ANOVA test result for Hive, Lucene, and

MapReduce

 Hive Lucene Mapreduce

High – Medium S NS S

High – Low NS NS NS

Medium – Low S S NS

6 Discussion

In this section, we interpret and analyze the results as well

as describe the significance of our findings. The results from

Tables 16, 17, and 18 show the proportion of ObjectCreator,

FieldReader, TypeManipulator, Looping, Exceptions,

LocalReader, and LocalWriter nano-patterns to be

significantly higher in the defect code compared to the entire

source code. This implies that methods with these nano-

patterns are more likely to have defects. Further, a high

presence of ObjectCreator, LocalReader LocalWriter, and

FieldReader (see Table 6) in defect code makes them even

more susceptible to defects. Below, we describe the possible

reasons why some of the nano-patterns are more vulnerable to

defects.

As reported by Shah et al. [27] novice developers dislike the

forced handling of exceptions imposed by Java. Developers

often ignore exception handling code. Therefore, the

complexity involved in handling exceptions could be one of

the reasons for Exception nano-patterns (e.g., exception

handling code) are more vulnerable to defects. A study by

Sawadpong et al. [26] showed the exception handling code to

have approximately three times higher defect density than the

overall defect density of the system. In light of high

susceptibility of the exception handling code towards software

defects, we advise exception handling code should be

carefully monitored. To check exception handling defects, we

suggest measures advised by Shah et al. [27], like training of

novice developers in perceiving exception handling code the

way expert developers perceive (e.g., giving equal importance

to both exception and non-exception functionality, training

developers to think about both usual and exceptional behavior

simultaneously, and proper use of exception handling).

The high defect rate for the TypeManipulator nano-pattern

(i.e., code with type casts or instance of operations) could be

because of the difficulty involved in understanding type

manipulator code. Concepts like type erasure (Java Generics),

type casting, etc. involved with Type Manipulator are often

difficult to comprehend. Also, errors with type manipulator

can be difficult to spot as class cast exceptions, which is very

helpful in identifying errors with expression involving type

cast.

Our results from Tables 16, 17, and 18 also show that the

patterns like SameName and StraightLine are less prone to

defects compared to other program constructs like Looping

(i.e., one or more control flow loops in method body). This

may be due to the fact that the flow of instruction in a

straight line without any method call is easier to follow

compared to the other program constructs like looping.

Hyland et al. [19] stated that looping is one of the most

difficult topics to understand along with arrays, threads,

polymorphism, and exceptions.

Although none of the defect-prone nano-patterns have high

associations across all three software systems, ObjectCreator

and LocalWriter nano-patterns have a high association in

Hive and falls in the upper limit of the medium associations

identified in Lucene and Mapreduce (see Tables 13, 14, and

15). Since, both of these nano-patterns are widely present

and defect-prone, and have strong associations, we suggest

extra caution while using these two nano-patterns.

It is interesting to note that of the four categories of nano-

patterns (see Table 1), our results indicate that the object-

oriented and control flow categories are more vulnerable to

defects. Three out of four patterns (i.e., ObjectCreator,

54 IJCA, Vol. 23, No. 1, March 2016

FieldReader, and TypeManipulator) from the object-oriented

category and two out of the three patterns (i.e., Looping and

Exceptions) from the control flow category are associated

with a high number of defects. Similar results were seen in

the study by Basili et al. [3], where they reported both

interface errors and control structure errors to be the major

problem with the systems analyzed. With the claim that the

pre-existing cognitive capabilities of humans better align

with procedural languages than non-procedural language as

shown by S. Papert [25], we can contend that object-oriented

concepts like objects, inheritance, generics, etc. of Java are

more difficult to understand and implement compared to

other Java fundamental programming concepts like variables,

arrays etc. This research could provide an explanation why

object oriented patterns have a larger number of defects.

We did not observe any significant relationships between

nano-patterns and the priority of each defect. In the light of

these observations, we are unable to establish any significant

relationship between nano-patterns and defect priority.

In this study, all the methods were treated in the same way

regardless of their size. Insight into the effect of method

length on nano-patterns would be interesting. It can be

argued that the change in a method’s length might change the

number of nano-patterns in a method. However, this change

should not have any influence on the overall defect rate. The

result for RQ2 (see Figures 5, 6, and 7), shows that there is

no specific trend on the increase/decrease of number of

defects with the increase/decrease of number of nano-patterns

in a method.

Existing literature on software engineering is inconclusive

regarding the correlation between defect density and method

length. Lipow [22] concluded that the number of defects per

line of code increases with the number of lines of code in the

program. However, in the study by Basili et al. [3], it was

found that the larger the modules the lower the number of

defects found. This happened even in the case when larger

modules were more complex. Moller et al. [23] found that

smaller modules have higher defect density and, for larger

modules, size has apparently no effect on the fault rate. In

light of these findings, even if the method length has an

effect on number of nano-patterns in a method, it seems less

likely to have any correlation with software defects. For

more clarity on this, a separate study on how method length

affects nano-patterns and overall defects is warranted.

7 Threats to Validity

We observed the following threats to validity for this

research.

7.1 Construct Validity

A method can have more than one nano-pattern. In our

study, any error encountered in a method is accounted to all

nano-patterns present in a method. However, it might be the

case that defect is actually related to only one or more of the

present nano-patterns and not all. Our current methodology

makes it difficult to distinguish the exact nano-pattern that is

responsible for the defect. However, a refinement of our

strategy would allow this measure and is left for future work.

7.2 External Validity

Our results are based on the study of three open source

software projects. All the projects belong to Apache

Software Foundation. Generalizing these results incorporates

some bias due to all projects having similar development

environments and following similar processes. We saw these

projects as a proxy for commercially developed applications

because each of them have an active developer community

and support industrial applications.

7.3 Internal Validity

We have correlated the errors present in a method with the

nano-patterns present in them. However, software

development is such a complex process and many variables

influence the code. In this study, we have not considered any

other variables apart from nano-patterns.

8 Conclusions and Future Work

In this research, we demonstrated that certain categories of

nano-patterns are more fault-prone than others. We prescribed

a methodology for extracting modified classes and methods

from a repository based on the issues specified in the

repository’s issue tracking systems. Using this methodology,

we developed a JIRA Extractor tool that was used to extract

data for this study. The JIRA Extractor tool is flexible and can

be used in extracting data for other research questions where

class and method-level changes are required.

The research was conducted in two steps. In the first step,

issue tracking systems were mined for defects, and changed

methods containing defects were extracted from their source

code repositories. In the second step, the nano-patterns of

each of these methods were calculated.

We found every defective method to have at least one nano-

pattern. While the presence of FieldWriter, TypeManipulator,

Looping, and Exception nano-patterns were extremely high,

ObjectCreator, FieldReader, TypeManipulator, Looping,

Exceptions, LocalReader, and LocalWriter nano-patterns were

more defect-prone. We did not observe any significant

relationship between any nano-pattern and the priority of the

defect (i.e., high, medium, and low).

In considering the high affiliation between defects with

object-oriented nano-patterns and control flow nano-patterns,

we recommend developers take care when writing code that

contains nano-patterns in these two categories. Classes and

methods with a high number of nano-patterns of these two

categories should be more heavily tested. We encourage the

training of novice developers on the understanding and proper

use of complex constructs like exception handling code.

Using preventive measures like an “instanceOf” check (which

prevents code from run-time errors from inappropriate type

casts) yields better results.

IJCA, Vol. 23, No. 1, March 2016 55

Similar to code smells and micro-patterns, nano-patterns can

be helpful in assessing defects and software quality. Since

identification of nano-patterns can be automated and the

presence of a nano-pattern is binary, conclusions drawn using

nano-pattern data is deemed highly reliable.

Per our knowledge, after Singer et al. [29] defined nano-

patterns, this is the first study involving nano-patterns. The

knowledge on nano-patterns unveiled in this study will

contribute to future research on various aspects of nano-

patterns and how they can be used to evaluate code. Further,

similar studies (to the ones described in this study) can be

carried out to validate our findings on other systems. This

study can be taken forward to analyze how nano-pattern

affects change likelihood. Likewise, a study on how method

size affects nano-patterns and overall defects would be

insightful.

References

[1] “Apache Lucene,” 21-Apr-2014. [Online]. Available:

http://lucene.apache.org/. [Accessed: 22-Apr-2014].

[2] “Apache Hive,” 22-Jun-2014. [Online]. Available:

https://hive.apache.org/. [Accessed: 22-Jun-2014].

[3] V. R. Basili and B. T. Perricone, “Software Errors and

Complexity: An Empirical Investigation,” Commun

ACM, 27(1)42-52, Jan. 1984.

[4] V. R. Basili, L. C. Briand, and W. L. Melo, “A

Validation of Object-Oriented Design Metrics as Quality

Indicators,” IEEE Trans. Softw. Eng., 22(10):751-761,

Oct. 1996.

[5] K. H. Bennett and V. T. Rajlich, “Software Maintenance

and Evolution: A Roadmap,” Proceedings of the

Conference on The Future of Software Engineering,

New York, NY, USA, pp. 73-87, 2000.

[6] J. M. Bieman, N. Fenton, D. Gustafson, A. Melton, and

L. Ott, Fundamental Issues in Software Measurement.

Kansas State University, Department of Computing and

Information Sciences, 1991.

[7] F. Brito e Abreu and W. Melo, “Evaluating the Impact

of Object-Oriented Design on Software Quality,”

Software Metrics Symposium, 1996, Proceedings of the

3rd International, pp. 90-99, 1996.

[8] E. Bruneton, R. Lenglet, and T. Coupaye, “ASM: A

Code Manipulation Tool to Implement Adaptable

Systems,” Adapt. Extensible Compon. Syst., 30:19,

2002.

[9] G. Concas, G. Destefanis, M. Marchesi, M. Ortu, and R.

Tonelli, “Micro Patterns in Agile Software,” Agile

Processes in Software Engineering and Extreme

Programming, H. Baumeister and B. Weber, Eds.

Springer Berlin Heidelberg, pp. 210-222, 2013.

[10] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the

Impact of Design Flaws on Software Defects,” 2010

10th International Conference on Quality Software

(QSIC), pp. 23-31, 2010.

[11] G. Destefanis, R. Tonelli, E. Tempero, G. Concas, and

M. Marchesi, “Micro Pattern Fault-Proneness,” 38th

EUROMICRO Conference on Software Engineering and

Advanced Applications (SEAA), pp. 302-306, 2012.

[12] G. Destefanis, Assessing Sofware Quality by Micro

Patterns Detection, Doctoral Thesis, Universita’ degli

Studi di Cagliari, 2013.

[13] “FishEye,” FishEye, 03-Jun-2014. [Online]. Available:

https://www.atlassian.com/software/fisheye/overview.

[Accessed: 18-Jun-2014].

[14] F. A. Fontana, B. Walter, and M. Zanoni, “Code Smells

and Micro Patterns Correlations,” RefTest 2013

Workshop, 2013.

[15] M. Fowler and K. Beck, Refactoring: Improving the

Design of Existing Code, Addison-Wesley Professional,

Boston, MA, 1999.

[16] J. (Yossi) Gil and I. Maman, “Micro Patterns in Java

Code,” Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems,

Languages, and Applications, New York, NY, USA, pp.

97-116, 2005.

[17] “Hadoop,” 22-Jun-2014. [Online]. Available:

http://hadoop.apache.org/. [Accessed: 22-Jun-2014].

[18] E. W. Host and B. M. Ostvold, “The Programmer’s

Lexicon, Volume I: The Verbs,” Source Code Analysis

and Manipulation, 2007. SCAM 2007. Seventh IEEE

International Working Conference on, pp. 193-202,

2007.

[19] E. Hyland and G. Clynch, “Initial Experiences Gained

and Initiatives Employed in the Teaching of Java

Programming in the Institute of Technology Tallaght,”

Proceedings of the Inaugural Conference on the

Principles and Practice of Programming, 2002 and

Proceedings of the Second Workshop on Intermediate

Representation Engineering for Virtual Machines, 2002,

Maynooth, County Kildare, Ireland, Ireland, pp. 101-

106, 2002.

[20] “javaparser,” javaparser, 03-Jun-2014. [Online].

Available: https://code.google.com/p/javaparser/.

[Accessed: 18-Jun-2014].

[21] F. Khomh, M. Di Penta, and Y. Guéhéneuc, “An Explor-

atory Study of the Impact of Code Smells on Software

Change-Proneness,” 16th Working Conference on

Reverse Engineering, WCRE ’09, 2009, pp. 75-84, 2009.

