
A publication of ISCA*:
International Society for Computers

and Their Applications

INTERNATIONAL JOURNAL OF
COMPUTERS AND THEIR

APPLICATIONS

TABLE OF CONTENTS

Page

Mining Decision Trees as Test Oracles for Java Bytecode . 141
Weifeng Xu, Tao Ding, Dianxiang Xu, and Omar El Ariss

Predicting Fair Housing Market Value: A Machine Learning Investigation 160
Timothy Oladunni and Sharad Sharma

Creating a Probabilistic Model for WordNet . 176
Lubomir Stanchev

Virtual Watershed Visualization for the WC-WAVE Project . 195
Chase Carthen, Thomas J. Rushton, Nolan P. Burfield, Christine M. Johnson,
Aaron Hesson, Daniel Nielson, Bryan Worrell, Donna Delparte, Tucker Chapman,
W. Joel Johansen, Roger Lew, Nicholas R. Wood, Mathew Ziegler, John W. Anderson,
Sergiu M. Dascalu and Frederick C. Harris, Jr.

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPEC and
Scopus.”

Volume 23, No. 3, Sept. 2016 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…64 White Oak Court, Winona, MN 55987…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2016 by the International Society for Computers and Their Applications (ISCA)
All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Frederick C. Harris, Jr., Professor

Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA

Phone: 775-784-6571, Fax: 775-784-1877

Email: Fred.Harris@cse.unr.edu, Web: http://www.cse.unr.edu/~fredh

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid

University of Houston-Clear Lake,

USA

hisham@uhcl.edu

Dr. Antoine Bossard

Advanced Institute of Industrial

Technology, Tokyo, Japan

abossard@aiit.ac.jp

Dr. Mark Burgin

University of California,

Los Angeles, USA

mburgin@math.ucla.edu

Dr. Sergiu Dascalu

University of Nevada, USA

dascalus@cse.unr.edu

Dr. Sami Fadali

University of Nevada, USA

fadali@ieee.org

Dr. Vic Grout

Glyndŵr University,

Wrexham, UK

v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo

University of Michigan,

Dearborn, USA

magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA

hou@cs.siu.edu

Dr. Ramesh K. Karne

Towson University, USA

rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science and

Technology, USA

ff@mst.edu

Dr. Muhanna Muhanna

Princess Sumaya University for

Technology, Amman, Jordan

m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang

The American University, USA

owrang@american.edu

Dr. Xing Qiu

University of Rochester, USA

xqiu@bst.rochester.edu

Dr. Abdelmounaam Rezgui

New Mexico Tech, USA

rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA

James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology

Kharagpur, India

shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York at

Buffalo, USA

rsridhar@buffalo.edu

Dr. Junping Sun

Nova Southeastern University, USA

jps@nsu.nova.edu

Dr. Jianwu Wang

University of California

San Diego, USA

jianwu@sdsc.edu

Dr. Yiu-Kwong Wong

Hong Kong Polytechnic University,

Hong Kong

eeykwong@polyu.edu.hk

Dr. Rong Zhao

The State University of New York

 at Stony Brook, USA

rong.zhao@stonybrook.edu

IJCA, Vol. 23, No. 3, Sept. 2016 141

ISCA Copyright© 2016

MINING DECISION TREES AS TEST ORACLES FOR JAVA BYTECODE

Weifeng Xu
Bowie State University, Bowie, MD USA

Tao Ding
University of Maryland, Baltimore County, Baltimore, MD USA

Dianxiang Xu
Bowie State University, Bosie, ID USA

Omar El Ariss
The Pennsylvania State University-Harrisburg, Middletown, PA USA

Abstract

Code-based test generation can automatically produce a
large volume of test inputs. However, it is difficult to
determine the test oracle for each of the test inputs. This paper
presents a mining approach to building a decision tree model
according to the test inputs generated from Java bytecode so
that the model can be used as a source of test oracles for new
test inputs. This approach converts Java bytecode into the
Jimple representation, extracts predicates from the control flow
graph of the Jimple code, and uses these predicates for
generating test inputs and as attributes for organizing training
data to build a decision tree. Our case studies show that the
mining approach generated accurate behavioral models and
that test oracles derived from these models can kill 94.67% of
the mutants with injected faults.

Key Words: Software testing, test oracle, mining, decision
tree, Jimple.

1 Introduction

As software testing is a labor-intensive activity, significant
research has been directed to test automation. One of the
approaches is code-based test generation, which automatically
generates test inputs from source code or compiled code. For
example, search–based test generation [1-2, 28-29] utilizes
heuristic search algorithms, such as hill climbing and genetic
programming, to search for the best-fit data as test inputs by
evaluating fitness function in terms of the source code
structure of the Unit Under Test (UUT). An advantage of such
code-based test generation is that it can automatically generate
a large number of test inputs for exercising the UUT.
However, it is often difficult to determine the expected result
for each generated test input to determine whether its
execution passes or fails. This is known as the test oracle
issue. A test oracle [32] verifies whether the actual result of a
test case matches its expected result. For example, the
assertion assertEquals (“Equilateral”, new
Trianlge (7,7,7).getTriType()) in JUnit checks that

a triangle program reports the correct triangle type
Equilateral for the given length of 7 for all three sides.

To address the test oracle issue of auto-generated test inputs,
the paper proposes a new data mining approach to building a
heuristic behavioral model (in the form of decision tree [38])
that represents the estimated expected results of test inputs.
An estimated expected result for a given test input will be
retrieved from the generated model. The execution of a test
case is considered as a “pass” if the actual result matches the
estimated result in the model. Our approach uses search-based
techniques for generating a large number of test inputs from
the Java bytecode of UUT. Therefore, it does not depend on
the availability of source code. From the generated test inputs,
we chose a small subset of the test inputs (e.g., 10%) as train-
ing data for building the behavioral model. For the remaining
test inputs, we derive their expected results from the model so
that test oracles can be automated. As shown in Figure 1, our

Figure 1: Overview of our approach

142 IJCA, Vol. 23, No. 3, Sept. 2016

approach consists of the following main components:

1) Search-based Test Input Generator. This generates N test
inputs from the given UUT’s Java bytecode according to a
test coverage criterion. Each input X is a vector composed
of the input variables <x1, x2, ..., xn> of the UUT.
The test input generator uses Jimple as an intermediate
representation of Java bytecode.

2) Model Miner. This extracts necessary information (e.g.,
predicates) from the Java bytecode to generate a decision
tree model M from the training data. The initial training
data T is a subset of test inputs N.

3) Test Case Evaluator. This executes the UUT to produce
actual results for the remaining test inputs V = N – T.
Let UUT(X) denote the actual result of test input X.

4) Model Traverser. This searches the decision tree for
estimated expected result of test input X. Let MT(X)
denote the estimated result of test input X.

5) Test Oracle. For each test input in V, it compares the
estimated expected with the actual result using assertion
assertEquals(MT(X), UUT(X)).

Our approach is the first attempt to mine decision tree
models for test inputs auto-generated from Java bytecode with
respect to different coverage criteria. We used fault injection
for the evaluation of the proposed approach. The result of the
empirical study shows that using the mined test oracles, the
generated tests were able to kill 94.67% of the mutants.

The rest of this paper is organized as follows: Section 2
introduces a running example and some basic concepts.
Sections 3, 4, and 5 describe predicate analyzer, rule-based test
inputs generator, and model miner, respectively. Section 6
describes the empirical studies. Section 7 reviews the related
work. Section 8 concludes this paper.

2 Motivating Example

We use the classical Triangle problem [17] as a running
example. Given three positive integers that represent the
lengths of three sides of a triangle, the Triangle program
reports the triangle type, Equilateral (Type 1),
Isosceles (Type 2), Scalene (Type 3), or
NotATriangle (Type 4). We use Jimple to analyze the
structure of the source code for test input generation and use
the same Jimple predicate structure as attributes for mining
decision tree models. Jimple is a bridge between input
generation and model mining.

2.1 Jimple

Java bytecode is a stack-oriented language, which pops data
from the top of the stack, and pushes data back on the top of
the stack. For example, the bytecode instruction iadd pops
two integer values from Java virtual machine stack [16] and
pushes their sum. Bytecode instructions have an implicit
effect on the evaluation stack. For the analysis of bytecode, an
effective approach is to use an intermediate representation of

bytecode, such as 3-address instructions, where each
instruction has explicitly named operands. For example, an
addition operation would be represented as something like
x = a + b.

Our approach uses Jimple [33], a 3-address intermediate
representation that has been designed to simplify analysis and
transformation of Java bytecode. Each statement of Jimple
refers explicitly to the variables it uses. One of the essential
characteristics is that statements are restricted to the least
number of operands (2 in most cases, such as for arithmetic
expressions), and these operands must be either constants or
locals. For example, for a given Java statement x = a + b
+ c, the corresponding two Jimple statements are S1: $i3
= i0 + i1 and S2: i4 = $i3 + i2, where i0, i1,
i2, $i3, and i4 are local variables of Jimple code and i0,
i1, i2, and i4 correspond to variables a, b, and c in the
given Java statement. Variables with a “$” sign are
intermediate variables, e.g., $i3. Another benefit of using
Jimple is that predicates with multi-conditions of Java source
code will be represented by multi-level conditions as shown in
Table 1. The Soot package [20, 40] can be used to construct
the control flow graph (CFG) of Jimple code.

Table 1: A multi-condition in Java represented in Jimple code
Java Source Code Jimple Code

if (condition1 &&
condition2 &&
condition3{
Statement 1;
Statement 2;
…

}

if (condition 1){
if (condition2){
if (condition3) {

Statement 1;
Statement 2;
…

}
}

}

To facilitate our discussion, Table 2 presents the Java source
code, Jimple code, and the CFG (control flow graph) of the
Jimple code for the Triangle program. Each CFG node is
corresponding to a Jimple statement. Note that each predicate
(colored in yellow) in the source code is represented by a set of
predicates in the Jimple code. For example, the Java statement
[1], (a < b + c) && (b < a + c) && (c < a +
b), is decomposed into three 3-address intermediate
representations, i.e., nodes [32] (i0 >= $i3), [17] (i1
>= $i4), and [33] (i2 >= $i5) at different levels in the
CFG of Jimple code.

2.2 Auto-generated Test Inputs and Decision Trees

Table 3 shows some examples of auto-generated test inputs
(a, b, c) for the triangle program using the search-based
approach with decision coverage of the Jimple code. The
decision coverage generates two test cases for each predicate,
making the predicate evaluate to be true and false,
respectively. This ensures complete testing of control
constructs [17]. The cover times and test input IDs record how
many test inputs need to be generated to cover all predicates

IJCA, Vol. 23, No. 3, Sept. 2016 143

Table 2: Jimple CFG of triangle problem
CFG of Jimple Code

[1]i0 := @parameter0: int
[2]i1 := @parameter1: int
[3]i2 := @parameter2: int
[4]$i3 = i1 + i2
[5]if i0 >= $i3 goto return 4
[6]$i4 = i0 + i2
[7]if i1 >= $i4 goto return 4
[8]$i5 = i0 + i1
[9]if i2 >= $i5 goto return 4
[10]if i0 != i1 goto 13
[11]if i1 != i2 goto 13
[12]return 1
[13]if i0 == i1 goto return 2
[14]if i0 == i2 goto return 2
[15]if i1 == i2 goto return 2
[16]return 3
[17]return 2
[18]return 4
[1]int getTriType (a,b c)
[2]if((a<b+c) && (b<a+c) && (c<a+b)){
[3] if(a==b && b==c)
[4] return 1;
[5] else if (a!=b && a!=c &&b!=c)
[6] return 3;
[7] else
[8] return 2;
[9]}
[10] else
[11] return 4;}

Table 3: Examples of auto-generated test inputs for the triangle program using search-based approach with the corresponding
conceptual decision tree

Cover Times Test input ID a b c A Conceptual Decision Tree that Classifies
Triangles

Once 1 7 7 7
2 11 7 3
3 8 11 19
4 11 7 3
5 22 22 9
6 30 43 30
7 22 13 13
8 13 16 20

.. …

… … … … …
Fourth …

13 33 33 45
14 52 30 52
15 31 47 47
16 27 28 22

144 IJCA, Vol. 23, No. 3, Sept. 2016

once, twice, three times, etc. For example, 8 test inputs need
to be generated to cover each Jimple predicate once.
Intuitively, the triangle type can be classified by conditions in
Java source code. For example, an Equilateral is
classified by two conditions: a == b and b == c (i.e.,
statement 3 in Java source code). These conditions correspond
to i0 == i1 and i1 == i2 in Jimple code (i.e., nodes [41]
and [15]) by observation. The last column of Table 3 shows a
conceptual decision tree that represents the knowledge of
classifying triangles. The intermediate nodes of the decision
tree are conditions and the leaves of the tree indicate the types
of triangles. Our goal is to build such a decision tree with a set
of training data. The training data are designed by a set of
conditions. If training data fits the classification with high
accuracy, then we can reasonably assume that for any newly
generated test input, an estimated expected result can be
obtained by traversing the path from the root to a leaf.

