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Guest Editors’ Note 

 

CATA (Computers and their Applications) is the flagship conference for the International Society of 

Computers and their Applications (ISCA). The intent of the conference has been to blend theory and 

practice as a means of stimulating researchers from both research dimensions. The papers for this special 

issue have been selected to illustrate the spectrum of the 61 papers presented at the CATA 2016 

conference. The authors were asked to extend their paper to make the papers journal appropriate, and to 

change the title of their paper (to avoid confusion with their conference paper). This CATA special issue 

contains the following six papers. 

In their paper “Performance evaluation technique for computer systems with finite input source”, T. 

Kinoshita et al. focuses on a queuing network model, proposing an approximation technique to evaluation 

the performance of such approach. 

In their paper “A pipelined implementation of Hash Stream1-Synthetic Initialization Vector encryption 

algorithm”, M. Durai et al. present a hardware accelerator featuring parallel execution of the main key 

generation phases. 

In their paper “Consolidation of data in multiple databases”, K. Periyasamy et al. discuss the critical 

problem of database merging and propose a consolidation method based on the combination of a linguistic, 

structural and constraint matching approach. 

In their paper “Designing secure computer systems as purposeful systems”, M. Etschmaier et al. 

propose a framework detailing the design and optimization of secure systems. They consider voting 

machines as a case study. 

In their paper “Server mechanisms for guaranteeing schedulability with RTOS processing and 

improving application responsiveness by slack reclaiming”, K. Hasegawa et al. focus on the problem of 

task schedulability assurance in the context of real-time operating systems. 

 Lastly, in their paper “A unified cloud metering framework”, K. Sobh et al. describe a novel 

metering framework for cloud computing to support the economic side of cloud computing and increase its 

transparency to users. Then, they conduct several experiments using their implementation to evaluate 

the proposed system. 

 

Antoine BOSSARD and Les MILLER 
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Abstract 
 

Queuing network techniques are effective for evaluating the 

performance of computer systems.  We discuss a queuing net-

work technique for computer systems in finite input source.  

The finite number of terminals exists in the network and a job 

in the network moves to the server that includes CPU, I/O 

equipment and memory after think-time at the terminal.  When 

the job arrives at the server, it acquires a part of memory and 

executes CPU and I/O processing in the server.  After the job 

completes CPU and I/O processing, it releases the memory and 

goes back to its original terminal.  However, because the 

memory resource can be considered as a secondary resource 

for the CPU and I/O equipment, the queuing network model 

has no product form solution and cannot be calculated the ex-

act solutions.  

We proposed here an approximation queuing network tech-

nique for calculating the performance measures of computer 

systems with finite input source on which multiple types of 

jobs exist.  This technique involves dividing the queuing net-

work into two levels; one is “inner level” in which a job exe-

cutes CPU and I/O processing, and the other is “outer level” 

that includes terminals and communication lines.  By dividing 

the network into two levels, we can prevent the number of 

states of the network from increasing and approximately calcu-

late the performance measures of the network.  We evaluated 

the proposed approximation technique by using numerical ex-

periments and clarified the characteristics of the system re-

sponse time and the mean number of jobs in the inner level.  

Key Words:  Queuing network, central server model, finite 

input source. 
General Terms:  Computer system performance, perfor-

mance evaluation, queuing theory. 
 

1 Introduction 
 

Queuing network techniques are effective for evaluating the 

performance of computer systems.  In computer systems, two 

or more jobs are generally executed at the same time, which 

causes delays due to conflicts in accessing hardware or soft-

ware resources such as the CPU, I/O equipment, or data files.  

                                                           
* 1404-1 Katakura Hachioji .  Email:  kinoshi@stf.teu.ac.jp, noora-

fiza.matrazali@gmail.com, and c0113134d2@edu.teu.ac.jp. 

We can evaluate how this delay affects the computer system 

performance by using a queuing network technique.  Some 

queuing networks have an explicit exact solution, which is 

called a product form solution [1].  With this solution, we can 

easily calculate the performance measures of computer sys-

tems, for example the busy ratio of hardware and the job re-

sponse time, and so on.  However, when the exclusion controls 

are active or when a memory resource exists, the queuing net-

work does not have the product form solution.  To calculate an 

exact solution of a queuing network that does not have the 

product form solution, we have to construct a Markov chain 

that describes the stochastic characteristics of the queuing net-

work and numerically solve its equilibrium equations.  When 

the number of jobs or the amount of hardware in the network 

increases, the number of states of the queuing network drasti-

cally increases.  Since the number of unknown quantities in the 

equilibrium equations is equal to the number of states of the 

queuing network, the number of unknown quantities in the 

equilibrium equations also drastically increases.  Therefore, we 

cannot perform calculating the exact solution of the queuing 

network numerically. 

Here, we discuss the queuing network technique for com-

puter systems with finite input source (Figure 1).  The finite 

number of terminals exists in the system and a job is dedicated 

to its own terminal.  After a think-time at the terminal, the job 

moves to the server and acquires a part of the memory and 

executes CPU and I/O processing.  When the job completes 

CPU and I/O processing at the server, it releases the memory 

and goes back to its original terminal.  

Since a job executes CPU and I/O processing occupying the 

memory, the memory can be considered as a secondary re-

source for the CPU and I/O equipment.  Generally, when a 

queuing network includes a secondary resource, it does not 

have product form solutions.  To have the strict solution of the 

model, we have to construct a Markov chain which describes 

the entire model and have to numerically solve its equilibrium 

equations.  In order to prevent the number of states of the Mar-

kov chain from increasing, we divide the model into two lev-

els, one is outer level that includes the terminals and commu-

nication lines, and the other is inner level that includes CPU, 

I/O equipment and memory resources.  Similarly, in [5, 9, 11], 

two different types of jobs exist in the network.  Both job be-

havior in the inner level and the outer level differs for each job 

class.  Although both the inner level and the outer level has a 
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product form solution when the model has a single job class, 

the inner level does not have a product form solution when the 

model has multiple job classes.  Therefore, an approximation is 

needed to analyze the inner level.  

In this paper, we have proposed an approximation technique 

for calculating the performance measures of computer systems 

with finite input source by using the queuing network tech-

nique.  We previously reported the results for the finite input 

source model when all jobs acquire the same units of memory 

[3].  In this study, we have reported when a job in the differ-

ence job class acquires the difference units of memory.  

Dividing the model into two levels is one of two-layer queu-

ing network techniques [7, 10].  Our proposed technique is 

also a two-layer technique for computer systems with finite 

input source. 

In our previous study [4], we reported an approximation 

technique for evaluating performance of computer systems 

with file resources.  Meanwhile, heterogeneous parallel com-

puter systems with distributed memory was researched in [8], 

and the Markov chain involving two-dimensional state transi-

tion similar to our proposed model was discussed in [2]. 

 

2 Model Description 

 

The CPU and I/O model in the inner level is equivalent to 

the ordinary central server model with multiple job types (each 

of which is called a job class).  In this model, R job classes 

exist, and each of them is numbered r = 1, 2, ..., R by affixing 

r.  We denote nr as the numbers of jobs of job class r in the 

central server model and n as the total number of jobs in the 

central server model.  We also denote ir as the number of jobs 

of job class r in the inner level (the difference of nr and ir is the 

number of jobs in the system waiting queue).  The inner level 

consists of single CPU node and multiple I/O nodes.  We de-

note M as the number of I/O nodes.  The I/O nodes are num-

bered m = 1, 2, ..., M by affixing m, and the CPU node is num-

bered m = 0 by also affixing m.  The service rate of job class r 

at the CPU node is μ0r, and the service rate of job class r at an 

I/O node m is μmr.  The service time at each node is a mutually 

independent random variable subject to common exponential 

distributions.  Jobs are scheduled on a first come first served 

(FCFS) principle at all nodes.  In real system, the priority 

scheduling is often used at the CPU node.  However, since the 

queuing system that includes the priority scheduled node has 

no product form solution, we assume FCFS principle even at 

the CPU node.  At the end of CPU processing, a job probabil-

istically selects an I/O node and moves to it, or completes CPU 

and I/O processing and goes back to the terminal.  The selec-

tion probability of I/O node m of job class r is 
r

mp  (m = 1, 2, ..., 

M; r = 1, 2, ..., R) and the completion probability of job class r 

is 
rp0 .  Therefore, 




M

m

r

mp
0

1 (r = 1, 2, ..., R). 

In the outer level, there are Kr terminals of job class r (r = 1, 

2, ..., R) and one job is dedicated at each terminal. The job 

stays in the terminal for short while. The staying time is called 

“think-time”. The think-time is mutually independent random 

variable subject too common exponential distribution with 

parameter νr of job class r (νr is job departure rate from the 

terminal). 

Memory resources are added to this central server model 

(Figure 1).  We denote as the number of the units of the 

memory acquired by a job of job class r and S as the total 

number of the units of the memory.  After the think-time, a job 

of job class r moves to the inner level, and requests and ac-

quires units of the memory before entering the central server 

model.  If sufficient units of the memory do not exist, the job 

joins the system waiting queue and waits for the memory to be 

released by another job.  When the job completes CPU and I/O 

processing, it releases the memory and leaves the inner level 

and goes back to its own terminal in the outer level.  Since the 

job has to acquire the memory before entering the central serv-

er model, the total number of units of the occupied memory in 

the central server model has to be less than or equal to S, i.e. 

.
1

SSn rr

R

r




 Moreover we assume 
rr SKS   (r  = 1, 2, ..., R).  

By replacing “CPU → outer level transition” with “CPU → 

CPU transition,” the central server model is modified to a 

closed model in which the number of jobs is constant (Figure 

2).  In this modified model, when “CPU → CPU transition” 

occurs, the job terminates and a new job is born. Therefore, the 

mean job response time is the mean time between two  

successive “CPU → CPU transitions.” This means that the job 

response time can be considered as the job lifetime. 
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1

2
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Figure 1:  Finite source model with multi job class 
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Figure 2:  Concept of approximation 
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3 Approximation Model 
 

To obtain the exact solution of the central server model with 

finite input source, we have to describe the entire model with a 

single Markov chain for each job class. However, this causes 

the number of states of the Markov chain to drastically in-

crease when the number of jobs or the number of nodes in the 

network increases.  By dividing the network into two levels, 

and describing each level with two Markov chains, we can 

prevent the number of states of the model from increasing 

(Figure 2).  We use the following notations. 
 

tr : mean think-time of job class r 

νr : departure rate from the terminal of job class r 

τrm : mean total service time of job class r at node-m 

Sr : number of units of memory acquired by a job of job class r 

S : total number of units of memory resorce 

nrm : number of jobs of job class r at node-m 

  (r =1, 2, ..., R; m =0, 1, ..., M ) 

Kr : number of jobs of job class r 

       (= number of terminals of job class r) 

ir : number of jobs of job class r in the inner level 

nr : number of jobs of job class r in the central server model 

n = (n1, n2, ..., nR)  

: vector of number of jobs in the central server model    

 (nr  = 1, 2, ..., Kr) 

n* = (n10, n11, ..., n1M, n20, n21, ..., n2M, ..., nR0, nR1, ..., nRM)  

F (n) = {n* | 0,
0




rm

M

m

rrm nnn  (m=0, 1, ..., M )}  

        (n1S1+ n2S2+...+ nRSR≦S ) 

: set of all feasible states of the central server model when 

the number of jobs of job class r is nr 

Ps (n*) : steady-state probability of state n* 

T n
r : mean job response time of the central server model of job 

class r when the vector of number of jobs is n 

μn
r : mean job service rate from the central server model of job  

class r when the vector of number of jobs is n 

T r : system response time of job class r (= lifetime  

        of job class r) 
 

Since the central server model in the inner level is equivalent 

to the ordinary central server model with multiple job classes, 

it has the product form solution.  Then the steady-state proba-

bility Ps(n*) is represented by the following formula [1, 6]. 
 

Ps (n*) = 
),,,,( 21

1 0

Mnnn R

R

r

M

m

n

rm
rm




   

 

where  
  



)( 1 02
1 ),,,,(

nFn

R

r

M

m

n
rmR

rmMnnn    is the normalizing 

constant of steady-state probabil-ities when the number of jobs 

of job class r in the central server model is nr (=0, 1, 2, …, Kr ; 

r =1, 2, ..., R).  From these steady-state probabilities, we can  

 

calculate the mean job response time Tn
r of job class r as fol-

lows when the number of jobs in the central server model is nr. 

 

Tn
r 

),,,1,,(

),,,,,(

1

1

Mnnn

Mnnnn

Rr

Rrr













 
 

The memory resource in our model can be considered as an 

M/M/S queuing model with S servers.  In an ordinary M/M/S 

queuing model, the service rate at a server is constant, regard-

less of the number of guests in the service.  In the memory 

resource of our model, however, the service rate changes de-

pending on the number of occupied memories.  The mean job 

response time Tn
r of job class r (=1, 2, ..., R) when the vector 

of number of jobs is n = (n1, n2, ..., nR) is equal to the mean time 

while the memory is occupied.  Since the service rate of job 

class r from the central server model μn
r is denoted as r

r

Tn

n

1
  

μn
r also depends on n = (n1, n2, ... , nR), that is the number of 

jobs in the central server model.  The state transition in the 

central server model.  The state transition of the M/M/S queu-

ing model with two job classes is shown in Figure 3, where the 

service rates from the central server model change depending 

on the number of jobs in the central server model.  This is a 

two-dimensional birth-death process.  The equilibrium equa-

tions with the steady-state probability QS(i1, i2), when the total 

number of the units of the memory is S and the number of jobs 

in the inner level is (i1, i2), are as follows (similar to the case 

with higher dimensions).  Where s1 is the maximum integer 

such as srSr S i.e. sr =[S/Sr]. 

 
(1) i1=0, i2=0 

 (K1ν1+ K2ν2) QS (0, 0)  = μ10
1 QS (1, 0) + μ01

2   QS (0, 1) 

(2)  0,0 211  iSSi  

     {(K1－i1) ν1+ K2ν2 + i1
1

01i
 }   QS (i1, 0)  

  = (K1－i1+1) ν1   QS (i1－1, 0) +(i1+1) 1

101i   QS (i1+1, 0) 

+ 2

11i
   QS (i1, 1) 

(3)  0,, 21111  iKiSiS  

      {(K1－i1) ν1+ K2ν2 +
1

01 1s
s  }   QS (i1, 0)  

  = (K1－i1+1) ν1   QS (i1－1, 0) + 1

01 1s
s    QS (i1+1, 0) + 

     2

11i
    QS (i1, 1) 

(4)  0, 211  iKi  

      {K2ν2 +
1

01 1s
s  }   QS (K1, 0)  

  = ν1   QS (K1－1, 0) + 2

11K   QS (K1,1) 

(5)  SSii  221 0,0  

      {K1ν1 + (K2－i2) ν2 + n2
2

0 2i
 }   QS (0, i2)  

 = (K2－i2+1) ν2   QS (0, i2－1) + 1

1 2i
   QS (1, i2)+ 

      (i2+1) 2

10 2i   QS (0, i2+1) 
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Figure 3:  State transition diagram (two job classes) 
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02 2Ss  } QS (0, i2)  

  = (K2－i2+1) ν2 QS (0, i2－1) + 1
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For the state (i1, i2) of the Markov chain, when 

11Si 
22Si  S , all jobs are in the central server model and 

executing CPU and I/O processing, and when S 
11Si 

22Si  

some jobs are in the system waiting queue and waiting for a 

part of the memory to be released.  The transition diagram of 

the two-dimensional birth-death process is shown in Figure 3.  

However, the equilibrium equations do not have the product 

form solution.  Therefore, some approximation is required to 

solve it.  

When the model has a single job class, it can be described 

with a one-dimensional birth-death process. Its transition dia-

gram is shown in Figure 4, and the equilibrium equations are 

as follows: 
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The solutions for the equilibrium equations are described in the 

following product form. 
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In this formula, for the state transition at i =1, 2, ..., s1－1, mul-

tiply by factor ,
)1(
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Figure 4: State transition diagram (single job class) 
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Since there are multiple routes from (0, 0) to (i1, i2), the co-

efficient of QS( i1, i2) related to QS(0, 0) is approximately rep-

resented as the total of the product along all routes.  Similarly, 

to the case above, we can approximately calculate the state 

probability of a queuing network with multiple job classes 

when R >2. 

 

 

Figure 5:  Calculating state probability for two job classes 

            (K1=4, K2=5, S=4, S1=2, S2=1, s1=2, s2=4) 

 

4 Numerical Experiments 

 

We evaluated the proposed approximation technique through 

numerical experiments. In the experiments, we focus on the 

mean system response time and the mean number of jobs be-

cause they most clearly show the characteristics of the model 

and the practical results. We used the following parameters. 

 

(1)  Number of terminals: K1 = 3, 4, …, 20; K2 = 3 

(2)  Number of memory resources: S = 3 

(3)  Think-time: (t1, t2) = (20, 10), (5.0, 2.5),  

 where tr is the think-time of job class r (r = 1, 2). 

(4)  Number of I/O nodes: M = 2 

(5)  Total service time at each node 

 τ10=1.0, τ11=τ12=1.0 

 τ20=1.0, τ21=τ22=0.5, 

 

where τrm is the total service time of job class r at node m. 

Figures 6 show the mean system response times and mean 

num-bers of jobs in the inner level of job classes 1 and 2 re-

spectively, when K2 is fixed at 3, and K1 changes from 3 to 20.  

The mean system response time is the mean time from job ar-

rival to departure from the inner level (that is the mean time 

from departure from the terminal to coming back to the termi-

nal).  Similarly, to the case of a single job class, the mean sys-

tem response time for both job class increases monotonically 

in a convex curve.  As the number of terminals K1 of job class 

1 is increased and K2 is fixed (the only traffic of job class 1 is 

increased), both the mean response time of job class 1 and job 

class 2 increases, because the entire central server model is 

more crowded by increasing the traffic of the job class 1.  We 

can see that the mean response time of job class 1 and job class 

2 is nearly increasing in the range of heavier traffic.  This rea-

son can be presumed that the behavior of the mean system re-

sponse time in the heavier traffic range is approximately linear 

to the number of jobs. 

In Figure 7, total service times are set as follows: 
 

τ10=1.0, τ11=τ12=1.0 

τ20=1.0, τ21=τ22=1.0, 
 

This means that jobs in job class 1 and 2 have the same behav-

ior in the central server model in the inner level and have dif-

ferent think-time, t1 and t2, that are constant 20 and 10 respec-

tively.  We can see in Figure 7(a) that the system response 

times of jobs in job class 1 and 2 are quite similar when the 

number of terminals K1 of job class 1 changes from 3 to 20.  It 

is natural because we assume that job behavior of job class 1 

and 2 in the central server model is same.  On the other hand, 

the mean numbers of jobs in inner model (these are denoted as 

i1, i2) are quite different be-tween job class 1 and 2.  That is 

because since the think-time t1 of job class 1 is much larger 

than that of job class 2, the jobs in job class 1 stay in the ter-

minal longer than job class 2 and the number of jobs of job 

class 1 in the inner level is smaller than that of job class 2 even 

though the total number of terminals of job class 1 is less than 

that of job class 2. 

Figure 7(c)-(d) show change of job behavior when the think-

time t1 of job class 1 changes from 2 to 20 (the think-time t2 of 

job class 2 is still constant).  The Figure 7(c) shows that the 

system response times of job class 1 and 2 are also similar 

since the behavior of job class 1 and 2 in the central server 
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(a)  System response time  

(K2=3, (t1, t2)=(20, 10))  
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(b)  Mean number of jobs in inner level 

(K2=3, (t1, t2)=(20, 10)) 

 

0

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

class 1

class 2

Class 1 

Num. of TM K1

 
 

(c)  System response time 

   (K2=3, (t1, t2)=(5, 2.5) 
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(d)  Mean number of jobs in inner level 

(K2=3, (t1, t2)=(5, 2.5))

Figure 6:  Experimental results 

(10=1.0, 11=12=1.0;  20=1.0, 21=22=0.5) 

 

model are the same.  Moreover, Figure 7(d) shows that both 

the numbers of jobs of job class 1 and 2 in inner level decrease 

when t1 becomes longer. 

 

5 Conclusion 
 

We proposed an approximation technique for evaluating the 

performance of computer systems in finite input source using a 

queuing network technique and analyzed its performance 

measures through numerical experiments.  The concept of the 

approximation is based on separately analyzing the inner level 

(CPU, I/O equipment, and memory) and the outer level (termi-

nals, and communication lines).  The numerical experiments 

clarified the characteristics of the system response time. 

In the future we plan to examine the accuracy of the pro-

posed approximation technique by comparing it with exact 

solutions or simulation results.   Of course since there is the 

limitation to calculate the product form solution of the inner 

level because the number of states of the inner level quietly 

 

increases when the number of nodes or the number of job clas-

ses increase. the comparison of the approximation results and 

the simulation results is performed within this limitation. 
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Abstract 

 

Data security is a major concern for everyone in today’s 

informational world.  Encryption is the process of encoding 

messages or information in such a way that only authorized 

parties can access it. It is one of the major information 

security solutions.  Hash Stream1-Synthetic Initialization 

Vector (HS1-SIV) is a recently developed and fast encryption 

algorithm.  We proposed a hardware accelerator for the HS1-

SIV encryption algorithm.  The implementation relied on 

parallelism and pipelining to increase message encryption 

throughput.  A unique feature of the proposed pipelined 

design is that the key generation steps including CHACHA 

stream cipher, HS1-Hash and HS1-pseudo random function 

were performed in parallel.  This lowered the delay associated 

with each round of encryption and reduced the overall 

encryption delay of a plaintext block. This led to an increase 

in the message encryption throughput.  The hardware 

realization of HS1-SIV encryption algorithm involved 

designing a hardware data path and control unit, modeling 

them in System Verilog hardware description language, 

validating, and synthesizing the design using a 90nm 

hardware cell library.  The proposed design was thoroughly 

verified using a System Verilog layered test bench. The 

extent of verification was measured by using System Verilog 

Functional Coverage.  The expected results used in validating 

the implementation were generated as part of the layered test 

bench infrastructure.  The proposed pipelined model is very 

efficient and can encrypt messages at the rate of 457 

Gigabytes per second.  

Key Words:  Encryption, hardware accelerator, System 

Verilog, pipelining, simulation, synthesis. 

 

1 Introduction 

 

Storage, processing, and communication of data in 

electronic form have significantly increased over the past 

twenty-five years.  Availability of data in electronic form has 

attracted nefarious elements.  Many high profile data hacks in 
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maththaiyadurai@csus.edu. 
† Department of Computer Science.  Email:  arad@csus.edu. 

the recent years highlight the need for data security.  One 

approach to achieve data security efficiently is through 

encryption.  It involves encoding messages or information in 

such a way that only authorized parties can access it.  

To ensure security and confidentiality the message is 

encrypted using an encryption algorithm (cipher).  The 

encrypted message (cipher text) yields the original message 

only upon decryption.  Encryption key (pseudo random 

number) generated by an algorithm forms the crux of the 

encryption process.  An authorized recipient who has the key 

can easily decrypt the message while an unauthorized 

interceptor cannot.  Due to its effectiveness, encryption has 

been long employed by government agencies and military to 

ensure the secrecy of communication.  