[22] M. Lipow, “Number of Faults per Line of Code,” IEEE

Trans. Softw. Eng., SE-8(4):437-439, July 1982.

[23] K.-H. Moller and D. J. Paulish, “An Empirical

Investigation of Software Fault Distribution,” Software

Metrics Symposium, 1993, Proceedings., First

International, pp. 82-90, 1993.

[24] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjoberg, “Are

all Code Smells Harmful? A Study of God Classes and

Brain Classes in the Evolution of Three Open Source

Systems,” 2010 IEEE International Conference on

Software Maintenance (ICSM), pp. 1-10, 2010.

[25] S. Papert, Mindstorms: Children, Computers, and

Powerful Ideas, Basic Books, Inc., New York, NY,

USA, 1980.

[26] P. Sawadpong, E. B. Allen, and B. J. Williams,

56 IJCA, Vol. 23, No. 1, March 2016

“Exception Handling Defects: An Empirical Study,”

2012 IEEE 14th International Symposium on High-

Assurance Systems Engineering (HASE), pp. 90-97,

2012

[27] H. B. Shah, C. Gorg, and M. J. Harrold, “Understanding

Exception Handling: Viewpoints of Novices and

Experts,” IEEE Trans. Softw. Eng., 36(2):150-161, Mar.

2010.

[28] D. J. Sheskin, Parametric and Nonparametric Statistical

Procedures. United States: Chapman & Hall/CRC,

2000.

[29] J. Singer, G. Brown, M. Luján, A. Pocock, and P.

Yiapanis, “Fundamental Nano-Patterns to Characterize

and Classify Java Methods,” Electron. Notes Theor.

Comput. Sci., 253(7):191-204, Sep. 2010.

[30] D. I. K. Sjoberg, A. Yamashita, B. C. D. Anda, A.

Mockus, and T. Dyba, “Quantifying the Effect of Code

Smells on Maintenance Effort,” IEEE Trans. Softw.

Eng., 39(8):1144-1156, Aug. 2013.

[31] L. Tahvildari and K. Kontogiannis, “A Metric-Based

Approach to Enhance Design Quality Through Meta-

Pattern Transformations,” Seventh European Conference

on Software Maintenance and Reengineering, 2003.

Proceedings, pp. 183-192, 2003.

Ajay Deo holds a MS degree in

Computer Science and Engineering

from Mississippi State University,

Mississippi, USA, and a BTech degree

in Computer Science and Engineering

from National Institute of Technology

(NIT) Bhopal, India. He is passionate

about translating academic research

into industrial practice. He has particular interest in software

architecture and design, software patterns, and technical debt.

Zadia Codabux is a PhD candidate

in Computer Science at Mississippi

State University (MSU). She holds a

bachelor’s and master’s degree from

The University of Technology

Mauritius (UTM) and University of

Mauritius (UOM) respectively. Prior

to coming to MSU, she also worked

as a faculty at UOM. Zadia is a

recipient of the Fulbright Foreign Student Program

Fellowship and the IBM PhD fellowship. Her research

interests are Empirical Software Engineering, Technical Debt,

Software Metrics, Predictive Analytics, Software Quality,

Software Maintenance and Computer Science Education.

[32] M. M. T. Thwin and T.-S. Quah, “Application of Neural

Networks for Software Quality Prediction using Object-

Oriented Metrics,” J. Syst. Softw., 76(2):147-156, May

2005.

[33] R. van Solingen, V. Basili, G. Caldiera, and H. D.

Rombach, “Goal Question Metric (GQM) Approach,”

Encyclopedia of Software Engineering, John Wiley &

Sons, Inc., pp. 578-583, 2002.

[34] A. Yamashita and L. Moonen, “Do Code Smells Reflect

Important Maintainability Aspects?,” 2012 28th IEEE

International Conference on Software Maintenance

(ICSM), pp. 306-315, 2012.

[35] M. Zhang, N. Baddoo, P. Wernick, and T. Hall,

“Prioritising Refactoring Using Code Bad Smells,” 2011

IEEE Fourth International Conference on Software

Testing, Verification and Validation Workshops

(ICSTW), pp. 458-464, 2011.

Kazi Zakia Sultana is currently a

PhD student in the Department of

Computer Science and Engineering,

Mississippi State University, MS,

USA. She joined here as a graduate

student in August, 2014. She received

her M.S. degree from the Department

of Computer Science of Wayne State

University, Detroit, MI, USA in 2011,

and her B.Sc. (Engineering) from the

Department of Computer Science and Engineering,

Bangladesh University of Engineering and Technology

(BUET), Bangladesh in 2006. Her research concentrations

include Software Security, Code Patterns, and Data Mining.

Her email address: ks2190@msstate.edu.

Byron J. Williams is an Assistant

Professor in the Department of

Computer Science and Engineering at

Mississippi State University (MSU).

He received his Ph.D. from MSU and

worked as the Associate Director and

Chief Software Engineer at the Center

for Defense Integrated Data, in

Jackson, MS. His research interests

include taking an empirical approach

to software maintenance, software security, agile methods and

software development operations. He is an IEEE Computer

Society Certified Software Development Professional (CSDP)

and a Senior Member of the ACM.

IJCA, Vol. 23, No. 1, March 2016 57

ISCA Copyright© 2016

Transforming C Applications with Meta-Programming

Songqing Yue†

University of Central Missouri, Warrensburg, Missouri 64093, USA

Jeff Gray‡

University of Alabama, Tuscaloosa, Alabama 35401, USA

Abstract

Computational reflection has shown much promise for

improving the quality of software by providing programming

language techniques to address issues of modularity,

reusability, maintainability, and extensibility. The meta-

object protocol (MOP) is a powerful tool to provide the

capability of computational reflection by means of object-

oriented and reflective techniques to organize a meta-level

architecture. In this paper, we describe how to bring the

power of computational reflection to the C programming

language through a MOP that can be used to build arbitrary

source-to-source program transformation libraries for large

software systems in C. To assist application programmers

with harnessing the power offered by meta-programming and

reflection, a Domain-Specific Language (DSL) called SPOT

(Specifying PrOgram Transformation) was extended to allow

developers to specify direct manipulation of C programs.

This work is mainly motivated by the observation that C is

one of the most widely used programming languages and

there is a vast body of legacy C programs that are very costly

to maintain and evolve. The design focus of the work

presented in this paper is to automate program

transformations through techniques of code generation, so

that developers only need to specify desired transformations

while being oblivious to the details about how the

transformations are performed. The paper provides a general

motivation for using meta-programming and reflection and

explains the design and implementation of our MOP for C

(called OpenC) and SPOT.

General Terms: Program transformation and domain-

specific language.

Key Words: Computational reflection, program

transformation, meta-object protocol, domain-specific

language, and abstraction.

† Department of Mathematics and Computer Science. Email:

syue@ucmo.edu.
‡ Department of Computer Science. Email: gray@cs.ua.edu.

1 Introduction

Computational reflection was introduced into the context of

computer science by Brian Smith as a way to extend the

semantics of programming languages. According to Smith, a

reflective system is able to reason about and manipulate itself

based on an explicit and principled means of representing its

implementation [21]. Maes [14] presented a formal definition

of computational reflection as “a computational system which

is about itself in a causally connected way.” A computational

system refers to a system running on a computer to solve

problems in a specific domain. In order to achieve this, a

system must have internal structures used to describe its

domain (e.g., using data to represent entities and their relations

and algorithms to operate on those data). Given this definition,

every executing program can be considered a computational

system because it manipulates abstractions for a specific

problem domain.

“Causally connected” implies that the computational

system and its domain are linked in such a way that if one

changes, a corresponding change can be seen in the other. A

reflective system is depicted as a computational system whose

domain is itself (i.e., a reflective system has internal structures

to describe itself). Its internal structures and its external

behaviors are causally connected so that it is possible to

change its behavior through manipulating its internal

structures.

Computational reflection, in the realm of programming

languages, provides the power to extend the semantics of a

language by representing and modifying a program in the

same way that a program represents and modifies the data that

it processes [21]. Usually a system with the power of

computational reflection includes a base-level and a meta-

level. The base-level is responsible for dealing with

computing results from the main domain of the application

(this is the typical program written by programmers), and the

meta-level addresses problems and returns information about

the base-level program.

Reflection can be distinguished as structural reflection and

behavioral reflection based on the dimension that the objects

of the meta-level program operate [4]. Structural reflection is

about the manipulation of the static structure of a program.

With structural reflection, the definition of data structures,

58 IJCA, Vol. 23, No. 1, March 2016

such as classes and methods can be retrieved and even

modified (e.g., getting a list of all public methods available in

a class definition, or adding a new method). Behavioral

reflection focuses on the semantics of an executing system and

provides a complete reification of both the semantics of the

language and the execution states [7]. Behavioral reflection

makes it possible to intercept and alter operations during run-

time (e.g., field access and method invocation). Behavioral

reflection allows for modifying the behavior of an operation,

and structural reflection provides an ability to inspect and

modify static data structures of the program. However, it is

much easier to implement structural reflection and many

languages have already integrated this feature, e.g., Java and

Python. On the contrary, it is more challenging to realize

complete behavioral reflection because it is especially

difficult to incorporate behavioral properties without

adversely affecting performance.

1.1 Meta-Object Protocol Overview

Meta-programming is a paradigm for building software that

is able to automate program transformations through code

generation or manipulation [22]. Computational reflection is

a special case of meta-programming where the meta-program

and the base-program are usually coded in the same

programming language and sometimes the base-program

itself is a meta-program [22].

In this work, we intend to bring the capacity of structural

computational reflection to C programs through a technique

of meta-programming named meta-object protocol (MOP). A

MOP enables the extension or redefinition of a language’s

semantics to make it open and extensible by providing a set of

interfaces to access the underlying language implementation

[11]. With the MOP technique, the restraint that the meta-

program and the base-program have to be coded in the same

language can be loosed.

To allow transformation from a meta-level, there must be a

clear representation for the base-program of its internal

structure and entities (e.g., the classes and methods defined

within an object-oriented program) and well-defined

interfaces through which these entities and their relations can

be manipulated [11]. Through the interfaces, a software

developer can change the implementation and the behavior of

the program incrementally to better suit their needs.

In a MOP, each entity in the base-program is represented

with a meta-object in the meta-level program. The class from

which the meta-object is instantiated is called the meta-class.

For instance, for a function defined in C, a corresponding

meta-object will be constructed in the meta-level program.

The meta-object for the function holds adequate information

to describe the structure and behavior of the function and

interfaces carefully designed to alter them. The interfaces

may manifest as a set of classes or methods so that users can

create variants of the default language implementation

incrementally by sub-classing, specialization, or method

combination [8].

Based on the time when the meta-objects exist, a MOP may

be run-time or compile-time. Run-time MOPs function while

a program is executing and can be used to perform real-time

adaptation, e.g., the Common Lisp Object System (CLOS) [4]

that allows the mechanisms of inheritance, method

dispatching, class instantiation and other language

implementation details to be modified during program

execution. As an example, a language called 3-KRS [14] has

complete self-representation at run-time via meta-objects to

affect the run-time execution. In comparison, meta-objects in

compile-time MOPs only exist during compilation and may

be used to manipulate the compiling process. Two examples

of compile-time MOPs are OpenC++ [5] and OpenJava [23].

We have also implemented a compile-time MOP for Fortran

named OpenFortran [27]. Though not as powerful as run-time

MOPs, compile-time MOPs are simpler to implement and

offer an advantage in reducing run-time overhead because of

the source-to-source translation, which uses a standard

language compiler for the final compilation.

1.2 Main Contributions: OpenC and SPOT

The key contributions of this paper include two aspects: (1)

a MOP, named OpenC, for building transformation libraries

that can be applied in a transparent manner for C programs,

and (2) the SPOT DSL that is built on top of OpenC that is

focused on the meta-meta-level to provide a higher level of

abstraction for expressing program transformations. The

SPOT DSL can assist in bridging the gap between the

traditional programming style and the intensive meta-

programming techniques involved in using a MOP.