The following sections address the critical issues of our
approach. First, how to generate test inputs automatically
based on Jimple code (Sections 3 and 4). Second, how to
extract appropriate conditions from Jimple code to build a
decision tree (Sections 3 and 5). Third, how to determine the
accuracy of decision trees, and more important, how effective
are the test oracles derived by the mined decision tree in
detecting faults in the given program (Section 6).

3 Predicate Analyzer

Our approach uses a predicate analyzer to extract and
analyze conditions from Jimple code for both generating test
inputs and building decision trees. Specifically, predicate
analyzer examines the Jimple statements to discover
relationships between Jimple input variables and variables in
predicates using variable dependency analysis. These
relationships are crucial as (1) to generate test inputs for a
given path, a set of rules we have defined are the guidelines for
changing values in predicates for traversing the path. As
Jimple variables in predicates are often intermediate variables,
they need to be backtracked to Jimple inputs by utilizing these
relationships (addressed in section 4). (2) For mining test
inputs to build the decision tree, each generated input is
represented as a set of attributes. These attributes are Jimple
predicates, and thus, these relationships are needed again for
transferring each generated input to attributes (Section 5). In
this section, we first formally define the path used in the paper
and then discuss variable dependencies.

3.1 Tagged Path

A path derived from a CFG contains a sequence of
statements. For example, p1: [1]→[2]→[3]→[4]→[5]
→[6]→[7]→[8]→[9]→[10]→[11]→[12] is one of the paths
derived from Jimple CFG for testing an equilateral triangle.
To execute all statements in p1, we need to adjust values of all
variables involved in the predicates so that the predicates can
produce desired values for reaching the last statement. Thus,
we need to achieve the desired outcome for each predicate in

p1 as follows:

p’1: [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] f>

[10] �>[11] �>[12],

where f (false) is the expected outcome of the corresponding
predicate. Such a path is called a tagged path.

Definition 1 (Tagged Edge). A tagged edge is defined as
v � >u, where v is the source of the edge that represents a
predicate in a statement, o is a tagged value for v, which
represents the desired outcome of v (i.e., true or false), and u is
the reachable statement if the assertion (v==o) returns true.

Definition 2 (Tagged Path). A tagged path is a sequence of
edges that has at least one tagged edge.

Table 4 shows tagged paths of the Triangle program
based on decision coverage. In the tagged path p12, the
tagged edge [5] �>[18] indicates that node 5 is a predicate and
its outcome (i0 >= $i3) must be true in order to reach
node 18.

3.2 Variable Dependency Tree

Consider a simply tagged path p12: [1]→[2]→[3]→[4]
→[5] �>[18] in Table 4, the goal is to find a test input to
exercise this path (i.e., find a triangle type of “NotATriangle”).
As [5] �>[18] is the only tagged edge, the path will be covered
if a test input makes the constrain in [32]: i0 >= $i3 as
true. To generate a test input for covering p12, however, we
need to determine which input variables are associated with
$i3 so that we can adjust these input variables to meet the
constraint. It is not difficult to see that $i3 is associated with
input variables i1 and i2 by backtracking $i3.

Variable dependency analysis is the process of backtracking
input variables for given intermediate Jimple variables for
make assertion (v == o) true. The dependency
analysis starts with identifying write-dependency and read-
dependency relations. Given an assignment statement that
involves variables im and in, im is write-dependent on in if and
only if im writes a resource that in reads. For two assignment
statements S1 and S2 that use variable in, and S1 precedes
S2 in execution, the variable in in S2 is read-dependent on the
in in S1 if and only if in in S2 read a resource that in writes
in S1. Table 5 shows three examples. The third example
consists of two statements with one read- and one write-
dependency relations.

Variable dependency analysis is also utilized for mapping
Jimple conditions to a recognizable attribute set. For example,
a Jimple condition i0 > = $i3 cannot be directly used as
an attribute for mining decision tree models as i0 and $i3
are Jimple variables, variable dependency analysis provides
mapping information converting the Jimple condition to the

IJCA, Vol. 23, No. 3, Sept. 2016 145

Table 4: Tagged paths for triangle problem
Goal ID Path

Equilateral 1 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10] �>[11] �>[12]
Isosceles 2 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10] �>[13] �>[14] �>[15] �>[17]

3 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10] �>[13] �>[14] �>[17]
4 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10] �>[11] �>[13] �>[17]
5 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10] �>[13] �>[17]
6 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10]

�>[11] �>[13] �>[14] �>[15] �>[17]
7 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10] �>[11] �>[13] �>[14] �>[17]

Scalene 8 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10] �>[13] �>[14] �>[15] �>[16]
9 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[10]

�>[11] �>[13] �>[14] �>[15] �>[16]
NotATriangle 10 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[8]→[9] �>[18]

11 [1]→[2]→[3]→[4]→[5] �>[6]→[7] �>[18]
12 [1]→[2]→[3]→[4]→[5] �>[18]

Table 5: Examples of dependency relations
ID Variable Statement Dependency Relation

1 i1, i2 S1:i2 = i1 + C, (C: constant) i2 is write-dependent on i1
2 i1, i2 , i3 S1:i3 = i2 + i1 i3 is write-dependent on i1 and i2
3 i3 S1: i3 = i0 + i1

S2: i4 = i2 + i3
i3 in S2 is read-dependent on i3 in S1
i3 is write-dependent on i1, etc.

recognizable attribute, i.e., a < b + c so that each generate
input can be transferred into training data.

Variable dependency can be graphically captured in a
variable dependency tree (VDT). It is a tree structure used for
tracking read- and write-dependency relations among all
variables in the Jimple code. A VDT consists of a set of tree
units, where each tree unit corresponds to an assignment
statement of Jimple code. Each tree unit consists of three
nodes, one parent node and two child nodes, and an operator
between the two children. Edges in tree units from the parent
nodes to child nodes are write-dependency relations. Relations
between tree units are read-dependency relations. Figure 2
shows a VDT that consists of two tree units (contained in two
squares) constructed from the Java statement x = a + b +
c. These two tree units of the VDT represent the two
corresponding Jimple statements S1: i3 = i0 + i1 and
S2: i4 = i3 + i2 shown in the third example in Figure
2. Arrows in the VDT represent four write-dependency
relations and the dashed line between S1 and S2 represents a
read-dependency relation.

The algorithm in Table 6 describes the procedure for
building VDTs from the Jimple code of a UUT. A tree unit is
denoted as t(root, leftChildNode,
rightChildNode, operator) where each node contains

a Jimple variable. The algorithm recursively expands the child
nodes with tree units until all leaves of the tree are test input
variables in the Jimple code. Figure 3 shows the VDTs of the
triangle Jimple code. The leaves in the VDTs are i0, i1,
and i2, which are the input variables.

4 A Rule-Based Test Inputs Generator

Our rule-based search algorithm (RBA) utilizes a set of pre-
path. The approach starts with a randomly generated test input
for a given path derived from the UUT. The path consists of a
sequence of statements in the form of Jimple code. The path
and the initialized input value (as a seed) are placed in a
controlled testing environment where Jimple code can be
executed. By checking predicate values along the running
path, relevant rules are applied as guidelines for adjusting the
seed value as the new input of next iteration. The process
stops when all the statements in the path are executed. In this
case, a test input is generated successfully. As shown in
Figure 4, our approach consists of the following main
components:

 Jimple Executor: Execute the intermediate representation
of Java bytecode in the form of Jimple statements. A

146 IJCA, Vol. 23, No. 3, Sept. 2016

Figure 2: Variable dependency analysis

Figure 3: VDTs of Path p1

Table 6: Algorithm of building VDTs
Algorithm : Building VDTs
Inputs : J : Jimple Code of a given path
Outputs : L: A list of variables point to the root of VDTs contained in the variable
1 procedure buildVDTs(J)
2 for each assignment statement S of J
3 t(v, l, r, o) ⟵create a tree unit with the root contains v

// v is the root, l and r are the left and right of root,
//o is the operator of the root

4 if l or r not input parameters
5 goto step 3 with l or r as a new root
6 end if
7 add v to L and point v to the tree
8 end for
9 end procedure

Figure 4: Overview of the rule-based test inputs generator

sequence of Jimple statements is a path derived from CFG
of a UUT.

 Predicate Analyzer: Analyze variable dependency of

Jimple statements and monitors the outcomes of
predicates at runtime.

 Rule Base: A set of predefined rules for test input
generation. To make (a > b) as true, for example, rules
can either increase the value of a or decrease value of b.

 Inference engine: It selects rules from the rule base for
modifying current seed value x (e.g., increasing or
decreasing x) to generate a better seed value x’ = x + ∆x
and achieve the expected outcomes of predicates.

4.1 Rules as Search Guidelines

We use a set of pre-defined search rules that are based on
predicates and their expected evaluation outcomes. These
rules are presented in Table 7. For a given predicate in the
CFG of Jimple code, there are multiple evaluation results. For
each outcome, there are several rules for instructing a predicate
to produce the expected result. For example, for the first

IJCA, Vol. 23, No. 3, Sept. 2016 147

Table 7: The pre-defined heuristic search rules for predicates
ID Predicate Expected Evaluation

Outcomes
Advising Rules

1i0 > i1 (i0 > i1) = true (i0↑, i1) (i0, i1↓)
2 (i0 > i1) = false (i0↓,b) (i0, i1↑)
3i0 == i1 (i0 == i1)= true (i0↓D, i1)(i0, i1↑D)
4 (i0 == i1)= false (i0↑,i1) (i0,i1↑)

(i0↓,i1) (i0, i1↓)
5i2 = i0 + i1 i2 ↑ (i0↑, i1) (i0, i1↑)
6 i2 ↓ (i0↓, i1) (i0, i1↓)
7i2 = i0 - i1 i2 ↑ (i0↑, i1) (i0, i1↓)
8 i2 ↓ (i0↓, i1) (i0, i1↑)
9i2 = i0 * i1
(i0>0, i1>0)

i2 ↑ (i0↑, i1) (i0, i1↑)
10 i2 ↓ (i0↓, i1) (i0, i1↓)
11i2 = i0 / i1
(i0>0, i0 > 0)

i2 ↑ (i0↑, i1) (i0, i1↓)
12 i2 ↓ (i0↓, i1) (i0, i1↑)
..

13s0>s1 (s0 >s1) = true (s0[k]↑, s1) (s0, s1[l] ↓)
14 (s0 > s1) = false (s0[k]↓,s2) (s0, s1[l]↑)
* i0, i1, i2: integers; s0, s1: strings; D: a constant value; ↑: value increasing; ↓: value decreasing

predicate i0 > i1 in Table 7, there are two possible
evaluation results, true and false. To produce the outcome
of true, the rules indicate that we can either increase the
value of i0 and keep the value of i1 unchanged or increase the
value of i1 and keep the value of i0 unchanged, i.e., (i0↑,
i1) or (i0, i1↑).

A predicate tree (PT) is used to represent predicates of input
variables. The root of a PT is a predicate statement. The
direct children of the root are variables in the predicates and
the operator is the relation between the two children. Non-
input variables will be expended using VDTs. Thus, the leaves
of the PT must be Jimple input variables, and the inner nodes
are intermediate Jimple variables. In Figure 5, the tree on the
left-hand side shows the PT built from the aforementioned path
P. The root of the PT is [32]. Its children are variables i0 and
$i3. The intermediate variable is represented by two new
nodes i1, i2, and their operator, i.e., $i3 = i1 + i2. To
instruct the execution of a UUT following a given path P, the

test input generator uses rules in Table 7. The tree on the
right-hand side of Figure 5 shows the result of applying rule 1
(i0↑, i3) or (i0, i3↓) and rule 5 (i1↓, i2) (i1,
i2↓). For the predicate statement i0 >= $i3 and the
expected outcome of true, we either increase the value of i0
or decrease the value of $i3. For the statement $i3 =
i1+i2 and the expected outcome of decreasing value of $i3,
either i1 or i2 needs to be decreased. Here, we use up- and
down- arrows (e.g., i0↑, 11↓, i2↓) to represent the
directions of value changing.