Authenticated encryption uses block ciphers to both 

encrypt and generate a Message Authentication Code (MAC) 

in order to provide confidentiality and authentication, 

respectively.  HS1-SIV is one of the faster authenticated 

encryptions.  It requires a single key for both encryption and 

decryption, which is independent of the message and the 

cipher itself.  There are three variations of HS1-SIV 

algorithm (HS1-SIV-LO, HS1-SIV, and HS1-SIV-HI) 

depending on the number of bytes used in the hashing part of 

algorithm, the size of the synthetic IV, the number of internal 

rounds used by the stream cipher, and the collision level of 

the hashing algorithm [5].  

In this paper, we propose a hardware model for 

implementing the HS1-SIV algorithm using the System 

Verilog hardware description language.  The model relies on 

pipelining to greatly improve the throughput of the design.  

The model was thoroughly verified using a layered test 

bench.  Then, the verified model was synthesized using the 

Synopsys Design-Compiler tool to get an estimate of the 

number of gates, area and timing of the hardware model. 

The rest of the paper is organized as follows.  Section 2 

covers an overview of the HS1-SIV encryption algorithm.  

Section 3 discusses the design and architectural view of the 

hardware implementation of the HS1-SIV encryption 

algorithm.  Section 4 describes the modeling of the HS1-SIV 

algorithm using System Verilog.  Section 5 covers the 

verification of the hardware model.  Section 6 covers the 

synthesis of the hardware model using the Synopsys Design 

Compiler synthesis tool.  Finally, Conclusions are stated in 

Section 7. 
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T= Chacha[r] (K, 0, N, 0y) 

ks= T[0, |C|] 

kn= toInts(4, T[|C|, |NH|]) 

kp= map(mod 260, toInts(8, T[|C|+ |NH|, |P| ])) 

 

2 HS1-SIV Encryption Algorithm 

 

2.1 Overview 

 

This section introduces the concept of HS1-SIV encryption 

algorithm.  HS1-SIV is an authenticated-encryption algorithm 

developed by Krovetz in 2014.  It is designed to exploit 32-bit 

multiplication and Single Instruction Stream Multiple Data 

Stream (SIMD) processing, which are well-supported on 

almost all current CPUs [5]. 

The HS1-SIV algorithm is a symmetric cipher.  In 

symmetric ciphers, a single secret key is used for both the 

encryption and decryption, whereas in asymmetric ciphers, 

there are two sets of keys known as private and public keys.  

The plaintext is encrypted using the public key and can only 

be decrypted using the private key [9]. 

HS1-SIV uses a new pseudo random function called HS1 to 

provide authenticated encryption via Rogaway and 

Shrimpton’s SIV mode [10].  HS1-SIV maintains full 

integrity and confidentiality over the message.  HS1-SIV is 

designed to have the features such as competitive speed on 

multiple architectures, provable security, general-purpose 

PRF, scalable and nonce misuse resistant [5].  HS1 uses a 

universal hash function to accept arbitrary strings and a 

stream cipher to produce its output.  SIV, as defined in [10], 

uses a block-cipher-based PRF to create a synthetic IV (an 

SIV) from given associated data and plaintext. 

“HS1-SIV uses HS1 to instantiate SIV mode.  If A is the 

associated data, M is the plaintext, and N is nonce, then the 

SIV is defined as the first 16 bytes of HS1(A||M, N) and 

cipher text C is defined as all but the first 16 bytes of 

HS1(SIV, N) XOR’ed with M.  The SIV and cipher text are 

bundled together to create the final cipher text.  If (A, M, N) is 

repeated, then an observer knows this fact because the 

scheme is deterministic and the SIV will be identical, but no 

security degradation otherwise occurs.  Supplying N as a 

nonce thus improves security by masking repeated 

encryptions. 

HS1 operates by pairing an almost-universal hash function 

with a stream cipher.  When given an input (IV) pair, HS1 

uses the hash function to hash the input, it then XOR’s this 

hash result with the stream cipher’s key and uses the HS1 IV 

as the stream cipher’s IV.  The stream cipher produces as 

many bytes as desired.  As long as a (hash result, IV) pair is 

never repeated, and the stream cipher is secure against 

related-key attacks, the stream cipher will produce 

independent pseudorandom output streams.  We introduce a 

new hash HS1-Hash which we use for the almost- universal 

phase of HS1, and Bernstein’s CHACHA is used as the stream 

cipher” [5]. 

 

2.2 HS1-SIV Process 

 

An authenticated-encryption scheme is a shared-key 

encryption scheme which provides both privacy and 

authenticity.  The encryption algorithm takes a key, a  

plaintext, an associated data and a nonce, and returns a cipher 

text and an SIV.  The decryption algorithm takes a key, a 

cipher text, an SIV, an associated data and a nonce, and 

returns either a plaintext or an invalid indicator. 

 
 

k = HS1-subkeygen [b, t, r, ℓ] (K) 

M′ = A||M || |A||| toStr(8, jMj) 

T = HS1 [b, t, r] (k, M′, N, ℓ) 

C = M_ HS1 [b, t, r] (k, T, N, 64 + jMj) [64, jMj] 

Inputs: (K, M, A, N) 

Output: (T, C) 

Where  K, a non-empty string of up to 32 bytes 

M, a string shorter than 264 bytes 

 A, a string shorter than 264 bytes 

 N, a 12-byte string 

 (T, C), strings of ℓ and jMj bytes, respectively 

 
Figure 1:  HS1-SIV process, based on [5] 

 
“HS1-SIV has three variations depending on the parameters 

b, t, r, and ℓ.  Parameter b specifies the number of bytes used 

in part of hashing algorithm (larger b tends to produce higher 

throughput on longer messages).  Parameter t selects the 

collision level of the hashing algorithm (higher t produces 

higher security and lower throughput).  Parameter r specifies 

the number of internal rounds used by the stream cipher 

(higher r produces higher security and lower throughput).  

Parameter ℓ specifies the byte-length of synthetic IV used 

(higher ℓ improves security and increases cipher text lengths 

by ℓ bytes).  The following table names parameter sets.” [5] 

[11] 

 
 Table 1:  HS1-SIV Variations 

Name b t r l 

HS1-siv-lo 64 2 8 8 

HS1-siv 64 4 12 16 

HS1-siv-hi 64 6 20 32 

 
Next we describe 4 stages of HS1-SIV algorithm. 

 
2.2.1 SubKey Generation.  The first stage of HS1-SIV, 

Subkeygen generates the sub keys from the input key of up to 

32 bytes.  HS1-SIV uses CHACHA12, a stream cipher to 

produce pseudorandom string.  This phase produces three 

keys denoted by ks, kn, kp which are used in the later hash 

stages. 

 
 

 

 

 

 

 

Figure 2:  Subkey generation, based on [5] 
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where |C|= 32, |NH|= b + 16(t -1), |P|= 8t, y = |C|+ |NH|+ |P|,N 

= toStr(12, b248 + t240 + r232 + ℓ216 + |K|), toInts(n, S) is the 

vector of integers obtained by breaking S into n-byte chunks 

and Little-endian interpreting each chunk as an unsigned 

integer, and | | represents concatenation. 

 

 2.2.1.1 CHACHA Stream Cipher.  “CHACHA stream 

cipher takes four inputs, a 32-byte key, an initial counter 

value, a 12-byte Iv, and a plaintext.  CHACHA produces the 

cipher text which is as long as the plaintext.  CHACHA, 

builds a 4×4 matrix, and transforms the matrix through 12 

rounds, and adds the result to the original matrix to obtain a 

16-word (64-byte) output block.  CHACHA, uses 4 additions 

and 4 exclusive-or’s (XOR's) and 4 rotation operations to 

update 4 32-bit state words.  However, CHACHA applies the 

operations in a different order, and in particular updates each 

word twice rather than once. CHACHA updates a, b, c, d as 

follows: 

 

 a += b;         d ^= a;        d <<<= 16; 

 c += d;            b ^= c;          b <<<= 12; 

a += b;         d ^= a;        d <<<= 8; 

c += d;  b ^= c;    b <<<= 7; 

 

Figure 3:  CHACHA quarter round, Based on [5] 

 

CHACHA first round modifies first, fourth, third, second, 

first, fourth, third, second along columns, and the second 

round modifies first, fourth, third, second, first, fourth, third, 

second along southeast diagonals:  The four quarter round 

words are always in top-to-bottom order in the matrix, to 

improve diffusion slightly.” [1, 2, 7] 

 
QUARTERROUND (X0, X4, X8, X12) 

 QUARTERROUND (X1, X5, X9, X13) 

QUARTERROUND (X2, X6, X10, X14) 

QUARTERROUND (X3, X7, X11, X15) 

QUARTERROUND (X0, X5, X10, X15) 

QUARTERROUND (X1, X6, X11, X12) 

QUARTERROUND (X2, X7, X8, X13) 

QUARTERROUND (X3, X4, X9, X14) 

 

Figure 4:  CHACHA round order, based on [5] 

 

2.2.2 Message Padding.  In this phase, the plaintext (M), 

associated data (A), length of the plaintext data and length of 

the associated data are concatenated to produce the plaintext 

prime.  The later stages of hash operate on the produced 

plaintext prime.  Figure 5 summarizes this phase.  

 
M' = A || M || |A| || |M| 

 

Figure 5:  Message padding, based on [5] 

 

2.2.3 SIV Generation.  The next stage in HS1-SIV is SIV 

generation based on HS1-PRF. HS1-pseudo random function 

is a composition of HS1-hash, an almost universal hash 

function, with CHACHA, a stream cipher.  

 

Ai = HS1-Hash (kn[4i, b/4], kp[i], M) for each 0 <i<t 

Y = Chacha[r](pad(32,A0 || A1 . . ||At-1) ^ ks), 0, N, 0y) 

where ks -subkey string of 32 bytes, 

 kn - a vector of b/4 + 4(t-1) integers, 

 kp - a vector of t integers, 

 M - an input string of any length,  

 

Figure 6:  SIV Generation, Based on [5] 

 

 2.2.3.1 HS1-Hash.  First stage in SIV generation is 

breaking the plaintext prime into a vector of intermediate 

strings using HS1-hash.  It is a composition of two hashes, 

NH hash and Poly hash.  Similar to the techniques used in 

UMAC and VMAC, the NH hash is used to reduce the input 

by a fixed ratio to an intermediate string which is then hashed 

to a fixed size by a polynomial evaluation.  To reduce the 

chance of collision, this hashing procedure is repeated t times, 

with different keys, for a higher collision probability [5]. 
 

 

ai= (NH(kn,mi) + |Mi|mod 16) mod 260, for1 <i<n 

h = (kp+ a1*kpn-1+ a2*kpn-2+ . . . + a0)mod (261 -1) 

Y = toStr(8, h) 

where n= max(⌈|M|/b⌉, 1) , 

 |Mi|=bfor each 1 <i<n,  

 mi= toInts(4, pad(16,Mi)) for each 1 <i<n, 

 Y, an 8 byte (if t<4) or 4 byte (if t>4) string 

 
Figure 7:  HS1-Hash, Based on [5] 

 

2.2.4 HS1-SIV-PRF.  The last stage in HS1-SIV applies 

HS1 pseudo random function to the synthetic IV produced by 

SIV generation stage and produces the cipher text.  In this 

stage, the SIV produced by the previous stage is used as a 

plaintext.  HS1_ hash is used to break the plaintext into vector 

of intermediate strings and applied to CHACHA stream cipher 

to produce the output string.  The output string of CHACHA 

is XOR'ed with the input message and concatenated with 

synthetic IV to produce the final cipher text. 

 

3 Hardware Realization of HS1-SIV 

 

In this section, we propose a hardware realization of the 

HS1-SIV algorithm.  In the subsequent sections we show that 

the pipelined design is fully functional and synthesizable.  

This means that the Register Transfer Level (RTL) 

description of the designs can be converted to an optimized 

gate-level net list using a logic synthesis tool.  We developed 

a non-pipelined implementation primarily to assess the 

efficiency of the pipelined implementation.  That 

implementation is not described here due to space limitations.  

It is described in detail in [3].    

In this work, we considered incoming message and 

associated data of 512-bits, a key of 256 bits, and a nonce of 

96 bits wide.  If the message packet is of variable size, then 

the design requires FIFO logic to store the entire message 

before the hashing process.  We also designed Non-pipelined 
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design of the algorithm, to compare the results with pipeline 

design and to estimate the efficiency of the pipeline design.  

As part of this work, we focused on the pipeline design and 

the non-pipeline design results were mentioned in the later 

chapters. 

In the following subsections we introduce a pipeline 

implementation of the HS1-SIV algorithm.  The design 

hierarchy of HS1-SIV pipelined design is shown in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 8:  Pipeline HS1-SIV Design 

3.1 Subkeygen Stage 

  

The main task of subkeygen stage is to generate sub keys 

from the input key using CHACHA12 stage and keys_gen 

stage.  CHACHA12 stage takes the length of pseudo random 

string, the key, and the initial counter value as inputs and 

produces the pseudo random string of as long as needed.  

Keys_gen stage takes the produces pseudo random string and 

breaks into three sub-keys. 

The CHACHA12 stage produces 512-bit pseudo string as 

its output.  The inputs and outputs of this stage are shown in 

Figure 9.  Each quarter round in the CHACHA12 performs 

twelve rounds of CHACHA transformations.  The quarter 

round stage takes four 32-bit inputs, rotates the four inputs, 

and produces four 32-bit outputs.  This stage uses 4 additions, 

4 XOR’s and 4 rotations to update 4 32-bit state words. 

 

 

start 

clock 

reset done_ch                         done 

key 

  

plaintext                                                              out  

 

nonce 

 

count 

 

 

 

 

Figure 9:  CHACHA12 Stage 

 

3.2 Message Padding Stage 

 

This stage concatenates the plaintext, the associated data, 

and two 64-bit parameterized inputs and produces 1536-bit 

plaintext prime string as output. 

 

3.3 HS1_PRF3 Stage 

 

HS1_prf3, pseudo-random function is a composition of 

HS1-hash and CHACHA12 stream cipher.  HS1-hash is itself 

a composition of two hash functions:  NH hash and 

polynomial evaluation hash. CHACHA12 takes the produced 

string from HS1-hash function as inputs and produces 

pseudorandom string as output.  The HS1_prf3 stage block 

diagram is shown in Figure 10. 

 

3.4 HS1_PRF Stage 

 

HS1_prf and HS1_prf3 stages are similar, except for the 

length of the input plaintext and the output cipher text.  The 

128-bit cipher text produced by HS1_prf3 stage is synthetic 

IV (SIV).  The SIV is used as the input plaintext for the 

HS1_prf stage, which produces 512 bits cipher text.  
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CHACHA12 takes the produced string from HS1-hash 

function as inputs and produces a 512 bits pseudo-random 

string as output. 

 
 

Start                                                                           done 

clock 

reset 

   kn 

                                                                                   SIV   

kp 

 

pltxt 

 

 

 
Figure 10:  HS1_prf3 stage 

 
3.5 HS1_SIV_PRF Stage 

 
HS1_siv_prf stage concatenates both SIV and the cipher 

text and produces the 640-bit final cipher text.  The entire 

hashing process is performed for each sets of data received by 

the first stage. 

 
4 Modeling of HS1-SIV 

 
All the blocks in the design hierarchy are modeled in 

behavioral style of System Verilog.  This style models the 

functionality of a digital circuit at highest level of abstraction.  

It captures the functionality of a design at an algorithmic 

level.  

The design methodology undertaken in this work is the 

bottom-up methodology [8].  In this approach, the leaf 

components in the design hierarchy are developed first and 

the higher-level components are constructed by instantiating 

and inter-connecting the subcomponents. 

A key aspect of the proposed model is the efficient 

implementation of multiplication operation.  Multipliers are 

the key components of the design.  In this design, Modified 

Booth algorithm is used for 32-bit multiplication to improve 

the clock frequency of the design.  Modified Booth multiplier 

reduces the number of iteration step to perform multiplication 

as compare to conventional steps. 

We utilized advance features of System Verilog such as 

new data types, streaming operators, and the new procedural 

blocks.  Other features that are related to verification are 

described in detail in Section 5. 

System Verilog offers many new data types to be used in a 

design such as logic, enum and struct.  Logic is a 4-state 

variable, like the Verilog reg type.  It can be declared as a 

vector.  Enum type is an enumerated net or variable with a 

labeled set of variables, similar to C enum type, but with 

additional syntax and semantics for modeling hardware.  

Struct type is a collection of variables that can be referred to 

individually or collectively, similar to the C struct type [14]. 

The streaming operators perform packing of bit-stream 

types into a sequence of bits in a user-specified order.  The 

streaming operator << or >> determines the order in which 

blocks of data are streamed:  >> causes blocks of data to be 

streamed in left-to-right order, while << causes blocks of data 

to be streamed in right-to-left order [6]. 

The specialized always_comb, always_latch, and always_ff 

procedural blocks indicate the design intent.  The software 

tools do not need to infer the designer’s intend.  If the content 

of a specialized procedural block does not match the rules for 

that type of logic, software tools can issue the warnings [14]. 

The proposed pipelined HS1-SIV hardware model consists 

of several different stages to produce the cipher text.  Figure 

8 illustrates the top-level block diagram of the design.  The 

complete System Verilog code for the pipelined 

implementation is provided in [3].  Next, we summarize some 

modeling choices we made in this work. 

  

4.1 Subkeygen Stage 

 

The block in subkeygen is modeled as a System Verilog 

module which instantiates CHACHA12 and keys_gen 

module.  CHACHA12 stage requires 12 rounds of CHACHA 

transformation.  Each round is modeled as a module.  Each 

quarter round of CHACHA transformation is modeled as a 

CHACHA12_qtr module and is instantiated four times within 

CHACHA12 round module to produce one round of 

CHACHA operations. 

 

4.2 Message Padding Stage 

 

This stage is used for message padding using concatenation 

operation.  It applies endian conversion operation on the 

length of the plaintext and the associated data variables.  The 

size of length variables used in this phase is 64-bits.  The 

output obtained after concatenating the strings is a unique 

plaintext_prime string, which is used in the next hash 

function to generate synthetic IV namely, SIV.  The inputs 

512-bit plaintext, subkeys ks, kn, kp and nonce are buffered in 

this stage. 

 

4.3 HS1_PRF3 Stage  

 

The HS1_prf3 stage is modeled as a System Verilog 

module which instantiates NH_hash3, Poly_hash and 

CHACHA12_h1 modules.  The inputs 512-bit plaintext, 

subkeys ks, kn, kp and 96-bit nonce are buffered in this stage.   

NH_hash3 operation is modeled as a System Verilog 

module and instantiated four times.  This is due to the fact 

that for the parameter t=4, NH_hash3 should be iterated four 

times with the different combination of the subkey, kn.  In 

this phase, NH_hash is applied to the plaintext_prime string 

produced by the mesage_pad stage.  This stage generates 

three 64-bit outputs after hashing the input to generate an 

output with reduced bits.  In addition, this stage breaks the 

message into b-bit blocks hashes the message into 128-bit 

hash output using NH (universal hash family).  NH_hash3 
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consist of three internal stages called NH_add3, Multiply, and 

adder64.  NH_hash3 converts the endianness of the data (big 

endian to little endian) and includes a simple adder.  This 

Multiply module multiplies the two 32-bit data values it 

receives from endian 64-bit adder module and generates a 64-

bit output value.  Modified Booth algorithm is used for 32-bit 

multiplication to improve the clock frequency of the design.  

Four instances of the multiply module are used for one 

hashing routine.  This Adder64 module adds two 64-bit inputs 

provided by the 32-bit multiplier module.  It generates a 

single 64-bit output.  Any carry-out from the addition is 

discarded.  

The polynomial hash function is modeled as a System 

Verilog module and which is instantiated four times.  Poly 

hash module applies polynomial expression on two 64-bits 

outputs from the adder64 module, kp, and the square of 

subkey kp.  This modules produces one 64-bit string as 

output. 

 

4.4 CHACHA12_h1 Stage 

 

CHACHA12_h1 module is functionally similar to 

CHACHA12 module, even though the number of input 

elements and output elements are lesser.  

 

4.5 HS1 PRF Stage  

 

The HS1_prf module is functionally similar to HS1_prf3 

module, the variation being the size of the input plaintext and 

the output cipher text.  HS1_prf takes the 128-bit SIV 

produced by HS1_prf3.  The input goes through the 

NH_hash, poly_hash, and CHACHA12_h2 stages.  HS1_prf 

produces 512-bit cipher text as its output.  The inputs 512-bit 

plaintext, subkeys ks, kn, kp and 96-bit nonce are buffered in 

this stage. 

 

4.6 HS1_SIV_PRF Stage 

 

This module is the final stage of HS1_siv algorithm.  It 

takes the 128-bit SIV produced by HS1_prf3, the 512-bit 

plaintext and 512-bit cipher text produced by HS1_prf.  This 

module applies XOR operation on the 512-bit plaintext and 

the cipher text and concatenates the XOR output and SIV and 

produces 640-bit final cipher text. 

 

5 HS1-SIV Verification 

 

5.1 Overview 

 

This section describes the layered System Verilog test 

bench developed to verify the functionality of the proposed 

HS1-SIV design.  The simulation was performed using 

Synopsys® VCS simulation tool.  The test bench fully 

validated the design by constructing random messages, keys 

and nonce, passing them to the model, and comparing the 

actual HS1-SIV output to the expected result.  A scoreboard 

block was used to generate the expected value for each test 

vector.  

 

5.2 Layered Test Bench Verification  

 

The layered test bench comprises of multiple layers to take 

full advantage of code reuse and automation [15].  It consists 

of scenario, functional, command, and signal layers.  The 

lowest layer is the signal layer that connects the test bench to 

the DUT.  It consists of a System Verilog interface with a 

clocking block and appropriate module port (modport) 

constructs.  The next layer is the command layer which 

contains driver and monitor components.  The driver converts 

a single command from the functional layer to input signals 

for the DUT.  The monitor converts the DUT outputs to 

commands for the functional layer.  The next layer up is the 

functional layer.  It converts high-level transactions to 

commands for the command layer.  It validates the 

transactions by generating the expected results using its 

scoreboard block through the checker.  The scenario layer 

converts test cases to transactions for the functional layer.  

We implemented a layered test bench as part of a 

verification wrapper.  The wrapper included a System Verilog 

program block, an interface, the DUT, and clock generation 

blocks needed for validation of the DUT.  Next, we describe 

different features of System Verilog utilized to realize the 

layered test bench. 

 

5.3 Interface 

 

A System Verilog interface encapsulates the 

communication between blocks, allowing a smooth 

refinement from abstract system-level through successive 

steps down to lower RTL and structural levels of the design. 

Interfaces also facilitate design re-use [12].  In this work, 

we used two interfaces, namely interface_top and 

interface_dut.  The interface_top was used to establish the 

communication between the programs representing the test 

bench and the HS1_SIV top module.  The interface_dut was 

used to set up the communication between the modules in top 

module.  Two modports were used in the interface_top, one 

for the program and one for the DUT.  Seven modports were 

used in the interface_dut, one for the each module in top 

module.  