OpenC works at compile-time and provides the capability

of meta-programming to C programs. However, it is still a

challenge for most developers to program with the concept of

meta-programming. To assist developers in accessing the

capabilities of OpenC, we have extended SPOT [28], which

was created originally to provide a higher level of abstraction

for expressing program transformations for Fortran [27], to

make it compatible with OpenC. With SPOT, source-to-

source program transformation can be performed

transparently, whereby developers do not need to know the

details on how the transformations are performed. In addition,

with constructs and actions provided, SPOT allows users to

express the intent of modifying C programs in a direct manner,

therefore coding with it more aligns with a developer’s

comprehension of program transformation than coding with

MOP capabilities or manipulating an abstract syntax tree

(AST) as practiced by most program transformation engines

(PTEs).

The paper is organized as follows. Section 2 describes the

design and implementation of OpenC. Section 3 illustrates

two case studies of using OpenC to first develop a simple

profiling library and then facilitate parallelization of

sequential C programs with OpenMP. Section 4 elaborates

the extension of SPOT in order to accommodate OpenC.

Section 5 shows related work. We present our future work and

conclude the paper in Section 6.

IJCA, Vol. 23, No. 1, March 2016 59

2 The Implementation of OpenC Mop

C is one of the most widely used programming languages

and there is a vast body of legacy C programs in use today,

especially in the area of embedded systems and High

Performance Computing [24]. It is often very expensive to

make changes to legacy code on a large scale [3]. The

procedural paradigm and lower-level programming constructs

make C code even more difficult to maintain and evolve. In

order to automate program translations for large-scale legacy

C programs, we have implemented a MOP, named OpenC,

which allows programmers to specify source-to-source

program transformation for applications written in C. The

benefit to application programmers is that they can use the

OpenC libraries to translate their application code in a

transparent and repeated way by only adding simple

annotations. To the best of our knowledge, OpenC is one of

the first MOPs to bring the power of static computational

reflection to C.

Even though the MOP mechanism may assume an object-

oriented meta-level language, the base-level language is not

required to be object-oriented [11]. To implement OpenC, the

base-level program refers to C applications to be manipulated

and the meta-level program is written in C++, which is the

language used in the underlying transformation engine ROSE

[18, 22].

The libraries developed with OpenC work at the meta-level

providing the capability of structural reflection to inspect and

modify internal static data structures. OpenC also supports

partial behavioral reflection, which assists in intercepting

function calls and variable accesses to add new behavior to

base-level programs. Considering that system performance

should not be affected adversely by applying libraries, OpenC

performs program transformation at compile-time to improve

run-time performance.

2.1 OpenC Design Architecture

Figure 1 shows the high-level infrastructure where OpenC

is used to fulfill source-to-source program translations. The

base-level application is C source code and the meta-level

library is developed with facilities provided by OpenC to

perform transformations on the base-level code. OpenC takes

the meta-level transformation and base-level C code as input

and generates the extended C code to address the concerns

expressed in the meta-program. The generated C code, which

can be compiled by a traditional C compiler, is composed of

both the original and newly translated C code placed in

specific program locations.

In our approach, the low-level support is from a program

transformation engine called ROSE [18] that integrates EDG

[10] as the frontend for C programs. ROSE is an open source

compiler infrastructure that allows users to build source-to-

source transformation tools that read and translate programs

in large-scale systems [18]. ROSE provides a rich set of

interfaces for constructing an AST from the input source code,

traversing and manipulating and regenerating source code

from the AST.

Though ROSE is powerful in supporting specified program

transformations, it is quite a challenge for most application

developers to learn and use. Manipulation of an AST is greatly

different than a programmer’s intuitive understanding of

programs. In contrast, the MOP mechanism resembles a

developer’s comprehension of program transformation by

allowing direct manipulation of language constructs (e.g.,

functions, statements, structs) in the base-level code via the

interfaces provided. Through a MOP, some language

constructs that are not a first-class citizen can be promoted to

first-class to allow for construction, modification and deletion

[20].

2.2 OpenC Implementation Details

In OpenC, the top-level entities in the base-level code, such

as struct definitions, variables and functions, are represented

by meta-objects in the meta-level program. For instance, a

function meta-object contains sufficient information about the

structure and behavior of the function and interfaces carefully

designed to alter them. With OpenC the source-to-source

program transformations are performed in the steps described

in the following paragraphs.

The base-level C source code is parsed and the top-level

definitions are identified. The parse tree is traversed. For any

applicable top-level definitions where a meta-program has

been specified, a corresponding meta-object is constructed.

The member function of the meta-object,

Figure 1: Overview of OpenC transformation process

60 IJCA, Vol. 23, No. 1, March 2016

OCExtendDefinition() is called to modify the AST to perform

transformations. The parse trees generated from all meta-

objects are synthesized and transformed back to C code,

which is then passed on to a traditional C compiler.

OpenC provides facilities to develop translation libraries

that are able to transform C code in multiple scopes (e.g.,

manipulating a function, a struct, a file or even a whole project

including multiple files). As an example, assume a user would

like to create a new function A and call it from another

function B. The translation scope can be the file (if function

A and B are in the same file) or the whole project space (if A

is generated in a different file than B).

Four types of meta-objects, as indicated in Table 1, are

designed to support transformations of multiple scopes. They

are MetaFunction, MetaStruct, MetaFile or MetaGlobal. The

class from which the meta-object is instantiated is called the

meta-class. The four meta-classes are all subclasses of the

class named MetaObject. The member function

OCExtendDefinition() declared in MetaObject should be

overridden by all subclasses to perform called-side adaptions

for the definition of a function or a struct (e.g., adding a new

variable in a struct, or inserting statements in a function).

OpenC also supports caller-side translations by overriding the

following member functions defined in MetaObject:

 OCExtendFunctionCall(string funName)

intercept function invocation and translate how it is

invoked

 OCExtendVariableRead(string varName)

intercept and translate the behavior of a variable reading

 OCExtendVariableWrite(string varName)

intercept and translate the behavior of a variable writing

Translating the definition of a function is the finest level of

granularity that OpenC supports. Because a C program is

composed of definitions of functions (we ignore struct, union

and enum in our discussion here on purpose due to simplicity),

the manipulation of a file or a whole project is ultimately

delegated to that of function definition. Therefore, in our

implementation for OpenC, a MetaFile is composed of a

group of MetaFunctions, MetaGlobal consists of several

MetaFiles, and most of the facilitating member functions are

defined in the class of MetaFunction.

Different types of meta-objects are often used

collaboratively in a transformation task. If multiple-level

translations are involved, the sequence for applying these

meta-objects has to be arranged carefully to avoid conflicts

that may introduce issues of non-determinacy in the

transformation results. Transformation libraries should be

written to perform transformations on a low level of the base-

program first, and then on a higher level; for example,

translating an isolated function contained by a file before

performing the file-wide translations.

To allow application developers to apply transformation

libraries by simply adding annotations to their base-level

programs, OpenC provides a set of keywords to identify the

annotations.

Table 1 summarizes the features of these keywords,

including the type of the meta-object corresponding to each

keyword, the place in the application code where a keyword

is added, and the translation scope. For instance,

META_FUNCTION is a new keyword designed to designate

a meta-function (i.e., the translation scope is function-wide),

which is defined in the library code, to a function definition in

the base code.

ROSE is able to preserve all comments that appear in the

source code, which are saved with the AST and can be

obtained later by traversal [18]. We take advantage of this

feature to allow application developers to annotate source

code in the place of user comments. The annotation is used to

specify a meta-object using keywords and special tokens,

e.g., “//@OC::META_FUNCTION metaFunName.”

Table 1: The keywords used as annotations in OpenC

Key Words Meta-Objects Location Scope

META_FUNCTION MetaFunction
Comment for the Function

definition
The function

META_STRUCT MetaStruct Comment for the struct definition The struct

META_FILE MetaFile
Comment for any Function

definition in the file
The whole file

META_GLOBAL MetaGlobal Comment for the Main function The whole project

IJCA, Vol. 23, No. 1, March 2016 61

3 The Application of OpenC Mop

In this section, we first outline the implementation of the initial

version of a profiling library that can be used to show the

distribution of execution time among all function calls in a

system. The main purpose is to illustrate how OpenC can be used

to implement a translation library and how the library can then

be used to add the profiling capability to any existing C

application in a transparent way. Then, we show how OpenC

can be used to solve real-world problems encountered in

software maintenance and evolution by facilitating the

parallelization of sequential C code with OpenMP [15].

3.1 Implementing a Profiling Library

As an example, consider the situation when we would like to

know the time spent on executing each function call in the source

code, as shown in Figure 2. Profiling is a useful technique to

help developers obtain an overview of system performance. A

general way to implement this is to create a helper function, say

profiling(char* pidentifier), that calculates the execution

duration by comparing the system time just before and after a

function call. The only parameter is the identifier uniquely

indicating a function call by splicing the caller’s function name

and the callee’s function name.

For our purpose, we cannot simply insert profiling before and

after every statement containing function calls in the main

function because function calls to getArea and getCircumference

are embedded in a condition statement as indicated by line 4 in

Figure 2. Instead, we need first to rewrite the original code to

normalize the function calls by adding temporary variables to

have each function call appear in a standalone assignment

statement, and then insert profiling before and after each

standalone assignment statement, as shown in Figure 3.

In this example, with only three function calls in the main

function, it may not seem like a challenge to code manually for

the purpose of implementing the profiling functionality.

However, the situation becomes labor-intensive and error-prone

when many more functions or more scenarios where function

calls are embedded in statements are involved, which is always

the case in larger applications. More importantly, after adding

the profiling functionality, the original code gets polluted and

modifying code back and forth to enable and disable this

functionality is extremely tedious.

With OpenC, the process of normalizing function calls and

invoking profiling around them in a large-scale system can be

automated via code generation techniques. OpenC provides the

ability to build a profiling library that automatically generates

and integrates a new copy of the original application code and

profiling code by manipulating the AST. The original code is

kept intact and the application programmer never needs to see

the generated code.

To implement the profiling library with the facilities provided

by OpenC, we can choose to implement a meta-class inherited

from MetaFunction to transform method invocations within a

function. Or, we can also choose to subclass from MetaGlobal

to perform file-wide (i.e., any functions within current file

containing method invocations will be affected) or even project-

wide transformations that translate all the files in a system by

merging individual ASTs for each file into a single large AST.

In the example, we choose MetaGlobal as the superclass.

To build the library, we override OCExtendDefinition to

specify the translations. Figure 4 shows the code snippet

implementing the overridden OCExtendDefinition. The

functionList in line 7 is a member variable defined in MetaGlobal

as a container holding the MetaFunction objects representing all

function definitions in the file. The for-loop iterates through

these objects to perform translation. Line 8 and line 19 work

together to operate on a global scope stack, pushing the current

scope (a function body in this case) onto the stack, which implies

that all the following operations are done within the current scope

and popping the current scope when translation is finished. Line

9 calls a member function functionNormalization defined in

MetaFunction to normalize function calls in the current function.

Line 11 collects all function-call expressions and line 12 loops

through them to identify the statements in which a function-call

expression is embedded. For each statement containing a

function call, two additional function-call statements are

generated by calling buildFunctionCallStmt with the first

parameter indicating the function name (profiling), and the

second parameter as the parameter list. The parameter list here

contains only the identifier of the function call, composed by

combining the caller’s function name (main) and the callee’s

function name (scanf, getArea and getCircumference). The

//@OC::META_GLOBAL profilingMetaClass

1 int main(){

2 int radius;

3 scanf(“%d”, &radius);

4 if(getArea(radius)>10&&

 getCircumference(radius)<100)

5 return 1;

6 else

7 return 0;

8}

Figure 2: Example source code to be transformed

1 int main(){

2 int radius;

3 profiling(“main:scanf”);

4 scanf(“%d”, &radius);

5 profiling(“main:scanf”);

6 profiling(“main: getArea”);

7 float tempVar1 = getArea(radius);

8 profiling(“main: getArea”);

9 profiling(“main: getCircumference”);

10 float tempVar2 = getCircumference(radius);

11 profiling(“main: getCircumference”);

12 if(tempVar1 >10 && tempVar2 <100)

13 return 1;

14 else

15 return 0;

16 }

Figure 3: Example source code after transformation

62 IJCA, Vol. 23, No. 1, March 2016

generated two function-call statements then are inserted before

and after the statement, shown in line 16 and line 17.

The resulting translation of the code in Figure 2 is indicated in

the code shown earlier in Figure 3.