To handle the string type, we treat a string as an array of
characters, which are represented as integers (i.e., their
Unicode). For example, to generate a string s = “abc”, we
simply assign each character to s, i.e., s[0] = 97, s[1] =
98, s[2] = 99, where 97, 98, and 99 are the ASCII code
of “a”, “b”, and “c”, respectively. Jimple facilitates the
conversion by introducing the newarray function, which
creates a character or array to represent a string, e.g., s =
newarray[3]. For string comparison, Jimple returns

Figure 5: Apply rules to a predicate tree for generating test inputs for a designated path

148 IJCA, Vol. 23, No. 3, Sept. 2016

predicate involving two strings with an expected outcome, i.e.,
(s0 > s1) == true. The rule indicates that to assert
string s0 is larger than s1, we can either increase the kth
character of the s0 or decrease the lth character of s1.

Our current approach does not handle loops directly.
Instead, it provides an alternative way of simplifying the
problem because (1) different types of loop in Java source
code, including for, while, and do-while, are represented in the
one simple form of goto instruction with a new explicit
predicate. Table 8 shows an example of a simple loop in Java
source code and Jimple code. The statement [16] contains an
explicit predicate, i.e., i1 < i0 and a goto statement. (2)
loops can be transferred in VDT, which offers a fundamental
way of analyzing loops for data generation.

4.2 Rule-Based Search

To generate specific inputs for traversing path P, a set of
random numbers are first generated to represent the lengths of
three sides, e.g., <10, 7, 4>. Obviously, executing the UUT
with this test input does not necessarily follow P as the test
input may fail to produce the expected outcome of the
predicate (i0 >= $i3) = true, where $i3 = i1 +
i2. By applying rules 1 and 5 (i0↑, 11 ↓, i2↓), we can
generate new inputs (e.g., <11, 6, 3>) that may cover P.
The process can be repeated as needed. Table 9 shows the
algorithm for rule-based generation of test inputs to cover a

given path.
Figure 6 demonstrates the process of producing test inputs

with the target value of Equilateral (i.e., p1 in Table 4)
using RBA. The figure is divided into two parts by a dashed
line. The left-hand side shows the path p1 that contains five
tagged values (all “false”). On the right-hand side is a tree-
like structure with a backtracking edge links back to the first
statement. The values in each tree node are temporary values
stored in memory. For example, the line i0 = 10, i1 =
20, and i2 = 40 in the first tree node represents three input
values that are randomly generated for a given range, such as
between 1 and 100. These values are used as seeds for
generating next optimized input. These values saved in
memory can be accessed by Jimple executor. After Jimple
executor fetching a Jimple statement, e.g., a predicate
statement [32] i0 >= i3, it will look for values of i0 and
i3 to evaluate the predicate. If no variables are in the
memory, Jimple executor will retrieve from VDT shown in
Figure 3, i.e., i3 = i1 +i2=20+40=60. Thus, the Jimple
executor returns false when evaluating i0>=i3. As it
matches the expected outcome of predicate [32] is false as
shown in the p1, the executor will fetch the next statement for
execution. Otherwise, we will modify values in tree nodes by
applying rules to force these values to match expected
outcomes of the predicate. For example, to force predicate
[33] to produce expected false values, the rule engine needs to
apply rule 3 and rule 5. Thus, the tree node has three branches,
i.e., either i2 is decreased from 40 to 25, i0 is increased

Table 8: Loop in Jimple
Java Source Code Jimple Code

foo(int n){
for(i=0;i<n;i++){
j=10*i;
if(j>50){
return 1 //target
}

}
return 0;

}

[1]i0 := @parameter0: int
[2]i1 = 0
[3]goto statement 8
[4]i2 = 10 * i1
[5]if i2 <= 50 goto statement 7
[6]return 1 //target
[7]i1 = i1 + 1
[8]if i1 < i0 goto statement 4
[9]return 0

Table 9: Algorithm for rule-based generation of test inputs
Algorithm: Rule-based approach for generating test inputs
Inputs: R : a set of rules
P: a designed path
J : Jimple Code of a UUT
Outputs: a generated test input covers P
1 procedure testInputGenerator(R, P, J)
2 (i1, i2,.., in) ← randomly generate an input
3 while (i1, i2,.., in) != covers P
4 pt ← building PT from P
5 (i1 ↑?, i2 ↓?,.., in↓?)← Apply rules to pt
6 (i1, i2,.., in) ← adjust (i1, i2,.., in)
7 end while
8 return (i1, i2,.., in)
9 end procedure

IJCA, Vol. 23, No. 3, Sept. 2016 149

Figure 6: The process of rule-based test input generation

from 10 to 25, or i1 increases from 20 to 35. Once it
reaches the final statement, a tree has been built and the leaves
of the tree represent generated test input data. If the last
statement is reached, the data is correctly generated (shown in
grey); otherwise, these data can be used as input to repeat the
process.

Note that there are possible conflicting rules, i.e., one rule
states that we should increase the value of variable v, while
another states that we should decrease the value of variable v.
The conflict rules may lead to infeasible paths. Take the two
simple predicates in a path, i.e., i0 > i1 and i0 < i1,
with both expected true outcomes as an example: to assert
i0 > i1 true, the rule 1 indicates (i0↑, 11↓) and to assert
i0 < i1 true (equivalent to assert i0 > i1 false), the rule
2 indicates (i0↓,11↑). After applying rule 1 and rule 2 to the
predicates, each variable receives contradictive change
requests. The contradictive change requests may lead to
infeasible paths. In our empirical study, we simply exclude
infeasible paths before applying the proposed input generation
algorithm.

5 Model Miner

The model miner (as shown in Figure 7) classifies a set of
training data to build a decision tree model. It first converts
the Java bytecode of a UUT into Jimple code and extracts the
predicates in Jimple code as attributes by substituting the

Figure 7: Overview of the model miner

variables of Jimple predicates for the input variables in the
UUT. Then it organizes training data according to the
identified attributes and builds the decision tree from the
training set

5.1 Attributes Identification

Attributes used for designing training data are identified by
replacing variables of Jimple predicates with test input
variables using VDTs and replacing test input variables in the
Jimple code with the corresponding input variables in Java.
i0, i1, and i2 are three input variables corresponding to
input variables of Java method getTriType(a, b, c),
respectively. For a given Triangle Jimple predicate node
5: i0 > = $i3 (refer to Table 10) the corresponding
attribute a >= b + c is computed by replacing $i3 with
i1+i2 based on VDTs in Figure 3 and replacing i0, i1, and
i2 with a, b, and c, respectively. Table 10 shows all
attributes and Jimple predicates of the triangle from where
these attributes were converted.

5.2 Mining Test Data

A decision tree model M used for test oracle is to find Y for
a given input X, i.e., X

�
→ Y. The root of the tree is X and Y is

a leaf of the tree. Each intermediate node corresponds to one
of the attributes shown in Table 10. Edges to children of the M
are the split conditions of its parent. For example, one of the
intermediate nodes is (b + c > a), its left and right edges
(branches) represent the conditions of classifications (b + c
> a) and (b + c <= a), respectively. We chose decision
trees to describe the behavior model of a UUT due to decision
tree [32] is an effective way to represent classified information
based on a popular C4.5 mining algorithm [38]. The key idea
of the algorithm is to calculate the highest normalized
information gain of attributes and then build a decision node
that splits the attributes.

Building a decision tree for test oracle required a set of pre-
processed training data with attributes obtained in Table 10.

150 IJCA, Vol. 23, No. 3, Sept. 2016

Table 10: Jimple predicates and attributes of triangle program
Attribute ID Attribute Predicate Node of Jimple CFG Jimple Predicate
1 a > = b + c [5] i0 > = $i3
2 b > = a + c [7] i1 > = $i4
3 c > = a + b [9] i2 > = $i5
4 a != b [10] i0 != i1
5 b != c [11] i1 != i2
6 a = b [13] i0 == i1
7 a = c [14] i0 == i2
8 b = c [15] i1 == i2

The process of converting a set of auto-generated test inputs to
the training set is called test data transformation (see Figure 7).
Tabe 11 shows the organized training data converted from
Table 3. The columns of Table 11 are eight attributes ID
shown in Table 10. Each generated test input in in Table 3 is
converted into corresponding rows under these columns.
Similarly, their corresponding results are converted into cells
under the Result columns. For example, for a generated test
input <7, 7, 7> and its actual result 1, the transferred
training data (f, f, f, f, f, t, t, t, 1) is shown in the
first row of Table 11.

6 Empirical Study

The empirical study mainly focuses on generating test input
and mining decision tree models for unit testing. Three
programs are chosen to evaluate our approach, including
Triangle program, the NextDate program [17], and the
Vending Machine program [16]. The NextDate
program simply computes the next date for a given date. The
Vending Machine program is a classical job-interview
question for software testing positions. The size of three
programs (in Java and Jimple) and the number of predicates

are listed in Table 12. The three programs cover a different
number of Jimple predicates, which can be categorized into 3
groups, small (8), medium (19), and large (41). The number of
Jimple predicates (e.g., 8 for Triangle problem) is
consistent with the number of attributes used for mining
decision trees (e.g., 8 attributes in Table Table 11). The table
also includes the attributes used for the mining purpose.
Although the subjects of the empirical study are small
programs, our approach can be used for unit testing of
individual methods of large programs.

Our study aims at answering the following questions:

1) What is the performance of the proposed approach?
2) How does the coverage criteria used for test input

generation affect the model accuracy?
3) What is the fault detection capability of using the mined

model for a test oracle?
4) The source code of the rule-based data generation

algorithm can be found in https://github.com/
frankwxu/Gannon-JVM. The empirical study results for
questions 2 and 3 can be found in https://github.
com/frankwxu/frankwxu-JSS_empirical_study.

Table 11: Transferred test data
Test input ID Attr 1 Attr 2 Attr 3 Attr 4 Attr 5 Attr 6 Attr 7 Attr 8 Result

1 f f f f f t t t 1
2 f t f t t f f f 4
3 f f t t t f f f 4

…
13 f f f t t f t f 2
14 f f f t t f f t 2
15 f f f t f f f f 3
16 t f f t t f f f 4

Table 12: Program size
Line of Code Number of Predicates

Java Jimple Java Jimple (allow duplications) Attributes (No duplication)
Triangle 22 27 3 8 8

Next Date 48 51 9 19 19
Vending Machine 82 68 21 41 10

IJCA, Vol. 23, No. 3, Sept. 2016 151

6.1 Performance of Test Input Generation

Our tool handles Java bytecode. It is difficult to compare
our tool with tools that handle different languages. For
example, Z3 [33] and PEX [40] generate test inputs for dot-net
and CUTE [20] for C, respectively. EVOSUITE [12] can be a
good candidate for performance comparison for a given goal.
However, it is not suited for comparing the mutant detection
rates against our approach as (1) EVOSUITE handles Java
Source code not bytecode and (2) the detection rates depend on
the number of the inputs generated for a given path.
Therefore, instead of comparing mutant detection rates, we
compare the execution time needed to generate test inputs for a
given path. Table 13 shows execution time required to
generate test inputs of three programs for a given path using
rule-based search algorithm and EVOSUITE. These paths are
grouped by the search goals shown in the table, i.e., triangle
types. These experiments are run on a Dell PC with Intel
Pentium Dual CPU E6750 @ 2.66 GHz, 2G RAM, 250GB
HDD and 64-bit operating system. The results show that the
average time to generate inputs is consistent with the number

Table 13: Performance of input generation

of predicates in the program for both approaches. The rule-
based approach has a better performance as EVOSUITE uses
genetic algorithms as the genetic algorithm often has a slow
convergence problem.