 

5.4 Threads and IPC 

 

System Verilog constructs such as fork join_none and fork 

join_any can be used to dynamically create new threads, in 

addition to the standard fork_join.  These threads 

communicate and synchronize using events, semaphores, 

mailboxes, and classic @ event control and wait statements.  

System Verilog enables design of a powerful and flexible test 

bench environment, as Object Oriented Programming (OOP) 

objects are created and destroyed, they can run in independent 

threads [15]. 
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In a layered test bench, each transactor (object) gets a 

transaction from an upstream object, performs some 

operations, and then passes the transaction to a downstream 

object.  The channel allows its driver and receiver to operate 

asynchronously.  In this work, standard fork/join was used to 

create threads, and mailboxes were used to provide inter 

process communication between the threads.  A mailbox is 

just a FIFO, with a source and sink.  The source puts a value 

into the mailbox, and the sink gets values from the mailbox.  

It can have a maximum size or can be limited. 

 

5.5 Program 

 

In System Verilog, the test bench can be developed as a 

program block, which supports multiple implicit timing 

regions for sampling test bench results, scheduling the design 

events, observing System Verilog assertions, and taking 

reactive steps in the test bench [4].  

The test bench described in this section consists of a single 

program.  It uses the Object Oriented Programming feature of 

System Verilog to build random test vectors dynamically.  

The random test vectors were generated using rand system 

built-in task inside a Class.  The randomization method used 

in the test bench is Constraint Based, which programs the 

simulator to limit the selection of randomized value to a 

specific value-set pool. 

 

5.6 The Environment 

 

In this work, a verification environment was properly 

initialized and synchronized using System Verilog mailbox, 

avoiding race condition between the design and the test 

bench.  The verification environment automates the 

generation of input stimuli, and reuses existing models and 

other infrastructure.  The test bench (program) verifies the 

design until functional coverage reaches 100%.  The 

verification procedure involves generating stimuli randomly, 

passing them to the design through interface_top and 

verifying the correctness of the results obtained.  The 

generator, agent, driver, monitor, checker and scoreboard are 

all classes, modeled as transactor.  They are instantiated 

inside the Environment class.  The program block instantiates 

the environment class.  

 

5.7 Validation 

 

Scoreboard block has the procedures to generate the 

expected results of the HS1-SIV design.  It then forwards the 

results to the checker class to verify whether the actual results 

from DUT and expected results from Scoreboard match, and 

sets up the pass/fail flag accordingly.  This verifies the HS1-

SIV design output correctness and proper functional working.  

 

5.8 Functional Coverage 

 

Functional coverage is a measure of how an RTL model 

matches the specification.  In a System Verilog test bench, the 

coverage is calculated by sampling the values of variables and 

expressions.  These sample locations are known as cover 

points.  Multiple cover points that are sampled at the same 

time, such as when a transaction completes, are placed 

together in a cover group.  A cover group is similar to a class, 

it contains cover points, options, formal arguments, and an 

optional trigger.  Sample function was used to trigger the 

cover group [15]. 

A cover group encapsulates all the cover points for the 

randomized plaintext, the associated data, the key and the 

nonce for gathering coverage.  These randomized signals 

defined as the cover points are necessary to verify HS1-SIV 

design by measuring the functional coverage.  We defined our 

cover points based on the plaintext, the associated data, and 

the keys to measure functional coverage of our verification.  

We were able to achieve 100% functional coverage which 

reflects the thoroughness of the verification process and 

robustness of the model. 

 

6 Logic Synthesis 

 

In this section, the synthesis of the HS1-SIV hardware 

model is described.  One of the objectives of this work was to 

develop a synthesizable model of the HS1-SIV algorithm.  

Logic synthesis is the process of converting a high-level 

description of a design into an optimized gate-level 

representation, given a standard cell library and certain design 

constraints.  The Synopsys® Design Compiler was the 

synthesis tool used in this work. 

Logic synthesis tools take the HDL model of a design, 

information on cells from a technology library, and the design 

constraints.  A technology library can have simple cells, such 

as basic logic gates like AND, OR, and NOR, or macro cells, 

such as adders, multiplexers, and special flip-flops.  The 

synthesis tool converts the HDL design into an optimized 

gate-level net list satisfying the given design constraints such 

as timing, area, testability, and power using the cells from the 

technology library [8].  

The proposed HS1-SIV model was synthesized towards a 

90 nm technology library.  We synthesized both the pipelined 

and the non-pipelined implementations.  The timing results 

showed that the pipelined design can operate at 71MHz.  This 

was based on the synthesis tool being configured for the high 

synthesis effort.  We expect the design to be able to operate at 

a higher frequency if it is synthesized using a more recent 

technology library. 

The HS1_hash function for the proposed HS1-SIV design 

with 512-bit block size, take 30 clock cycles to complete.  

This is the bulk of the processing for a short message.  There 

are number of multiplication operations in the hash function 

used.  The Modified Booth Algorithm is used for faster 

multiplication.  It can improve speed but takes up more 

hardware area. Each message block uses 114 clock cycles to 

become cipher text.  Further parallel processing can improve 

this speed.  

The synthesis results for HS1_SIV are tabulated in Table 2.  

It shows the clock frequency, the timing slack, and the cell 
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area generated after synthesis.  

 

 Table 2:  Synthesis results 

Design Clock 

period 

Timing 

slack 

Area report 

 

Non-pipeline  85ns 0.3 ns 452481.50 um2 

Pipeline  14ns 0.13 ns 1200432.50 um2 

 

Speed up of the pipeline design is the ratio of total time 

taken by the non-pipeline design to encrypt N 512-bit 

messages to that of the pipeline design: 

Speed up = 20*85*N / (114+N) * 14, where 

85ns is the non-pipeline design clock period, 20 is the number 

of steps in the non-pipelined design, 14ns is the clock period 

the pipeline design, and 114 stages is the number of its stages.  

This leads to speed up of 121 for large messages.  More 

importantly, the pipeline design can encrypt a 512-bit 

message per cycle after the first 114 cycles where the 

pipelined is filled.  It can encrypt messages at a very efficient 

the rate of 457 Gigabytes per second.  

 

7 Conclusion 

 

We proposed an efficient pipelined implementation of a 

recently developed fast encryption algorithm called HS1-SIV.  
Our synthesis results showed that the pipelined design can 

achieve encryption bandwidth of 457 Gigabytes per second.  

This high encryption rate is achieved by breaking each round 

of the encryption process into several stages.  This hardware 

concurrency increases the message encryption throughput and 

makes the hardware model suitable for time-critical 

encryption applications. 

A layered test bench in System Verilog hardware 

description and verification language, was utilized to 

thoroughly validate the pipeline design.  The test bench 

included Functional Coverage to assess the verification 

progress of the design features ensuring the design is fully 

validated.  Several unique features of the language including 

Interface, Program, and also OOP concept were also used to 

validate the design.  The model was synthesized using 

Synopsys® Design Compiler tool based on a 90nm 

technology library. 
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Abstract

When multiple databases that use same or similar data are
used in an application domain for efficiency, ease of access
and so on, inconsistencies may arise in the databases if they
are not synchronously updated. Even if they are updated
synchronously, data migration or data exchange processes
between the databases may create problems because of the
differences in naming of attributes, data format and constraints
imposed on these attributes. This paper focuses on consolidating
multiple databases into a single database by focusing on each
attribute in the databases. The proposed method consists of
three phases - linguistic matching that focuses on names of
entities in the databases, structural matching that deals with
the structures of schemas and subschemas in the databases
and finally constraint matching which elaborately checks the
constraints imposed on data elements in each database. The
outcome of the process is to create one consolidated database
and to let the user interactively select the elements from each
database including the data. The paper describes the method
and also briefly addresses the complexity of constraint matching
phase.

Key Words: Schema matching; constraint matching; content
matching.

1 Introduction

Data management is one of the important problems due to
unprecedented increase in the amount of data being created and
maintained in a broad range of application specific databases.
It is quite common to use multiple databases for maintaining
similar data, possibly with subtle differences, to improve access
or efficiency of data processing. As an example, a university
may have student information stored in multiple databases,
one for storing the students’ academic information (possibly
by the Registrar’s office) and another one for storing financial
aid information (possibly by the Financial Aids office). Since
the two databases are used by two different units within the
university, it will be convenient for them to create and maintain
their own databases for security, ease of access, efficiency and
so on. The major problem in this scenario is the duplication of
information in these databases which may lead to inconsistency
if they are not synchronously updated. Consider, for example,
an update on a student’s GPA at the end of a semester. Most

∗Department of Computer Science, Email: {kperiyasamy,
yadav.karamve}@uwlax.edu

likely, the academic database maintained by the Registrar’s
office will be updated with this information because it is in their
domain of activities. However, if the same information is not
updated in the financial aid database, the student may be denied
financial aid for the next semester. Such an inconsistency is
not easy to find because usually there will be no direct link
between these two databases. One possible solution for this
problem is to create a common database for both applications
(academic and financial aid) but it will destroy the very purpose
of creating multiple databases in the first place for the sake of
ease of operation, efficiency and so on. An alternate solution
would be to find the commonalities and differences between
the databases and create a common database only for those data
elements that are shared between the two databases.

The focus of this paper is to find out the commonalities
and differences of data elements between the two databases
and suggest what can be included in the common database so
that both applications can equally use the common database.
The paper will not address issues concerning creation and
maintenance of additional, individual databases by each
application and synchronization between the common and
individual databases. Such issues can be dealt with separately.
The core of the paper consists of two parts - schema matching
and constraint matching1. In the first part, the paper discusses
how the names and data types of attributes, and structures of
schemas in two databases are matched and the second part
deals with matching constraints involved in the data types
of attributes in the two databases. Together, the process
helps identifying common elements between the two databases
selected interactively by the user.

A brief discussion on related work is given in the next
subsection. Section 2 starts with a brief introduction on the
structure of schemas and a short description of the knowledge
base used in the matching process. This is followed by Section
2.2 that describes linguistic matching of attributes in two
schemas. The discussion then continues by structural matching
of the same two schemas as described in section 2.3. The
results of linguistic matching are used in the structural matching
process. Section 2.4 describes constraint matching approaches

1While many related works in this area describe schema matching
that also includes constraint matching, the authors believe that schema
matching focuses on the database schema apart from the data created
using these schemas. Therefore, the authors use schema matching
to refer to those elements described by a schema such as name and
data type, while constraint matching is used to refer to the constraints
imposed on the data values specifically to identify the range of data
values impacted by these constraints.

ISCA Copyright© 2016
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used by the authors. Finally, the paper concludes with the
discussion on the importance of all three steps - linguistic
matching, structural matching and constraint matching for
finding commonalities between databases. Continuing work
by the authors in this direction also are described in the same
section.

1.1 Related Work

A pioneer work on schema matching was done by Madhavan
and others [7] who developed a schema matching algorithm
called Cupid. This algorithm was sufficiently general to be
applicable to a variety of applications. As stated in [7], the
classification of schema matching techniques includes three
major types - linguistic matching, structural matching and
instance matching. Ten years later, the same authors published
another detailed classification of schema matching algorithms
that can be considered as a good source of reference in this
area [2]. The recent classification includes some discussions
on schema mapping, a high-level relationship between a source
schema and a target schema [3]. Schema mapping will be
quite useful in deciding what data values from one schema can
be exchanged with another schema. Automation of schema
matching process has been discussed in [10, 12]. A survey of
ontology-based schema matching techniques can be found in
[4]. Melnik and others [8] have used graph matching algorithms
for matching structures of schemas. Work presented in this
paper also uses graphs for structural matching and also includes
a knowledge base in the matching process. A preliminary work
on schema matching by one of the authors is presented in [9].

Instance matching, an extension of schema matching,
describes how the actual data in two tables are compared; this
process will be utilized in data exchange and data migration
applications. As part of instance matching, the constraints
imposed on data values should also be compared. Valchey and
his colleagues has explored constraint matching for automation
of taxonomies. They described a matching process between
objects in an object-oriented system by exploiting dissimilarity
measures for collections of objects [14]. More recent work
on constraint matching is described in detail in [10]. Most
approaches discussed in this paper explored data types and
multiplicity comparison for set of values by considering the
cardinality of attributes as a constraint. Euzenat and Valchey
[5] used ontology-based alignment technique which helps in
finding semantic interoperability between data sets. Our work
on constraint matching presented in this paper is based on
simple data type constraints imposed on boundary values. A
preliminary work on constraint matching by the authors is
presented in [6].

2 The Matching Process

Since schema is the underlying structure that is mainly used in
the matching process, the discussion begins with the definition
of a schema as used in our approach. A schema represents

a structured representation of data. It consists of a set of
attributes and may include other schemas. For the purposes
of this paper, we require that a schema should contain at least
one attribute. An attribute is the lowest element in a schema
that describes a data item. This description includes the name
of the attribute, its data type, maximum length of characters
of the data item represented by this attribute, whether or not
a data item is editable and/or null-able, and finally its default
value, if applicable. As far schema matching is concerned,
the name and data type of an attribute are the most important
factors. A sample schema and its structure is shown in Figure 1.
We define schema matching in two phases: linguistic matching
and structural matching. The entire schema matching process
is supported by a knowledge base which also includes several
dictionaries. The purpose of the knowledge base is two-fold:
(i) to maintain several dictionaries in order to eliminate non-
application-domain words and common words (e.g., ‘and’ and
‘but’) during the matching process, and (ii) to store and reuse
some of the previously matched entries.

Figure 1: Tree view of a schema

2.1 The Knowledge Base Used in Schema Matching

Our approach uses a knowledge base that includes several
dictionaries which store punctuation symbols, special symbols,
prepositions, conjunctions, articles, synonyms, hypernyms,
acronyms, and abbreviations. Punctuations, special symbols,
articles, prepositions and conjunctions are used in eliminating
non-domain specific words from the names of entries in
the schema. While most of these dictionaries are already
preloaded at the time of starting the matching process, the
dictionaries corresponding to synonyms, hypernyms, acronyms
and abbreviations are updated during the matching process. This
is because entries in these dictionaries are application specific.
The knowledge base also includes another dictionary called
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Name to Concept which is used when two entries belonging to
the same concept are named differently. For example, salary
and amount both belong to the concept money. So when
matching salary in one schema with amount in another schema,
a direct linguistic matching will result in a poor score. This will
be enhanced using concept matching.

In addition to storing various dictionaries, the knowledge base
also includes a cache storage which stores previously matched
entries during a matching session. Once the session is over, this
cache is cleared. The purpose of the cache is to speed up the
matching process by utilizing previously matched entries. A
user may also keep these entries permanently in the knowledge
base for future use. This is done by storing the matched
entries in a dictionary called substructures. The entries in the
substructures may be manually tweaked from time to time to
make the matching process more efficient.

Figure 2 shows the flow diagram for schema matching.

Figure 2: Schema matching process flow diagram

2.2 Linguistic Matching

Linguistic matching is used to match both attributes and
schemas. While matching attributes, their names and data types
are used. For schemas, only the names of the schemas are used.
For the rest of the discussion in this section, let us assume we are
matching an entity e1 with an entity e2. The linguistic matching
process includes three steps - normalization, categorization and
comparison. During normalization, the words in e1 and e2 are
tokenized into spaces, punctuation and special symbols. The

purpose of normalization is to eliminate some of the unrelated
words such as non-domain words and common words that are
found in a built-in dictionary inside the knowledge base. The
second step deals with categorizing the normalized words into
different groups based on their data types. This step helps
identifying the roles of the entities in their respective schemas.
Finally, in the third step, the two entities are compared for
exact or partial match and a score is derived accordingly. Two
entities e1 and e2 are said to match exactly if and only if every
parameter in the description of one entry matches exactly with
the corresponding parameter in the description of the other
entry. If they do not match exactly, they are said to match
partially. As an example for exact match, consider an attribute
named Student ID in one schema that is defined as a String with
an exact size of nine characters. If an attribute from another
schema is matched with this attribute, for an exact match, the
other attribute must also be named Student ID and must have
been defined using the data type String with exact size of nine
characters. If the size restriction is different or the name of
the attribute is different (e.g., Stud ID), then there may be a
partial match. In some sense, exact matching of attributes
during linguistic matching identifies common elements that are
named and used in the same way in both schemas and hence in
both applications. Figure 3 pictorially describes the linguistic
matching process with the support of knowledge base.

Figure 3: Linguistic matching of two entities

To illustrate the complete process of linguistic matching,
consider the entries DateOfBr and Origin; let DateOfBr belong
to one input schema and Origin belong to another. Both
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represent the date of birth of a person. During normalization,
the words in DateOfBr are tokenized into Date, Of and Br.
Among these, Of is eliminated because it is one of the common
words that appear in a normal dictionary. The word Br is
expanded using an abbreviation dictionary in the knowledge
base. The result is a pair of words Date and Birth. There is no
normalization processing needed for Origin and so it is ready
for comparison. While matching the two words, the Name to
Concept dictionary is used because both of these words belong
to the same concept, namely Descent. This leads to a higher
matching score even though both words are literally different.
It should be noticed that the matching score of the linguistic
matching phase depends not only on the names, but also on the
data types of the entities, where the entities are attributes. At the
end of the linguistic matching phase, the two entities and their
matching score are temporarily stored for later use.

2.3 Structural Matching

Structural matching refers to matching of hierarchical
structures of schemas or subschemas. Two schemas exactly
(structurally) match with each other if they have the same
number of attributes and sub-structures, and the sub-structures
also match exactly. The relative positions of the attributes and
the sub-structures are not important for an exact match. We
use graph theoretic approach to analyze the structures. Since
linguistic matching is done separately, structural matching only
focuses on syntactic structure of the trees representing the
schemas.

Two schemas that do not have an exact match are said
to have a partial match. Score for a partial match of
two schemas is calculated by computing the cumulative
score of their components. For example, consider the
scenario of matching two subschemas named Department from
schema AcademicScholarship and Division from the schema
AthleticScholarship as shown in figure 4. Since the two
sub-structures are structurally different, there is no exact
match. Figure 4 shows the case of matching DepartmentNo
with DivisionNumber and matching DepartmentName with
DivisionName. The scores of these individual matching are
recorded. Further, the sub-structure Major in the schema
Department is matched with the sub-structure Unit in the
schema Division which is also recorded separately. The readers
are reminded that linguistic matching results are used here to
match the components. In this example, the scores of matching
the attributes and the sub-structures results in a cumulative score
of 0.793 for the two sub-structures. This process can be used to
match the entire structure of the two schemas. As in linguistic
matching, the outcome of structural matching is also recorded
and will be used later to compute the final matching score of the
two schemas.

2.4 Constraint matching

As stated in an earlier section, constraint matching is part of
instance matching and hence uses both schemas as well as actual

Figure 4: Partial matching of schemas

data from the two databases that are considered. The constraint
matching phase strictly follows the previous two phases.
Therefore, it is required that the schemas being matched are first
considered for linguistic and structural matching. Only those
schemas that have satisfactory matching scores in the first two
phases2 will be taken into consideration for constraint matching.
Our current implementation on constraint matching considers
only six different types of application specific constraints - Less
Than (LT), Less Than or Equal to (LE), Greater Than (GT),
Greater Than or Equal to (GE), Equal to (EQ) and Not Equal
to (NE). Since this phase involves mainly the data associated
with the entities, only attributes are considered in constraint
matching. The representation of a constraint for an attribute
looks like the following:

TableName=“Bill”
Attribute=“Minimum Payable”
DataType=“int”
GreaterThan=“99.00”
LessThanOrEqualTo=“1000.00”

All constraints are in conjunctive normal form and hence there
is an implicit conjunction operator between the constraints.
Like the other two phases, the outcome of constraint matching
between two attributes is a matching score which can be

2A satisfactory matching score is determined by the user by setting a
threshold value for an application. It can be predefined or dynamically
chosen for matching of each pair of entities during the matching
process.
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checked against a user-defined threshold. If it is satisfactory, the
user can select one of the two attributes and its data for inclusion
in the final consolidated database.

There are two steps in the constraint matching process -
validation of input constraints and matching of constraints.
A flow diagram for constraint matching process is shown in
Figure 5. Before matching, it is required to validate each

Figure 5: Constraint matching process flow diagram

constraint for the attributes being matched. For example, if
the attribute Minimum Payable has two constraints that assert
that the attribute should be less than or equal to 1000.00 and
greater than 100.00, the constraints are valid. However, if the
constraints assert that the attribute should be less than or equal
to 100.00 and greater than or equal to 500.00, then there is a
contradiction because no value of this attribute satisfies these
constraints. Figure 6 shows the possible combination of the
six operators for validation. Notice that for a given attribute,
there could be one to three constraints. For instance, in the
previous example, the attribute Minimum payable may have
three constraints, along with the other two, there can be an
additional constraint but its value cannot be equal to 750.00
(for some bizarre reasons). In short, an attribute may have

Figure 6: Possible combinations of valid constraints

one or three constraints and their possible combinations are
enumerated in Table 1. To support the validation process, we

Table 1: Constraint sets on an attribute
S.No Feasible Constraint Set

1 LT
2 LT and GT
3 LT and GT and NE
4 LT and GE
5 LT and GE and NE
6 LE
7 LE and GT
8 LE and GT and NE
9 LE and GE

10 LE and GE and NE
11 GT
12 GE
13 NE
14 LT and NE
15 LE and NE
16 GT and NE
17 GE and NE

have implemented validation rules that uses the combinations
as shown in Figure 6. These validation rules are enumerated in
Table 2. In this table, ‘V’ refers to the current stored value for
the attribute in the database table.
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Table 2: Validation rules
Constraint in the schema Validation rule
LT=“V1” GT=“V2” V < V1 and V > V2 and V1 > V2
LT=“V1” GE=“V2” V < V1 and V ≥ V2 and V1 > V2
LT=“V1” NE=“V2” V < V1 and V 6= V2 and V1 > V2
LE=“V1” GT=“V2” V ≤ V1 and V > V2 and V1 > V2
LE=“V1” GE=“V2” V ≤ V1 and V ≥ V2 and V1 > V2
LE=“V1” NE=“V2” V ≤ V1 and V 6= V2 and V1 > V2
GT=“V1” NE=“V2” V > V1 and V 6= V2 and V2 > V1
GE=“V1” NE=“V2” V ≥ V1 and V 6= V2 and V2 > V1

Once the constraints are validated for each attribute under
consideration, the next step is to match attributes of one table
with those in the other table. Notice that these attributes have
already been matched for linguistic and structural matching and
have been identified as potential candidates for inclusion in the
final consolidated database. The matching of these attributes are
based on their values and constraints imposed on these values.
Given that each attribute may have one to three constraints, there
are six possible combinations in matching their values. These
are enumerated as 1↔ 1, 1↔ 2, 1↔ 3, 2↔ 2, 2↔ 3 and 3↔
3. Under each possible combination, there are several matching
rules. Due to space constraints in the paper, a subset of these
matching rules for 1↔ 1 combination that involves “Less Than
(LT)” as one constraint is given in Table 3. A similar table
for 1 ↔ 1 combination that involves “Greater Than (GT)” as
one constraint is given in Table 4. A complete table for 1↔ 1
combination is given in [6].