As denoted by the user comment highlighted in bold in Figure

2, it is possible to use the profiling library by simply annotating

the source code with a user comment starting with “@OC:.” In

the annotation, the keyword META_GLOBAL is used to

associate a MetaGlobal object with the main function to perform

file-wide or project-wide translation. With the purpose of getting

the distribution of execution time among all function calls in an

application, the meta-file object is instantiated from the meta-

class ProfilingMetaClass, which can be replaced by any other

meta-class as required to perform desired transformation.

Profiling is a typical example of a crosscutting concern that

cannot be modularized in a single place with traditional

programming paradigms such as object-oriented programming,

and may be spread across multiple modularity boundaries. As

demonstrated by the profiling library, OpenC can be used to

support aspect-oriented programming (AOP) [12] in C by

separating the implementation of the utility function of profiling

with the core application. However, a MOP provides additional

support code for transformations and can also be used to express

more fine-grained program transformations at arbitrary places.

The MOP-based approach is superior over the AOP-based

approach in some cases because MOPs provide a richer interface

that can be used to deal with a wider range of transformation

challenges in more diverse scenarios that are not limited to

crosscutting concerns.

3.2 Facilitating Parallelization with OpenMP

OpenMP is a parallel model for developing multithreaded

programs in a shared memory setting [15]. It provides a flexible

mechanism to construct programs with multithreads in languages

like C, C++ and Fortran via a set of compiler directives (in the

form of pragma directives in C) and run-time library routines.

OpenMP has been adopted in the area of high performance

computing (HPC) due to its flexibility and the performance it can

provide; however, it has its own set of maintenance issues due to

its feature of invasive reengineering of existing programs [1]. It

is very challenging to evolve a parallel application where the core

logic code is often tangled with the code to accomplish

parallelization. This situation often occurs when the

computation code must evolve to adapt to new requirements or

when the parallelization code needs to be changed according to

the advancement in the parallel model being used, or needs to be

totally rewritten using a different model.

With our approach, the process of instrumenting directives and

calling run-time functions can be automated so that the

sequential and parallel code can be managed separately and the

parallelized application can be generated on demand with the

latest sequential and parallel code. Figure 5 shows a code excerpt

from a meta-program we have implemented to parallelize a C

application that carries out a molecular dynamics simulation [17]

using OpenMP [9]. Instead of manually instrumenting the

sequential code, the meta-program can be applied to

automatically insert corresponding directives to the places

identified.

For example, line 5 identifies a for statement before which

code is often tangled with the code to accomplish parallelize-tion.

This situation often occurs when the computation code must

evolve to adapt to new requirements or when the parallelization

code needs to be changed line 6 adds a directive “omp for

reduction(…)” as a pragma. The first parameter in

“getForStatement(…)” is a tuple containing elements that are

essential to constitute a loop statement. For example, “k, 0, np,

1” will be used to match a for statement as “for (k=0; k<np;

k++).” The second parameter “1” indicates that the first

statement matched is returned in case there are multiple matches

1. class ProfilingMetaClass: public MetaGlobal{

2. public:

3. ProfilingMetaClass(string name);

4. virtual void OCExtendDefinition();

5. };

6. void ProfilingMetaClass:: OCExtendDefinition(){

7. for(int i=0; i<functionList.size(); i++){

8. pushScopeStack(functionList[i]->getFunctionBodyScope());

9. functionList[i]->functionNormalization();

10. vector<SgFunctionCallExp*> funCallList = functionList[i]->getFunctionCallList();

11. for(int j=0; j<funCallList.size(); j++){

12. string callerName = functionList[i]->getName();

13. string calleeName = get_name(funCallList[j]);

14. SgStatement* targetStmt = functionList[i]->getStmtsContainFunctionCall(funCallList[j]);

15. string identifier = callerName + ":" + calleeName;

16. insertStatementBefore(targetStmt,buildFunctionCallStmt("profiling",\

 buildParaList(identifier)));

17. insertStatementAfter(targetStmt, buildFunctionCallStmt("profiling",\

 buildParaList(identifier)));

18. }

19. popScopeStack();

20. }

21.}

Figure 4: User-defined meta-class inherited from MetaGlobal

IJCA, Vol. 23, No. 1, March 2016 63

in the same scope specified. Similarly, line 8 inserts a directive

“omp parallel shared(…) private(…)” after an assignment

statement.

The meta-program is mainly focused on the realization of

parallelism and maintained separately from the original

sequential code. Whenever necessary, the parallelized code can

be generated in a different copy, which prevents the sequential

code from being polluted with parallel code. The idea of

separating the management of the sequential and parallel code

can also help to facilitate simultaneous programming of parallel

applications where the domain experts can focus on the core

logic of the application while the parallel programmers

concentrate on the realization of parallelism [1].

4 Extending Spot for Specifying Program

Transformation in C

MOP facilities are straightforward with respect to expressing

the design intent of program transformation, compared with the

APIs of the underlying transformation engine, which involves

much manipulation of ASTs. However, there is also a steep

learning curve for library developers when attempting to

understand the idea of a MOP and to use the APIs provided by

MOPs. In addition, it is usually the case that meta-programs are

created to serve as a library for the purpose of enabling certain

types of code transformation. Conflicts very likely occur when

the functionality provided by a library can no longer satisfy the

needs of application programmers. It will be a great benefit for

programmers if there is a simpler way to tailor existing libraries

to meet their new needs or ideally even build a new library,

without having to learn how to program with MOPs.

In order to simplify use of the OpenC MOP, we investigated

techniques of code generation with a DSL. To relieve developers

from the burden of programming with MOP APIs, we have

created a DSL, named SPOT [28], which works on top of OpenC

and provides a higher level of abstraction for expressing program

transformations. The design goal is to provide language

constructs that allow developers to perform direct manipulation

on program entities and hide the accidental complexities of using

OpenC and ROSE.

SPOT was originally designed to simplify the usage of

OpenFortran [27] by raising the abstraction level of program

transformation. In this paper, we extended SPOT to make it

applicable to specifying program transformations for C. SPOT

provides notations and built-in functions for systematic change

of a language entity (e.g., adding, updating, or deleting a

statement) to model the process of code modification, which

makes it readily extensible by adding new language elements to

support a new general-purpose programming language (GPL).

In the following subsections, we first briefly introduce SPOT and

then focus on explaining its extension in order to accommodate

OpenC.

4.1 An Example SPOT Program

Figure 6 demonstrates example SPOT code with the basic

structure and language constructs to specify code changes in C

programs. The code adds a function call to printInt after every

1. void ParaMDMetaClass:: OCExtendDefinition(){

2. for(int i=0; i<functionList.size(); i++){

3. if(functionList[i]->getName() == “compute”){

4. pushScopeStack(functionList[i]->getFunctionBodyScope());

5. SgStatement* targetStmt = getForStatement(“k,0,np,1” , 1);

6. insertPragmaBefore(targetStmt, ”for reduction (+ : pe, ke)”);

7. targetStmt = getAssignmentStatement(“ke”, 0.0, 1);

8. insertPragmaAfter(targetStmt, “parallel shared (f, nd,…) private (I, j, k…)”);

9. popScopeStack();

10. }

11. }

12.}

Figure 5: OpenC code to parallelize molecular dynamics using OpenMP

1. Transformer PrintResult{

2. Within(Function *){

3. Statement %stmt=getStatementAssignment();

4. IF($stmt.varName==”varName”){

5. AddCallStatement(After, $stmt, printInt, “varName”, $stmt.assignValue);

6. }

7. }

8. }

9. IncludeCode{

10. void printInt(char* varName, int val)

11. {

12. printf(“%s=%d\n”, varName, val);

13. }

14.}

Figure 6: An example program coded in SPOT

64 IJCA, Vol. 23, No. 1, March 2016

assignment statement whose left-hand side is the variable with

the name varName. As indicated by the code snippet, a typical

SPOT program starts with a keyword “Transformer,” followed

by a user-defined name, “PrintResult” in this case, which will be

used as the file name of the generated .cpp file. A transformer is

usually composed of one or more scope blocks where action

statements, nested scope blocks or condition blocks are included.

As shown in Figure 6, we define a scope block from line 2 to line

7. The wildcard feature is also supported to translate source code

in multiple locations with similar scenarios. For instance

“Within(Function *)” indicates that the following translation

would be performed for all function definitions in the current

code where “*” acts as a wildcard. Line 3 defines a variable

named “stmt” with a percent sign that serves as the handler for a

set of assignment statements. Lines 4 to 6 define a condition

block with the keyword “IF.” If the left-hand side in an

assignment statement is the variable varName, line 5 adds a line

of code that calls “printInt(…)” after the assignment statement.

The “$” sign is used together with a user-defined variable to

reference any element in the list. For example “$stmt” in this

example iterates all elements held by the handler “%stmt.” As

indicated by line 2 in the example, location and scope

information is expressed in a manner similar to an aspect in

AspectJ [13].

The including block in lines 9 to 14 is optional and provides

code needed by the transformer. The functions or variables

defined within an Include block will be directly inserted into the

beginning of the current file and before the first function

definition, unless otherwise specified. The developers are

expected to use this section to implement helper code used by

transformers in the same code file. In Figure 6, all keywords are

highlighted in bold in the example code.

4.2 The Design of SPOT for OpenC

To raise the level of abstraction for simplifying the usage of a

MOP like OpenC, high-level programming entities (e.g., files,

functions, structs, variables and statements) are used in SPOT

language constructs. Built-in functions are provided to allow

systematic actions for programming entities, such as add, delete

and update. The excerpt of built-in constructs and APIs is listed

in Table 2.

A benefit of SPOT is that it supports string-based translation.

Developers are allowed to embed C code in a SPOT program.

For example, in Figure 6, line 5 can be replaced with

“AddStatement(After, $stmt, “printInt(“var Name”, varName)”)”

to achieve the same effect of adding a function-call statement

after the statement indicated by $stmt, where the last parameter

“printInt(“varName”, varName)” is actually a C statement. In

addition, a real C statement can also be used as the parameter in

“GetStatement(“stmt”)” to obtain its handler. For instance, as in

“Statement %st=GetStatement(“result=a+b”),” all statements

containing “result=a+b” within the current scope are matched

and their handlers are put into the list represented by “st.” One

thing that needs to be noted is that all embedded C code should

be contained within double quotes.

One side effect of using C statements to match possible

translation points occurs if the source code to be transformed has

been modified, (e.g., a has been renamed to d as in

“result=d+b”). In such a case, the transformer will skip this

translation point. Another possible scenario is that instead of

matching an exact C statement, the transformer would like to

match a pattern, for instance, matching all assignment statements

with the right-hand side being a plus expression. In order to

overcome this drawback and to support the desired feature, we

allow developers to define a pattern with special literals $var1,

$var2, $var3… that can be used to substitute for real expressions

in a C statement. The pattern that matches all assignment

statements with their right-hand side being a plus expression can

be depicted as “$var1=$var2+$var3.”

4.3The Implementation of SPOT for OpenC

Figure 7 shows the transformation process after integrating

SPOT with OpenC. A SPOT program represents desired

translation tasks specified directly with built-in constructs by

developers for source code written in C. A code generator is used

to automate the translation from the SPOT program to C++ meta-

level transformation code. The MOP is responsible for carrying

out the specified transformations on source code in C with the

assistance of the low-level transformation engine ROSE.

The main purpose of the code generator is to translate a SPOT

program to the corresponding C++ meta-level code through code

generation. As shown in Figure 8, the code generator consists of

a parser that is able to recognize the syntax of both SPOT and C

and to build an AST for the recognized program, and a template

engine that is used to generate C++ code from traversing the AST.

The parser is generated with ANTLR [16] from the grammar of

SPOT and C expressed in Extended Backus-Naur Form (EBNF).

We have chosen ANTLR because the code generator needs the

grammar of C for recognizing C source code. A free C

grammar for ANTLR is available for use with little adaptation.

To implement the generator, we combined the SPOT grammar

with the C grammar. For each rule in the grammar we use

annotations to direct ANTLR to build ASTs. The annotations

indicate which tokens are to be treated as the root of a sub-tree

and which are leaves. We have also implemented a tree

grammar, the rules of which match desired sub-trees and map

them to the output models. The output models used in our code

generator are built with StringTemplate [16], a template engine

for generating formatted text output. To support string-based

transformation, for the same rule in the tree grammar which

matches a statement or a construct, two different types of output

models (i.e., two different implementations in the meta-level

code) are provided to either locate a place for code translation or

to add new language constructs in the base-level code.