6.1 Accuracy of Decision Tree In Terms of Coverage

The accuracy of a decision tree is defined as the number of
correct classifications divided by the total number of
classifications. We measured the accuracy of decision trees to
determine whether we have had enough training datasets for
maximizing the correctness of the model so that we can
measure the fault detection capability of the model. In other
words, more training data needs to be generated regarding test
coverage if the accuracy of a decision tree is not reaching the
expected accuracy, e.g., 100% in this empirical study. A high
level of accuracy is expected because we manually determine
the correct expected results for training data, assuming it
contains no noises and therefore no pruning mechanism is
needed, whereas normal training data for building decision
trees naturally contains noises, which will be difficult to prune
off by applying the built-in pruning mechanism. Due to our
particular purpose of using accuracy, whether a test dataset is
balanced, e.g., whether each test dataset (type 1, 2, 3, and 4 in
Triangle example) has the equal percentage, will not
directly determine the number of training data needed to
generate a decision tree with a specified accuracy, but test
coverage does. In the case of the 100% accuracy is produced
due to false positive results, it will be detected and corrected
when checking test oracle (described in the next subsection).

Our experiments use three test coverage criteria with respect
to Jimple CFG: statement coverage, decision coverage, and
unreduced decision coverage. Decision coverage generates
minimum tests to cover the Jimple CFG predicates.
Unreduced decision coverage generates two tests for each
Jimple CFG predicate without reducing the duplicated tests.
The protocol of our empirical study is as follows:

 Generate test inputs according to the coverage criteria.
We initially chose test inputs that meet a given coverage
criterion. The cover times, along with its corresponding
number of tests, indicate how many tests we have used as
training data in an experiment.

 Manually calculate the expected outputs of the generated
test inputs.

 Convert the test inputs and expected outputs to training
data.

 Generate a decision tree model use the C4.5 mining
algorithm in WEKA data mining tool [41] which takes the
training data as its inputs.

 Compute accuracy. The process repeats with incremented
cover times until the accuracy of decision tree reaches
100%. Table 15 shows the model accuracy in terms of
coverage criteria and cover times. For example, 8 test
cases are needed for the minimum decision coverage of
the Jimple CFG of the Triangle program. However,
the generated decision tree only reaches 50% accuracy.

ID Goal
Execution Time to Generate

100 Inputs (ms)
Rule-based EVOSUITE
Triangle

1 Equilateral 255 883
2 Isosceles 167 454
3 Scalene 146 534
4 NotATriangle 121 125

Next Date

1 Normal day && 1st
month

96 210

2 Last day && 1st
month

168 464

3 Normal day 167 242

4 Last day of a normal
month

198 122

5 Normal day in Dec. 114 343
6 Last day of a year 172 421
7 Normal day in Feb. 153 236
8 leap year 738 909
9 Non- leap year 779 1222
1

0
Incorrect days of a

leap year
912 1234

Vending Machine (Change, Dollar, Cents, Juice, Beer)
1 (1,1,0,0.1) 534 675
2 (1,1,0,0,0) 553 758
3 (1,0,1,1,0) 523 904
4 (1,0,1,0,1) 495 964
5 (0,1,0,1,0) 277 578
6 (0,1,0,0,0) 339 732
7 (0,0,1,1,1) 285 456
8 (0,0,1,0,1) 310 634

152 IJCA, Vol. 23, No. 3, Sept. 2016

Table 14 shows that: (1) For different coverage criteria, the
model accuracy increases as the number of cover times (the
number of test cases) increases. For example, the accuracy of
models generated based on decision coverage increases from
50% to 100%, 85.71% to 100%, 66.67% to 100% in
Triangle, NextDate, and Vending Machine problems
as the number of test cases increase, respectively. (2)
Statement coverage has the fast performance to reach 100%
accuracy. It only takes a total of 278 test cases to reach 100%
in the three examples. Decision coverage and unreduced
decision coverage need 472 and 524 test cases to reach 100%
accuracy, respectively.

Note that the accuracy is not always consistent with the
number of test cases. For example, in NextDate, the
accuracy of the decision tree generated from decision coverage
drops from 94.64% to 89.29% when the number of test cases
increases from 56 to 84. The decrease in accuracy is caused by

the existence of non-representative training data. The non-
representative training data is treated as incorrectly classified
data. For example, a new test case is added for the training
data, the new case either follows the existing model or splits a
tree node to form a new path. However, if the information
gain, i.e., the criteria for splitting a tree node, calculated from
C4.5 alogrithm is less than the splitting threshold, the training
data will fail to split tree nodes unless more similar training
data will be added. In this case, the newly added test cases fail
to be classified into the appropriate groups, and hence, it
decreases the accuracy of the decision tree model. In addition,
the more predicates derived from Jimple code, the more cover
times/test inputs needed to reach 100% accuracy. For
example, on average, Triangle and NextDate have 8 and
19 predicates respectively. It only takes 6, 3, and 2 cover
times to reach 100% accuracy, respectively, for Triangle
problems, in terms of statement, decision, and unreduced
decision coverage. On the contrary, it takes ten cover times to
reach 100% accuracy for NextDate.

Table 14: Model accuracy (in percentage) in terms of coverage criteria and cover times

Cover Times
Statement Decision UnReduced Decision

Accuracy
(%)

of
Tests

Accuracy
(%)

of
Tests

Accuracy
(%)

of
Tests

Triangle
1 50.00 4 50.00 8 68.75 16
2 50.00 8 87.50 16 100.00 32
3 66.67 12 100.00 24 x x
4 75.00 16 x x x x
5 90.00 20 x x x x
6 100.00 24 x x x x

Next Date
1 80.00 10 85.71 28 86.84 38
2 95.00 20 94.64 56 88.16 76
3 93.33 30 89.29 84 95.61 114
4 95.00 40 98.21 112 97.37 152
5 96.00 50 95.00 140 97.90 190
6 96.67 60 96.43 168 98.25 228
7 98.57 70 96.43 196 99.62 266
8 97.50 80 98.67 224 99.34 304
9 98.89 90 99.20 252 99.70 342
10 100.00 100 100.00 280 100.00 340

Vending Machine
1 72.72 22 66.67 24 94.74 76
2 90.91 44 87.50 48 100.00 152
3 84.85 66 94.44 72 x x
4 88.64 88 91.67 96 x x
5 92.73 110 95.00 120 x x
6 96.97 132 98.61 144 x x
7 100.00 154 100.00 168 x x

Total Tests for Reaching 100% Accuracy
278 472 524

Note: Accuracy is omitted (marked as “x”) after reaching 100%

IJCA, Vol. 23, No. 3, Sept. 2016 153

6.3 Fault Detection Using Decision Trees

Traditionally, fault detection capability refers to the
percentage of the mutants killed by the given tests. Mutants
are software faults introduced by programmers due to small
syntactic errors. For example, the expression a && b is
incorrectly written as a || b. A mutant is said to be killed
if the actual result of a test is different from its expected result.
In our approach, a mismatch is caused by either the fault in a
mutant or the incorrectly generated decision tree. We will
discuss these two scenarios separately. The process for
analyzing the fault detection capability of our approach is as
follows:

 Select fault types and mutation operators for the subject
programs,

 Create mutants by inserting one fault at a time,
 Build a decision tree with 100% accuracy by applying our

approach using the faulty version of the UUT,
 Use the rest of test inputs as validation data and decision

trees to find mismatches, and
 Examine mismatches.

Our empirical study chose six common mutation operators
[35] including arithmetic operator replacement, arithmetic
operator insertion, relational operator replacement, etc. They
are shown in Table 15.

Table 15: Selected mutation types for empirical study
Mutation Operator Examples

Category I
D Type Original Replaced

Arithmetic
Operations

1 Arithmetic Operator
Replacement

a + b a - b

2 Arithmetic Operator Insertion b + c -b + c
Relations 3 Relational Operator

Replacement
a != b a == b

Conditions 4 Conditional Operator
Replacement

(a==b) &&
(b==c)

(a==b) ||
(b==c)

Constants 5 Constant Value Modification s = a s = b
Return Values 6 Return Value Modification return s return s’

Table 16: The number of Tests to find the first mismatch using decision tree generated by different
coverage

Mutation
ID

of
Mutants

of Tests
Executed

Oracle Results
Mutants

Discovered
Faults in
Models

S D U S D U S D U
Triangle Problem

1 3 4 4 4 3 3 3 0 0 0
2 4 16 16 16 3 3 3 1 1 1
3 3 5 5 5 3 3 3 0 0 0
4 1 6 6 6 1 1 1 0 0 0
5 3 6 6 6 3 3 3 0 0 0
6 3 4 4 4 3 3 3 0 0 0

Next Date Problem
1 3 13 15 15 2 3 3 1 0 0
2 6 27 37 37 4 6 6 2 0 0
3 4 22 19 24 4 3 4 0 1 0
4 3 26 18 27 3 2 3 0 1 0
5 2 6 6 6 2 2 2 0 0 0

Vending Machine
2 3 30 30 30 3 3 3 0 0 0
3 4 45 45 45 4 4 4 0 0 0
5 4 39 39 39 4 4 4 0 0 0
6 4 41 41 41 4 4 4 0 0 0

Total 50 886 142 8
* S: Statement Coverage D: Decision Coverage U: Unreduce Decision Coverage

154 IJCA, Vol. 23, No. 3, Sept. 2016

The results are shown in Table 16. It records the number of
test cases needed to find the first mismatch using the decision
trees generated by statement coverage, decision coverage, and
unreduced coverage. In Table 16 our experiments are grouped
based on mutation operators. For example, we have created
four mutants of mutation operator 2 and implanted each of
them into the Triangle program one at a time. To detect
mismatches between the actual and expected results caused by
these mutants, 16 validation test inputs are used for each
coverage, statement coverage (S), decision coverage (D), and
unreduced decision coverage (U). There are two types of
oracle results shown in the table due to the causes of
mismatches: the number of mutants discovered and the number
of faults in the model. The mismatches caused by mutants
planted in the source code are counted as the number mutants
discovered. The mismatches caused by the incorrect decision
tree models are counted as the number of faults in models.
After examining the four mismatches, we found that three of
them are caused by the mutants and the remaining mismatch is
caused by the incorrect decision tree. Consider executing a
test case with the input <2, 2, 7> using a faulty version of
the Triangle program that results in “NotATriangle”.
The corresponding output in the decision tree is
“Isosceles”. It implies the mismatch is caused by the
model.

In summary, a total of 886 test cases is executed to exercise
150 mutants (50 mutants for S, D, and U, respectively) of the
Triangle, NextDate, and Vending Machine
programs. 142 out of 150 (94.67%) mutants are killed. The
remaining eight mismatches are due to the incorrect decision
tree models. Note that the fault detection capabilities with
respect to the three coverage criteria of the Triangle
programs are the same, i.e., 94%, because they result in the
same model. The fault detection capabilities in NextDate
are 83%, 89%, and 100% for statement coverage, decision
coverage, and unreduced decision coverage, respectively. In
addition, the fault detection capabilities with respect to all
three coverage criteria of the Vending Machine program
are 100% because the input domains of the program are binary
numbers and thus these test cases generated with respect to
these three coverage criteria covers all possible scenarios.
Specifically, there are a total of 32 possible inputs with five
binary parameters. For example, the Vending Machine
only takes 50 cents or a one dollar bill, and the dispense button
either has being pushed or not being pushed. The model
generated using unreduced decision coverage has the best fault
detection capability (i.e., 98%=49/50).

6.4 Using Decision Trees as Test Oracle in Practice

Using decision trees as test oracle is a reasonable approach
for testing purpose based on the following facts:

 The control structure is a key element of any program
languages.

 Control structure uses predicates to control executing

flow.
 A decision tree is built from a set of predicates and a

training dataset.
 The decision tree model represents the knowledge of the

control structure of UUT.

In practice, building the decision tree model and using the
model to detect faults in UUT is an iterative process. The
following guidelines can be used to detect faults in UUT and
inaccurate decision tree models.

 Step 1: Choosing a UUT contains a number of predicates
to build a decision tree model. A program without control
structure does not fit into the proposed approach due to
lacking of attributes for building the decision tree model.

 Step 2: Generate test input automatically based on test
coverage, i.e., the decision coverage.

 Step 3: Build a decision tree based on the proposed
approach. Do not use any pruning mechanisms as we
expect the decision tree can be validated by all training
and validation data. If the accuracy of the model is not
reaching 100%, developers need to check which training
data causes the mismatch. This may be caused by either
incorrect expected results determined by developers
manually or the faults in UUT. Otherwise, developers
need to repeat step 2 to improve the accuracy of the model
by generating more training datasets. The process ends
when all generated datasets fit the decision tree model
with 100% accuracy.