The last columns in Tables 3 and 4 deserve particular
attention. This column indicates the suggestion provided by
our implementation when matching occurs. The motivation of
this consideration is to provide the user with a range of values
that satisfy the constraints imposed on both attributes. Notice
that these attributes are selected from two different tables and
the user is trying to consolidate two of these attributes into
one attribute which will become part of a new table. Some of
these suggestions are labeled as “No Suggestion” meaning that
the user has the freedom to retain the constraint set from any
one of the two attributes. To illustrate this process in detail,
consider an attribute having a constraint LT=“x” and the other
attribute having a constraint GT=“y” under the scenario “x >
y”. The range of usable values impacted by these constraints is
pictorially described in Figure 7. This particular scenario shows
that the new attribute will have both LT=“x” and GT=“y” as
its constraint because the overlapping region in Figure 7 has
the only range values that are satisfied by both the constraints.
If the scenario becomes “x < y”, then there will not be any
overlapping region and hence no suggestion is provided to the
user (as seen in row 2 in Table 3).

The situation becomes more complex when 2 ↔ 2 and 3
↔ 3 combinations are considered. For illustration, a 2 ↔ 2
combination is shown in Figure 8 with the constraints LT=“x1”
and GT=“y1” on one attribute, LT=“x2” and GT=“y2” on the
other attribute and the scenario is x1 > x2 and y1 > y2. There
are four different regions for this situation as shown in Figure 8.
Depending on narrow perspective (regions C and D) or wider

Table 3: Constraint Matching Rules for 1↔ 1 combination - LT
constraint

S.No
First

Attribute
Constraint

Second
Attribute
Constraint

Predicate
for value

comparison Suggestion

1 LT=“x” GT=“y” x = y No
suggestion

2 LT=“x” GT=“y” x < y No
suggestion

3 LT=“x” GT=“y” x > y
LT=“x”

and
GT=“y”

4 LT=“x” GE=“y” x = y No
suggestion

5 LT=“x” GE=“y” x < y No
suggestion

6 LT=“x” GE=“y” x > y
LT=“x”

and
GT=“y”

7 LT=“x” NE=“y” x = y LT=“x”
8 LT=“x” NE=“y” x < y LT=“x”

9 LT=“x” NE=“y” x > y
LT=“x”

and
NE=“y”

10 LT=“x” EQ=“y” x = y No
suggestion

11 LT=“x” EQ=“y” x < y No
suggestion

12 LT=“x” EQ=“y” x > y EQ=“y”
13 LT=“x” LT=“y” x = y LT=“x”
14 LT=“x” LT=“y” x < y LT=“x”
15 LT=“x” LT=“y” x > y LT=“y”
16 LT=“x” LE=“y” x = y LT=“x”
17 LT=“x” LE=“y” x < y LT=“x”
18 LT=“x” LE=“y” x > y LE=“y”

perspective (regions A and B), the user may choose appropriate
constraints for the new attribute. For example, if the user
chooses region C, then the constraint for the new attribute will
be LT=“x1” and GT=“x2” with the scenario x1 > x2. Similarly,
if the user chooses region A, the constraint becomes LT=“x2”
and GT=“y1” with the scenario x2 > y1.

2.4.1 Complexity of Constraint Matching Process

As evident from the above discussion, the complexity of
matching constraints increases enormously with the number
of constraints imposed on each attribute. With the increasing
complexity, the suggestion provided by the implementation also
becomes harder because there will be several isolated ranges of
values for the new attribute that are satisfied by the individual
constraint sets of both the previous attributes. It is also worth
mentioning that our current implementation attempted only
three constraints on each attribute and are limited to the basic
comparison operators such as “Less Than (LT)” and “Greater
Than (GT)”. A lot of work needs to be done on complexity
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Table 4: Constraint Matching Rules for 1↔ 1 combination - GT
constraint

S.No
First

Attribute
Constraint

Second
Attribute
Constraint

Predicate
for value

comparison Suggestion

34 GT=“x” GT=“Y” x = y GT=“x”
35 GT=“x” GT=“Y” x < y GT=“y”
36 GT=“x” GT=“Y” x > y GT=“x”
37 GT=“x” GE=“Y” x = y GT=“x”
38 GT=“x” GE=“Y” x < y GE=“y”
39 GT=“x” GE=“Y” x > y GT=“x”
40 GT=“x” NE=“Y” x = y GT=“x”

41 GT=“x” NE=“Y” x < y
GT=“x”

and
NE=“Y”

42 GT=“x” NE=“Y” x > y GT=“X”

43 GT=“x” EQ=“Y” x = y No
suggestion

44 GT=“x” EQ=“Y” x < y EQ=“Y”

45 GT=“x” EQ=“Y” x > y No
suggestion

Figure 7: Range of values impacted by LT and GT constraints
in 1↔ 1 combination

analysis if the application introduces additional constraints apart
from these basic comparison operators.

Figure 8: Range of values impacted by two pairs of LT-GT
constraints in 2↔ 2 combination

3 Conclusion and Future Work

Some application domains such as a university environment
use multiple databases which contain the same or similar data.
For example, a Registrar’s office in a university uses students
information system using its own database, while a Financial
Aid office in the same university may use another database on
its own. This second database may have a lot of data elements
that are the same or similar to the ones used by the Registrar’s
office. When multiple databases are used that contain the same
or similar data, there is a potential problem due to inconsistency
when updates to these databases are not properly synchronized.

In this paper, we proposed a method to consolidate two
databases into one that can be used by both applications
which previously used the two different databases. Our focus
is on finding the commonalities and differences between the
two databases and to let the user interactively select the data
elements from both databases. In doing so, we needed to
match data elements for their names, data types and associated
constraints. Our process consists of three phases. Phase one
is linguistic matching to match the names of two entities.
This phase uses a knowledge base for keeping previously
matched entries and some application domain information. The
second phase uses graph theoretic approach to match structural
elements. This phase is used to match schemas and subschemas.
The third phase focuses on constraints imposed on the attributes
and lets the user interactively select data elements from the two
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databases. The final result is a single consolidated database that
satisfies the constraints on data selected from both databases.

The work on linguistic matching and structural matching is
fairly straight-forward. Our implementation on the third phase
on constraint matching currently uses six logical operators that
are commonly used on numeric data types (e.g., Less Than and
Greater Than operators.) Accordingly, each attribute may have
one to three constraints using these logical operators. This is
quite complex because of the various combinations of these
logical operators. The complexity proportionately increases
with the number of constraints imposed on each attribute.

Though the paper describes examples using numeric data
types only, the method is equally applicable to other data types
such as strings, dates and so on. Our immediate future work is
to focus on including other data types that are quite common
in many databases. Current implementation used two different
databases in a university setting. We would like to apply this
method to other application domains as well. Another possible
extension of this work is to analyze dependencies of constraints
on data elements. For example, in a university setting, the
financial aid allocated to a student will depend on the student’s
GPA. The current approach deals with only constraints applied
to individual attributes, for example, GPA ≥ 3.5 and financial
aid ≤ $12,000. A dependency constraint in this case may
require that financial aid for $5000 and above can be awarded
only if GPA ≥ 3.5. At the same time, a good academic standing
status used by the Students Information system may require
GPA ≥ 3.0 only. While matching the constraints on both
databases, if the constraint GPA≥ 3.5 is retained, a student who
requires a financial assistance of $5000 or more will be forced
to maintain a 3.5 GPA for good academic standing as well. The
matching process and interactive selection of attributes and their
constraints then becomes more complex.
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Abstract 

 

There exist many applications in which a system must be 

made secure, that is, one in which only authorized users may 

enter the system to submit inputs or take information out of the 

system.  In this paper, we examine the requirements and 

performance that may be desired of secure systems in their 

design, analysis and operations.  A single purpose computer is 

investigated as a case study and issues such as quality and 

configuration management are reviewed in the context of 

developing system requirements.  A framework is suggested 

through which a group of secure single purpose computers can 

be integrated as nodes into a networked computer system and 

where the security properties of the nodes transfer directly to 

the network as a whole.  A process is presented through which 

the detailed design and optimization of a system can be carried 

out.  The principles of designing a secure computer system are 

based upon the case study of stand-alone and networked voting 

machines which is also presented to illustrate the process using 

purposeful systems. 

Key Words:  Purposeful systems, computer security. 

 

1 Introduction 

 

System security continues to be an important issue in many 

applications.  Breaches in security include sabotage of an 

adversary’s assets to gain a strategic advantage in war or 

economic competition or infiltration of settlements to create 

confusion and fear (the Trojan horse).  The importance of 

secure systems dramatically increases due to ubiquity of 

information technology elements included in systems and the 

size of industry selling security solutions. 

Unauthorized manipulation of the system may come in such 

forms as presenting to the system a false picture of the state of 

the environment, or in obtaining unauthorized information 

about the state of the system.  There have been many 

approaches to protecting a system, and in particular, security of 

software systems (cyber-security).  In [2, 12], for example, 

researchers have focused on the Rational Unified Process 

(RUP) which is a well-known software engineering process for 

assigning tasks and responsibilities within an organization.  
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These approaches suggest the addition of roles and artifacts to 

reduce threats and improve security requirements.  In [14], the 

author models activities based upon the Tropos methodology 

and adds a low level security-engineering ontology, derived 

from an UML approach.  Using an open system analysis for 

system specifications, verification and synthesis, the authors in 

[13] model a system with a possible intruder and verify 

whether the whole system is secure, based upon a temporal 

logic formula that describes a secure behavior.  Issues 

associated with firewall protection are presented in [11], while 

a survey of spam zombie detection methods is given in [3].  

Security at the chip level is discussed in [9] using fault-tolerant 

network interfaces. 

These and other current approaches generally focus on 

information technology systems and cyber-security.  Many 

methods focus on the detection of unauthorized entry into the 

system, based upon user authentication (user name, password, 

security questions, biometric information, and/or user profiles 

and user statistics).  Further, these methods detect attempts at 

unauthorized manipulation before it can be carried out (catch 

operational instructions as they are entered into the system -

malware detection or detect unauthorized manipulation being 

executed within the system - system monitoring or plausibility 

checks).  They may fortify information transmission 

(instructions and data) to and from the system to prevent 

alteration (encryption).  

Yet, the issue of security continues to be an on-going issue 

and in [16], Schneier acknowledges that critical methods for 

securing systems still remain to be developed.  Further, in [1], 

Alston and Campbell address secure systems from a systems 

engineering approach.  A secure system is described as a set of 

functions and processes that protect a resource from threats, 

which is also the approach considered here.  

A particularly difficult problem of assuring system security 

is posed by electronic voting machines.   Because the ballot 

cast by any individual voter is supposed to be kept secret, there 

is no way to verify that during the actual voting process any 

ballot is correctly recorded. Etschmaier [4, 8] showed that 

security of a voting machine can be assured by properly 

structuring the internal architecture and operation of the voting 

machine as well as the interaction of the voting machine with 

the input-output devices and by embedding the voting machine 

in a precisely defined process of quality and configuration 

management throughout its entire life-cycle.  
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In this paper we present a generalization of the work on 

voting machines to a general purpose computer, following 

more explicitly the process of a purposeful system, which is 

defined by Etschmaier [5] in such a way that all aspects of the 

life-cycle can be considered holistically within the design 

process.  System security is implicit throughout this process.  

We will return to the subject of voting machines in the form of 

a case study in Section 6.    

 

2 A Purposeful System 

 

A purposeful system was defined by Etschmaier [5] as a 

collection of functions and objects the boundary of which is 

chosen is such a way that the purpose of the system, to the 

extent possible, can be enclosed within it.  The ability to 

enclose the purpose of any system within the system 

boundaries is limited because, except for the universe, any 

system is in some form of interdependence relationship with 

the environment.  It is defined by the identification of objects 

that are part of it, and the characterization of the relationships 

between the objects and with the environment.  Any human-

designed system can be viewed as a purposeful system and the 

success of a system is the degree to which the purpose of the 

system is being fulfilled.  This depends on its adaptability, 

agility, and nimbleness, as well as on the ability to effectively 

process intelligence. 

The design of a purposeful system requires that the designer 

observe the interconnection of the system components and 

their functionalities, and assure that the functionalities, to the 

extent required by the system purpose, remain available 

throughout the life-cycle of the system.  Thus a system design 

will search for system boundaries that can ensure that the 

system purpose can be met.  As in the approach defined in [1], 

in a purposeful system, security, like operational availability 

and sustainment, are essential parts of the system purpose, not 

additions or enhancements.  This requires that all aspects of 

system operations and sustainment, including maintenance and 

repair, as well as security are considered as integral parts of the 

system design process.  Similarly, the definitions of the 

processes of quality and configuration management will evolve 

in the design process and extend over the entire life-cycle of 

the system.  

Integration of the processes of quality and configuration 

management in the design process is a direct consequence of 

the perspective on time and evolution articulated in [5].  As 

shown in Figure 1, time is a continuous movement from the 

past to the future, with the only real point being the instant that 

is the present and represents the boundary between a past that 

is irretrievable lost and a future that is not yet and essentially 

unknowable.  Knowledge about the past can only be obtained 

through contemporary records that were created and are 

analyzed by a “historian.”  

The analysis of the historian serves as the basis for control of 

the processes within the system and between the system and 

the environment.  On the basis of the historian’s analysis, the 

system creates possibilities for the future and the “system 

designer” adapts the design of the system to the changing 
 

 
 

Figure 1:  Life cycle of a purposeful system 
 

environment (“evolution”).  The historian and the designer are 

integral elements of the system and remain part of the system 

throughout its life cycle.  If they are missing, the system loses 

its relevance and can no longer participate in the process of 

evolution.  To a limited extent, the functions of the historian 

and the designer are often implemented through feedback and 

learning functions, although the importance of their presence 

throughout the life-cycle is often not appreciated.   

The definition of system purpose and boundaries is not 

unique and the search for the best definition may require a 

circular and iterative search as security requirements are 

dependent on the definition of system boundaries, and system 

boundaries provide possibilities for security.  The result of this 

process is a functional system diagram which may be 

employed in the design [14] as well to define system control 

for many operations that are based on the model of the system.  

The functional system diagram is used to visualize, in the most 

accessible manner, the essence of the system.  It may be 

expressed in many different formats.  Figure 2 shows the 

format we have found most useful to depict the structure of a 

voting machine.  

As shown in Figure 1, development of the functional system 

diagram is followed by the development of a detailed, object-

based model as the second phase of the design process.  The 

object-based model serves as the basis of all remaining phases 

of the system life-cycle.  

In this paper, a computer system is used to illustrate the 

processes of design, analysis and operations for secure 

systems.  To do this, the functions of a computer system will 

be presented and the requirements on their availability will be 

discussed.  Then threats such as design deficiency, 

malfunctions, violation of security (e.g., sabotage) which may 

impede the secure operation of the computer system will be 

presented.  Based upon these threats and functions, key 

operations that assure that the design meets the requirements, 

manages design quality and quality of operation, as well as 

feedback and learning loops will be developed.  The result of 

these processes provides a secure system which, in this 
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Figure 2: Definition of the structure of a secure voting 

machine 

 

example study, is a computer system.  An outline of the steps 

through which the detailed system design can be developed 

from the functional system diagram is provided in Section 5.  

 

3 A Single Purpose Computer as a Purposeful System 

 

A single purpose computer can be considered as a transfer 

machine.  Its origins may be disputed but many agree that the 

architecture of a single purpose computer has its origins in the 

Turing machine.  This machine can be modeled in many ways 

and is based upon transition states, inputs and outputs resulting 

in computational sequences.  Ignoring the details of the 

execution of computational instructions, a highest-level 

representation of the functions and components of a simple 

computer is shown in Figure 3.  The computer is divided into a 

processing unit which contains facilities for processing new 

input data and for preparing required output, and a storage 

facility which integrates and holds data for use by the output 

processing unit.  It receives input in the form of data and 

processes them in a sequence of computations through various 

transition states into some form of output.  

In such a configuration, there may be security risks that 

compromise the operations of the machine.  Such risks arise 

from interaction of the computer with the environment.   

 
 

 
 

Figure 3:  A computer as a transfer machine 

Possibilities for such risks are readily identified and shown in 

Figure 4.   

 

 
 

Figure 4:  Examples of security risk points 

 

Penetration of the computer perimeter may lead to a 

destruction or manipulation of stored data or of the storage 

unit.  It may also lead to destruction or manipulation of the 

processing units as well as of programs stored in them.  

Damage to the processing units can also be inflicted through 

faulty updating of the programs that control them.  The stored 

data can be rendered meaningless if, over time, the definition 

of the data or the format in which they are entered into the 

computer are inconsistent.  Bad data may enter the computer 

through improper means, e.g., via the output channel.  Finally, 

the security of the data may be compromised if through 

improper access, such as obtaining information from inside the 

computer through input channels, confidential or secret 

information is retrieved.   

In order to investigate potential security risks, one may start 

with the internal organization of current computer systems; a 

simplified block diagram is shown in Figure 5.  

 

 
 

Figure 5:  Internal organization in a functional system diagram 

 

The computer is divided into a store of excecutable 

programs which holds the the executable elements of the 

operating system as well as the executable source program 

elements; and the operating environment which holds the data 

in the various stages of processing.  New data enter the 

computer in the form of additions to the store of new data as 

well as of control instructions to the source program elements.  

The output can take on several forms: it may simply present 

information, provide answers to queries, or control some form 
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of process.  

 With this functional system model, it is possible to address 

the two essential design questions: how to effectively and 

sytematically design a security process that can block 

incoming risks, and where to draw the system boundary. 

 
4 A Framework for Security Assessment and Design 

 
In this section we will translate the general concept of 

purposeful systems and functional system analysis to the 

design and operation for a secure machine; a single purpose 

computer will be used as an example.  We will briefly describe 

the definition and key features of a system and then define a 

framework within which designer requirements must be 

satisfied.  

Figure 6 shows possible points where external threats in the 

form of security leaks might enter the single purpose computer 

(system) in the form of malware and bad data, as well as a 

possible set of processes that one may define for protection 

against these threats.  Malware is a collection of code elements 

that, alone or in combination with each other, can attach 

themselves to the store of code in the computer and activate 

processes that are outside the scope intended by the designer.  

Bad data are inert pieces of information that in format or 

definition deviate from what is expected by the designer.  

When added to the store of data inside the computer they will 

distort, possibly irreversibly, the information contained in the 

store of data, and thus lead to false output being delivered.  

Also, if bad data are allowed to enter the computer they may, 

in conjunction with faulty code, produce the same effect as 

malware.   

 

 
 

Figure 6:  Security processes for a single purpose computer 

 
In the example of a single purpose computer, analysis of 

reliability requirements [4, 8] leads to the definition of a 

system as a secure repository.  This single purpose computer 

can hold the data entered into it.  It feeds into the higher layers 

of the system but does not interact with them.  Separately, 

there may be processes through which, from time to time, the 

operating system and the source program may be modified.  

These processes, carried out by the system designer, 

essentially amount to redesign of the system and require 

revisiting all aspects of the design and operational processes as 

recorded and documented (analyzed) by the historian.  They 

are separate from each other and independent of the flow of 

data.  Protection of the integrity of the system requires that 

authentic copies of the latest version of the operating system 

and the source program are available and that modifications 

are protected against improper manipulation.  While the 

operating system and the source code do not need to be part of 

the computer system, they need to be stored in an error-free 

zone and, when needed, securely connected to the computer.  

Any input of patches or updates needs to be screened for 

malware and errors.  

Examination of the diagram permits immediate 

identification of where what security functions need to be 

included in the system to assure that these processes do not 

interact or otherwise cross their boundaries.   

The important aspects of the single purpose computer are 

that:  (i) it is a clearly defined product with clear boundaries; 

(ii) it consists of hardware, software, and data storage 

elements; (iii) the hardware and software are designed not to 

change over the life of the machine (any modification will 

create what may be considered an essentially new system); (iv) 

data held in the storage devices only change in narrowly 

defined ways and without penetration of the perimeter of the 

machine; (v) it requires no routine maintenance, and its 

functions can be diagnosed from the outside; and (vi) data can 

be entered and accessed without disturbing the perimeter of the 

machine.  

Figure 7 shows a generic model of a single purpose 

computer where one may focus on the user interface to create 

an outer layer of security.  The model is neutral as to the 

technology used to build an actual machine.  This single 

purpose computer can be developed and produced in an 

environment where there are precisely defined rules and 

requirements, where the required functions and their criticality 

are precisely defined, and the rules are enforced 

unambiguously.  The figure also shows how the user and the 

functions of the history file, the historian, and the designer 

(defined in Figure 1) are included in the system.  The history 

file continuously receives information about the output from, 

or actions commanded by the computer system as well as from 

the actions of the user or the performance of the controlled 

process.  The content of the history file is analyzed by the 

historian and integrated into the history of the system. Based 

on the analysis of the historian, the designer identifies, 

develops and implements modifications of the system that 

appear desirable or necessary.  The modifications are 

implemented through updates to the source program.  Patches 

to the operating system are provided by the supplier, 

preferably screened by the designer.  Access to the history file 

may also be provided to the user or the controlled process.  

As the historian and the designer have critical roles in the 

maintenance of the integrity of the computer system, they are 

included within an outer security perimeter which also 

includes all elements modifying the operating system and the 

source code.  Separate from the outer security perimeter is the 

user domain which includes all elements of the user interface 
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Figure 7:  Designing a secure system, creating an outer layer of security 

 
or of the controlled process as well as the post-processing 

activities required to connect to them.  The user domain may 

have its own security requirements.  But those are independent 

of the security requirements for the computer system.  The 

post-processing activities may, however, (when necessary) 

fetch program elements from an app store that is included in 

the outer security parameter of the computer system.  

The design of a secure system may be modeled as a string of 

nodes within a design process.  In Figure 8, the functional 

system diagram of the single purpose computer is arranged in 

such a way that it can be incorporated as a node in such a 

network.  There are two ways to construct a network:  in a 

network with decentralized (parallel) processing, each node 

may replicate all system functions with only the store of 

accumulated data being assigned to a central function; 

alternatively, in a network with central processing, the nodes 

may only incorporate the user domain with one computer 

system serving all nodes in addition to providing the central 

storage of accumulated data.  For both alternatives, essential 

security functions transfer directly from the nodes to the 

networked system.  

Figure 9 shows the first and last nodes of the first alternative 

of a networked computer system.  Sharing of functions within 

a fully functional secure network may be quite limited.  For 

there to be a meaningful network, clearly the function of the 

designer and at least some functions of the historian need to 

cover the entire network.  Beyond that, sharing may be limited 

to some aspects of the user domain and the store of 

accumulated data.  The store of accumulated data represents 

the element that actually integrates the network.  It requires the 

highest level of protection in the network because bad data 

entered into it will corrupt the accumulated data and may cause 

irreversible damage; and that damage might go unnoticed for a 

long time, if not forever.  For this reason, this store is enclosed 

by an inner security perimeter that is shared by all nodes.  