When programming with SPOT, developers can be more

focused on their design intention of transformations with

constructs and actions provided. The underlying generation and

translation are performed in a transparent manner. Moreover,

SPOT provides a mechanism for developers to specify the

translation scope and to pick up a point of translation using a

IJCA, Vol. 23, No. 1, March 2016 65

Table 2: Overview of SPOT syntax and semantics for OpenC

Language Constructs

Virtual Constructs
Project project-wide transformation

File file-wide transformation

User Defined Type
Struct Indicate struct definition

Union Indicate union definition

Basic Constructs

Function Indicate function definition

FunctionCall Indicate function call expression

VariableRead Indicate reading a variable

VariableWrite Indicate writing a variable

VariableDecl Indicate declaring a variable

Statement* Indicate different types of

statements

Keywords for Scope Block

Within(para*)

Get the scope of transformation. Supported scopes include a project, a

file, a function, a struct, a union, and statements implying a scope, e.g. if-

else statement, for-loop statement

Before(para)/Before Perform transformation before an entity

After(para)/After Perform transformation after an entity

Keywords for Control Flow

IF(expr) ELSE Proceed based on the value of expr

FORALL(Construct name) List all constructs specified with name

Primary Actions

Function
RenameFunction(oldName, newName)

FindFunctionCall(funName)

Variable

AddVariable(type, name, intialValue)

DeleteVariable(name)

RenameVariable(oldName, newName)

FindVariableRead(name)

FindVariableWrite(name)

Statement

AddStatement(“stmt”)/ AddStatement(loc, targetStmt ,“stmt”)

AddCallStatement(loc, targetStmt, funName, parameterList)

DeleteStatement(“stmt”)/ DeleteStatement(loc, targetStmt, “stmt”)

Auxiliary Functionality

Retrieve Functions

Variable v = GetVariableDecl(name)

Function f = GetFunctionDef(name)

Struct s = GetStructDef(name)

StatementType %st = getStatementType()

Statement %st = getStatement(“stmt”)

Statement st = getStatement(lineNumber) //used in a file

Statement %st = getStatement(pattern)

VariableWrite %vw=getVariableWrite(varName)

VariableRead %vr=getVariableRead(varName)

Include Block
IncludeCode { source code in c}

IncludeCode { source code in c} into fileName

Note:

1. para can be a construct name or an expression (expr) or statement (stmt)

2. stmt indicates a C statement (within double quotes) or a pattern described with %var substituting for real

expressions within a statement

3. expr indicates an actual C expression or a pattern described with %var

4. %var is a user-defined variable representing a collection of entities, using $var to access an element in the

collection

66 IJCA, Vol. 23, No. 1, March 2016

Figure 7: Overview of the transformation process with SPOT

and OpenC

specific construct name or a wildcard to match multiple points.

Therefore, no annotation to the source code is necessary to use

libraries developed in SPOT, which makes the solution non-

intrusive because translations are performed on a generated copy

of the original code and the original code is kept intact.

4.4 Applications of SPOT for OpenC

The same transformations specified by the profiling library in

Section 3 can be achieved with SPOT in a more straightforward

way. Figure 9 demonstrates how to address the translation

challenge with constructs provided by SPOT. The Code

Generator in Figure 7 is responsible for transforming the DSL

code to the meta-level implementation in SPOT (shown in Figure

4). The generated code will be saved in Profiling.cpp whose

name is from the Transformer’s name specified in line 1. Line 2

uses a wildcard to make the transformation applicable to all

source files. Line 3 inserts an include directive (i.e., “#include

profiling.h”) at the beginning of the current file. Line 4 loops

over all function definitions within the current file by calling

FORALL(…). From line 5 to line 8 the code matches all

statements containing a function call and then adds two new

function calls before and after the statement by invoking

AddCallStatement(…), where the first argument indicates the

relative location (Before or After), the second one the handler of

the statement matched, the third one the function name to be

added and all the rest are interpreted as the parameters passed to

the added function call. In the code, all built-in constructs are

highlighted in bold. Figure 10 shows the corresponding SPOT

code that can be translated into the meta-program as shown in

Figure 5, where insertPragma is called to instrument OpenMP

directives into the desired places.

5 Related Work

Many development concepts of MOPs occurred in the context

of the Common Lisp Object System (CLOS) [4]. The initial

design objective of the MOP for CLOS was to allow object-

oriented Lisp to meet the ever-increasing user demands for

extension. As a result, the MOP concept itself became a powerful

tool that can also be used to solve many different problems

emerging in other high-level languages. OpenC++ was proposed

by Chiba to bring the power of meta-programming to C++ [5].

The design goal of OpenC++ was to enable client users to

develop customized language extensions or compiler

optimizations through simple annotations. However, it is still a

challenge for most application developers to program with the

concept of meta-programming.

OpenJava was designed as a MOP for Java by Tatsubori and

Chiba [23]. It is a reflective system that is able to provide both

structural and behavioral reflection. Instead of using an AST as

the main data structure to perform translation. OpenJava exploits

a more advanced macro system that is able to hold the logical and

contextual data. Roychoudhury et al. [19] presented the

implementation of an aspect weaver for supporting AOP in

Fortran using a source transformation engine named DMS [2].

There exist many systems that can be used to perform pro-

gram transformations. Though powerful in supporting specified

program transformations, it is quite a challenge for application

developers to learn and use most program transformation systems.

In contrast, our work strives to match more closely to the

application developers’ comprehension of program

transformation by allowing direct manipulation of concepts in the

core language. We believe that our approach using OpenC and

SPOT is easier to use and has a lower learning curve compared

to use of program transformation systems.

Many existing transformation systems, such as ASF+SDF [25]

and Turing eXtender Language (TXL) [6], mainly depend on

pattern-based rewrite rules to locate translation points and to

specify particular transformations. OpenC provides constructs

for defining arbitrary transformations. For instance, application

developers are allowed to identify transformation places with

arbitrary control flow such as condition (IF-ELSE) and loop

(FORALL) (recursive is not necessary) and with user-defined

variables (single or a list of variables) as handlers to represent

particular entities, and perform translation by directly invoking

many built-in operations, for instance addEntity, replaceEntity

and deleteEntity where Entity may refer to any program entities

Figure 8: The implementation structure of the

Code Generator

IJCA, Vol. 23, No. 1, March 2016 67

of a particular language.

POET [26], a scripting language, was originally developed

to perform compiler optimizations for performance tuning.

As an extension of the ROSE compiler optimizer, POET can

be used to parameterize program transformations so that

system performance can be empirically tuned. The features of

POET were then enriched to support ad-hoc program

translation and code generation of DSLs. However, available

transformation libraries are mainly predefined for the purpose

of performance turning towards particular code constructs

such as loops and matrix manipulation. Developers have to

know POET well in order to define their own scripts that are

able to read particular input code and return the transformed

code. Compared with POET’s scheme of parameterization in

specifying program transformations, our approach that uses

OpenC and SPOT raises the abstraction for program

translation, and thus is more aligned with a developer’s

understanding of program transformations by allowing direct

manipulation of language constructs.

6 Conclusions and Future Work

The work described in this paper is focused on a summary

of the OpenC framework that brings the power of

computational reflection to C with a MOP. With OpenC,

source-to-source program transformation libraries can be built

and then applied in a transparent way. This can be especially

suitable for developing libraries dealing with crosscutting

issues like logging, profiling and checkpointing. With

traditional approaches, library users are usually forced to learn

the specifications on how to use a library’s interfaces.

However, to use transformation libraries developed with

OpenC, the only action required is to attach proper annotations

to the source code and the underlying transformations are

completely transparent to the developers. It is also convenient

to unplug the libraries by simply removing the annotation.

The application code is kept intact because translations are

performed on a generated copy of the original code.

Although it is more straightforward conceptually to use

OpenC to implement libraries than directly using APIs of

ROSE to manipulate an AST, we believe that there is a

learning curve for library developers to become familiar with

the MOP idea. We have created a DSL that can be used on

top of a MOP (on a meta-meta-level) to improve the ability to

specify program transformations. SPOT developers can use

carefully designed language constructs to express

transformation tasks in a transparent manner, whereby they do

not need to know the details on how the transformations are

performed underneath. Not only can the SPOT DSL be used

to support AOP in C, it can also be used to specify more fine-

grained transformations at more diverse locations.

Currently, we have only extended SPOT to support a limited

number of pattern matching actions. Gradually, we will enrich

it with more features in order to support additional types of

translations. Moreover, SPOT is not limited to Fortran and C,

but can also be extended to support other languages since it

shows a higher abstraction of program composition.

Our experience shows that the MOP mechanism, as a form of

program extension, can be used to address a wide range of

problems by facilitating the implementation of source-to-source

program translators. There is a lack of infrastructure support for

language extension in the way of building a meta-object

protocol for an arbitrary language. Therefore, we plan to build

a generalized framework, suitable for extending an arbitrary

programming language by creating a MOP for the language.

The design goal is to allow end-users to specify source-to-

source program transformation of any kind via the MOP to

existing programs written in the language.

1.Transformer Profiling{

2. Within(File *){

3. AddIncludeStatement(profiling.h);

4. FORALL(Function %fun){

5. FORALL(FunctionCall %funCall){

6. AddCallStatement(Before, $funCall.statement, profiling,$fun.funName+”:”+$funCall.funName);

7. AddCallStatement(After, $funCall.statement, profiling, $fun.funName+”:”+$funCall.funName);

8. }

9. }

10. }

11.}

Figure 9: The profiling library specified in SPOT

1. Transformer ParaMolecularDynamics{

2. Within(Function compute){

3. Statement forStmt = getForStatement(“k,0,np,1” , 1);

4. insertPragma(Before, targetStmt, ”for reduction (+ : pe, ke)”);

5. Statement assignStmt = getStatement(“ke = 0.0” , 1);

6. insertPragma(After, assignStmt, “parallel shared (f, nd,…) private (I, j, k…)”);

7. }

8. }

Figure 10: SPOT code to parallelize molecular dynamics using OpenMP

68 IJCA, Vol. 23, No. 1, March 2016

References

[1] R. Arora, P. Bangalore, and M. Mernik, “Tools and

Techniques for Non-Invasive Explicit Parallelization,”

The Journal of Supercomputing, 62(3):1583-1608, 2012.

[2] I. D. Baxter, C. Pidgeon, M. Mehlich, “DMS®: Program

Transformations for Practical Scalable Software

Evolution,” Proceedings of the 26th International

Conference on Software Engineering, pp. 625-634, 2004.

[3] K. H. Bennett and V.T Rajlich, “Software Maintenance

and Evolution: A Roadmap,” Proceedings of the

International Conference on Software Engineering,

pp.73-87, 2000.

[4] D. Bobrow, R. Gabriel, and J. White, “CLOS in Context

—The Shape of the Design Space,” A. Paepcke, Editor,

Object-Oriented Programming-The CLOS Perspective,

The MIT Press, Chapter 2, 1993.

[5] S. Chiba, “A Metaobject Protocol for C++,” Proceedings

of Object-Oriented Programming Systems, Languages,

and Applications, pp. 285-299, 1995.

[6] J. R. Cordy, “The TXL Source Transformation

Language,” Science of Computer Programming,

61(3):190-210. 2006.

[7] F. Demers and J. Malenfant, “Reflection in Logic,

Functional and Object-Oriented Programming: A Short

Comparative Study,” IJCAI Workshop on Reflection and

Metalevel Architectures and their Applications in AI,

95:29-38, 1995.

[8] L. DeMichiel and R. Gabriel, “The Common Lisp Object

System: An Overview,” Proceedings of European

Conference on Object-Oriented Programming, pp. 151-

170, 1987.

[9] http://people.sc.fsu.edu/~jburkardt/c_src/md_openmp/

md_openmp.html, 2016.

[10] http://www.edg.com/index.php?location=c_frontend,

2016.

[11] G. Kiczales, J. Rivieres, and D. Bobrow, The Art of the

Metaobject Protocol, The MIT Press, 1991.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J. M. Loingtier, and J. Irwin, “Aspect-Oriented

Programming,” Proceedings of European Conference on

Object-Oriented Programming, pp. 220-242. 1997.

[13] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,

and W. Griswold, “Getting Started with AspectJ,”

Communications of the ACM, 44(10): 59-65, 2001.

[14] P. Maes, “Concepts and Experiments in Computational

Reflection,” Proceedings of Object-Oriented

Programming Systems, Languages, and Applications, pp.

147-155, 1987.

[15] OpenMP Architecture Review Board, OpenMP Fortran

Application Program Interface Version 2.0, November

2000.