Four tasks determine the efficiency of the proposed
approach: 1) the time to generate test inputs, 2) the time for
preparing training data to build the decision tree model, 3) the
time spent to construct the decision tree model, 4) the time for
checking test oracle, and 5) the time for regenerating/fixing
models. All tasks except task 2 can be automated and
therefore are insignificant for the whole process. Task 2 is
determined by the number of test inputs which needs multiples
of the time for finding their expected results. Assume that the
efforts developers devoted to finding the expected result with
each given input is the same, the efficiency of the proposed
approach is determined by the number of the test inputs
generated in terms of testing coverage. Figure 8describes the
efficiency of the approach in terms of testing coverage. The x-
axis represents the percentage of accuracy and the y-axis
represents the efforts made for generating decision models.
The figure indicates:

 Overall, approximately four times of efforts are needed to
increase the accuracy from 90% to 100% comparing from
0% to 90%.

 More attributes used for building decision tree models, the
more efforts needed to build the models to reach 100%
accuracy. The figure shows that NextDate program
with 19 attributes needs twice and 10 times efforts than
Vending Machine (10 attributes) and Triangle (8

IJCA, Vol. 23, No. 3, Sept. 2016 155

Figure 1: Efficiency of Approach in Terms of Coverage and
the Number of Attributes

attributes), respectively.
 Unreduced decision coverage has the best fault

detectability based on our previous empirical study;
however, more efforts are needed to generate the decision
tree models for test oracle.

6.3 Threats to Validity

Several factors can jeopardize the internal and external
validity of the empirical study. First, the subject programs are

all small in term of lines of code. The main reason is that the
proposed approach focuses on unit testing. Although in
principle, it can be applied to the unit-testing of individual
methods of large object-oriented programs, complex
interactions between methods in real-world software need to be
considered. Second, the currently proposed approach deals
with basic data types, such as integer, char, Boolean, and
string, but not general object types. Dealing with general
object types would require a major improvement to the
proposed approach. Third, the proposed approach depends on
the decision tree technique, which may not be suitable for all
programs. Finally, the evaluation of fault detection capability
is based on the mutants created by six mutation operators.
They do not necessarily cover all possible bugs in real-world
software.

7 Related Work

Various search-based techniques have been applied to
automated generation of test inputs. Existing research falls
into two categories: (a) the local optimal solution that is
optimal within a neighboring set of solutions and (b) the global
optimal solution that produces either maximal or minimal.
Typical metaheuristic search algorithms using local optimized
solutions are Hill Climbing (HC) and Simulating Annealing
(SA) [28]. Both algorithms are similar, however, SA allows
for less restricted movement around the search space. As both
HC and SA are local search approaches, their performance to
generate desired test inputs is usually lower than global
optimal approach, e.g., genetic algorithm (GA) [15, 37, 43].
Harman et al. [29] conducted a theoretical and empirical study,
comparing random search (RS), HC and GA on a number of
test projects. The study showed the evolutionary algorithms
are suitable in many situations when it comes to the generation
of input test data for structural testing, whereas in some cases
simpler search techniques perform surprisingly well, and are
able to surpass evolutionary algorithms. Alternative Variable
Method (AVM) is mentioned by Korel [18] and is another
algorithm based on local search. Arcuri [3] analyzed the
runtime of three search algorithms (RS, HC and AVM) on the
test data generation; the empirical study proves AVM has the
best time performance among three algorithms. Recently,
Fraser and Arcuri [12] have proposed a new GA-based
approach, named whole test suite generation, for test data
generation by evolving all the test cases in a test suite at the
same time, and the fitness function considers all the testing
goals simultaneously. Global optimization is difficult for
metaheuristic search algorithms as these algorithms do not take
structure of code into consideration. In contrast, global
optimization analyzes static or dynamic of UUT source code to
understand the data relationships globally to improve the
search performance. Gotlieb et al. [4] transformed a procedure
into a constraint system by using Static Single Assignment
form and control dependencies. Their approach analyzes
global constraints and thus the reduction of the number of
trials required for the generation of test data. McMinn et al.
[30] have proposed a static dependence analysis derived from

156 IJCA, Vol. 23, No. 3, Sept. 2016

program slicing that can be used to support search space
reduction. Korel [18-19] has applied dynamic data-flow
analysis to determine those input variables responsible for the
undesirable program behavior, significantly increasing the
speed of the search process. The data-flow analysis is based
on data define-use or last define-use relations. Note that many
approaches use symbolic evaluation [13, 34, 45] to derive test
data, however, they require complex algebraic manipulation.
Different from these approaches, the rule-based testing data
generation in this paper is a hybrid approach that utilizes
metaheuristic RBA to replace fitness functions and takes the
advantage of static analysis of bytecode to compute global
optimized test inputs. It is based on the internal structure and
actual execution of the UUT. In addition, utilizing RBA for
testing data generation aligns with the process of mining test
oracle as RBA provides data search guidelines based on
predicates and the same predicates will be used for mining test
oracle.

Mining behavioral models from test cases has gained much
attention in recent years. Existing research falls into two
categories: (a) detecting invariants over data values or event
sequences, and (b) generating state transition models from
execution traces. Techniques for detecting invariants over data
values or sequences extract specifications in the forms of pre-
conditions and post-conditions [9, 11] and algebraic
axioms[14]. Values assigned to variables at specific program
points can provide important information to understand and
analyze system executions. Daikon [9] is an implementation
of dynamic detection of likely invariants. It runs a program,
observes the values that the program computes, and then
reports properties that were true over the observed executions.
Hankel et al. [14] probe Java classes by invoking them on
dynamically generated tests and capture the information
observed during their execution as algebraic axioms.
Algebraic specifications relate the meaning of sequences of
code operations, such as pop(push(x,stack))= stack.
Although it discovers many useful axioms when applied to
container classes, the tool is not complete or correct from a
formal perspective. Techniques for generating state transition
models of execution traces focus on extracting finite-state
machines (FSMs) and extended FSMs with parameters. They
generalize the observed executions by merging states that
exhibit similar behavior. Most existing approaches are based
on the kTail algorithm [6] or its variants. kTail merges states
based on the similarity of the next k invocations in the trace.
GK-tail [26] generates extended FSMs from positive
invocation sequences and uses Daikon to infer from values the
constraints on state transitions. Walkinshaw and Bogdanov
[42] and Lo et al. [24] augment the inference of FSMs with a
steering mechanism based on temporal properties. Different
from the above work, our approach generates test inputs from
Java bytecode and builds a decision tree from a subset of test
inputs, and derives test oracles for the remaining or new test
inputs. Last et al. [22] used info-fuzzy networks to represent
the discovered input-output relations, where rules are learned
by computing the weight of each node in the networks.
Statistical attributes comparison [27] and support vector

machines [44] have also been used to classify data, analyze
data, and recognize patterns. Statistical attributes comparison
check the statistical properties of inputs and outputs, such as
statistical mean, variance, etc. The test oracle is to verify
property consistency of the expected and actual results. The
method of support vector machines can approximate the
function from inputs to outputs by computing the maximum-
margin hyperplane that divides training points. Different from
the above work, our approach builds a decision tree from the
test inputs automatically generated from Java bytecode using
coverage criteria.

Several studies have been conducted to create different
models explicitly as test oracles for fault detection. Lo et al.
[23] mines a set of discriminative features capturing repetitive
series of events from program execution traces. These features
are then used to train a classifier to detect failures. Similarly,
Milea et al. [31] have proposed a mining approach to build a
normal behavior model as a test oracle to monitor malicious
behavior for windows. The model of normal behavior is based
on a rich set of discriminators such as minimal infrequent and
maximal frequent iterative patterns of system calls, and
relative entropy between distributions of system calls.
Bowring et al. [7] models program executions as Markov
models, and a clustering method for Markov models that
aggregates multiple program executions into effective behavior
classifiers. Different from these approaches, [36] Pacheco and
Ernst build an operational model from observations of the
software running properly. The operation model includes
object invariants and properties. The object invariants are the
conditions that hold on entry and exit of all public methods.
Our approach is the complement of theirs, which generates and
classifies inputs based on the internal structure of the UUT.
Briand [8] has proposed the use of machine learning
techniques - including decision trees - for the test oracle
problem. The major difference between our approach and his
are twofold: first, the information used for building decision
tree models is different. Briand indicates that without some
additional guidance, using only the test case input and output
values is insufficient to build models. The decision tree model
he has proposed is constructed from abstract test cases or
software requirements. We construct the decision tree models
from auto-generated test inputs and relying on the structural of
UUT, i.e., predicates. Second, the decision tree models
represent different knowledge. Briand’s decision tree models
represent failure conditions. Our models represent all the
behavior of the training dataset. The models need to be
verified when a validation input does not follow the rules in
the model. Recent studies on mining behavioral models [5, 21,
25] have discovered valuable insight of how the model relates
to the underlying system, which provide solid foundation for
mining test oracle.

8 Conclusions

We have presented an approach to mining test oracles of test
inputs that are automatically generated from Java bytecode.
Our empirical study indicates that fewer test cases are needed

IJCA, Vol. 23, No. 3, Sept. 2016 157

for building decision trees when statement coverage is used to
generate test inputs, while the same fault detection capability
can be achieved. Using the mined test oracles, 94.67%
mutants are killed by the generated test inputs. The model
generated using unreduced decision coverage has the best fault
detection capability (i.e., 98%).

Our current work uses decision trees to represent the system
behaviors. Decision tree is closely related to rule induction
[39]. Each path from the root to a leaf can be transformed into
a rule. The rule can be constructed simply by conjoining the
tests along the path to form the antecedent part. The leaf of the
tree is the inductive value. For example, one of the paths in
the figure (inside Table 3) can be transformed into the rule:
“For a given input <a, b, c> to test a triangle, if a equals b
and b equals c, then the type of the triangle is Equilateral
(Type 1)”. Thus, our approach is effective for rule-based
systems. Currently, our study used only small programs with
integer variables. Our future work will investigate the
scalability of our approach and deal with complex data types.
Another plan is to utilize ASM [10] for test inputs generation
and test oracle mining due to its high performance and
popularity. ASM is a very small and very fast Java bytecode
manipulation framework supported by Open Solutions
Alliance.

References

[1] W. Afzal, T. Richard, and F. Robert, “A Systematic
Review of Search-Based Testing for Non-Functional
System Properties,” Information and Software
Technology, 51(6):957-976, 2009.

[2] S. Ali, L. Briand, H. Hemmati, and R. Panesar-
Walawege, “A Systematic Review of the Application and
Empirical Investigation of Search-Based Test-Case
Generation,” IEEE Transactions on Software
Engineering, 36(6):742-762, 2010.

[3] A. Arcuri, “Full Theoretical Runtime Analysis of
Alternating Variable Method on the Triangle
Classification Problem,” Search Based Software
Engineering, 2009 1st International Symposium, 2009.

[4] G. Arnaud, B. Bernard, and R. Michel, “Automatic Test
Data Generation Using Constraint Solving Techniques,”
ACM SIGSOFT Software Engineering Notes, 23(2):53-
62, 1998.

[5] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst,
and A. Krishnamurthy, “Unifying FSM-Inference
Algorithms through Declarative Specification,” 35th
International Conference on Software Engineering, San
Francisco, CA, 2013.

[6] A. W. Biermann and J. A. Feldman, “On the Synthesis of
Finite State Machines from Samples of their Behavior,”
IEEE Transactions on Computer, 21:592-597, 1972.

[7] J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active
Learning for Automatic Classification of Software
Behavior,” International Symposium on Software Testing
and Analysis, Boston, Massachusetts, 2004.

[8] L. C. Briand, “Novel Applications of Machine Learning

in Software Testing,” 8th International Conference on
Quality Software, Oxford, UK, 2008.

[9] J. Cockrell, M. D. Ernst and W. G. Griswold,
“Dynamically Discovering Likely Program Invariants to
Support Program Evolution,” IEEE Trans. on Software
Engineering, 27(2):99-123, 2001.

[10] O. Consortium, “ASM,” [Online]. Available:
http://asm.ow2.org/. [Accessed 23-08-2013].

[11] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C.
Pacheco, M. S. Tschantz, and C. Xiao, “The Daikon
System for Dynamic Detection of Likely Invariants,”
Science of Computer Programming, 69(1-3):35-45, 2007.

[12] G. Fraser and A. Arcuri, “Whole Test Suite Generation,”
IEEE Transactions on Software Engineering, 39(2):276-
291, 2013.