Additionally, these data may be organized in a structured way  

 

  
 

Figure 8:  An example of a node within the network of nodes 

representing security points 
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and the access of each node limited to select strata of data.  

Figure 10 shows the arrangement of a networked system with 

central processing.  The nodes are formed by the relatively 

simple user domains.  However, the possible cost saving from 

this is balanced by the need for increased data exchange 

between each node and the central computer.   

 

Vulnerability for both alternatives arises from the 

transmission of data between the nodes and the central element 

of the system.  For decentralized processing, it is the 

transmission between each node and the central data storage 

unit.  For central processing, it is the transmission of 

information between each user domain and the central 
 

 

 
 

Figure 9:  System security division in a networked system with decentralized processing 

 

 
 

Figure 10:  System security division in a networked system with central processing 
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computer system.  In order to assure security, both cases 

require secure transmission of data. 

 

5 Realization:  Design, Operation, and Sustainment  

 

A functional system diagram articulates the essence of the 

computer system.  It defines the functionality, identifies the 

importance of each function, and assigns the functions to a 

system framework.  It represents a top-level system 

specification.  Following [6], it can be used as the basis for 

developing the detailed design, and the plan for construction, 

as well as for operation and sustainment of the system.  With 

the SOMPA model one can turn the principles of design 

spelled out in the functional system diagram into physical and 

logical elements, study the full complexity of their behavior 

under condition of the real world and develop in detail the 

mechanisms that will provide the defense against threats to 

security (and failures, breakdowns).  A top level view of 

SOMPA is shown in Figure 11 [6].  As the principal tool of the 

process of physical design, SOMPA also permits explicit 

optimization over design alternatives.  SOMPA thus provides 

an alternative over the established processes of designing 

computers and in particular software.  It is more flexible and 

intuitive.  

 

 
 

Figure 11:  Overview of the SOMPA model 

 
SOMPA is a model that represents a system as a complex 

network of objects. It uses objects to represent all aspects of 

the system, system components as well as functions, failures, 

operational and sustainment activities, and selected system 

properties (like system states).  Every object is an independent 

entity that is linked to other objects through changing 

relationships. SOMPA permits the use of any object in 

multiple places of the network at the same time as well as the 

creation of multiple objects from which to choose for any 

position in the network.  This makes it possible to create a 

variety over which the system can be optimized.   The 

possibilities for optimization concern design choices as well as 

strategies for system operation and sustainment.  

Any object used in the SOMPA model can incorporate any 

information that might pertain to it over all or parts of its 

lifetime.  Consequently, the model can be configured to be a 

simile of the physical system it represents.  As shown in Figure 

12, it can be linked to the physical system to provide a real-

time simulation of the processes occurring in the physical 

system and the transformations that system may be 

undergoing.  Control measures can be developed in the model 

and applied to the physical system.  Comparison of the model 

states with the states of the physical system can identify 

emerging and progressing system failures. Such failures may 

be caused by malfunction of system components, by errors in 

the design of the system, or of its components, including the 

human element, or by errors in the model formulation and of 

the control commands that emanate from it.  Even as the 

physical system is built, operated and sustained following the 

SOMPA model, it may differ from it in many respects.  Those 

differences may be due to human errors in the construction of 

the physical system, or they may be due to the fact that certain 

aspects of the behavior of the physical system might not be 

understood by the creators of the physical system, or simply be 

beyond the state of the art, i.e., could not be known at the time 

of creation of the physical system.  Using the SOMPA system 

to control the physical system in real time will thus provide the 

critical capability to sustain the system into an indefinite 

future.  In terms of Figure 1, it provides the information 

needed for the analysis function of the historian and the 

continuous redesign of the system by the designer.       

 

 
 

Figure 12:  Using the SOMPA model to control the physical 

system 

 

While SOMPA was originally developed to control 

manufacturing machines in the context of the NIST Smart 

Machining Program [7], the object-based structure makes it 

applicable to any type of system, including computer systems 

that combine hardware and software elements.  The functional 

system diagram of Figure 8 articulates the vulnerability of the 

basic architecture of a simple computer.  It shows a hierarchy 

of security perimeters, an isolated user interface module, and 

censor-type functions that can protect the integrity of the data 

and code elements.  The simple computer presents as a 
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mechanistic device that executes logic operations through a 

collection of algorithms.  Figure 8 does not distinguish 

between hardware and software elements.  In fact, many of the 

elements can be realized either as hardware or as software 

elements.  The optimization processes of SOMPA can readily 

identify the best realization just as they can choose between 

different components or different operational or sustainment 

strategies.  

SOMPA thus provides a tool through which the hardware as 

well as the software element of a computer system can be fully 

modularized. In the design process each module can be 

designed separately (or selected from a set of readily available 

products).  The functionality and performance of each module 

can be verified separately.   SOMPA can optimally select 

between alternative available modules, and define the 

necessary interaction capability between them.  SOMPA can 

also function as a tool to control the operation and sustain the 

computer throughout its lifetime.  Thus, SOMPA can assure 

that the entire computer system is designed to meet all 

requirements and errors in the design are eliminated to the 

maximum extent possible.  In particular, the computer system 

will be protected against “critical” failures.  Using SOMPA to 

control the operation and sustainment of the computer will 

assure that any errors that might remain will be recognized and 

kept from causing “critical” failures.   

 

6 Case Studies 
 

The design of a secure computer system is based upon 

previous work on the design of a secure voting machine.  In 

this section, a brief discussion of the case study of a voting 

machine is presented for completeness and as another case 

study, to illustrate the process of secure system design using 

purposeful systems.  It is this framework that can then be 

applied to the design an analysis of secure computer systems. 

 

6.1 A Stand-Alone Voting Machine  

 

Voting machines are arguably the most important physical 

tools of a democracy.  They provide indiscriminate access to 

the election process, tabulate unambiguously the outcome of 

an election, and guard the confidentiality of the voting process.  

Malfunctioning voting machines may change the outcome of 

an election.  As elections may decide between peace and 

harmony, or war and turmoil, improperly functioning voting 

machines may literally put many lives at risk.  

Voting in an election is a relatively straight-forward matter:  

a voter selects from slates of candidates or issues and makes 

the choice known to some election manager who tallies the 

votes and determines the winning candidates or issues.  This 

process can easily be carried out within an assembly of voters 

by raising hands as the various issues are called.  If not all 

voters can be physically present in a polling place, they may 

record their choices by marking a ballot.  If a person’s choices 

are to be confidential (or secret), the ballots may be placed in a 

ballot box together with ballots of other voters and removed 

randomly for counting.  A desire to mechanize this process 

appears to be motivated by several expectations: 

mechanization would make it easier to tally the votes; it would 

provide a vehicle for the voters to unambiguously express and 

record their choices; it would make it impossible to alter the 

collection of ballots cast by adding or removing ballots.   

The earliest efforts at mechanizing the voting process appear 

to be dating to the mid-19th Century [18].  Over time, various 

technologies for voting evolved and voting machines became 

widely used throughout the US.  However, not only did none 

of the designs ever fully meet expectations, but their limited 

reliability added new uncertainty to the election process. Also, 

lack of funds in many jurisdictions limited the ability to 

procure adequate numbers of voting machines, leading to long 

lines at some polling places, and ultimately denial of access to 

the voting process.  The problems of voting machines came to 

a head in the 2000 US presidential election when disputes over 

the validity of punch-card ballots in one Florida precinct led to 

weeks of legal wrangling, and the outcome of the election 

ultimately was decreed by an act of the US Supreme Court.   

To avoid a repeat of the 2000 election, the US Congress 

passed the Help America Vote Act (HAVA), mandated the 

National Institute of Standards and Technology (NIST) to 

undertake a program to define standards for voting machines, 

and appropriated more than $2B to fund the acquisition of new 

generations of voting machines throughout the country and 

established the Election Assistance Commission (EAC) to 

oversee these processes [17].  However, a recent study by the 

prestigious Brennan Center for Justice [15], fifteen years after 

HAVA, is quoting an EAC official that “Our voting equipment 

is old and past its usefulness.  We're getting by with Band-

Aids, but I worry about a crisis with some of the older 

machines.”  And it observes that “flipped votes, freezes, shut 

downs, long lines, and, in the worst case scenarios, lost votes 

and erroneous tallies … have … been occurring more 

frequently than they should.”  It also points out that “It is 

worth remembering that the machine problems in Florida in 

2000 could have gone unnoticed … had they not happened in 

an exceptionally close election.” 

Rather than by embarking on yet another round of investing 

in new generations of equipment that merely extends existing 

design principles, work that started as part of the NIST Voting 

Program showed that the problems may be solved once and for 

all by following the concept of purposeful systems and 

applying the holistic design principles in the design, 

manufacture and operation and sustainment to design an 

entirely new generation of voting machines [4, 8].  Such voting 

machines could meet all expectations of reliability and security 

at a cost below that for current generations of voting machines.  

The case study on voting machines outlines how a standard 

can be formulated that will assure that systems such as voting 

machines can meet expectations.  We start the discussion with 

a stand-alone machine and extend it to a system for an entire 

precinct.  Finally, we show how this standard can be extended 

to cover internet-based voting.  

The purpose of a stand-alone voting machine is to serve as a 

secure receptacle within which a voter can deposit his/her vote 

without being observed, to tally the votes cast, and to provide a 
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record for verifying the tally in a recount.  The top-level 

functions required of a voting machine can be presented as in 

the functional system diagram of Figure 2.  The part that 

corresponds to a stand-alone voting machine is contained in 

the box labeled “voting machine.”  Examination of the 

functional system diagram shows that operation of the voting 

machine consists of a sequence of mechanistic processes that 

may be implemented through a collection of purely mechanical 

devices.  In this discussion it is assumed that many of these 

processes are realized in terms of algorithms that are 

implemented in computer technology.  Through those 

processes security and reliability may be compromised through 

faulty design of the algorithms and their interaction with each 

other, as well as through failure of the physical elements 

through which the algorithms are implemented.  Clearly, there 

is no essential difference between these failures and the 

failures of any other component of the voting machine.  Thus 

the process outlined in Section 5 is fully applicable to the 

design of a voting machine.  Any standard for voting machines 

can be based on it.  

Figure 13 shows the list of potential failures, the “critical 

failures,” that must not be permitted to occur if the voting 

machine is to meet its purpose.  As a first step to satisfying this 

security requirement, the functions are divided between an 

input/output module and a machine core, the principal 

components of the voting machine.  This arrangement maps 

directly into the components identified in Figure 3 for the 

simple computer, with the machine core accommodating the 

processing of output in addition to the inclusion of new data in 

storage.  The input of the ballot is handled by the input module 

and occurs in two directions.  In order to avoid the risk of 

bidirectional channels, this requires two separate channels, one 

through which the computer presents the voting options, and 

the other through which the completed ballot is received. 

 

 
 

Figure 13:  Potential critical failures of a voting machine 

 
The input module does not retain any ballot information, but 

passes every ballot, after it has been received, on to the 

machine core for inclusion in the core memory.  In order to 

keep this memory from being contaminated, faulty ballots have 

to be identified so that they can be recognized in the memory 

as that and entered to the collection of invalid ballots.  The 

verification of the ballot is done by the input module which 

may or may not provide the voter with an identification of the 

defect through the same channel the ballot options were 

displayed, and provide him/her with an option to submit a 

corrected ballot.  

The voting options available to the voter vary from election 

to election as well as, possibly, from precinct to precinct.  To 

make a voting machine model usable in multiple elections and 

precincts, information for creating the options has to be 

entered into the machine from the outside.  This requires that 

the machine is connected to an outside entity that supplies the 

necessary information.  In order to protect the integrity of the 

programs stored in the voting machine, the corresponding 

input channel must not be permitted to carry any code.  This 

means the generation of voting options needs to be divided 

into code that is permanently stored inside the voting machine, 

and inert data that will drive the code to generate the ballot 

information in a way that it can be transmitted to the voter.  

For this purpose, code elements will be included in the input 

module where they set up the ballot generation as well as the 

voter’s input verification processes; and the machine core 

where they will set up the storage facility for the input total as 

well as for the storage of the anonymous ballots that might be 

required for an orderly recount.  Generation of voting options 

is located in a separate unit which provides data to many 

voting machines, and is attached to a voting machine through a 

secure, severable link.  

Corresponding to the quality management system shown in 

Figure 1, the voting machine needs to be equipped with some 

form of capability to monitor its performance.  The verification 

unit which is shown in the functional system diagram in Figure 

2 is configured as an external device that can be attached to 

many voting machines.  The device calls up information from 

inside the voting machine, including of the data stored for a 

possible recount, but is configured in such a way that 

communication is limited to the transmission of inert data, and 

there are separate channels for input and output of these data.  

Code elements to perform the verification and performance 

monitoring are divided between both modules in the inside of 

the voting machine and the verification unit.  

Most risks of critical failures of functions associated with 

components inside the voting machine concern failures of the 

programs stored in them.  To protect against such failures two 

conditions, have to be met:  The programs have to be free of 

errors, and the possibility of manipulating them from the 

outside has to be eliminated.  The second condition requires 

that the input module and the machine core each need to be 

isolated from each other logically and physically, and the 

voting machine as a whole needs to be enclosed by an 

impenetrable enclosure.  This enclosure also needs to protect 

humans and election officials and other persons from injury.  

To protect against violation of voter privacy, a separate 

perimeter needs to be established that encloses the voting 

machine together with the voter for the duration of the voting 

process.  Output from the voting machine is limited to 

transmission of the vote totals at the end of the election.  
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The approach discussed in this case study differs 

significantly from the current approach that assume that the 

core of a voting machine would be an unmodified general 

purpose computer (“COTS”) running a commercially available 

operating system, like Windows, to execute software that 

meets the standards for general commercial-grade programs.  

Such standards limit, but do not exclude the occurrence of 

programming errors.  The current approach is to achieve 

security (and secrecy) through definition of standards for 

design and performance of hardware components and through 

obscuring information handled by the voting machine through 

encryption.  It attempts to demonstrate security (and reliability) 

by extensive testing through simulated voting.  However, error 

free performance of a voting machine during testing, when 

secrecy is not required, does not provide any assurance of error 

free performance during an election when security is required 

and ballots cast cannot be compared tabulated results.  For 

example, testing could not detect code that would be executed 

during regular voting but not during the test, such as what has 

been found in vehicle emissions control systems [10]. 

 

6.2 A Precinct Network  

 

We have shown that the design of a stand-alone voting 

machine for security and reliability follows closely what we 

have described for a simple computer.  As shown in Figure 9, a 

number of stand-alone voting machines, such as the one 

located at the same precinct, can be connected by sharing the 

store of information that is common to all.  The shared 

memory in this case is the record of the polling station total, 

the first function of the election management system.  This 

leaves the security requirements for the individual voting 

machines unchanged, except that security for the output 

channel has to be provided during the entire duration of the 

election. 

Alternatively, following Figure 10, a network can be 

configured with central processing.  In this case the nodes 

would be formed only by the input module, while the machine 

core and the precinct-based part of the election management 

system, recording the polling station total, form the hub of the 

network and can be protected by the same enclosure.  This 

arrangement breaks up the voting machine perimeter and 

requires increased levels of security for the transmission of 

data between the input module and the central hub.  The 

distance for the transmission is increased significantly.  Also, 

arrangements have to be made for the unit that generates 

voting options and the verification unit to access the input 

module separate from the central hub.    

 

7 Conclusions 

 

This paper has shown how the concept of a purposeful 

system together with the functional systems analysis process 

can be used to define and meet the essential security 

requirements for a single-purpose computer and how such a 

computer can be included as a node in a networked computer 

system.  The essential security functions transfer directly from 

the nodes to the networked system.  

The paper has also shown that the definition of functions of 

system operations, sustainment, and security need to be 

integral parts of the design process, and that the design process 

does not end with the start of the operational phase.  To make 

this possible, a historian and a designer need to be and remain 

integral parts of the system throughout the entire system life-

cycle.  Processes of quality and configuration management, 

properly implemented, will be part of the functions of the 

historian and the designer.  

The example of a voting machine system is used to show 

how the principles defined for the simple computer has been 

applied to a real system of considerable importance where 

security is of utmost concern.  Development of a system from 

well-defined functions and components and assembly of a 

large system from independent nodes has been shown to 

improve transparency, simplify programming, and make it 

possible to integrate security measures directly into the design 

architecture. 
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Abstract 
 

With a great diversity of real-time embedded systems, 

developers often utilize a real-time operating system (RTOS) to 

efficiently build the systems.  However, in exchange for the 

usefulness, execution of RTOS codes brings runtime overhead, 

which can influence the system schedulability.  In this paper, 

we propose techniques for guaranteeing schedulability 

including RTOS runtime overhead.  In the proposed 

techniques, we introduce two servers with planned capacity (or 

budget): periodic management server and aperiodic 

management server, which are dedicated to RTOS processing.  

The former takes charge of invoking periodic tasks at their 

period timing and the latter manages aperiodic RTOS events 

such as task completion.  Then, we provide the schedulability 

test considering the servers' utilization.  In addition, we show 

techniques for slack reclaiming to improve the aperiodic 

application tasks’ responsiveness by utilizing capacity (or 

slack) of the servers which is left unused.  The evaluation by 

simulations with synthetic task sets shows that average 

response times for aperiodic application tasks can be improved 

by up to 18.3% while guaranteeing schedulability of periodic 

tasks, and that the effectiveness of the slack reclaiming is more 

significant when a system tick is shorter for higher degree of 

precision. 

Key Words:  RTOS; real-time scheduling; polling server; 

deferrable server; slack. 

 

1 Introduction 
 

In these days, there is a growing demand for complicated 

real-time embedded systems such as mixed-criticality systems 

[1, 3] and systems where various types of real-time tasks 

coexist are increasing.  It is often efficient to build such 

complicated systems with real-time operating systems (RTOS).  

Use of RTOS is helpful in that developers do not have to 

describe codes for task management including task scheduling 

and context switching, memory management, synchroniza-

tion/communication, time management, etc.  Instead, 

developers can be devoted to describing algorithms for their 

applications.  However, in exchange for the usefulness,  
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execution of RTOS codes brings runtime overhead for its 

sophisticated mechanisms. 

Especially in hard real-time systems, it is important to 

guarantee the schedulability of all the hard tasks.  As a 

representative method of assuring schedulability, one which 

takes processor utilization by tasks into account has been 

established and used, where the sum of the tasks’ utilization is 

kept equal to or lower than the least upper bound of the task set 

(Ulub) [2].  However, it should not be sufficient to consider 

schedulability only with utilization by application tasks.  This 

is because execution overhead of the RTOS codes including 

task/context switching, queue manipulation, or timer interrupt 

handling cannot be ignored.  The existence of RTOS overhead 

can make the system unschedulable. 

It is possible to estimate RTOS overhead and take them into 

account for schedulability analysis [2, 4].  However, the 

estimation about the frequency of preemption or context 

switching can be done only for periodic tasks which are 

invoked at regular intervals.  When aperiodic (not sporadic) 

tasks exist, it is not possible to assure that actual RTOS 

overhead is within the estimated amount.  In addition, the 

analysis model depends on an ideal assumption that every 

single event can occur only at a multiple of the system tick.  It 

cannot be expected that aperiodic events and a system tick 

synchronize since the system tick is relatively long (from 

hundreds of microseconds to a millisecond). 

In this paper, we propose techniques for guaranteeing 

schedulability, including RTOS overhead, for models where 

aperiodic RTOS events as well as periodic ones exit and 

aperiodic events happen asynchronously with the system tick.  

In the proposed techniques, we introduce two servers, periodic 

management server and aperiodic management server, 

dedicated to RTOS processing and guarantee the system 

schedulability involving RTOS overhead.  In addition, we 

improve the aperiodic application tasks’ responsiveness by 

utilizing unused capacity (or slack) of the servers. 

This paper consists of six sections.  Section 2 describes 

related works for scheduling algorithms, especially for task sets 

with hard, periodic tasks and soft (or non-real-time), aperiodic 

ones.  Then Section 3 proposes two management servers for 

RTOS processing to guarantee the schedulability.  Additional 

slack reclaiming technique for improving application tasks’ 

responsiveness is proposed in Section 4.  Evaluation of the 

proposed technique is shown in Section 5.  Finally, Section 6 
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concludes the paper with summary and future work. 

 

2 Related Work 
 

The proposed technique is based on Rate Monotonic (RM) 

scheduling [7], where every task has a fixed priority according 

to its period.  RM has the merits of low implementation 

complexity and small jitters for high-priority tasks.  There are 

RM-based server algorithms that provide aperiodic tasks, 

which do not have their periods, with priorities for the 

execution order.  As representative examples, there are Polling 

Server [5], Deferrable Server [5], Priority Exchange [5], 

Sporadic Server [8], and Slack Stealing [6].  These servers aim 

to keep response times of aperiodic tasks as short as possible 

while maintaining schedulability of hard periodic tasks. 

Polling Server has its period and capacity.  Its priority is 

decided with the period in the RM context.  In its turn, it serves 

aperiodic tasks as long as capacity is left.  The capacity is 

decreased by the same amount as the time for which aperiodic 

tasks are executed.  When the server’s turn comes while there 

are no aperiodic tasks to be executed, the capacity is 

abandoned immediately. 

Compared to Polling Server, Deferrable Server is an 

algorithm which improves aperiodic responsiveness by 

preserving its capacity even when there are not aperiodic 

requests pending.  However, the better responsiveness is 

derived at the expense of lower least upper bound for the 

utilization, that is, maximum utilization by application tasks 

has to be lower than that in the case of Polling Server.  The 

method in this paper achieves schedulability involving RTOS 

overhead by using Polling and Deferrable Servers.  

Priority Exchange is an algorithm where, when there are no 

aperiodic requests pending, the server capacity is deposited in 

the lower-priority of other periodic tasks executed at the 

moment and can be subsequently consumed at the (lower) 

priority when aperiodic requests arrive.  Due to this feature of 

lowered priority, Priority Exchange cannot be applied in the 

proposed method since RTOS processing including task 

activation, task termination, and context switching should be 

performed at the highest priority every time. 

Sporadic Server and Slack Stealing are more complicated 

algorithms than those mentioned above while shortening 

response times of aperiodic tasks further.  In Sporadic Server, 

the server capacity is replenished at different timing from 

system ticks, which makes it difficult to apply this server for 

periodic RTOS events such as invocations of periodic tasks.  

As for Slack Stealing, it imposes unrealistic complexity and 

memory requirement.  The complexity requires large 

implementation or runtime overhead.  The comparison between 

server algorithms in terms of computation/implementation 

complexity is found in [2].  Hence, these are not employed in 

our method. 
 

3 Servers for RTOS Processing 
 

In this section, a method of guaranteeing schedulability 

including RTOS processing is proposed. 

In the system model, there are two tick units: system tick and 

processing tick.  The former is units of time to express time at 

which periodic tasks can be requested to run and time duration 

for which tasks are supposed to run, that is, worst-case 

execution time (WCET).  The latter is units of time to express 

the other time properties; tasks’ actual execution time, actual 

finishing time, and RTOS’s processing time. 