[16] T. Parr, The Definitive ANTLR Reference: Building

Domain-Specific Languages, 2007.

[17] D. C. Rapaport, The Art of Molecular Dynamics

Simulation, Cambridge University Press, 2004

[18] ROSE Compiler Project, http://rosecompiler.org, Last

Accessed: February 28, 2016.

[19] S. Roychoudhury, J. Gray, F. Jouault, “A Model-Driven

Framework for Aspect Weaver Construction,” In

Transactions on Aspect-Oriented Software Development,

VIII:1-45, 2011.

[20] L. M. Scott, Programming Language Pragmatics,

Morgan Kaufmann Publishers, 2006.

[21] B. Smith, “Reflection and Semantics in a Procedural

Language,” Tech. Report 272, MIT, 1982.

[22] D. Spinellis, “Rational Metaprogramming,” IEEE

Software, 25(1):78-79, 2008

[23] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano,

“OpenJava: A Class-Based Macro System for Java,”

Reflection and Software Engineering, pp. 117-133, 1999.

[24] TIOBE Programming Community Index, http://www.

tiobe.com/index.php/content/paperinfo/tpci/index.html.

[25] M. G.van den Brand, A.van Deursen, J. Heering, H. A.

De Jong, M. de Jonge, and Visser, J, “The ASF+ SDF

Meta-Environment: A Component-Based Language

Development Environment,” Compiler Construction, pp.

365-370, 2001.

[26] Q. Yi, “POET: A Scripting Language for Applying

Parameterized Source ‐ to ‐ Source Program

Transforma-tions,” Software: Practice and Experience,

42(6):675-706, 2012.

[27] S. Yue and J. Gray, “OpenFortran: Extending Fortran

with Meta-Programming,” Proceedings of the

International Conference for High Performance

Computing, Networking, Storage, and Analysis, pp. 1-7,

2013.

[28] S. Yue and J. Gray, “SPOT: A DSL for Extending

FORTRAN Programs with Meta-Programming,”

Advances in Software Engineering, 2014:1-23, 2014.

Songqing Yue is an Assistant Professor

in the Department of Mathematics and

Computer Science at the University of

Central Missouri. He has several years

of software development experience in

industry and his research interests

mainly focus on Programming

Language, High Performance

Computing, and Model Driven

Development.

Jeff Gray is a Professor in the

Department of Computer Science at the

University of Alabama. His research

interests include topics in software

engineering, with a special focus on

model-driven engineering and domain-

specific languages. He also has interests

in computer science education and K-12

outreach. More details about his work

can be found at http://gray.cs.ua.edu.

http://people.sc.fsu.edu/~jburkardt/c_src/md_openmp/%20md_openmp.html
http://people.sc.fsu.edu/~jburkardt/c_src/md_openmp/%20md_openmp.html
http://www.edg.com/index.php?location=c_frontend
http://rosecompiler.org/
http://gray.cs.ua.edu/

IJCA, Vol. 23, No. 1, March 2016 69

ISCA Copyright© 2016

Investigating the Relationships between Use

Cases Attributes and Source Code Size

William Flageol*, Mourad Badri*, and Linda Badri*

University of Quebec, Trois-Rivières, Quebec, CANADA

Abstract

Software development is a time and resource consuming

process. It is, therefore, important to estimate as soon as

possible the effort required to develop software, so that

activities can be planned and resources can be optimally

allocated. Many software development effort estimation

methods have been proposed in the literature. Most of them

include software “size” as an important parameter. This study

aims at investigating empirically the relationships between use

cases attributes and source code size. The research question

we wanted to address is to explore the potential of predicting

the source code size from use cases attributes only, regardless

of technical or environmental factors, which may be difficult to

objectively measure. We used in the study four metrics to

quantify various use cases attributes and four source code size

metrics. In order to investigate the relationships between use

cases and source code size metrics, we used three correlation

analysis techniques and a clustering technique. The use case

metrics have been compared, in terms of relationships with the

source code size metrics, to the well-known Use Case Points

method. An empirical study, using data collected from five

Java open source projects, is reported in the paper. Results

provide evidence that a subset of the use case metrics suite is

better correlated to the source code size metrics than the Use

Case Points values.

Keywords: Software development effort, use cases, source

code size, metrics, use case points, relationships.

1 Introduction

Software development is a time and resource consuming

process. It is, therefore, absolutely necessary to estimate as

soon as possible, ideally in the early stages of the software

development lifecycle, the effort required to develop software.

In this way, activities can be planned and resources can be

optimally allocated. Predicting early the software development

effort is, in fact, one of the key aspects of successful software

development management. Many software development effort

estimation methods (models) have been proposed in the

* Software Engineering Research Laboratory, Department of

Mathematics and Computer Science. Email: {William.Flageol,

Mourad.Badri, Linda.Badri}@uqtr.ca

literature. Most of them include software “size” as an

important parameter.

Typical inputs available at early stages of the software

development lifecycle are functional requirements, which

describe what a software system is expected to do. In this

paper, we focus on software development effort prediction for

object-oriented (OO) software development, which is used

extensively in the industrial projects. Use cases, available

relatively early during the software development lifecycle, are

used to describe the functional requirements of a software

system [5]. Use cases have gained popularity and have been

widely used for many years. Consequently, effort prediction

(estimation) based on use cases attributes has also gained

popularity. Many use cases based methods have, indeed, been

proposed in the literature for software size measurement and

effort estimation [4, 6, 8-9, 12-14]. These methods use, in fact,

different use case attributes as inputs, including actors and use

cases ranking, use cases points, normal and exceptional

scenarios and various technical and environmental factors.

The technical factors are related to non-functional

requirements on the target system while the environmental

factors characterize the development team and its environment.

These factors have been criticized for not improving the

precision of the estimate [12].

In this paper, we investigate empirically the potential of use

cases attributes to predict source code size. The medium-term

objective of this research is to propose a simple and an

alternative method, based on objective measures, simplifying

source code size prediction from use cases without

compromising the accuracy of the prediction. We used in this

study four metrics to quantify different attributes related to size

and complexity of use cases, and four metrics to quantify

different size attributes of corresponding source code. We

used three correlation analysis techniques to investigate the

relationships between use cases and source code size metrics.

We also used a clustering technique (K-means) to classify use

cases in three classes: complex, average and simple. The goal

here was to observe if the complexity of the use cases,

according to the classification we adopted, is well reflected by

the distribution of the source code size metrics. The use cases

metrics have been compared to the well-known Use Case

Points (UCP) method, which is based on a use cases model.

We performed an empirical study using data collected from

five Java open source projects. Reported results provide

evidence that a subset of the use cases metrics suite is better

mailto:%7D@uqtr.ca

70 IJCA, Vol. 23, No. 1, March 2016

correlated to the source code size metrics than the Use Case

Points values.

The rest of this paper is organized as follows: Section 2

gives a brief survey of major related work. The use cases

metrics are presented in Section 3. Section 4 presents

summarily the Use Case Points method. Section 5 presents the

empirical study we performed in order to investigate the

relationships between the use cases and the source code size

metrics. Finally, Section 6 concludes the paper and outlines

some future work directions.

2 Related Work

Use cases have been used in many studies to estimate the

software development effort (cost) [4, 6, 8-9, 12-14]. Karner

[6] introduced a method using use cases model as a basis for

estimating software development effort. The method was

influenced by the Function Points method. Mohagheghi et al.

[8] introduced some rule based modifications to the UCP (Use

Case Points) method in order to estimate the effort in

incremental development. Ochodek et al. [12] investigated the

constructs of the UCP method, the influence of its components

on its accuracy, and explored possible simplifications. The

aim was, in fact, to search for potential ways to simplify the

effect estimation based on use cases, particularly to reduce the

impact of the subjectivity of adjustment factors.

The UCP method has been used in many studies to estimate

software development (and testing) effort. The UCP method

has been proposed to estimate basically software development

effort (Person-Hours) in the early stages of the software

development lifecycle. The method has been used in many

organizations, and several tools to support calculating UCP

have been developed. Many studies and experience reports

showed the usefulness of the UCP method for early effort and

size estimation based on use cases model. The UCP method

suffers, however, from some limitations that affect its

accuracy. Indeed, some studies pointed out problems

concerning the UCP constructs and the way the method

assesses the complexity of actors and uses cases [12]. The

main drawback of the method is, in fact, the absence of the

graduation when classifying the complexity of use cases and

actors. For example, if the number of transactions in a given

use case is seven the use case is classified as average.

However, if the number of transactions is eight, the use case is

classified as complex.

3 Use Case Metrics

Use cases are basically used for capturing and describing

functional requirements of a system. Informally, a use case is

a collection of related success and failure scenarios that

describe actors using a system to support a goal [5, 7]. A use

cases model defines the functional scope of the system to be

developed, and describes how external actors interact with the

software system. The interactions between actors and the

software system generate events to the software system, known

as input system events, which are usually associated with

system operations.

A scenario, also called a use case instance, is a specific

sequence of actions and interactions between actors and the

system. It is one particular story of using the system, or one

path through the use case. We present, in what follows, the

four metrics we used to characterize use cases size and

complexity [1]. We excluded, in fact, the NIM (Number of

Involved Methods) metric from the original suite of use cases

metrics that we proposed in [1], because this metric defines the

total number of methods that are involved in the execution of a

use case, which is a metric obtained from design models.

Moreover, we extended the suite of use cases metrics by

introducing the NT metric.

Number of Involved Classes (NIC): This metric defines the

total number of analysis classes participating in a use case,

which have been identified during the analysis phase.

Number of External Operations (NEO): This metric defines

the total number of system operations associated with the

system events related to a use case. These operations are

easily identifiable from UML system sequence diagrams. The

entire set of system operations, identified during system

behavior analysis, defines the public system interface.

Number of Scenarios (NS): This metric gives the total

number of different scenarios of a use case. It is related to the

cyclomatic complexity of the use case. In our approach, we do

not make the distinction (as some approaches in the literature)

between a normal scenario and an exceptional one. We

consider the total amount of scenarios in each use case. By

collecting all possible behavioral sequences, based on requests

submitted by the actors to the target system, use cases (and

corresponding system sequence diagrams) capture the wide

range of possible scenarios.

Number of Transactions (NT): This metric gives the total

number of transactions of a use case. A transaction is an event

(a set of activities in a use case scenario) that occurs between

an actor and the target system, the event being performed

entirely or not at all. The complexity of a use case is also

determined by the number of transactions. The simplest way

to count the number of transactions is to count the number of

events included in the flow of events described in a use case

(and corresponding system sequence diagram).

4 Use Case Points Method

The Use Case Points (UCP) method has been used in several

industrial projects to estimate the software development effort

in the early stages of the software development process [2-3, 8,

10-12]. The popularity of this method is basically due to its

simplicity and its reduced number of steps. The UCP method,

introduced by Karner in 1993 [6], allows estimating the effort

in Person/Hours using use cases. The UCP method has also

been used for predicting maintenance effort [3] and software

testability [9]. We present, in what follows, a summary of the

UCP method. For more details see [6, 8, 12]. The UCP

estimation model consists of six steps:

IJCA, Vol. 23, No. 1, March 2016 71

Unadjusted Actor Weights: The first step of the UCP

method is to assign each actor to one of three complexity

classes (simple: an actor representing a system that

communicates with other actors using API, average: a system

actor who communicates with the system via a protocol (e.g.,

HTTP, FTP), or a person who interacts with the system

through a terminal console, complex: human actor that

communicates with the system via a GUI). Each type of

complexity is assigned a weight: 1 for simple, 2 for average

and 3 for complex. Then, the number of each actor type that

the target software includes is calculated. After that, each

number is multiplied by a weighting factor. The actors’ weight

is calculated by adding these values together.

Unadjusted Use Case Weights: In the second step of the

UCP method each use case is categorized as simple, average or

complex. This categorization is based on the number of steps

(transactions) in a use case, including alternative paths. A

simple use case has 3 or fewer transactions, an average use

case has 4 to 7 transactions, and a complex use case has more

than 7 transactions. Here also, the number of use case types

that the target system includes is calculated and then each

number is multiplied by a weighting factor.

Unadjusted Use Case Points: This step is to calculate the

unadjusted use case points by adding the total weight for actors

to the total weight of use cases.