[13] M. Harman, A. I. Baars, Y. Hassoun, K. Lakhotia, P.
McMinn, P. Tonella, and T. E. J. Vos, “Symbolic Search-
Based Testing,” The 26th IEEE/ACM International
Conference on Automated Software Engineering,
Lawrence, KS, 2011.

[14] J. Henkel, C. Reichenbach, and A. Diwan, “Discovering
Documentation for Java Container Classes,” IEEE Trans.
on Software Engineering, 33(8):526-543, 2007.

[15] J. Holland, Adaptation in Natural and Artificial Systems,
Ann Arbor, University of Michigan Press, 1975.

[16] “How Would You Test a Vending Machine?,” 1-12-2011,
[Online]: Available: http://www.softwaretestingques
tions.net/category/testing-in-the-wild/. [Accessed 24-1-
2013].

[17] P. C. Jorgensen, Software Testing: A Craftman’s
Approach, 3rd Ed., Auerbach Publications, 2008.

[18] B. Korel, “Automated Software Test Data Generation,”
IEEE Transactions on Software Engineering, 16:870-
879, 1990.

[19] B. Korel, “Automated Test Data Generation for
Programs with Procedures,” ACM SIGSOFT
International Symposium on Software Testing and
Analysis, New York, NY, USA, 1996.

[20] S. Koushik, D. Marinov, and G. Agha, “CUTE: A
Concolic Unit Testing Engine for C,” 10th European
Software Engineering Conf. held jointly with 13th ACM
SIGSOFT Int. Symposium on Foundations of Software
Engineering, Lisbon, Portugal, 2005.

[21] S. Kumar, S.-C. Khoo, A. Roychoudhury, and D. Lo,
“Inferring Class Level Specifications for Distributed
Systems,” 34th International Conference on Software
Engineering, Zurich, Switzerland, 2012.

[22] M. Last, M. Friedman, and A. Kandel, “Using Data
Mining for Automated Software Testing,” International
Journal of Software Engineering, 14(4):369-393, 2004.

[23] D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun,
“Classification of Software Behaviors for Failure
Detection: A Discriminative Pattern Mining Approach,”
15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Paris, France,
2009.

[24] D. Lo, L. Mariani and M. Pezzè, “Automatic Steering of

158 IJCA, Vol. 23, No. 3, Sept. 2016

Behavioral Model Inference,” The 7th Joint Meeting of
the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of
Software EngineeringAmsterdam, The Netherland, pp.
345-354, 2009.

[25] D. Lo, L. Mariani and M. Santoro, “Learning Extended
FSA from Software: An Empirical Assessment,” Journal
of Systems and Software, 85(9):2063-2076, 2012.

[26] D. Lorenzoli, L. Mariani, and M. Pezzè, “Automatic
Generation of Software Behavioral Models,” The 30th
International Conference on Software Engineering,
Leipzig, pp. 501-510, 2008.

[27] J. Mayer and R. Guderlei, “Test Oracles Using Statistical
Methods,” Proc. of the First Int’l Workshop on Software,
Springer, pp. 179-189, 2004.

[28] P. McMinn, “Search-Based Software Test Data
Generation: A Survey,” Software Testing, Verification
and Reliability, 14(2):105-156, 2004.

[29] M. McMinn and P. Harman, “A Theoretical and
Empirical Study of Search-Based Testing: Local, Global,
and Hybrid Search,” IEEE Transactions on Software
Engineering, 36(2):226-247, March-April 2010.

[30] P. McMinn, M. Harman, K. Lakhotia, Y. Hassoun, and J.
Wegene, “Input Domain Reduction through Irrelevant
Variable Removal and Its Effect on Local, Global, and
Hybrid Search-Based Structural Test Data Generation,”
IEEE Transactions on Software Engineering, 38(2):453-
477, 2012.

[31] N. A. Milea, S.-C. Khoo, D. Lo, and C. Pop, “NORT:
Runtime Anomaly-Based Monitoring of Malicious
Behavior for Windows,” Runtime Verification, Lecture
Notes in Computer Science, pp. 115-130, 2012.

[32] B. M. E. Moret, “Decision Trees and Diagrams,”
Computer Survey, 14(4):593-623, December 1982.

[33] L. D. Moura and N. Bjørner, “Z3: An Efficient SMT
Solver,” 14th International Conference on Tools and
Algorithms for the Construction and Analysis of
Systems, Budapest, Hungary, 2008.

[34] J. Offutt, Z. Jin, and J. Pan, “The Dynamic Domain
Reduction Approach to Test Data Generation,” Software-
Practice and Experience, 29(2):167-193, 1999.

[35] A. J. Offutt, A. Lee, G. Rothermel, R. Untch, and C.
Zapf, “An Experimental Determination of Sufficient
Mutation Operators,” ACM Transactions on Software
Engineering Methodology, 5(2):99-118, April 1996.

[36] C. Pacheco and M. D. Ernst, “Eclat: Automatic
Generation and Classification of Test Inputs,” 19th
European conference on Object-Oriented Programming,
Glasgow, UK, 2005.

[37] R. P. Pargas, M. J. Harrold, and R. R. Peck, “Test-Data
Generation Using Genetic Algorithms,” Software
Testing, Verification And Reliability, 9:263-282, 1999.

[38] J. R. Quinlan, C4.5: Programs for Machine Learning,
San Francisco: Morgan Kaufmann Publishers, 1993.

[39] L. Rokach and O. Maimon, “Decision Trees,” The Data
Mining and Knowledge Discovery Handbook, pp. 165-
192, 2005.

[40] N. Tilmann and J. d. Halleux, “Pex — White Box Test
Generation for .Net,” International Conference on Tests
And Proofs, Prato, Italy, 2008.

[41] U. O. Waikato, “Weka 3: Data Mining Software in
Java,” University of Waikato, [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/. [Accessed 10 Jan
2013].

[42] N. Walkinshaw and K. Bogdanov, “Inferring Finite-State
Models with Temporal Constraints,” The 23rd
IEEE/ACM International Conference on Automated
Software Engineering, pp. 248-257, L'Aquila, Italy,
2008.

[43] J. Wegener, H. Sthame, B. F. Jones, and D. E. Eyres,
“Testing Real-Time Systems using Genetic Algorithms,”
Software Quality Journal, 15(3):127-135, 1997.

[44] M. Ye, B. Feng, L. Zhu, and Y. Lin, “Using Wavelet
Support Vector Machines to Generate Expected
Outputs,” 5th IEEE International Conference on
Cognitive Informatics, Beijing, China, 2006.

[45] R. N. Zaeem and K. Sarfraz, “Test Input Generation
Using Dynamic Programming,” 20th International
Symposium on the Foundations of Software Engineering,
Research Triangle Park, NC, 2012.

Weifeng Xu is an Associate Professor
in the Department of Computer Science
at Bowie State University. He received
his B.S. and M.S. degrees in Computer
Science from Southeast Missouri State
University and Towson University at
Maryland, respectively. He also
received his Ph.D. in Software
Engineering from North Dakota
Statement University. His current
research efforts focus on mining

software engineering data, software testing, and software
security. He is a senior member of the IEEE.

Tao Ding received a Bachelor Degree in
Software Engineering from China, and
Master Degree in Computer and
Information Science from Gannon
University, Pennsylvania, US. She is
currently a Ph.D. student in Department
of Information Systems at the University
of Maryland, Baltimore County. Her
research interests include natural
language processing, machine learning

and software engineering.

IJCA, Vol. 23, No. 3, Sept. 2016 159

Dianxiang Xu received the B.S., M.S.,
and Ph.D. degrees in Computer Science
from Nanjing University, China. He is a
Professor of Computer Science at Boise
State University, USA. His prior
teaching and research experience has
included positions at Dakota State
University, North Dakota State
University, Texas A&M University,
Florida International University, and

Nanjing University. His research interests include software
security and safety, software testing, applied formal methods,
and computer forensics. He has published more than 100 peer-
reviewed papers in international journals and conference
proceedings. He is a senior member of the IEEE.

Omar El Ariss received his B.S. and
M.S. degrees in Computer Science from
the Lebanese American University,
Beirut, Lebanon in 2001 and 2005,
respectively. He got his Ph.D. degree
in Computer Science from North
Dakota State University in 2011. He is
currently an Assistant Professor in the
Department of Computer Science at
The Pennsylvania State University-

Capital College. His research interests are in the areas of
software verification & validation, software safety & security,
and natural language processing.

160 IJCA, Vol. 23, No. 3, Sept. 2016

ISCA Copyright© 2016

Predicting Fair Housing Market Value:
A Machine Learning Investigation1

Timothy Oladunni* and Sharad Sharma*

Bowie State University, Bowie, Maryland 20715 USA

Abstract

The real estate market plays a major role in the economy of
most developed nations, particularly the United States, thus a
study of its market value prediction using machine learning
algorithms is very important. This paper describes a two phase
research into the predictability of the fair market value of real
estate properties. The first phase concentrated on building a
predictive real estate listings application software using an
MVC architecture and linear regression. Residential real estate
datasets extracted from Howard County, Maryland were used
for the experiment. Performance evaluation was measured
using r-squared with a performance outcome of 0.92. The
second phase of the study experimented the model with four
different learning algorithms; K-NN, improved neural network,
polynomial regression and linear regression. Experiments were
conducted with datasets of residential real estate listings from
Baltimore and Montgomery counties. Spearman’s rho was used
for the performance comparisons of the algorithms. Neural
network performed consistently better in both counties with a
Spearman’s rho value of 0.836 and 0.739 in Montgomery
County and Baltimore County respectively. Statistical analysis
was done using scatter plot, covariance matrix, correlation
matrix and test of significance. Statistical analysis showed that
the predictive parameters of real estate properties are not the
same in all counties.

Key Words: Real estate, linear regression, neural network,
K-NN, polynomial regression, housing prices prediction,
machine learning, MVC, UML.

1 Introduction

The real estate market is very unstable and complicated at the
moment in the United States. Homeowners are always eager to
know the market value of their properties to enable them make
appropriate and timely decision on when to sell or refinance.
Many buyers of real estate properties always stay on the side line
waiting for ‘buyers’ market’ – a time when they can buy
properties at moderate prices. Property appraisals and real estate

1 Extended paper from proceeding at the ISCA 24th International Con-
ference on Software Engineering and Data Engineering (SEDE 2015),
San Diego, CA, October 12-14, 2015.
* Department of Computer Science. Email: oladunnit0423
@students.bowiestate.edu, ssharma@bowiestate.edu.

agents are obligated by local authority to give professional
advice on the estimated market value of a property at a particular
jurisdiction. Some local governments get most of their income
from the property taxes which are directly related to the value of
properties. Banks and other financial institutions are also
concerned about making prudent financial decision to mortgage
applicants. On the side lines are investors who want to jump on
any ‘good’ deal and make a flip. In fact, almost everyone in the
public is affected by the real estate market.

All key players should be able to have a satisfactory answer to
the question “what is the fair market value of this property?”
Unfortunately, the present Multiple Listing Services (MLS) does
not have a satisfactory answer to this question. Added to the
problem is the fact that most home buyers in the United States
do not request for an appraisal report until they have a ratified
contract. Appraisal report is the estimated value of a property as
determined by a licensed property appraiser. Buyers most of the
time sign a contract on a property they are not sure of its value,
often prices are inflated by real estate agents to the advantage of
their sellers. The public is left to the professional view of
licensed property appraisers, in some cases, they provide a biased
assessment. Therefore, a research into a predictive model for the
market value of properties is very important, crucial and vital to
the economic decisions of buyers, sellers, real estate agents,
property appraisals, financial institutions and the government.
Various approaches have been used to generate prediction,
however, our approach used machine learning. A machine
learning approach to the prediction of market values makes a
machine to learn from training data and predict the value of a
property [7, 42].

With an ever increasing amount of data generated mostly
because of the ubiquitous nature of computers and smart-phone
devices in the world coupled with the availability of internet to
everyone, the World Wide Web (WWW) has provided data in this
decade more than the previous decades. Thus, the world is
overwhelmed, saturated and packed with data more than ever
anticipated. Added to this is the availability of inexpensive disks
and online storage that takes data to a new level. While the
variety, velocity and volume of data is magnanimous and its
contents are complex, yet lying hidden are useful and vital
information for the benefit of the public [22]. This led to the
emergence of a quintessential tool like machine learning that can
sniff through these large piles of data, learn its pattern and
provide invaluable information. Machine learning enables a
computer to ‘learn’, process and provide intelligent information

IJCA, Vol. 23, No. 3, Sept. 2016 161

just as a human being [45]. Therefore, in recent time, the use of
machine learning has been very popular; many industries have
found it very useful, effective and suitable in maintaining a
competitive edge in their decision making.