Two servers for RTOS processing are deployed in the 

system.  One is a periodic management server which takes 

charge of invocation processing of tasks and, if necessary, task 

switching.  The other is an aperiodic management server which 

processes aperiodic events such as tasks’ completion and task 

switching.  These two servers are supposed to have the shortest 

period and the highest priority in the RM context since the 

RTOS processing should be performed in priority to other 

application tasks’ processing. 

 

3.1 Periodic Management Server 
 

Periodic tasks are supposed to be requested in 

synchronization with system ticks.  For example, a periodic 

task with period of four system ticks is requested every four 

system ticks.  When this task is included in the system, the 

periodic management server (PMS) processes the invocation 

every four system ticks.  On each system tick timing, there can 

be invocations of two or more tasks.  PMS exploits the Polling 

Server algorithm and is given capacity every system tick.  The 

capacity should be large enough to process the maximum 

number of invocations that can occur on system tick timing and 

it can be estimated in the hyper-period of all the tasks’ periods.  

Every system tick timing, the server processes the task 

invocations and task switching if necessary.  When fewer or no 

tasks are requested and some of the capacity is left, the 

remaining capacity is abandoned immediately. 

Figure 1 shows an example of intervention of PMS, where 

there are two periodic tasks, τ1 and τ2, and PMS.  τ1 has a 

period, T1, of four system ticks and execution time, C1, of one 

system tick. τ2 has six-system-tick period, T2, and 1-system-

tick execution time, C2.  The server has one-system-tick period, 

TPMS. It is supposed that one system tick corresponds to six 

processing ticks and that it takes one processing tick to process 

one task’s invocation including task switching.  The server 

capacity, CPMS, of two processing ticks is reserved since two  
 

Figure 1:  Periodic management server (PMS). 
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periodic tasks can be requested at the same time in the hyper-

period.  In the figure, at t = 0, the whole capacity is consumed 

for two tasks’ invocations.  On the other hand, at t = 1, 2, 3, 5, 

7, 9 or 10, no tasks are invoked and the capacity immediately 

disappears.  At t = 4, 6, or 8, a task is invoked and one unit of 

the capacity is consumed.  Then, the remaining capacity is 

abandoned. 

In order to guarantee the schedulability including PMS, the 

following sufficient condition should be confirmed. 

(n is the number of periodic tasks.) 
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This formula is the same as the schedulability test for RM 

where PMS is regarded as a periodic task1.  This is satisfied for 

the example in Figure 1, since, for C1 = 1 × 6, T1 = 4 × 6, C2 = 

1 × 6, T2 = 6 × 6, CPMS = 2, TPMS = 6, and n = 2, the left side 

becomes 0.750 and the right side 0.780. 

 

3.2 Aperiodic Management Server 
 

The second server, aperiodic management server (AMS), 

manages aperiodic events such as tasks’ completion and task 

switching.  Tasks can finish at any timing different from 

system ticks.  Hence, Polling Server algorithm cannot be used 

for this server since it discards the capacity if there are not 

RTOS jobs pending at the system tick timing.  Instead, the 

Deferrable Server algorithm is used as AMS since it preserves 

the capacity during the system tick period. 

In the task model in this study, WCETs are regarded as 

supposed execution times and the WCETs are estimated as the 

integral multiple of a system tick.  We try to guarantee the 

schedulability assuming the WCETs.  From this assumption, at 

most one task would finish in a system tick.  This leads to that 

one processing tick for the server capacity is enough to 

guarantee the schedulability.  In actual situation, however, if a 

task is going to finish before it has spent its WCET, the 

capacity may be already exhausted.  This happens when two or 

more tasks finish in the same system tick due to their shorter 

execution times than their WCETs.  In this case, blocking the 

system until the next system tick timing does not jeopardize the 

schedulability.  However, this is a waste of the system  

____________________________ 
1 When the Polling Server has the highest priority, the condition is 

expressed as follows [2]. 
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This is satisfied for the example in the figure since the left side 

becomes 0.417 which is smaller than the right side, 0.449. This 

formula cannot be directly applied when another type of server, 

Deferrable Server, coexists in the system. Therefore, the application of 

this formula is left as future work. 

resources.  Therefore, it is effective to provide two or more 

processing ticks as the capacity to improve the system 

utilization. 

An example of AMS is depicted in Figure 2.  Periodic tasks 

are the same as those in Figure 1.  The server has its period, 

TAMS, of one system tick (= six processing ticks) and capacity, 

CAMS, of one processing tick.  At t = 1, the server performs τ1’s 

completion and switching to τ2. Similarly, whenever a periodic 

task finishes, the server processes the task completion while 

consuming the capacity.  Note that the server can cope with 

task’s completion even when the task finishes asynchronously 

with system ticks. 
 

 

 

 

The following sufficient condition should be confirmed to 

guarantee the system schedulability involving overhead for 

aperiodic management.  (This corresponds to a sufficient 

condition for Deferrable Server [2] and n is the number of 

periodic tasks.) 
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For the example in Figure 2, this condition is met where the 

left becomes 0.417 and the right 0.550. 

 

3.3 Merging Two Servers 
 

Figure 3 shows a schedule example of a system including 

both PMS and AMS.  Whenever periodic tasks are released, 

PMS is scheduled and the corresponding amount of capacity is 

consumed, while AMS is scheduled immediately after each 

periodic instance finishes and the capacity is consumed.  Both 

of the servers are replenished with their capacity every system 

tick. 

Guaranteeing the schedulability for a system with PMS and 

AMS requires the following formula 3 to be satisfied.  This is 

derived from the schedulability condition formula 2 in Section 

3.2.  Developers can statically check schedulability of the 

systems by using this formula. 

Figure 2:  A periodic management server (AMS) 



IJCA, Vol. 23, No. 2, June 2016   119 

 

 
PMSPMS

n

i

ii TCTC 
1

  

 

  
 

































1
12

2
1

11 n

AMSAMS

AMSAMS

TC

TC
n  (3) 

 

It can be confirmed that the example in Figure 3 satisfies this 

condition. 

 

 

 

3.4 Implementation Issues 
 

Generally, RTOSs perform task management and scheduling 

by employing queue structure which links task control blocks 

(TCBs).  Since the proposed servers are included in the targets 

of scheduling, it would generate additional space and 

computational overhead if the control blocks for the servers are 

prepared and dynamically managed. 

Basically if the servers exist only for guaranteeing 

schedulability for periodic hard tasks, control blocks for the 

servers are not indispensable or RTOSs do not have to do 

anything for the server management at run-time.  If the slack 

reclaiming technique described in the next section is applied, 

the RTOSs have only to manage the server capacities, without 

their control blocks, in their routines every time they process 

and block the system until the next replenishment when the 

capacity is exhausted. 

 

4 Slack Reclaiming 
 

The RTOS servers proposed in the previous section are apt to 

generate slack, which means the capacity being left unused, 

due to infrequent RTOS processing.  For example, in Figure 3, 

the total capacity provided to the two servers is 30 between t = 

0 and t = 10.  However, the amount actually consumed is only  

 

8, which is less than 30% of the total.  In this section, 

techniques to avoid wasting the unused capacity and improve 

response times of aperiodic application tasks by utilizing the 

slack are proposed. 

In complicated embedded systems, there are not only 

periodic control tasks but also aperiodic application tasks 

which have soft or non-real-time requirements.  Therefore, 

aperiodic tasks are supposed to be included in the task set 

model in this section.  Aperiodic tasks are assumed to be able 

to arrive at processing tick timing.  Their invocation and 

completion are regarded as lightweight processing so that their 

WCETs include the processing in advance.  The aperiodic tasks 

are served basically in the background.  (Although they can be 

served by more sophisticated fixed-priority servers, the 

background server is assumed for simplicity.)  In the following 

subsections, how each management server utilizes slack for 

aperiodic application tasks is described. 

 

4.1 Slack Reclaiming from Periodic Management Server 
 

PMS behaves as a Polling Server.  Therefore, it replenishes 

its capacity every system tick timing.  If the number of tasks to 

be invoked is less than the capacity, the unnecessary capacity is 

discarded immediately.  Instead of discarding it, if there is a 

pending aperiodic application task, the capacity to be discarded 

can be given to the execution of the aperiodic task.  This is a 

basic technique of slack reclaiming.  Note that the aperiodic 

execution is performed preferentially since the server capacity 

has the highest priority, which shortens the response time of 

the aperiodic request. 

Figure 4 shows an example of the slack reclaiming by PMS.  

In the figure, an aperiodic application request with supposed 

execution time of one system tick (= six processing ticks) 

occurs at t = 4.  In the top figure without the slack reclaiming, 

the instances of τ1 and τ2 are given priority over the aperiodic 

task and therefore the aperiodic task’s execution is delayed or 

preempted.  As a result, the response time of the aperiodic 

execution becomes more than three system ticks (20 processing 

ticks).  On the other hand, in the bottom figure which includes 

the slack reclaiming technique, the response time is decreased 

too shorter than three system ticks (13 processing ticks) by 

making use of the remaining server capacity at the highest 

priority.  For example, at t =4, it is known that τ2 is not invoked 

until t =6.  Therefore, one unit of the capacity can be spent for 

the aperiodic task’s execution.  Similarly, at t = 5, the whole 

two units of the capacity can be given to the aperiodic task’s 

execution since neither τ1 nor τ2 is invoked.  In addition, at t = 

6, the aperiodic task is executed in one processing tick by 

reclaiming the slack which is not used for τ1's invocation.  If 

the actual execution time of the aperiodic task is shorter than 

the supposed time (six processing ticks), the effect of the slack 

reclaiming can be larger.  For example, if the execution 

finished in one processing tick, the response time with the 

slack reclaiming would be only one processing tick which is 

shorter than eight processing ticks in the case without the slack 

reclaiming. 

 

Figure 3:  System with PMS and AMS 
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4.2 Slack Reclaiming from Aperiodic Management Server   
 

Every system tick, AMS has to have the capacity of more 

than one processing tick for, at least, one task to finish.  Two or 

more tasks might finish in a system tick since task execution 

can finish earlier than its WCET.  Therefore, it is effective for 

AMS to have the capacity corresponding to two or more 

processing ticks.  In such a case, some capacity might be left 

unused in a system-tick period since tasks which have already 

finished and are not invoked until the next period never finish 

during the system-tick period.  The remaining capacity can be 

utilized by execution of aperiodic application tasks. 

An example is shown in Figure 5, where AMS has the 

capacity of two processing ticks every system tick.  There is an 

aperiodic request with supposed execution time of one system 

tick (= six processing ticks) arriving three processing ticks after 

t = 1.  In the top figure for no slack reclaiming, the instances of 

τ1 and τ2 are given priority over the aperiodic request.  The  

 

 

 

aperiodic task is executed in the background of the periodic 

tasks and the response time becomes four system ticks (24 

processing ticks). 

In the bottom figure with slack reclaiming, after τ1’s first 

instance finishes, τ1 never finishes until t = 4.  Therefore, at  

t = 2 and t = 3, one unit of the capacity can be provided to 

aperiodic execution.  Similarly, after τ2’s instance finishes, τ2 

does not finish again until t = 20.  Then, at t = 4 and t = 5, the 

corresponding amount of the capacity can be used for the 

aperiodic execution.  As a result, the aperiodic response time 

becomes three system ticks plus four processing ticks (22 

processing ticks).  As is the case for the slack reclaiming by 

PMS, the effectiveness gets larger if the aperiodic task 

finishes earlier than the supposed finishing time.  For 

example, if the execution finished in one processing tick, the 

response time with the slack reclaiming would be only four 

processing ticks while that without reclaiming would be 12 

processing ticks. 

 

 

Figure 4:  Slack reclaiming from PMS 

 

Figure 5:  Slack reclaiming from AMS 
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5 Evaluation 

 
In this section, the proposed slack reclaiming techniques by 

the management servers are evaluated.  The evaluation targets 

synthetic task sets that are generated using probabilistic 

distribution.  Periods and worst-case execution times of 

periodic tasks are decided from exponential distribution with 

the average of 100 and 30 system ticks, respectively.  Actual 

execution times in processing ticks are decided from 

exponential distribution with the average of 25 system ticks 

and the upper limit of the corresponding worst-case execution 

times.  We prepared 100 periodic task sets for each of 

utilization (Up) between 40% and 70% at intervals of 5%.  All 

the task sets conform to the formula 3, that is, all periodic task 

executions meet their deadline requirements.  In addition, we 

prepared 10 aperiodic task sets that follow Poison arrival and 

exponential service times.  The utilization by the aperiodic 

tasks is about 1%.  We performed 1,000 (= 100 periodic task 

sets × 10 aperiodic task sets) simulations with a system tick 

equal to 100, 50, or 25 processing ticks.  PMS and AMS have 

the same units for capacity as the number of periodic tasks in 

each task set.  The observation period is 100,000 system ticks. 

Figure 6, 7, and 8 show average response times of aperiodic 

application tasks when a system tick equals to 100, 50, and 25 

processing ticks, respectively.  “None” corresponds to the 

results without slack reclaiming.  “PMS” and “AMS” use the 

slack reclaiming by PMS and AMS, respectively.  “Both” 

means the slack reclaiming by both the servers.  The vertical 

axis is response times normalized to the results of “None.”  The 

horizontal axis is Up. 

In Figure 6, aperiodic responsiveness is improved by up to 

3.0% when Up = 55%.  In Figure 7, the improvement becomes 

up to 2.9% when Up = 55%.  Similarly, the improvement is up 

to 6.0% when Up = 55% in Figure 8.  It is confirmed that the 

effectiveness of the slack reclaiming is larger when a system 

tick is shorter for high degree of precision. 

Next, we change periods, worst-case execution times, and 

actual execution times of periodic tasks from 100 to 300, from 

30 to 90, and from 25 to 75, respectively, and investigate how 

execution times of periodic tasks affects the response times of 

aperiodic application tasks.  Figure 9, 10, and 11 show the 

results when a system tick equals to 100, 50, and 25 processing 

ticks, respectively.  It can be confirmed that, compared to 

Figure 6, 7, and 8, effectiveness of the slack reclaiming 

increases.  In Figure 9, the average response time is improved 

by up to 12.6% when Up = 55%.  In Figure 10, it becomes up to 

14.5% when Up = 60%.  In Figure 11, the improvement is up to 

18.3% when Up = 45%.  From these results, it can be said that 

relatively long execution times of periodic tasks lead to higher 

effectiveness of the slack reclaiming since blocking time of 

aperiodic requests is mitigated by using unused, high-priority 

capacity. 

The effectiveness of slack reclaiming tends to decline as Up 

becomes large, for example, with Up = 70%.  This is because 

the number of periodic tasks in each task set is not large when 

 

 

 

 

 

 

 

Figure 6:  Average response time of aperiodic tasks (1 sys 

tick = 100 proc ticks, average period = 100 sys 

ticks, and average WCET = 30 sys ticks) 

Figure 8:  Average response time of aperiodic tasks (1 sys 

tick = 25 proc ticks, average period = 100 sys 

ticks, and average WCET = 30 sys ticks) 

Figure 7:  Average response time of aperiodic tasks (1 sys tick 

= 50 proc ticks, average period = 100 sys ticks, and 

average WCET = 30 sys ticks)  
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Up is high in order to satisfy the formula 3 for schedulability.  

Table 1 shows the average number of periodic tasks in all the 

task set.  The small number of tasks leads to low server 

capacity and small effect of slack reclaiming.  For example, 

when Up is 40%, the servers have the capacity of four units on 

average, while they have only about 1.8 units when Up is 70%.  

Therefore, the amount of reclaiming of slack is low when Up is 

70%. 
 

Table 1:  Average number of periodic tasks in all task sets 

Up 
Average period 

100 300 

40% 4.00 4.03 

45% 3.93 3.90 

50% 3.17 3.09 

55% 2.97 3.10 

60% 2.44 2.52 

65% 1.84 1.72 

70% 1.75 1.81 

 
6 Conclusions 

 

Use of RTOS is becoming common in embedded systems 

development to improve real-time processing and shorten the 

development period.  In this paper, considering that run-time 

overhead of RTOS influences system schedulability, we 

proposed techniques to assure schedulability including RTOS 

processing.  The proposed techniques include two high-priority 

servers, a polling server for periodic management such as task 

invocations and a deferrable server for aperiodic management 

such as task completions, which are in charge of RTOS 

processing.  It is possible to guarantee schedulability by 

performing schedulability test in Section 3.3 off-line.  

The proposed servers tend to have unused capacity in system 

periods when periodic tasks do not arrive or finish.  To avoid 

wasting the unused capacity, we proposed slack reclaiming 

techniques for improving responsiveness of aperiodic 

application tasks.  The techniques provide pending aperiodic 

tasks the amount of capacity which is not used considering 

periodicity of periodic tasks, while keeping schedulability of 

periodic tasks. 

Evaluation by simulation with synthetic task sets showed that 

the proposed slack reclaiming techniques improved aperiodic 

response times by up to 18.3%.  It is confirmed that the 

effectiveness becomes larger when the system tick is relatively 

short or when execution times of periodic tasks are relatively 

long. 

In the evaluation in this paper, aperiodic application tasks are 

executed basically in the background of the periodic tasks.  In 

the future, for more realistic systems, we plan to introduce a 

server algorithm which takes charge of aperiodic application 

tasks and evaluate the system. 
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Figure 9:  Average response time of aperiodic tasks (1 sys 

tick = 100 proc ticks, average period = 300 sys 

ticks, and average WCET = 90 sys ticks) 

Figure 11:  Average response time of aperiodic tasks (1 sys 

tick = 25 proc ticks, average period = 300 sys 

ticks, and average WCET = 90 sys ticks). 

Figure 10:  Average response time of aperiodic tasks (1 sys 

tick = 50 proc ticks, average period = 300 sys 

ticks, and average WCET = 90 sys ticks). 
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Abstract

Cloud computing utilizes the integration of different
computing technologies to achieve a utility computing model.
Computing resources are consolidated and shared among
different applications transparently. Cloud environments are
like a market place, and an accurate cloud metering framework
is needed for fair chargeback and accurate responsive Service
Level Agreement (SLA) policies. A data modeling approach
coupled with a scalable distributed architecture is adopted
to build a unified cloud metering framework that is based
on a Cloud Metering Markup Language (CMML) and a
set of network transport specifications. A full prototype
of the CMML interpreter is implemented, as well as a
Distributed Proc Filesystem as a communication protocol.
The statistical methods Analysis of Variance (ANOVA) and
Generalized Linear Models (GLM) were used for evaluation
purposes and a comparative study between the Distributed
Proc File System and plain TCP is conducted to asses
the probe effect. A framework end-to-end factorial design
experiment based on ANOVA/GLM is conducted to study the
different factors affecting the framework behavior. Finally, the
results of a case study is presented to demonstrate how the
framework implementation performs in a realistic environment,
focusing on the characterization of the associated overhead and
demonstrating its low probe effect.

Key Words: Cloud metering, cloud computing, metering
framework, cloud metering markup language, autonomous
cloud metering objects, proc filesystem, kernel level transport
layer, netfilter hooks.

1 Introduction

Cloud environments are like a market place. A single
distributed application owned by a single user can share
different resources owned by different service providers. A
cloud application can utilize different resources at different
architectural layers, namely hardware, virtualization, and
application layer. A resource can be primitive or composite,
e.g., a virtual machine is a composite resource that is built up
of a number of primitive resources such as CPUs, RAM, virtual
disks, etc.

Cloud users are being charged for their usage based on flat
rate time plans. The market competition urges for accurate
metering standards for charging users. A cloud resource is

*E-mail: kmsobh@aucegypt.edu
†E-mail:elkadi@aucegypt.edu.
‡The Department of Computer Science and Engineering
§US Patent Application no. 15/088,476. Date: April 1, 2016.

shared through multiplexing mechanisms, and the framework
we have introduced is capable of correlating resources usage
across different architectural layers, where by different metering
abstraction levels can be achieved.

Our framework is based on a data modeling extensible Cloud
Metering Markup Language (CMML) coupled with a scalable
multi-tier architecture. Metering Model shareablity, as well
as low overhead execution of metering engines running on the
cloud resources are key features.

In Section 2 we present the background followed by related
work in Section 3. We present the problem characteristics
in Section 4 and introduce our framework in Section 5. In
Section 6, we present the prototype details of the proposed
metering framework. A case study showing the deployment of
the proposed framework in a realistic environment is presented
in Section 7. Experiment results are presented in Section 8 and
in Section 9, we conclude and present our possible future work.

2 Background

Cloud environments consolidate computing resources located
in different architectural layers as shown in Figure 1. The
complexity of accurate metering arises from multiplexing cloud
resources among different applications. Virtualization is another
dimension of complexity resulting from unsynchronized virtual
clocks, leading to inaccurate metering results from within a
virtual machine. Correlating metering data generated from
distributed virtual resources is a complex challenging task by
nature.

Figure 1: Cloud architectural layers

Figure 2 shows a three-tier metering architecture. Log
collection takes place in the front-tier, where metering data
incompatibility is exhibited and the need for unification arises.

ISCA Copyright© 2016
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Metering data collected from different sources are correlated
in the middle-tier. Metering data storage, billing, and Service
Level Agreement (SLA) monitoring are considered back-end
metering services. Interaction with the target cloud management
middleware is essential for the metering engines to be able
to retrieve vital information about the cloud resources to be
metered.

Figure 2: Multi-tier metering architecture

The metering process phases are log collection, unification,
transportation, correlation, and back-end processing. Collection
engines running on cloud service nodes extract and parse logs,
and hence pose as the main source for probe effect. Data
transport between collection engines and the correlation tier
need to be optimized to reduce the probe effect on the cloud
network resources.

3 Related Work

Cloud metering is a new research domain and consequently
limited work exists in the literature that tackles the cloud
metering problem in a unified approach. A comparative study
on different metering domains in distributed systems and cloud
computing was conducted, namely power and resource usage,
virtual resource usage, log management, billing and accounting,
and other attempts of unified cloud metering approaches. A
selective representative sample of the related work in each
domain is presented in this section.

Power and resource usage, being one of the main sources
of raw metering data, is a very important aspect in cloud
metering. Aman Kansal et al. presented the Joulemeter in
[17] to overcome the lack of power metering within a virtual
machine. T. Singh and P.K. Vara presented guidelines for smart
metering cloud environments in [30]. A comprehensive study
for power consumption in data centers by Anton Beloglazov
et al. is presented in [4]. A Digital Continuous Profiling
Infrastructure (DCPI) is presented by Jennifer M. Anderson et
al. in [1]. Google-wide profiling (GWP), presented by Gang

Ren et al. in [27] is a distributed profiler for data centers and
cloud environments.

Virtualized resource metering is a very important metering
aspect due to the metering difficulties resulting from virtualized
resources multiplexing over physical ones. Exposing hardware
counters for profiling in virtualized environments is discussed
by Benjamin Serebrin and Daniel Hecht in [28]. Jiaqing
Du et al. tackled the problem of interrupt forwarding and
enabling access to the Performance Monitoring Unit to the
guest environment in [6], and an implementation of virtualized
profiling on KVM is presented. A metering technique for
Virtual Machines based on the Virtual Platform Architecture is
proposed in [14] to run from within virtual machines.