Assigning values to technical complexity and environmental

factors: These factors [8, 12] include technical factors and

environmental factors. Technical complexity factors can have

an impact on the complexity of the project (e.g., reuse,

security, performance, etc.). Environmental factors are the

environment in which the project evolves (e.g., team

experience in a particular field, stability requirements, etc.).

The technical complexity factor is calculated by multiplying

the value of each factor by its weight (Table 1). The

environmental factor is also calculated by multiplying the

value of each factor by its weight (Table 2). The technical

complexity fac tor i s ca lcula ted as fo l lo ws: TCF =

Table 1: Technical factors

Factor Description Weight

T1 Distributed system 2.0

T2 Response time/performance objectives 1.0

T3 End-user efficiency 1.0

T4 Internal processing complexity 1.0

T5 Code reusability 1.0

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portability to other platforms 2.0

T9 System maintenance 1.0

T10 Concurrent/ parallel processing 1.0

T11 Security features 1.0

T12 Access for third parties 1.0

T13 Enf user training 1.0

Table 2: Environmental factors

Factor Description Weight

E1 Familiarity with development process used 1.5

E2 Application experience 0.5

E3 Object-oriented experience of team 1.0

E4 Lead analyst capability 0.5

E5 Motivation of the team 1.0

E6 Stability of requirements 2.0

E7 Part-time staff -1.0

E8 Difficult programming language -1.0

0.6+(0.01*TFactor), where TFactor is the sum of all the

weighted factors. The environmental factor is calculated as

follows: EF = 1.4+(-0.03*EFactor), where here also the

EFactor is the sum of all the weighted environmental factors.

Adjusted Use Case Points: UCP is then calculated as

follows: UCP = UUCP*TCF*EF.

Estimated Effort: The estimated effort is obtained by

multiplying the specific value (man-hours) by the UCP: EE =

UCP*Hours/UCP, where Hours/UCP is a value of man-hours

per UCP.

5 Empirical Study

5.1 Goal, Selected Projects and Data Collection

The study aims basically at investigating the relationships

between use cases metrics (in comparison to the Use Case

Points method) and the source code size metrics. We used in

our study different metrics to characterize the size of the

source code corresponding to a use case (noted UCi).

Number Of Classes (NOC): This metric gives the number of

classes that are involved in the realization of a use case.

Number Of Attributes (NOA): This metrics gives the total

number of attributes of the classes involved in the realization

of a use case.

Number Of Methods (NOM): This metrics gives the total

number of methods of the classes involved in the realization of

a use case.

Source Lines of Code (SLOC): This metric defines the

cumulative number of lines of source code related to a use case

(all of its scenarios). It is used to indicate the total size, in

terms of lines of source code, of the parts of software

corresponding to a use case. The number of lines of source

code has been widely used in many previous empirical

software engineering studies.

We used in our experiments each pair (use case metric, size

metric) to explore the relationships between the characteristics

of a use case, captured by the use cases metrics, and the size of

corresponding source code captured by the size metrics. We

conducted an experimental study using data collected from five

Java open source projects. The selected case studies are from

different domains and developed by different teams. The use

case models (and corresponding sequence diagrams) have been

collected for each project by reverse engineering the source

72 IJCA, Vol. 23, No. 1, March 2016

code of the applications. We also used the available projects’

documentation (particularly the user guides). We related to

each use case the corresponding source code. For each use

case, we calculated the values of the use cases metrics and the

global value of the UCP method. For the UCP method, we

followed the different steps of the method presented in Section

4. The global value of the UCP method, used in this study,

corresponds to the Adjusted Use Case Points (step five). We

also used the size metrics to quantify the source code

corresponding to each use case.

The selected projects are: ATM, NextGen, CommonsIO,

CommonsEmail and JODA-Time. The first case study ATM†

is a simulator system allowing performing basic banking

operations (withdrawal, deposit, transfer, balance, etc.). We

adapted the case study for our purposes. The second case

study NextGen is an extension of the application developed by

Larman [7]. The original application has been extended for

our purposes. We have added features about accounts

receivable management, suppliers, and employees. We also

added features to support billing and rental payments by debit

and credit. The third case study CommonsIO‡ is a library of

utilities to assist with developing IO functionality. We used

only a part of this system that is related to reading, writing and

files comparison functionalities. The fourth case study

Commons Email§ aims to provide an API for sending email. It

is built on top of the Java Mail API, which it aims to simplify.

The fifth case study JODA-Time** is the de facto standard

library for advanced date and time in Java. It provides a

quality replacement for the Java date and time classes. The

design supports multiple calendar systems, while still

providing a simple API.

Because the main data set was heterogeneous, and in order

to have a significant sample of data, we decided to perform our

study on the whole data set obtained by grouping the use cases

of the five case studies. We have then a total of 46 use cases.

Table 3 lists the descriptive statistics for the use cases metrics,

Table 3: Descriptive statistics for the use cases metrics

(including UCP) and the source code size metrics

Var. Ob

s.

Min Max Mean SD

NIC 46 1,00

0

15,000 3,609 3,102

NEO 46 1,00

0

36,000 2,696 5,456

NS 46 1,00

0

32,000 3,587 4,717

NT 46 1,00

0

41,000 4,739 6,112

UCP 46 4,38

0

15,130 8,243 3,580

NOC 46 1,00

0

15,000 3,217 3,112

NOA 46 0,00

0

41,000 5,283 8,334

NO

M

46 1,00

0

58,000 5,000 8,859

SLO

C

46 4,00

0

399,000 59,174 66,856

† http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
‡ https://commons.apache.org/proper/commons-exec/
§ https://commons.apache.org/proper/commons-email/
** https://commons.apache.org/proper/commons-io/

the global value of UCP and the source code size metrics.

5.2 Correlation Analysis

In order to investigate the relationships between the use

cases metrics (noted UCMm), including the UCP global value,

and the source code size metrics (noted Si) we performed

statistical tests using correlation. The null and alternative

hypotheses that our study has tested were:

- H0: There is no significant correlation between a use case

metric UCMm (UCP) and the source code size metric Si.

- H1: There is a significant correlation between a use case

metric UCMm (UCP) and the source code size metric Si.

In this experiment, rejecting the null hypothesis indicates

that there is a statistically significant relationship between a

use case metric UCMm (UCP) and the source code size metric

Si. For the analysis of the collected data, and in order to test

the correlation between a use case metric (UCP) and a size

metric Si, we used three correlation analysis techniques:

Pearson, Spearman and Kendall. We used these techniques

mainly for completeness. The Pearson r correlation is widely

used in statistics to measure the degree of the relationship

between linear related variables. The variables should be

normally distributed. The Spearman rank correlation is a non-

parametric test that is used to measure the degree of

association between two variables. Spearman rank correlation

test does not assume anything about the distribution of the

variables. The Kendall rank correlation coefficient is also a

statistic used to measure the association between two variables.

It is a measure of rank correlation.

Correlation is a bivariate analysis that measures the strengths

of association between two variables. In statistics, the value of

the correlation coefficient varies between +1 and -1. A

positive correlation is one in which the variables increase

together. A negative correlation is one in which one variable

increases as the other variable decreases. A correlation of +1

or -1 will arise if the relationship between the variables is

exactly linear. A correlation close to zero means that there is

no linear relationship between the variables.

We used the XLSTAT†† software tool to measure the three

types of correlations. We applied the typical significance

threshold (alpha = 0.05) to decide whether the correlations

where significant. For each pair <UCMm, Si>, we analyzed the

collected data set by calculating the (Pearson’s, Spearman’s

and Kendall’s) correlation coefficients. Tables 4, 5, and 6

summarize the results of the correlation analysis (respectively

Pearson’s, Spearman’s and Kendall’s correlation coefficients).

The correlation coefficients that are significant (alpha = 0.05)

are set in boldface in the three tables. This means that for the

corresponding pairs of metrics there exist a correlation at the

95% confidence level.

The first global observation that we can make from the

three tables (Tables 4, 5 and 6), is that there is a significant

†† http://www.xlstat.com/

http://www.math-cs.gordon.edu/courses/cs211/ATMExample/
https://commons.apache.org/proper/commons-exec/
https://commons.apache.org/proper/commons-email/
https://commons.apache.org/proper/commons-io/
http://www.xlstat.com/

IJCA, Vol. 23, No. 1, March 2016 73

Table 4: Pearson’s correlation values between the use cases metrics (UCP) and the source code size metrics

Var. NIC NEO NS NT UCP NOC NOA NOM SLOC

NIC 1 0,517 0,537 0,527 0,254 0,962 0,569 0,735 0,655

NEO 0,517 1 0,816 0,944 0,453 0,518 0,683 0,899 0,764

NS 0,537 0,816 1 0,930 0,549 0,569 0,616 0,852 0,807

NT 0,527 0,944 0,930 1 0,648 0,543 0,690 0,894 0,833

UCP 0,254 0,453 0,549 0,648 1 0,289 0,435 0,455 0,580

Table 5: Spearman’s correlation values between the use cases metrics (UCP) and the source code size metrics

Var. NIC NEO NS NT UCP NOC NO

A

NO

M

SLOC

NIC 1 0,485 0,149 0,216 0,232 0,916 0,7

01

0,62

3

0,581

NEO 0,485 1 0,087 0,564 0,416 0,379 0,7

05

0,43

0

0,522

NS 0,149 0,087 1 0,764 0,726 0,243 0,1

97

0,25

5
0,613

NT 0,216 0,564 0,764 1 0,903 0,280 0,4

77

0,42

4

0,730

UCP 0,232 0,416 0,726 0,903 1 0,385 0,4

23

0,58

0

0,736

Table 6: Kendall’s correlation values between the use cases metrics (UCP) and the source code size metrics

Var. NIC NEO NS NT UCP NOC NOA N

O

M

SLOC

NIC 1 0,402 0,122 0,174 0,185 0,860 0,558 0

,52

9

0,440

NEO 0,402 1 0,074 0,500 0,341 0,322 0,600 0

,36

4

0,414

NS 0,122 0,074 1 0,725 0,629 0,198 0,160 0

,20

6

0,460

NT 0,174 0,500 0,725 1 0,784 0,223 0,385 0

,33

9

0,561

UCP 0,185 0,341 0,629 0,784 1 0,297 0,343 0

,46

2

0,546

relationship (the correlation values are in bold face) between

all the use cases metrics, including the UCP global value, and

the source code size metrics (except for few cases, the

corresponding correlation values are not in bold face).

According to the obtained results, we can therefore reasonably

reject the null hypothesis H0. The other global observations

that we can make from these tables are:

- According to the Pearson technique: (1) the use cases

metrics that are the most correlated (compared to the other

metrics) to the source code size metric SLOC are

respectively NT (0.833), and NS (0.807), which are both

much better correlated to the source code size metric

SLOC than the UCP metric (0.580). (2) the use cases

metrics that are the most correlated (compared to the other

metrics) to the source code size metric NOC are

respectively NIC (0.962), and NS (0.569), which are both

much better correlated to the source code size metric NOC

than the UCP metric (the correlation is not significant).

(3) the use cases metrics that are the most correlated

(compared to the other metrics) to the source code size

metric NOA are respectively, NT (0.690), and NEO

(0.683), which are both much better correlated to the

source code size metric NOA than the UCP metric

(0.435). (4) the use cases metrics that are the most

correlated (compared to the other metrics) to the source

code size metric NOM are respectively, NEO (0.899), and

NT (0.894), which are here also both much better

correlated to the source code size metric NOM than the

UCP metric (0.455).

- According to the Spearman technique: (1) the use cases

metrics that are the most correlated (compared to the other

metrics) to the source code metric SLOC are respectively,

UCP (0.736) and NT (0.730), with almost equal

correlation values. (2) the use case metric that is the most

correlated (compared to the other metrics) to the source

code size metric NOC is NIC (0.916), which is much

better correlated to the source code size metric NOC than

the UCP metric (0.385). (3) the use cases metrics that are

the most correlated (compared to the other metrics) to the

source code size metric NOA are respectively, NEO

(0.705), and NIC (0.701), which are both much better

correlated to the source code size metric NOA than the

UCP metric (0.423). (4) the use case metric that is the

most correlated (compared to the other metrics) to the

source code size metric NOM is NIC (0.623), which is

much better correlated to the source code size metric

NOM than the UCP metric (0.580).