Wang et al. [36] discussed the application of machine learning
algorithms in building an adaptive control system for bipedal
robot control. Some researchers also argued that machine
learning algorithms have the capability of adapting to the
dynamic behavior of wireless sensor networks (WSNs) [2]. Nair
et al., [29] compared the performance of different learning
algorithms in diagnosing patients with arthritis. The outcome of
the experiment showed that least-square kernel (LSK) had the
highest performance classification. Muneki et al., proposed the
use of belief propagation and linear response approximation
learning algorithms for Boltzmann machines. Numerical
experiments were conducted in validating the proposed scheme
[47]. King et al., argued that machine learning algorithms are
very efficient in selecting power control systems in a network
[21]. Hsu et al., implemented machine learning algorithms in
detecting malicious codes [14]. A bioinspired spike-based
learning algorithm was applied to a liquid-state machine (LSM).
The proposed scheme performed better than the hidden Markov-
model in recognizing isolated words [50]. Gastaldo et al.,
investigated the implementation of machine learning algorithms
on digital hardware [8]. Machine learning algorithms have been
proposed for image resolution on mobile devices [3]. Some
researchers proposed the use of embedded machine learning
algorithms in analyzing medical-sensor signals [24].

Considering the rapid development and success in the
application of machine learning to different aspects of the society,
a vast majority of scientists are of the opinion that machine
learning will surpass human intelligence in the future. They
pointed out that the ability of a machine could be increased
beyond the cognitive reasoning of humans. However, another
school of thought is of the contrary view that since machines are
man-made, the designer is still responsible to stipulate its
capability, usability, robustness and performance; therefore, it is
preposterous, illogical and impossible to expect a machine to
surpass or eclipse the intelligence of its designer in any case or
form. In either side of the aisle, the concession is that in the
nearest future, the performance and capability of a machine will
improve and be capable of competing with human intelligence
[49].

We will discuss related works about house price prediction in
the next section, and predictive software application in section
three. In section four we will discuss the result and analysis, the
implementation of a predictive model will be in section five. A
comparison of four predictive models will be investigated in
section six while section seven will be about our future work. We
will conclude the paper in section eight with necessary remarks.

2 Literature Review and Definitions

2.1 Related Works

The dominant role that real estate plays in a modern economy
has attracted many research works and studies in predicting the

values of real estate properties. Researchers have proposed
different methodologies in predicting, forecasting or estimating
the prices of real estate properties. Some researchers used
statistical tools like Z- score, correlation, regression and standard
deviation while others have used machine learning algorithms
like neural network, linear regression, logistic regression,
Gaussian mixture model and support vector regression among
others.

Unlike other areas of investment, real estate investment risk is
more complex, complicated and volatile with a very high risk
factor. Therefore, a detailed scientific analysis and prediction are
necessary for potential risks to home buyers, sellers and investors.
Li et al, argued that risk analysis and prediction is crucial for
effective risk prevention and management in real estate
investment. The researchers used a support vector machine
(SVM) modeling algorithm approach to investigate and predict
real estate investment risk [26].

Since the housing bubble and its subsequent burst which was
blamed on sub-prime mortgage in the USA, a significant part of
the US public have developed cold feet and lost confidence in
the industry with a continued worry about the risk of investment.
Thus, trading volumes have taken a nose dive, government
budgets that depend on revenues from real estate have been
affected and the equities of homes have disappeared.
Considering the associated risks, banks and other financial
institutions have increased the credit requirements and scrutiny
of potential borrowers. BP neural network has been proposed as
capable of assessing risk in real estate transactions. The
experiments demonstrated that BP neural network was capable
and suitable for a reliable and detailed assessment and
management of real estate risks [40, 46].

Da Ying Li et al proposed the use of support vector regression
(SVR) to predict real estate prices in China. They examined the
application of support vector regression in real estate price
prediction. To achieve a reasonable outcome, five variables were
selected as the input variables and real estate price was used as
the predictive variable. The outcome of the experiment was
based on the mean absolute percentage error (MAPE), mean
absolute error (MAE), and the root squared error RMSE. The
experiment showed that the SVR model performed better than
Back Propagation Neural Network model, therefore he
concluded that SVR based approach seemed to be a better and
more efficient tool to forecast real estate prices [25]. Kang and
Xiang [19] reconstructed a new Z-Score predictive model for
Chinese real estate financial prediction by re-evaluating all
relevant, necessary and sensitive financial indicators. The
researchers argued that the Chinese real estate market is unstable,
volatile and chaotic. These factors according to the researchers
have a direct effect on a long time prediction. Admitting these
short comings, the proposed algorithm was capable of predicting
a “two-years-ahead” risk prediction. With “two-years-ahead”,
according to the researchers, the model can help investors and
buyers to timely avoid risks associated with unexpected financial
crisis, chaos and confusions associated with the Chinese real
estate industries.

A combination of rough set (RS) and support vector machine
(SVM) algorithms approach was proposed to determine a new

162 IJCA, Vol. 23, No. 3, Sept. 2016

way to estimate and predict the value of real estate properties by
applying hedonic price solution [37, 38]. Zheng and Bing
referred to hedonic price model as an algorithm in which several
regression analyses were conducted and analyzed. The idea was
to select a rough set to reduce numbers of variables which helps
to obtain a minimal set of features and a reduced dimension of
the input space of the support vector machine. With a reduced
data as the input space of SVM, the convergence speed and the
predicting capability of the algorithm improved [51].

Some researchers compared the performance of back-
propagation neural network (BPN), fuzzy neural network (FNN)
and hybrid genetic-based SVR (HGA-SVR). The outcome of
their experiment demonstrated that HGA-SVR is the best
algorithm and the feng shui model has a better performance in
BPN, FNN and HGA-SVR [27]. Wu et al combined fuzzy
reasoning technique with neural network to get an algorithm that
has the ability in fuzzy reasoning and learning. According to the
researcher, the combination gave a better and accurate prediction
of the real estate prices than traditional neural network [43].
Dongmei combined genetic algorithm (GA) and BP neural
network and compared the outcome of his experiment with the
traditional methods [5]. The experiment demonstrated the
importance and relevance of an early-warning system as a
necessary and vital condition for a sustainable and stable
development of buying and selling of properties in China. The
experiment suggested that early-warning indicators should be
improved as well as the predictive capability of the real estate
market [48]. Ahmed developed a neural network model to
predict the housing prices in the United States. The goal of the
study was to have an algorithm that could be useful to real estate
investors to make appropriate, timely and prudent financial
decisions in regard to investing in real estate. He used historical
market data sets as the training data; the experiment produced an
error in the range of -2% to +2% [20].

Wedyawati and Lu [39] designed a data warehouse consisting
of real estate properties listings. The experiment was performed
to help prospective buyers and sellers of real estate to determine
property prices. Oracle data warehousing tool kits were used in
the construction of the data warehousing [11]. Data from
Multiple Listing Services (MLS) were extracted into data
warehouse and the researcher designed a star schema with a large
fact table and three dimensional tables. With this set up, the
researcher was able to use a linear regression model to predict
the value of houses in the United States. Wu et al. proposed a
multi-layer feed-forward neural network to determine the market
value of real estate properties. To solve the problem of ‘local
maximum’ associated with the use of the algorithm, the
researcher suggested the use of Levenberg-Marquardt algorithm.
The neural network model used for the study had 3 neurons in
the input layer, 4 neurons in the hidden layer, while the output
layer had 1 neuron [44].

John [18] researched into the dynamic effects of four common
key macroeconomic variables using a nonstructural estimation
on real estate prices and the stock of houses sold at a particular
time. The outcome of his experiment suggested that employment
growth and mortgage rates strongly affects the real estate market.
Lu et al [28] have demonstrated the impact of real estate prices

on resident income in China. The rising price of properties is a
strong factor in increased polarization between the rich and the
poor. Poor homeowners are forced to live in a particular part of
the city while the affluent and rich homeowners are concentrated
in other parts. The study showed that the map of China has been
indirectly influenced by income polarization [10, 32].

The housing market operates in different forms across urban
areas in China. A suggested good approach to analyze this trend
is to apply an improved stock-flow model. The model according
to the researchers is capable of identifying the relationship
between different factors affecting demand and supply in the
housing sector [13, 23]. The researchers performed an
experiment to show that a generalized least square equation can
be used to identify factors affecting housing prices for existing
houses and new construction. The outcome of the experiment
suggested that household income is the strongest factor affecting
housing prices in China. However, another researcher in China
demonstrated the impact of government taxes in controlling who
owns a home. According to the study, government taxes are the
strongest factor that affects the equilibrium price of real estate
properties. The study showed that at 0.4% taxes, prices of real
estate properties dropped by 8% and when the rate was increased
to 0.9% prices dropped by 20% [34]. The outcome of the
experiment suggested that while household income may affect
prices of properties, taxes imposed by the government and local
authorities have a greater impact on who owns a house in China.
An uncontrolled price may result into inflation which may affect
the standard of living of the Chinese population [41].

2.2 Linear Regression

A linear regression algorithm has the capability of estimating,
evaluating and predicting a continuous target variable. The
algorithm is based on the statistical modeling of the relationship
that exists between an explanatory variable X and a response
variable Y. The goal of a linear regression is to find the best
straight line that fits a given dataset. In the simplest form, X
could be a univariate while in a more complex expression, X
could be multivariate. In other words, a linear regression
generates an algebraic formula to estimate or predict where an
observation from a testing dataset falls along an imaginary
straight line through the training data; each explanatory variable
X is evaluated statistically to predict response variable Y [9, 38].
In predicting the value of the response variable Y, there seems to
be an associated predictive error. A linear regression error
reduction is the square difference between the value of the
hypothesis and the actual value of Y; this is normally referred to
as squared error cost function. We can minimize the cost
function using gradient descent. Gradient descent is based on
using calculus to estimate the partial derivative of the cost
function at each iteration to produce a local minimum [10].

2.3 Artificial Neural Network

Artificial neural network has been very useful in analyzing
large data generated as a result of the extensive use of internet
applications by millions of people all over the world. The

IJCA, Vol. 23, No. 3, Sept. 2016 163

learning algorithm was built to resemble the biological neuron
systems of a human brain. Resembling a human brain, an
artificial neural network consists of a complex network of nodes
linked together to process information. Therefore, with a proper
use of ANN, scientists have been able to get a machine that can
process information and mimic the human brain. The simplest
form of artificial neural network is a perceptron which is widely
used to solve classification problems. A perceptron calculates
weighted sum of its inputs x and a bias factor z to get an output
y [1]. Unlike a perceptron, a more complex artificial neural
network consists of several nodes, multiple input features and
activation functions. In between the output and input layers is
the hidden layer. The hidden layer may be multiple layers of
nodes.

2.4 K-NN

The k-NN rule classifies unknown example x based on its
closest or nearest neighbor. In a multidimensional space, a
testing example x, is classified on the class of its k nearest
neighbor [17]. In other words, given an unknown test example
x, the algorithm searches the multidimensional space to find the
pattern k nearest neighbors that are closest to x. For n attributes,
each attribute is represented by a data point, thus a distance
measured of points closest to each testing example is computed.
Neighbors are determined from the training examples of which
correct classification has been known or in case of regression,
labelled. K is a predetermined number of closest or nearest
neighbors of the unknown example x [12].

2.5 Polynomial Regression.

A linear regression assumes that the relationship between the
explanatory variable and the response variable are always linear.
However, there are cases where the relationship is non-linear.
In this particular situation, using linear regression produces
misleading results. Polynomial regression has the capability of
a higher performance in an n-dimensional space. A linear
regression equation is easily transformed to a polynomial
regression by using coefficient terms with a higher degree. This
transformation makes it possible for a polynomial regression
learning algorithm to fit into a curvilinear relationship between
the explanatory and response variables.