Log management is an important building block in any
metering process, and a lot of complexities and challenges
are entailed in such a task especially in distributed systems.
D. Huemer and A.M. Tjoa introduced a solution for log
incomparability in [13] through automatic log evaluation based
on XML. Predictive Modelling Markup Language (PMML) is
presented by Guazzelli et al. in [10] as an open standard
for sharing models through coupling data with its operation
definitions. The scalable Run Time Correlation Engine (RTCE)
is introduced by Miao Wang et al. in [33] for correlating
distributed logs, and using dispatchers for load balancing and
scalability. William M. Jones et al. presented analytical and
simulation-based approaches in [16] showing the negligible
impact of choosing a sub-optimal checkpoint. The issues
of continuous sampling are raised by Gang Ren et al. in
[27]. Jennifer M. Andersonet al. presented in [1] a technique
for hardware counters continuous sampling through hardware
support on Digital ALPHA systems.

Accounting and billing are very important examples of
applications that depend on metering, and would exist in
any utility based computing environment. A series of work
presented by Francisco Airton Pereira da Silva et al. in [23, 24,
29] for a cloud accounting system and charging policy based
on a domain specific language (DSL). The DGAS, Distributed
Grid Accounting System, is presented in [25] as an accounting
infrastructure for grid environments. The GridBank (GB) is
presented in [3] as a secure grid-wide accounting infrastructure
service. Ali Anwar et al. presented in [2] a Cost-Aware cloud
metering for dynamic revenue scaling, which is concerned with
estimating the metering data size for efficient cloud resource
scaling.

In [22], Naik, V. K. et al. presented an end-to-end metering
framework for federated hybrid cloud services. The presented
framework is claimed to solve numerous problems in cloud
metering such as single subscription, metering composition
over multiple service providers, licenses usage restrictions,
integration with legacy accounting and billing systems, and
horizontal distribution of workload for better economic resource
utilization. Architectural approaches were adopted with less
emphasis on the data representation to tackle traditional basic
cloud services metering.
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4 Problem Definition

The complexity of consolidating cloud resource pools reflects
on cloud metering. A resource can be a physical one such
as CPU, RAM, disk, etc. or complex virtual resources built
on top of more primitive resources; a resource can be a
whole environment built up of virtual resources, such as virtual
machines, networks, disks, etc. The target metering framework
being sought should be able to provide metering perspectives at
different levels of abstractions.

Normalization challenges, of hybrid metering data formats,
increases with larger resource pools. The ability to correlate
different resources usage with their different distributed running
cloud applications is an even more insisting problem. Moreover,
ability to collect metering data from cloud resources in a
seamless and low overhead manner is another dimension of the
problem, as it might affect the quality of the running cloud
services, and thus exhibiting high probe effect.

We have identified a set of features and design goals that we
wanted our target cloud metering framework to exhibit, these
are as follows:

(1) Extensible Representation: Ease of interpretation and
shareability between federated clouds.

(2) Autonomous Metering Data: Coupling metering data with
their corresponding operations.

(3) Correlation Capabilities: Correlation of metering data
extracted from different architectural layers.

(4) Programmability: Flexibility of defining metering
constructs through writing code.

(5) Standard Metering Transport: Transporting metering
data over simple standard APIs.

(6) Elastic Multi-tier Architecture: Can scale with the
metering needs.

(7) Metering Services Redundancy: For fault tolerance and
recovery.

(8) Low Probe Effect: Low metering probe overhead.
(9) Online Metering: Fast and responsive metering data

processing.
(10) Ease of Integration: Ease of integration with different

cloud environments irrespective of their type, topology,
underlying technologies, and service nature.

Based on the above characteristics, our research question can be
formulated as ”Does a unified cloud metering framework that
can provide extensible, scalable, programmable, and low
overhead cloud metering exist? Would the above mentioned
characteristics lead to a cloud metering framework that can
cope with cloud environment complexities resulting from
cloud resources heterogeneity, their existence and execution
in different cloud architectural layers? ”

5 The Metering Framework

5.1 Framework Overall View

The metering framework is based on an extensible metering
markup data modeling language coupled with a multi-tier
scalable architecture. Our target is not a cloud metering system,

rather a set of specifications that could be taken as guidelines
and/or standards for building different cloud metering systems
fitting various target cloud environments.

The extensible object oriented Cloud Metering Markup
Language (CMML) is proposed to represent metering data
across the framework, through which the concept of
autonomous Cloud Metering Objects (CMOs) can be realized.
The adopted object oriented model was superimposed over
an extensible markup data representation for maximum
shareability. Metering data, represented by OO class data
members, are coupled with their operations represented by OO
class methods. The OO model is further extended with built-
in receptors encapsulating routing information within the CMO
to enable it to navigate between different framework engines
autonomously using self-contained information. The concept of
CMOs eliminated the usage of passive metering data through
operation definition annotations.

A three-tier architecture was adopted, where each tier can
be decomposed further based on the the target functionality of
metering. Figure 3 gives an overview of the overall metering
framework architecture together with the main metering
engines. The cloud environment is considered the metering
framework front-end where the metering collection engines are
deployed close to their target resources. Collection engines
collect raw metering traces and convert them to collection
CMOs. Correlation engines are deployed in the middle-tier
where collection CMOs are correlated to generate correlation
CMOs. The correlation CMOs are sent to the back-end services
for further long term processing. All metering engines across
the metering architecture should be able to interpret CMOs
represented in CMML. Consequently, a CMML interpreter
should be deployed to provide a living environment from
CMOs.

Figure 3: Metering framework architecture

One of the main roles of a cloud middleware is to maintain
a resource inventory, and hence a Cloud Metering Extension
(CME) is expected to be integrated with the cloud middleware to
generate metering CMML scripts, based on resource types and
relations, to be downloaded and executed by different metering
engines. The (CME) is a core service used by all metering
engines as shown in Figure 2.
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5.2 Cloud Metering Markup Language (CMML)

CMML is a markup language with functional capabilities. A
CMML tag is a construct that executes corresponding logic by
a target CMML interpreter. Two mandatory tags need to exist
in a CMML script, namely ”CMMLScript” and ”CMMLMain”.
The CMMLScript tag encloses the whole script body, and the
CMMLMain tag identifies the main entry point for the script
execution. A CMML tag can be invoked by name via its
”Name” sub-tag. The ”CMMLRoutine” tag is used to define
routines to support modular programming. Concurrency is
built at the core of the language. The ”Thread” tag is used to
activate tags execution as threads, and can define threads affinity
configuration upon needs.

Listing 1 presents a ”Hello World” CMML Script that
demonstrates the basic features of the language. This script
should print ”Hello World” twice, through invoking the
CMMLRoutine and the CMMLOut tag by name. Notice that
the two ”Exec” calls will run in parallel as the routine tag has
the ”Thread” sub-tag enabled.

1 <CMMLScript>

2 <CMMLRoutine>

3 <Name>PRINT HELLO WORLD</Name>

4 <Thread>TRUE</Thread>

5 <CMMLOut>

6 <Name>HELLO WORLD</Name>

7 <Subject>Hello World !!</Subject>

8 <Target>

9 <PipeTo>STDOUT</PipeTo>

10 </Target>

11 </CMMLOut>

12 </CMMLRoutine>

13 <CMMLMain>

14 <Exec>PRINT HELLO WORLD</Exec>

15 <Exec>HELLO WORLD</Exec>

16 </CMMLMain>

17 </CMMLScript>

Listing 1: CMML hello world script

CMML supports object oriented capabilities as well. Listing
2 shows a simplified CMML class definition for collecting
VM CPU data. Each class has a name, set of data members,
and set of methods. The CMML object model is extended
to support metering constructs. A set of tags are defined in
the class definition to hold CMML logic that can execute at
different stages of the metering processing, namely ”Collect”,
”Correlate”, ”Bill”, and ”SLA”. Each tag is executed by a
metering engine based on the location of the CMO at the time
of execution. Each CMML object can be executed as a thread
through invoking the built-in predefined implicit method ”start”
which invokes the CMML class ”Collect” tag, implicitly.

The CMML Object Model was also extended to a Distributed
Object Model based on service state migration. Special
CMML built-in serialization tags are sup- ported, namely
”CMMLObjectXMALalize” and ”CMMLObjectCMMLalize”.
The adopted mode of operation is that CMOs are suspended
and serialized via the ”CMMLObjectXMALalize” tag, as in
Listing 2, sent over the network to another metering engine,
restarted into the destination CMML runtime environment via
”CMMLObjectCMMLalize”, and resume via the CMML tag
corresponding to the destination.

1 <CMMLClass>

2 <Name>VMCPUStat</Name>

3 <DataMembers>

4 <DataMember>

5 <Name>VMName</Name>

6 <Visibility>PRIVATE</Visibility>

7 <Type>string</Type>

8 <Exportable>true</Exportable>

9 </DataMember>

10 <DataMember>

11 <Name>cpustat</Name>

12 <Visibility>PRIVATE</Visibility>

13 <Type>integer</Type>

14 <Exportable>true</Exportable>

15 </DataMember>

16 <DataMembers>

17 <Collect>

18 <NextCollectionDelay>2</NextCollectionDelay> <!-- Sleep 2 Seconds -->

19 <Iterations>0</Iterations> <!-- Runs for ever-->

20 .......

21 <CMMLObjectXMLalize>

22 <CMMLObject>this</CMMLObject>

23 <RedirectTo>

24 <PipeTo>FILE</PipeTo>

25 <PipeName>/dev/CloudMeterDev0</PipeName>

26 </RedirectTo>

27 </CMMLObjectXMLalize>

28 </Collect>

29 <Correlate> ..... </Correlate>

30 <Billing> ..... </Billing>

31 <SLA>.....</SLA>

32 <Methods>

33 .....

34 <Method>

35 <Name>GetCPUStats</Name>

36 <Body>

37 <CMML>.....</CMML>

38 </Body>

39 </Method>

40 </Methods>

41 </CMMLClass>

Listing 2: VMCPUStat class definition

5.3 Transport Layer

The framework specifications mandate that communication
between the collection engines and the middle-tier be carried
out over standard filesystem I/O operations. Collection
engines run on cloud nodes with diversified specifications and
capabilities, and a simple as well as primitive data transfer
mechanism available on most operating systems is needed. This
would provide needed flexibility for the implementation of the
transport layer on a range of possibilities (i.e., ranging from a
simple file transfer to a sophisticated distributed filesystem.)

A REST/HTTP web service protocol was adopted between
the correlation engines and the back-end services, as well
as between the framework engines and services deployed
outside the framework. This allows for a standardized
communication, and decouples the metering services’ execution
from the communication operations. The REST protocol
is a very primitive web service protocol that provides a lot
of implementation flexibility and provides the freedom of
superimposing more complex protocols like SOAP, or XML-
RPC based on the need.

5.4 Metering Engines

5.4.1 Collection Engines. Collection engines instantiate
objects of classes downloaded from the CME and represent
resources to be metered. The ”Collect” Tag enclosing the data
collection logic is invoked in detached threads. As per Listing
2, the ”NextCollectionDelay” represents the inter-collect-gap in
seconds between every execution of the ”Collect” tag body. The
”Iterations” define the number of times the ”Collect” tag body
should be executed before the CMML object thread terminates,
with zero indicating an endless run. The ”Collect” tag logic
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should perform collection, preprocessing, CMO serialization,
and injection into the transport layer.

5.4.2 Correlation Engines. CMML classes are
downloaded from the CME and instantiated by the correlation
server CMML runtime environment. All resource classes are
aggregated into wrapper objects that group related resources.
The correlation engines read serialized CMOs via filesystem
I/O operations. The receptors of each CMO is extracted and
the target correlation engine CMML objects are identified. The
CMO is then deserialized, started, and passed to the target
correlation engine objects as a parameter upon invoking the
”Correlate” tag. After correlating all CMOs, the resulting
Correlation CMOs are sent to the back-end services over
REST/HTTP. The correlation tier can be decomposed into
hierarchical sub-tiers where by different processing stages can
be defined and established to represent different correlation
abstraction layers, and hence different metering perspectives.

Correlation engines perform data and time correlation. Based
on the CMOs receptor definitions, related CMOs are grouped
and data correlation is achieved. The time correlation is
based on the existence of a virtual clock across the framework,
and the mechanism for implementing it is left to be decided
on at implementation time. The following are two time
related correlation mechanisms adopted by the framework
specifications.
Adhoc Correlation. CMOs are considered related if they
arrive at the correlation engine in the same time frame.
This mode of operation is very light weight and does not
need intensive computing resources to carry out the needed
correlation. This mode should only be used when commutative
usage evaluation is needed, or when monitoring specific
thresholds of the cloud services usage.
Epoch-Based Correlation. CMOs are timestamped and
grouped in time epochs with preconfigured lengths. CMOs
belonging to the same time epoch are correlated together and
the resulting correlation CMOs are stamped by the start and
end timestamps of the epoch. A crucial performance problem
is encountered when the rate of collection CMOs is higher
than the processing rate. This might hinder the stability
and the responsiveness of the correlation environment, and
consequently two runtime configurations are constructed to
overcome this situation:
(1) Exact: The correlation process is terminated if it exceeds

the duration of the corresponding epoch. This case can
be used if the CMOs represent commutative metering
and detailed break down of the metering indicators is not
important, e.g. CPU time from the proc filesystem which
represents the time of a process since it started.

(2) Adaptive: A feedback mechanism between the correlation
engines and the CME should be in place for reporting
the percentage of CMOs processed post the correlation
duration. The CME should automatically change the inter-
collect-gaps represented by the ”NextCollectionDelay” at
runtime to reduce the CMOs generation rate. This process
should be performed iteratively until equilibrium is reached.

5.4.3 Storage Engines. The storage engines are back-end
services deployed on storage servers. A storage server receives
its corresponding storage engine definitions from the CME. The
storage servers receive correlation CMOs and store them into
corresponding storage engines based on the receptors definition.

5.4.4 Billing Engines. The billing engines are back-end
services deployed on billing servers. A billing server receives
correlation CMOs based on their receptors and execute the logic
enclosed in their ”Bill” tag. The billing operations generate
billing CMOs that are stored in special billing storage engines.

5.4.5 SLA Engines. The SLA engines are back-end
services deployed on SLA servers. An SLA server receives
correlation CMOs based on their receptors and execute the logic
enclosed in their ”SLA” tag, which should perform actions
that need to be executed based on usage thresholds that are
represented by the CMO data members.

6 Metering Framework Prototype

We developed a fully functional prototype to assess
the applicability of the proposed framework. Thus this
implementation represents one possible realization of the
framework, other realizations are feasible.

6.1 Prototype Components

6.1.1 CMML Interpreter. A CMML interpreter was built
on top of an extendable C++ framework. The abstract class
CMMLService needs to be inherited by each CMML tag class.
The CMMLService encapsulates all the threading and common
functionalities needed by a CMML tag, and the CMML tag
implementation includes only the business logic. Each CMML
tag is compiled into a dynamic shared loadable module which
has specific interfaces to be invoked by the interpreter.

6.1.2 Distributed Proc Filesystem. The proposed
transport layer is based mainly on extending the UNIX proc
filesystem for communication between the front and middle
tiers. The transport layer prototype is implemented under
LINUX OS, yet the concept adopted can apply to any standard
UNIX environment. The transport layer adopts a client/server
communication model. Collection engines are at the server side
and the correlation nodes are the clients. The cloud service
nodes deploy a character device kernel module extension used
as a filesystem interface for collection engines to inject their
serialized CMOs. The character devices act as a kernel buffer
queue for CMOs to be transported over the network.

The cloud metering correlation nodes host the transport layer
client side which is a proc filesystem kernel module extension.
Two proc directories are created, one for physical nodes and
the other for virtual machines. Character devices can register
on one or more correlation nodes. Upon registering, the kernel
extension creates a proc file entry under one of the two folders
based on the type of the node. The proc file entry is named using
the node network address.

Upon reading a proc file entry the content of the
corresponding character device is transferred over network.
Both kernel modules have a netfilter hook activated to handle



IJCA, Vol. 23, No. 2, June 2016 129

the communication which is based on packet reorder and group
packets acknowledgement. This allows the correlation nodes
to read metering data transparently through standard POSIX
filesystem I/O operations. The whole communication transport
layer resides inside the kernel space. Overheads are being
avoided through intercepting the network packets at network
layer 3. Figure 4 illustrates the transport workflow.

Figure 4: Transport workflow

The Netfilter hooks extension mechanism for the Linux
Kernel built-in firewall, allows for adding custom code for
packet interception, inspection, and manipulation. Figure 5
shows the five main available hooks that are located at different
stages of packet processing for adding custom code. Request
and reply packets will be intercepted based on the port numbers
in the IN IP PRE ROUTING stage. There are no ”userland”
processes acquiring the interception ports, and hence considered
pseudo ports for packet identification by the netfilter hooks.
This will decrease the communication overhead, and will ease
the network operation and packets manipulation within the
kernel space.

Figure 5: Netfilter hooks

The biggest challenge in using netfilter hooks is that the
hooked code is invoked by an interrupt, during which network
I/O operations are disallowed. Consequently, kernel work
queues are used for deferred I/O task execution. Although this

mechanism solves the problem, yet it imposes synchronization
complexity where the main thread of execution will not be aware
when the I/O operation is finished.

6.1.3 Cloudsparc: Cloud Management Middleware.
Cloudsparc is a homegrown IaaS cloud management
middleware built on top of an extendable C++ framework.
It supports hybride hypervisor technologies, namely
QEMU/KVM [19, 26], Oracle VirtualBox [31], and VMWare
VMPlayer [32]. Cloudsparc manages a cluster of physical
nodes representing the cloud resources pool. Cloudsparc
nodes are either master or slave. Master nodes are responsible
of managing the cloud configuration, maintaining resources
inventory, managing slave nodes, and running cloud services in
the form of virtual machines. Slave nodes are responsible only
for running cloud services.

A VM template manager is available allowing the creation
of VM Profiles with different virtual machine specifications
for streamlining the creation and the dispatching of VMs.
Cloudsparc is designed to provide control over virtual machine
dispatching, ranging from fully automated virtual machine
scheduling to the ability of assigning specific virtual machines
to specific physical nodes. Cloudsparc allows creating virtual
architectures designed for building perspectives of the available
resources. A virtual architecture is a grouping mechanism that
allows grouping multiple VM profiles and all their dispatched
virtual machines can be seen as one processing unit irrespective
of their locations.

6.1.4 Cloud Metering Extension (CME). Cloudsparc was
extended to support metering through the integration of a CME
plugin built up of three main extensions:

Cloudsparc Inventory Extension. The resources inventory is
extended for adding definitions of correlation, storage, billing,
and SLA servers. Different resource usage price lists and
threshold limits can be defined and linked to billing and SLA
engines respectively.

Cloudsparc Metering Plugins. The VM Profile is extended
to include a metering plugin data structure. A metering plugin is
designed to meter a specific cloud resource, e.g. CPU, Memory,
I/O, Network usage, or even correlation engines responsible
for correlating the collection CMOs generated by the metering
plugin, and the storage engines responsible for storing them, if
needed. Metering plugins are designed to run on physical nodes
as well as from within a virtual machine.

Cloudsparc Correlation Plugins. A correlation plugin
defines a correlation engine and the correlation server it should
reside on. Storage, Billing, SLA severs, price lists, and
SLA thresholds are defined for processing correlation CMOs.
Redundant definitions of back-end servers is adopted to achieve
redundant metering processing paths, where by the needed
infrastructure for fault tolerance is established. Two types
of correlation plugins are available, namely metering domes
and correlation plugins. Metering domes can group different
correlation plugins which provides a second level aggregated
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metering perspective. Correlation plugins are designed to
correlate metering data coming from virtual machines which
belong to either a virtual architecture or a VM profile.

6.2 Metering Framework Workflow

As per the diagram in Figure 2 the CME is a centralized
service maintained by the cloud middleware with access to the
cloud resources inventory, relations between different resources,
and metering configurations to be applied. The CME is
invoked by all metering engines upon their startup to download
corresponding CMML metering scripts, and to periodically
check for updates and changes in metering configurations
during their execution. A set of CMML template classes
designed to meter different resources are used by the CME
to generate CMML scripts on the fly upon metering engine
invocations. The CME is also responsible for providing time
information via a modified version of Berkeley’s Algorithm
[11, 12] to establish a distributed common virtual clock.

The collection engine starts with a seeder CMML script as
in Listing 3 to connect and download the metering CMML
script from the CME. The powerful tag, CMMLRemoteInclude,
is used to initiate a REST/HTTP request to the CME with
parameters identifying the nature of the request. The CME
identifies the invoking collection engine from the network
connection parameters, and the ”SECONDARY ACTION”
parameter, and prepares the corresponding CMML script based
on its inventory and the metering configuration. The generated
CMML script is loaded instantly into the interpreter runtime
environment. The generated CMML classes are responsible
for metering the resources on the corresponding node, either
physical or virtual. The downloaded CMML script contains
CMML constructs to start the collection engine’s character
devices loadable module. The character device registers itself
on one or more correlation server’s distributed proc filesystem,
based on the CMML script, for fault tolerance purposes.

1 <CMMLRemoteInclude>

2 <Server>[#CME_IP_ADDRESS#]</Server>

3 <Port>9999</Port>

4 <Method>POST</Method>

5 <ServiceName>/FetchMeteringCMMLScript.cgi</ServiceName>

6 <Fields>

7 <xml_request>

8 <Cloud>

9 <FetchMeteringCMMLScript>

10 <Action>CUSTOM</Action>

11 <SECONDARY_ACTION>COLLECTION_ENGINE</SECONDARY_ACTION>

12 </FetchMeteringCMMLScript>

13 </Cloud>

14 </xml_request>

15 <response_mode>TransactionResponse</response_mode>

16 <UNAME>metering</UNAME>

17 <PASS>metering</PASS>

18 <LOGIN>Login</LOGIN>

19 </Fields>

20 </CMMLRemoteInclude>

Listing 3: CMML collection engine seeder

The collection engine instantiates one or more objects from
each CMML class to run in detached threads. The CMML
objects will continue to inject collected serialized CMOs to
a synchronized managed shared buffer through executing the
CMML code enclosed in the ”Collect” tag. A special shared
buffer manager is designed to watch the size of the buffer,
and upon reaching a pre-configured size, which we refer to

as the queue size, the buffer manager will add Time-To-Live
(TTL) information to the buffer content and inject the CMOs
into the distributed proc filesystem character device. The TTL
information is used by the correlation engines to calculate the
time of the next read.

The correlation engines, started via seeder CMML scripts,
invoke the CME to retrieve relationship information between
different resources, and instantiate aggregate CMML objects
accordingly. The correlation engines probe their proc filesystem
periodically based on the TTL infor- mation returned in the
CMML streams. Different CMML objects are deserialized,
restarted, and undergo correlation processing, based on their
receptors, and through invoking the ”Correlate” tag. The
resulting correlation CMOs are submitted to the back-end tier
over web services. A typical correlation server, deploying a
CMML interpreter, would use the CMML presented in Listing
4 for continuous correlation.