- According to the Kendall technique: (1) the use case

metric that is the most correlated (compared to the other

metrics) to the source code metric SLOC is NT (0.561),

which is better correlated to the source code size metric

SLOC than the UCP metric (0.546). (2) the use cases

metrics that are the most correlated (compared to the other

metrics) to the source code size metric NOC are

respectively, NIC (0.860), and NEO (0.322), which are

much better correlated to the source code size metric NOC

than the UCP metric (0.297). (3) the use cases metrics

that are the most correlated (compared to the other

metrics) to the source code size metric NOA are

74 IJCA, Vol. 23, No. 1, March 2016

respectively, NEO (0.600), and NIC (0.558), which are

both much better correlated to the source code size metric

NOA than the UCP metric (0.343). (4) the use case metric

that is the most correlated (compared to the other metrics)

to the source code size metric NOM is NIC (0.529), which

is much better correlated to the source code size metric

NOM than the UCP metric (0.462).

So, results show clearly that, overall, the use case metrics (at

least a subset of the use cases metrics suite) are much better

correlated to the source code size metrics than UCP.

Moreover, as it can be seen from the three tables, the measures

have positive correlation. A positive correlation indicates that

one variable (use case metric, UCP) increases as the other

variable (source code size metric) increases.

5.3 Use Cases Ranking

In order to deepen our analysis and better understand the

relationship between use cases attributes and source code size,

we wanted to explore the use of clustering techniques for

classifying (ranking) use cases into three categories: simple,

average and complex. Clustering provides, indeed, a natural

way for identifying clusters of related objects (use cases in our

study) based on their similarity (use cases metrics in our

study). The resulting clusters (three in our study), are to be

built so that use cases within each cluster are more closely

related to one another than use cases assigned to different

clusters. We wanted, in fact, to investigate if the distribution

of the source code size metrics will reflect the complexity level

of the corresponding use cases.

Let UC be a use case and P = {UCMi} be the set of its

properties (use cases metrics). In this paper, we used the K-

means clustering, which is a method of cluster analysis that

aims to partition n observations (use cases) into k clusters

(three in our study) in which each observation belongs to the

cluster with the nearest mean. We used here also the XLSTAT

software tool, which implements many clustering algorithms.

We obtain three clusters of use cases. Tables 7 and 8 give,

respectively, the descriptive statistics for the source code size

metric SLOC and the UCP values according to the K-means

use cases ranking. We used in this section only the source

code size metric SLOC as a representative size metric.

Table 7: Descriptive statistics for SLOC according to use

cases ranking

Clusters Obs. Mean Variance (n) SD

Simple 26 31,615 1841,467 42,912

Average 15 81,400 507,840 22,535

Complex 5 135,800 17825,360 133,512

Table 8: Descriptive statistics for UCP according to use cases

ranking

Clusters Obs. Mean Variance (n) SD

Simple 26 5,988 3,467 1,862

Average 15 10,545 8,642 2,940

Complex 5 13,058 5,850 2,419

The first cluster, corresponding to simple use cases, includes

26 use cases. The mean value of the corresponding SLOC is

31.615 and the mean value of corresponding UCP values is

5.988. The second cluster, corresponding to average use

cases, includes 15 use cases. The mean value of the

corresponding SLOC is 81.400 and the mean value of

corresponding UCP values is 10.545. The third cluster,

corresponding to complex use cases, includes 5 use cases. The

mean value of the corresponding SLOC is 135.800 and the

mean value of the corresponding UCP values is 13.058.

Results show clearly that the mean value of the SLOC

metric of complex use cases is higher than the mean value of

the same metric of average use cases, which is higher than the

mean value of the same metric of simple use cases. The

descriptive statistics of the source code size metric SLOC

reflect properly the ranking in terms of complexity of

corresponding use cases. This is also well reflected by the

curves of Figure 1. This figure gives the distribution of the use

cases metrics, the UCP values, the SLOC values, and the other

(NOC, NOA and NOM) source code size metrics, respectively.

These results seem to suggest that the more use cases are

complex, the more effort is required to develop corresponding

source code (in terms of source code size metrics). This issue

must, however, be more investigated to draw more general

conclusions. The same observations can be made for the UCP

values.

5.4 Threats to Validity

The study presented in this paper should be replicated using

many other OO software systems in order to draw more

general conclusions about the relationships between use cases

metrics and source code size, as a partial indicator of the

software development effort. Indeed, there are a number of

limitations that may affect the results of the study or limit their

interpretation and generalization. The achieved results are

based on the data set we collected from only five Java open

source projects. To perform our study, we grouped the use

cases of the five case studies to build our data set. Even if the

collected data set is statistically significant, we do not claim

that our results can be generalized. In addition, the complexity

of use cases is determined in part by the number of

transactions. The simplest way to count the number of

transactions is to count the number of events included in the

flow of events. The number of events may be affected by the

style adopted in the description of use cases. The findings in

this paper should be viewed as exploratory and indicative

rather than conclusive. Results show, at least, that the use

cases metrics offer a potential way that could be used in early

stages of the software development lifecycle to predict the

source code size. Moreover, the study has been performed on

simple case studies. It is necessary to replicate the study on

large software systems.

6 Conclusions and Future Work

We investigated, in this paper, the relationships between use

IJCA, Vol. 23, No. 1, March 2016 75

Figure 1: Distribution of the (use cases, UCP, size) metrics

cases metrics and source code size. The use cases metrics are

simple and objective measures, which are mathematically

valid. The medium-term objective of this research is, in fact,

to propose an alternative, a simple and effective method for

early predicting of the source code size without compromising

the accuracy of the prediction (estimation). The use cases

metrics have been compared to the well-known Use Case

Points (UCP) method, which is based on the use cases model.

We conducted an experimental study using data collected from

five Java open source projects. The use case models have been

collected for each project. We related to each use case the

corresponding source code. We used correlation techniques in

order to investigate the relationships between use cases metrics

(including UCP), which we proposed in previous work, and the

source code size. The goal here was to evaluate the potential

of use cases metrics to predict the size of source code. We

used three correlation analysis techniques: Pearson, Spearman

and Kendall. We observed a significant and in some cases a

strong correlation between the use cases metrics (including the

UCP) and the final source code size metrics we used in the

study.

Overall, results show that a subset of the use cases metrics is

better correlated to the source code size metrics than the UCP

values, which suggest that these metrics are good measures of

size and complexity of use cases, at least in situations where

the use cases are structured and detailed at a suitable level,

which could be used to predict the size of final source code.

This issue is out of the scope of the paper and needs more

investigation. We also used a K-means clustering technique in

order to classify use cases in three classes: complex, average

and simple. We analyzed the distribution of the source code

size metrics according to the use cases ranking. We observed

that the distribution of the source code size metrics reflects

properly the use cases ranking, which seems to suggest that the

more use cases are complex, the more effort is required to

develop corresponding source code. More investigations,

however, are needed to draw more general conclusions. The

main limitations of the observations made in this study are

basically related to the small size (and number) of the

considered set of projects. Moreover, it is important to

mention that the proposed use cases metrics are based on only

information contained in the use cases model (use cases

description, system sequence diagrams, use cases diagram),

and there is no need, as in some methods in the literature, to

take into account human judgment.

The performed study should be replicated using many other

OO software systems in order to draw more general

conclusions. There is, in fact, a need for further studies on the

relationships between use cases attributes and source code size.

The findings in this paper should be viewed as exploratory and

indicative rather than conclusive. Results show at least that

use cases metrics offer a potential way that can be used in early

stages of the software development lifecycle to predict source

code size. As future work, we plan to extend the present study

by: (1) building development effort prediction models based

on use cases attributes, (2) using other methods, such as

machine learning methods, in addition to statistical analysis in

the construction of the prediction models, (3) comparing our

approach to other development effort prediction (estimation)

approaches, and finally (4) replicating the study on various OO

software systems to be able to give generalized results.

Acknowledgments

This work was partially supported by a NSERC (Natural

Sciences and Engineering Research Council of Canada) grant.

76 IJCA, Vol. 23, No. 1, March 2016

References

[1] M. Badri, L. Badri, and W. Flageol, “Predicting the

Size of Test Suites from Use Cases: An Empirical

Exploration”, H. Yenigün, C. Yilmaz, and A. Ulrich

(Eds.): ICTSS 2013, LNCS 8254:114-132, November

2013.

[2] E. R. Carroll, “Estimating Software Based on Use Case

Points”, OOPSLA’05, San Diego, California, USA,

October 16-20, 2005.

[3] S. Diev, Software Estimation in the Maintenance

Context”, ACM SIGSOFT Software Engineering Notes,

31(2):1-8, March 2006.

[4] W. Fan, Y. Xiaohu, Z. Xiaochun, and C. Lu, “Extended

Use Case Points Method for Software Cost Estimation”,

International Conference on Computational

Intelligence and Software Engineering, 2009.

[5] I. Jacobson, M. Christerson, P. Jonson, and G.

Overgaard, Object-Oriented Software Engineering: A

Use Case Driven Approach, Addison-Wesley, 1993.

[6] G. Karner, Resource Estimation for Objectory Projects,

Objective systems, 1993.

[7] C. Larman, Applying UML and Design Patterns, An

Introduction to Object-Oriented Analysis and Design

and the Unified Process, Prentice Hall, 2004.

[8] P. Mohagheghi, B. Anda, and R. Conradi, “Effort

Estimation of Use Cases for Incremental Large-Scale

Software Development”, Proceedings of the

International Conference on Software Engineering,

ICSE’05, St. Louis Missouri, USA, pp. 303-311, May

15-21, 2005.

[9] S. Nagheshwaran, “Test Effort Estimation Using Use

Case Points”, Quality Week 2001, San Francisco,

California, USA, 2001.

[10] A. Bou Nassif, L. F. Capretz, and D. Ho, “Software

Effort Estimation in the Early Stages of the Software

Life Cycle using a Cascade Correlation Neural Network

Model”, 13th ACIS International Conference on

Software Engineering, Artificial intelligence,

Networking and Parallel/distributed Computing, IEEE,

2012.

[11] A. Bou Nassif, L. F. Capretz, and D. Ho, “Calibrating

Use Case Points”, ICSE Companion’14, May 31-June 7,

Hyderabad, India - ACM, 2014.

[12] M. Ochodek, J. Nawrocki, and K. Kwarciak,

“Simplifying Effort Estimation Based on Use Case

Points”, Information and Software Technology, 53:200-

213, 2011.

[13] G. Robiolo, and R. Orosco, “Employing use Cases to

Early Estimate Effort with Simpler Metrics”,

Innovations in Systems and Software Engineering, 4:31-

43, 2008.

[14] G. Robiolo, C. Badano, and R. Orosco, “Transactions

and Paths: Two use Case Based Metrics which

Improve the Early Effort Estimation”, Proceedings of

the Third International Symposium on Empirical

Software Engineering and Measurement, IEEE

Computer Society, pp. 422-425, 2009.

William Flageol is a student of

computer science at the Department of

Mathematics and Computer Science of

the University of Quebec at Trois-

Rivières. He finished his master in

computer science (software engineering)

at the University of Quebec at Trois-

Rivières. His main areas of interest

include object-oriented development, use cases based

predictions, software quality attributes, test-driven

development, as well as various topics of software

engineering.

Mourad Badri is a full professor of

computer science (software

engineering) at the Department of

Mathematics and Computer Science of

the University of Quebec at Trois-

Rivières. His main areas of interest

include object, aspect and agent

oriented software engineering, software

quality attributes, software quality

assurance, program analysis, software

maintenance and evolution, and aspect mining and

refactoring.

Linda Badri is a full professor of

computer science (software

engineering) at the Department of

Mathematics and Computer Science of

the University of Quebec at Trois-

Rivières. Her main areas of interest

include object and aspect-oriented

software engineering, software quality

attributes, web engineering, change

impact analysis, regression testing, and

software maintenance.

Instructions for Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr., Fred.Harris@cse.unr.edu.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence.
Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11

inch pages.
2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word
format should be submitted to the Editor-in-Chief.

2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should
be included:

 Paper text (required).
 Bios (required for each author). Integrate at the end of the paper.
 Author Photos (jpeg files are required by the printer, these also can be integrated into your paper).
 Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps).

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper.

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of
$50.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA
members, $100 of publication charges will be waived if requested.

January 2014

IS
C

A
 IN

T
E

R
N

A
T

IO
N

A
L

 JO
U

R
N

A
L

 O
F

 C
O

M
P

U
T

E
R

S
 A

N
D

 T
H

E
IR

 A
P

P
L

IC
A

T
IO

N
S

V

o
l. 2

3
, N

o
. 1

, M
arch

 2
0

1
6