1 <CMMLObjectCorrelate>

2 <Name>CorrelationManager</Name>

3 <CreateAhead>1</CreateAhead>

4 <Subject>

5 <CMMLFetchDirContent>

6 <Name>metering_proc_fetcher</Name>

7 <Directory>/proc/cloud/</Directory>

8 <Directory>/proc/vcloud/</Directory>

9 <ReadSize>204800</ReadSize>

10 <CreateAhead>1</CreateAhead>

11 <HuffmanCompressed>true</HuffmanCompressed>

12 <LogFile>correlation</LogFile>

13 <CacheSize>104857600</CacheSize>

14 <SleepInterval>1</SleepInterval>

15 </CMMLFetchDirContent>

16 </Subject>

17 <GracePeriod>2</GracePeriod>

18 <Slicing>

19 <Duration>30</Duration>

20 <Slices>6</Slices>

21 <Method>Adaptive</Method>

22 <FeedbackIP>192.168.1.20</FeedbackIP>

23 </Slicing>

24 </CMMLObjectCorrelate>

Listing 4: CMML correlation engine

The CMMLFetchDirContent is a CMML tag designed to
run in a detached thread. Upon first invocation of the tag
the thread is created and detached, and continuously monitors
the provided filesystem directories in the ”Directory” tag for
new data, which is stored in the tag’s internal buffer. TTL
information is utilized for better utilization of the underlying
filesystem. On subsequent invocations the tag returns its internal
buffer to the invoker and flushes it. The CMMLObjectCorrelat
tag is a CMML tag responsible for CMO correlation. The tag
is designed to execute as a thread to continuously correlate
incoming CMOs into its ”Subject” tag. The Subject tag encloses
the invocation of the CMMLFetchDirContent to fetch new
CMOs. The GracePeriod tag defines a sleep duration in seconds
between every correlation attempt. The correlation mode can be
configured using the composite ”Slicing” tag.

Resulting Correlation CMOs are forwarded to the different
back-end services based on their receptor configurations. The
storage engines will store the correlation as well as the
collection CMOs. The billing engine will execute the ”Bill”
method represented by the ”Bill” tag enclosing the billing logic
to generate and store bills. The same applies for the ”SLA” tag
with the capability to take actions upon SLA violations such as
CPU capping and network bandwidth reduction.
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The most important thing here is that the model allows
for dealing with autonomous CMOs that encapsulate data and
operations, rather than collecting metering data and deciding
on the metering operations in a later stage. Moreover, the
framework is capable of metering cloud resources at various
levels of abstractions with ease through the flexibility of
writing code; a feature that exhibits the programmability and
extensibility extents of our framework.

7 Case Study

We have chosen a real online shop application as a case
study to demonstrate the metering capabilities of the framework
and the ease of integration with an already existing application.
The application was designed and implemented without having
cloud deployment or metering in mind. A new requirement
is introduced, which is charging the shops’ customers for the
computing resources they use while they are performing their
purchase transactions.

The online shop provides a categorized products menu. An
online user needs to register on the website and provide personal
details for verification in order to make purchases. A shopping
cart engine is integrated into the system allowing users to select
their products, add them to their shopping cart, and check
out after reviewing the list of products in their shopping cart
together with the price details and totals. The application is a
real one that was developed 10 years ago and went through a
series of upgrades and enhancements to reach its current state.

7.1 Online Shop Environment

The online shop web application is based on open source
technology. The application is written in PHP and deployed on
an Apache web server. A back-end MySQL database is used to
store the online shop data, as well as the Content Management
System (CMS) configuration. The application was designed
with scalability in mind, where the application can be deployed
on a horizontal cascaded Apache web server farm. The back-
end database can be configured using MySQL Replication
cluster to enhance performance through load distribution.

The online shop was deployed on 5 virtual architectures, each
representing a shop branch. Each shop branch environment
has 4 virtual machines acting as an Apache web server farm,
one virtual machine acting as a web traffic dispatcher to
distribute the load over the Apache web servers, and one
virtual machine acting as a back-end database. The 5 back-
end database machines of the 5 branches are configured using
MySQL Master/Master Replication. The diagram in Figure 6
best describes the cloud deployment environment for the case
study.

Each virtual machine follows a VM Profile. Four physical
metering plugins are defined to meter the virtual machine
resources, and another four virtual metering plugins are defined
for metering the different services based on the VM Profile type,
namely Apache, HAProxy, and MySQL. A metering plugin for
metering the usage of the online shop application is defined for
the Apache VM profile. The metered resources are CPU, RAM,
I/O, and network.

Figure 6: Case study deployment and metering environment

Five correlation plugins are defined to monitor the resources
of the five shop branches, by assigning the correlation plugins
to the shops’ virtual architectures. Another three correlation
plugins are defined to monitor the different online shop services
by assigning each correlation plugin to a VM Profile. Finally, a
metering dome is defined to include and aggregate the usage of
the 5 shop correlation plugins to provide an overall online shop
perspective.

The middle and the back-end tiers of the metering
environment are deployed on dedicated virtual machines. The
metering engines are distributed over two correlation, two
storage, one billing, and one SLA servers. Figure 6 shows
the redundant metering environment represented by the primary
and the secondary set of resources to establish the prerequisite
infrastructure for fault-tolerance.

7.2 Online Shop Metering Extension

Metering data needs to be presented in different perspectives
and abstraction levels; namely data center, service provider, and
online shop user usage. Consequently, new metering plugins
are introduced and limited amendments, to the online shop web
application, are carried out.

7.2.1 CMML Metering Plugin. A metering plugin is
defined in the Apache VM profile to collect metering data from
the online web application as per users transaction. The diagram
in Figure 7 shows the details of the Apache VM collection
engine. Four virtual metering plugins are deployed in each
Apache virtual machine to collect CPU, Memory, I/O, and
Network usage. The magnified web application metering plugin
acts as a web server receiving usage indicators in white-space
delimited format over REST/HTTP. The metering data is parsed
and loaded into the internal state data members of the plugin
CMML object.
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Figure 7: Online shop metering plugin

The web application CMOs are periodically serialized and
injected into the collection engine shared buffer to be integrated
with the over all metering model. The CMOs are also submitted
to a special temporary billing storage engine allowing the
shopping cart to present the user bill at checkout within the same
session, and avoiding the need to wait for the correlation process
to finish.

7.2.2 Web Application Extension. The web application
needs to generate usage data and post it to the metering plugin
web interface. The diagram in Figure 8 shows the different
components of the web application, which are built using a web
CMS that supports page templates and a page rendering engine.

Figure 8: Online shop web application metering extension

Code amendments are applied to the Database Interface
Connection Manager (DBI), the page rendering engine, and

the shopping cart checkout script. The DBI encapsulates
all the database operations and MySQL profiling is enabled
within the DBI to collect MySQL usage indicators with respect
to CPU, Memory, and I/O. The PHP getrusage command is
used in the page rendering engine to collect CPU usage of
web transaction executions. The data bandwidth is calculated
through measuring the size of the HTTP reply data stream.
Finally, metering indicators as well as the corresponding logged
in user information are encapsulated in a white-space delimited
string and posted to the metering plugin web server through the
PHP/CURL library.

An XML/XSL engine is built to invoke the web application
billing storage engine from within the shopping cart checkout
form. A list of web transactions, together with their usage
and billing details, is presented to the user and the cost
of the computing resources used in the performed shopping
transactions is added to the total cart bill.

7.2.3 Discovery Service and Console. A generic
discovery service and console were developed using standard
web technologies, mainly XSL/AJAX. It is capable of parsing
CMML records and discovering the embedded relation between
different usage metering records without prior knowledge of
the metered resources. The console is designed to present
metering data at different abstraction levels, which acts as a
demonstration example of the extensible shareable nature of the
CMML representation.

7.3 Functional Demonstration Experiments

A Web Load Generator (WLG) was used to apply different
workloads to the case study environment in an experiment
designed to showcase the framework functional capabilities, and
how it reacts to different workloads and pricing schemes. A
comparison between constant workload with variable pricing
and variable workload with constant pricing was conducted.
The charts in Figure 9 show the results with respect to a unified
cloud unit of payment.

Plot (A) shows the different total bills generated per branch
for fixed workload and different resource pricing, while plot (B)
shows the effect of the different workload on the bills when
the pricing is fixed. In plot (A) the overall shop bill was
not the maximum among the branches although it represents
aggregation of all the branches usage, while on the contrary in
plot (B) it represents the aggregate of all bills. The results show
the responsiveness of the framework to different configurations
and the accuracy in differentiating usage based on workload and
price schemes. Plot (C) and (D) compare the branches with
respect to the values of the bills generated over time. Plot (E)
and (F) show a branch revenue percentage comparison. Finally,
plot (G) and (H) show a comparison between member bills
based on their transactions. In plot (G) all the members will
pay the same since they all have identical transactions across
all branches, while plot (H) shows different member payments
based on the number of orders they performed.

The charts in Figure 10 show a comparison CPU usage
of different branch application services, namely Apache,
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Figure 9: Online shop load/prices comparison

HAProxy, MySQL, and the VM hypervisors. Plots (A), (B),
(C), and (D) represent the CPU usage of the mentioned services
respectively, showing a relatively uniform CPU usage in the
fixed load setup. Plots (E), (F), (G), and (H) show the effect
of variable workload applied per branch on the CPU usage of
different branches and services.
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Figure 10: Online shop branches/services comparison

The multi-perspective results presented and generated by the
discovery service/console showed the ability of the framework
to correlate and aggregate branch resources usage by type

of service across all branches. The application usage was
integrated into the correlation process and granular bills were
issued as per application user over pre-configured time slices.
Moreover, metering was conducted in an online responsive
approach.

8 Experiments and Results

A set of experiments were conducted to prove the low probe
effect of the deployed metering probes at the cloud front, and
to show the distributed proc filesystem transport protocol’s low
overhead. Moreover, a comprehensive study of the effect of
different metering parameters on the resources usage by the
framework’s different metering engines is presented.

We have adopted General Linear Models (GLM) [5, 20, 21],
and Analysis of Variance (ANOVA) [15, 20] statistical models
to analyze the results of the experiments. In experiments with
large population sizes, like in our case, ANOVA prerequisites
are very hard to establish; data normality and homogeneity, yet
the Central Limit Theory (CLT) [7, 9] states that population
tends to be normal as its size gets larger. Large population sizes
are defined as >30 or >50 according to [8, 18], which are very
small compared to our experiments sample sizes being in the
range of thousands. We have coupled GLM with ANOVA to
confirm and verify the results through more than one modeling
perspective that lead to the same indications. The following
three experiments were conducted to cover all performance
aspects for the proposed metering framework.

8.1 Distributed Proc Filesystem vs. TCP

In this experiment the distributed proc filesystem protocol is
compared to TCP. The experiment environment is built up of
one correlation VM and 12 collection VMs. The distributed
proc filesystem is compared to an Apache web server deployed
on the correlation engine and metering data are submitted by the
collection engines using HTTP/TCP.

ENV

QS

THREADS

ENV:THREADS

16.7%

24.2% 55.4%

Figure 11: PROC vs. Apache - GLM/ANOVA results

Two metering factors are used in the experiment runs, namely
the queue size and the number of concurrent threads represented
by collection engines. The queue size ranged from 40 KB to 200
KB, and the number of concurrent threads ranged from 2 to 12.
A third factor is defined as the environment; TCP or PROC. The
yield of the experiment is defined as the kernel CPU usage by
the Proc kernel module and the Apache web server.

An ANOVA/GLM factorial experiment was used to identify
the influential factors. The pie chart in Figure 11 shows the
effect of the environment on the yield which is of magnitude
55.4% of the overall effects magnitude. The 3D column chart
in Figure 12 shows the kernel CPU usage in milliseconds for
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Figure 12: PROC vs. Apache - CPU utilization

each experiment run. A considerable saving, up to 35%, of
CPU utilization is achieved by the distributed proc filesystem
transport protocol, which reflects the amount of probe effect
saving. This came on the expense of speed as illustrated by
the 3D column chart in Figure 13.

Figure 13: PROC vs. Apache - speed

8.2 Framework End-to-End GLM/ANOVA Experiment

The End-to-End GLM/ANOVA factorial experiment is
designed to study the effect of different metering attributes
and factors. The table in Figure 14 summarizes the different
experiment factors, factor levels, and the affected metering
engines.

Figure 14: GLM/ANOVA experiments factors

The following is the GLM/ANOVA results of the defined
factors against different yields.

8.2.1 CPU. In Figure 15, plots (A), (B), and (C) show
that the inter-collect-gap and the number of resources are the
most influential factors on the collection, correlation and storage
engine CPU usage respectively. Plot (C) shows a small yet
influential effect of the correlation duration on the CPU usage
of the storage engine. Plot (D) shows that the correlation
duration has the highest influence on the billing engine CPU
usage followed by the number of resources. As the number
of resources increases and the inter-collect-gap decreases the
number of CMOs generated by the collection engines gets
bigger and hence requires more CPU computing resources to
process on all metering fronts. As the correlation duration
decreases the number of correlation CMOs increases and hence
the metering processing requires more CPU resources by the
back-end services.
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Figure 15: GLM/ANOVA CPU usage results

As per the column charts in Figure 16, Plot (A) and (B) show
the inversely proportional effect of the inter-collect-gap on the
collection and the correlation engines CPU usage respectively.
Plot (A) shows the very low usage of the collection engines
which does not exceed 1.7% at the lowest level of inter-collect-
gap indicating the very low probe effect. Plot (B) shows the
considerable high needs of the CPU by the correlation engine.
Plot (C) and (D) shows the maximum processing time of a CMO
which does not exceed 10 milliseconds; the CMO undergoes
two correlation processes, one for the corresponding branch
correlation plugin and the other for the metering dome. Plot
(E) and (F) show the very low CPU needs by both the storage
and the billing engines.

(A) Collection Engines: Inter-Collect Gap vs. CPU %
CPU %

2 4 6 8
0.0
0.5
1.0
1.5
2.0

Inter Collect Gap (Seconds)

C
P
U

 T
im

e

(B) Correlation Engine: Inter-Collect Gap vs. CPU %
CPU %

2 4 6 8
0.0
7.5

15.0
22.5
30.0

Inter Collect Gap (Seconds)

C
P
U

 T
im

e

(C) Correlation Engines: Number of Resources

CMO Processing Time

48 96 144 192 240
0
3
6
9

12

Number of Resources

C
M

O
 P

ro
ce

ss
in

g
 T

im
e

(M
ill

is
e
co

n
d
s)

(D) Correlation Engines: Inter-Collect Gap vs.

CMO Processing Time

2 4 6 8
0
3
6
9

12

Inter Collect Gap (Second)

C
M

O
 P

ro
ce

ss
in

g
 T

im
e

(M
ill

is
e
co

n
d
s)

(E) Storage Engine: Inter-Collect Gap vs. CPU %
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Figure 16: CPU usage column charts
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The column chart in Figure 17 shows the correlation
processing time vs. the correlation duration at different inter-
collect-gap settings. At lower inter-collect-gap, CMOs overflow
occurs where the correlation engine cannot process the CMOs
at high rates of generation. The inter-collect-gap should be
chosen carefully and the adaptive correlation mode should be
used to saturate such symptoms. The importance of this graph
is that it emphasis the design decisions behind the distributed
proc filesystem, showing that the lower CPU usage favored over
data transfer speed is the correct decision as the low speed of
the distributed proc filesystem can generate CMO rates that are
much higher than the processing rates of the correlation engines.
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Figure 17: Correlation duration time vs. correlation duration

8.2.2 Memory. The pie charts in Figure 18 show the
different factors effect on the memory usage by different
metering engines. The number of resources is the most
influential factor on the collection engine memory usage as
per plot (A). Plot (B) shows that the correlation mode has the
highest influence on the correlation engine memory usage, as
in case of epoch-based correlation a lot of memory buffers are
allocated to store epoch CMOs and cache them for submission
to the back-end. Plots (C) and (D) show that the correlation
duration is the most influential factor on the storage and the
billing engines respectively; smaller correlation durations lead
to larger numbers of correlation and billing CMOs.
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Figure 18: GLM/ANOVA memory usage results

As per the column charts in Figure 19, plot (A) shows the low
memory usage by the collection engine which did not exceed
2.5%, showing a very low probe effect. Plot (B) shows the large
memory needs by the correlation engines when configured to
use epoch-based correlation. Plot (C) shows high memory usage

by the storage engine as huge numbers of collection CMOs were
configured for storage. Plot (D) shows the low memory needs
of the billing engine as the number of billing transactions are a
function in the number of correlation CMOs.
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(C) Storage Engine: Correlation Duration
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Figure 19: Memory usage column charts

8.2.3 I/O. The pie charts in Figure 20 show the different
factor effects on I/O usage by different engines. All the plots
show that the number of resources and the inter-collect-gap
are the most influential factors by all metering engines. The
correlation duration has a minor effect on the storage engine as
per plot (C).
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Figure 20: GLM/ANOVA I/O usage results

8.2.4 Data Transfer. The effective data transfer size
represents the transferred CMOs being used effectively by
the correlation engine. The overall data transfer is the
transfer of all the CMOs between the collection and correlation
engines including duplicates resulting from TTL misprediction.
Mispredictions result from delays in the metering collection
process, whose actual runtime durations do not match the
heuristics of assessing the correct time for reading new data
from the proc, and hence result in reading the same proc file
entry CMOs twice. This is detected by the correlation engine
but in any case the data needs to be read to identify its oldness.

The pie charts in Figure 21 show the GLM/ANOVA
influential factors related to the data transfer. Plots (A) and (B)
show that the number of resources and inter-collect-gap have
the most influential effect on the data transfer size. The close
values of the two pie chart shows the uniform behavior of the
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prediction. The results can be explained in light of the fact
that more CMOs are generated as the number of resources gets
larger, and as the inter-collect-gap is set to smaller durations.
Plot (C) shows that the queue size is the most influential factor
on the speed of the data transfer. This can be explained in light
of the way the distributed proc filesystem protocol is designed,
which is based on packet group commit, and hence as the queue
size gets bigger a larger number of packets is committed through
fewer acknowledgement packets.
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Figure 21: GLM/ANOVA data transfer results

The column charts in Figure 22 give more insight into
the data transfer results. The charts (A) and (B) show the
data transfer against the inter-collect-gap and the number of
resources. The blue columns represent the total data transfer and
the red columns represent the effective data transfer. The yellow
columns are the calculated size of data transfer if TTL was
not used. The plots show the considerable amount of network
bandwidth saved by applying the TTL prediction mechanism.
Plot (C) shows the directly proportional effect of the queue
size on the data transfer speed and plot (D) shows the inversely
proportional effect of the inter-collect-gaps on the data transfer
speed. The plots show a maximum of 0.6 MB/sec data transfer
bandwidth at the most aggressive metering configuration, which
does not exceed 0.48% of the total bandwidth on a 1 Gb/sec
network backbone.
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Figure 22: Data transfer column charts

The 3D surface diagram presented in Figure 23 shows the
relation between the prediction accuracy and the number of proc
file entries, queue sizes, and the inter-collect-gaps. In general,
a directly proportional relationship exists between the three
factors and the prediction accuracy. We evaluate the accuracy
of the prediction as the percentage of the data that is being used
out of the overall data, which in our experiments range from

Figure 23: TTL prediction accuracy

52.79% to 87.05%. This misprediction rate is acceptable as the
collectors can be delayed in some cases that make them unable
to meet their deadline promises.

Figure 24: 3D interaction diagrams

The probe effect is most crucial at the collection engine and
the distributed proc filesystem transport as it can affect the
running cloud services. The 3D interaction diagrams in Figure
24 show the interaction between the most influential factors.
Plots (A), (B), and (C) show the directly proportional effect of
the number of resources and the inversely proportional effect of
the inter-collect-gap on the collection engine CPU and Memory
usage, and the effective data transfer respectively. Plot (D)
shows the directly proportional effect of the queue size and the
inversely proportional effect of the inter-collect-gap on the data
transfer speed. All the plots are aligned with the GLM/ANOVA
results presented earlier.
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8.3 Online Shop Web Application Metering Plugin

The objective of this experiment is to investigate the effect
of the metering plugin deployment on the application end user
service experience. The metering plugin is deployed once on the
local target virtual machine, and in another setup on a separate
virtual machine configured to handle all the Apache web servers
of a single branch. The factors investigated are the number of
concurrent users, the transaction type, and the metering mode.
The number of concurrent users ranged from 2 to 20 per branch.
Different web transaction types where used, namely products
listing, product details view, add product to shopping cart, and
checkout shopping cart. And the metering mode represents
the metering plugin deployment option, namely not deployed,
deployed locally, and deployed remotely. The yield of the
experiment is the transaction response time in seconds. The
WLG is used to apply web requests, different workloads, on
the shop environment.

The pie chart in Figure 25 shows that the influence of the
metering plugin deployment option on the response time is
0.6% which is of minimal negligible effect. The column chart
in Figure 26 shows the average transaction response time in
seconds with respect to the number of concurrent users and
metering plugin deployment. The chart illustrates the negligible
minor difference between the three different deployment options
with respect to the number of concurrent users. The presented
results are aligned with the ANOVA.GLM results.

METERING_MODE

CONCURRENT_USERS

TRANSACTION_TYPE

Other

6
.2
%

93.2%
Other

Figure 25: GLM/ANOVA shop metering plugin results
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Figure 26: Shop web transaction average response time

9 Conclusion and Future Work

In this paper, a unified cloud metering framework was
presented based on a data modeling approach. An extensible
data representation is demonstrated through an object oriented
extensible Cloud Metering Markup Language (CMML), which
contributed to the highly shareable characteristics of the model.
The proposed framework is programmable and extensible,
enabling the metering of cloud resources at various levels of
abstractions with ease through the flexibility of writing code.
The key design decision adopted is to deal with metering
objects rather than flat passive data. The introduction of

autonomous mobile CMOs and object receptors unlocked a
lot of desired features whereby the metering data are coupled
with their corresponding operations. The framework is capable
of presenting the underlying deployment metering architecture
dynamically through the object receptors definition.

The features of the framework were demonstrated through
a prototype based on a CMML interpreter implementation
and a distributed proc filesystem acting as a communication
backbone. The main objective of the prototype is to show
one practical implementation of the proposed framework
specifications. The prototype was deployed on a realistic online
shopping environment to demonstrate the multi-perspective
online responsive metering results generated through the
distributed processing of metering data, and presented at
different levels of abstraction. Moreover, the effect of workload
and pricing on resources usage and billing was demonstrated
through a set of functional experiments. GLM/ANOVA
performance experiments were conducted to study the different
factors and parameters affecting the performance of the
proposed metering framework engines, and to demonstrate the
considerable low probe effect induced on the cloud services
resources by the framework’s different engines.

Our future work will be concentrating on designing a virtual
bare metal deployment mechanism that utilizes virtual resource
for metering engines deployment. The new approach aims
at reducing the waste of resources used in the framework
deployment targeting higher return on investment, lower probe
effect, and better performance.
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