3 Predictive Software Application (Phase One)

3.1 Real Estate Software Modeling

We designed a real estate data warehousing star schema and
implemented it using Oracle 11g. Data warehousing was used
for the experiment because it is easy to understand, analyze and
information retrieval is less cumbersome [1]. The schema
comprised of a large fact table with three dimensional tables. All
relevant data from MLS were loaded into the table. There are
four main steps in building a data warehousing: extraction,
transformation, modeling and transport [39]. We extracted our
data from Multiple Listings Services (MLS). MLS is the main
database of real estate properties in the United States. In most

cases, each metropolitan area has its own MLS. The MLS
provides a medium where buyers and sellers of real estate
properties meet through their agents. The data we used for the
experiment was taken from the Washington DC metropolitan
area of the United States. Data obtained were in a flat form
format and stored in a CSV format.

We used Oracle 11g Data warehousing to build a warehouse
called Howard. After extraction, our data went through
transformation stages. In the MLS, each property has status;
active, off market, expired, pending, contract, contract with kick
out, contingent and withdrawn. Part of the transformation
process was to identify all error data, detect duplicates and
separate all relevant data for processing. Data obtained from the
MLS were in CSV, we transformed it to a ‘dat’ file for processing
on Oracle. The ‘dat’ file was loaded to the warehouse using
SQL* Loader utility. Data were loaded to a table called Howard
table, from where we created a large fact table called Real Estate
Fact Table. We created three additional tables; School, Listing
Agent and Listing Broker dimensional tables to store information
about school, listing agents and listing brokers respectively.
Scripting and connection were done using PHP and Apache
respectively. PHP and Apache were suitable because of their
flexibility and compatibility with the Oracle 11g. The software
created offers real estate stakeholders – buyers, sellers, property
appraisals, investors and financial institutions an interactive
portal where they can list and search properties. Unlike the
Multiple Listing Services (MLS), our software is accessible to
all major stakeholders in the real estate business with an added
advantage of verifying values of properties. In other words, real
estate transactions can take place without real estate agents.
(Sellers have the option of listing properties without going
through listing brokers, while buyers and banks can verify values
without requesting for an appraisal).

We used forward engineering in the design and development
of PREMLS; created code from the model. A considerable effort
was put into the design in ensuring that a good model was in
place before we began the implementation. UML modeling was
used in the design and development of the software; this was
crucial in determining all necessary objects. The static structure
(behavior) of the system was represented using class diagrams to
show the class, multiplicity and association. We considered
modeling to consist of developing and building the abstraction of
the system. Use cases were used to determine the elicitation
requirement of PREMLS. Use case was considered as a form of
abstraction used to describe a class of scenarios in building a
software. Each use case was documented with a textual
description. A complete textual use case consists of the name of
the use case, participating actors, entry condition, flow of events,
exit conditions and special condition (if necessary). We used ten
different use case scenarios for the system. Scenarios describe
the use of the system as a series of interactions between different
stakeholders of real estate transactions and PREMLS

Abbott’s technique was used to generate participating objects
in each of the use cases that were described. Abbott’s technique
is based on the principle of producing a textual analysis of a
textual use case based on noun-verb occurrences in the
requirement elicitation. We considered nouns as candidates for

164 IJCA, Vol. 23, No. 3, Sept. 2016

objects/classes, while verbs were considered as candidates for
operations. We used use case diagrams to describe the functional
behavior of the system. Use case diagram is a diagrammatic
expression of the use of the system as seen from the perspective
of different stakeholders. Figure 1 shows one of the ten use case
diagrams used in developing PREMLS. As shown in the
diagram, actors are home-buyer, property appraisal, home-seller
and real estate agent (realtor). Each actor has different levels of
interaction with the system.

PREMLS design was based on the nature of real estate
business in the United States. Non-functional behaviors
considered in building the system include: the capability of the
system to maintain functionality even if the user enters a wrong
input (robustness), the ease with which all stakeholders can use
the system to perform a function (usability) and the ratio of the
expected uptime of the system to the total sum of the expected
up and down time (availability).

The system architectural design was based on model-view-
controller (MVC) architectural style; we considered this as the

solution domain. Figure 2 shows the architectural design of the
system. The model-view-controller architectural style is the
preferred architecture for our system because it has the
advantage of eliminating coupling between the model and
boundary objects. This is very important because changes in the
user interface do not disrupt the knowledge domain. Also MVC
enhances efficiency by increasing coherency among
classes/objects. We considered coherency as a measure of
interdependencies among classes. Added to these advantages is
the fact that MVC is a triangular architectural style [4].

3.2 Data Collection

Using the graphical user interface, we retrieved 135 houses
from the database of all houses that were sold between January
1 and March 15, 2015. Datasets were pruned to only properties
with sold status. We used sold properties because in the real
estate world, properties with status sold must have passed
property appraisal and inspection. This is necessary because

Figure 1: A use case diagram

Figure 2: MVC architectural design of PREMLS.

IJCA, Vol. 23, No. 3, Sept. 2016 165

property showing active listing status or any other status may
not pass property appraisal or inspection, therefore, they do not
represent the true price of the property. Property appraisal is the
fair market value of a property as determined by a government
licensed property value estimators called property appraisers.
Licensed appraisers based their opinion on the comparison of at
least three recently sold properties of the same features closest
to the listed property in the recent time. Basically, licensed ap-
praisers use the average price of other properties to estimate the
value of a given property. Appraisal report often gives little
weight to interior improvement (properties value is a function
of surrounding properties); thus, it is realistic to design a value
predictor that will be close to the appraised value of a property.
Licensed home inspectors on the other hand inspect properties
to document the physical condition of the property prior to a sale.
Property that fails home inspection may disqualify a sale or re-
duces the fair market value of the property. Each of the proper-
ties that we retrieved from PREMLS has a reference number,
closed priced, number of full baths, number of half baths, num-
ber of levels, number of square footage, year built and number
of fireplaces.

3.3 Learning Algorithm

We used linear regression as the predictive learning algorithm.
A linear regression algorithm maps a variable Y (predictive
variable) to a given input variable X (predictor variable) [49].
The algorithm is suitable for our experiment because of the small
sample size of the datasets. The linear regression equation is: Y
= α + βX, where, Y is the fair market price of the property, X
represents other variables (bedrooms, half baths, full baths,
square footage, fireplace, level and year built), α and β are the
intercept term and regression coefficients respectively. We used
a multivariate linear regression for the experiment. While a
single feature may be a good indication of the price of a property;
however, it is not sufficient to produce a fair market value.
Therefore, we preferred an algorithm that uses more than one
single feature. Mathematically, a multiple linear regression [10]
is represented as:

.
(1)

The formula shows that each explanatory variable, x, of our
housing feature has an arbitrary coefficient β. Our goal is to get
a combination of the weights β and the intercept term α that
generates the least error for the y value.

Now,

(2)

Therefore,

(3)

For programming purposes, the matrix of the expression is
represented as:

(4)

Where Y is a column vector of the price of properties
(Predictor), β is the column vector of the coefficient of the
housing data parameter. X represents the explanatory variables
in the datasets (m by n dimensional matrix). The number of our
training example is m, while n is the number of explanatory
variables.

RapidMiner and Scikit-learn (a python programming library)
were used for the experiment. We used RapidMiner to build a
prototype and examine the datasets, while Scikit-learn was used
for the analysis. Building a prototype was necessary so as to
know the viability of the experiment, the spread of the data and
some basic statistical summary of the datasets. The statistical
summary showed that features like number of bedrooms have a
strong relationship with the price of a property, while the number
of levels has a weak relationship. Therefore, we concluded that
the price of a property depends on a multiple of explanatory
variables. Datasets were loaded into Scikit-learn using
pd.read_csv() function. Datasets were divided into two; training
and testing sets; 25% of the data was set to test while 75% was
set to train. The reference property number was used as property
identifier, prices as the response variable and remaining features
were used as the explanatory variables.

We trained the model and evaluated its outcomes on the test
data. Gradient descent was used to find the best fit for the
algorithm.

4 Result and Analysis

As proposed, the predictive model was designed using linear
regression. Linear regression as explained has the capability of
generating α and β, the intercept term and regression coefficients
respectively. The intercept term is the point where the x axis
(explanatory variable) crosses the y axis (response variable). In
predicting the value of a property, using (1, 2, 3 and 4) we
obtained the combination of these terms that best fit our model.
Table 1 shows the weight (co-efficient parameter) of each
explanatory variable and the intercept term. Each feature of the
explanatory variable produced a correspondent weight
(coefficient parameter). We plotted the graph of the prediction
versus the target; estimated price of properties versus the
appraised price (closed price) of the property as listed on the
MLS. Using our testing datasets, the graph shows that most
values produced by our algorithm matched the actual value.
Figure 3 shows a graph comparing our prediction with the target
values. Target values are the actual values of properties on the
Multiple Listing Services (MLS).

166 IJCA, Vol. 23, No. 3, Sept. 2016

Table 1: Weight of each Explanatory Variable

Performance evaluation was done using r-squared score. R-
squared is a performance evaluation value that shows how well
the model fit the target value. We used a combination of residual
sum of squares, mean-squared error, and root mean-squared error
functions to obtain the value of r-squared. R-squared is suitable
because it shows the accuracy of the testing variables to the
prediction of the model. An r-squared of one indicates that the
error in predicting a testing variable is zero, however, this is not
very common in experiments. An r-squared that is more than a
half shows that a greater part of the variance is explained by the
model. Thus, r-squared takes a value between zero and one, in
rare cases it generates a negative number if the model’s
performance is extremely poor [4].

5 Implementation of Real Estate Fair
Market Value Predictor

We integrated the outcome of our experiment into our multiple
listing software and called it Predictive Multiple Listing System.

Unlike the Multiple Listing Service, a user of PREMLS has the
option of estimating the value of a property by simply entering
the features of the property on the ‘predict’ portal of the system.
An interactive portal was created for users to input the features
of a property (number of bedroom, full baths, half baths, levels,
fireplaces and square footage etc.). The sequence diagram of
viewing and predicting a fair market value of a real estate
property is shown in Figure 4. The sequence diagram shows the
dynamic behavior of PREMLS. We represented classes by
columns, arrows represent messages, and the narrow rectangles
represent activations. The source of an arrow shows the
activation that sends a message and lifelines are indicated with
the vertical dashed lines [33]. The figure shows the information
flow of how a home buyer or any other actor can use the system
to view properties and predict fair market values:

1. The home buyer triggers the ViewProperty method in an
instance P of the PropertyInfo object class.

2. P sent a message to the system.
3. User authorization was checked.
4. If authorized, information of properties within a price

range are returned.
5. User triggers PredictProperty().
6. Fair market value returned.
7. If authorization failed, an error message is generated.

6 Comparison Study (Phase Two)

6.1 Problem Description

The second phase of our experiment investigated various

Figure 3: Comparison graph of price prediction versus appraised values

0

200000

400000

600000

800000

1000000

1200000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Pr
ice

Reference number

Prediction Target

Feature Weight
Bedroom 3.79975315e+04
Baths Full 4.23472313e+04
Baths Half 2.93415223e+04

Levels -4.19315566e+04
Fireplaces 6.17806409e+04

Lot square footage 2.34963310e-01
Year Built 2.51348690e+03

Intercept Term -4.70102955e+06

IJCA, Vol. 23, No. 3, Sept. 2016 167

Figure 4: Sequence diagram of predicting a real estate value

factors that affect the predictability of the fair market values of
properties. We used statistical inferences and learning algo-
rithms as tools for the study.

6.2 Datasets

Six hundred and eighteen standard sales single family
properties that were listed and sold between January and March
2015 in Montgomery and Baltimore Counties in the state of
Maryland, United States were extracted, processed and analyzed.
Datasets were collected from the Multiple Listings Services [15].
Information collected from the MLS are reliable, because it is
the official repository of all real estate transactions in most
metropolitan areas of the United States. Also, we built our
model based on the parameters that real estate agents and
appraisers use for a CMA (comparative market analysis) on the
MLS.

6.3 Investigation Setup

Our hypothesis was based on the following:

1. The fair market value of a property is predictable using the
datasets of properties listed on the MLS in a county.

2. The selection of learning algorithms has a considerable
impact on the predictability of the fair market value of
residential properties in the United States.

3. The statistical significance of features in different counties
are not necessarily the same.

Statistical analysis was based on scatter plot, correlation matrix,
covariance matrix and test of significance. Neural network, lin-
ear regression, K-NN and Polynomial regression were used as a
learning algorithm to determine whether to reject or fail to reject
the hypothesis. As shown in Figure 5, our dataset went through
a pre-processing stage to make the data suitable for processing.
The pre-processing stage include; removal of extraneous infor-
mation, normalization, outliers and missing data detection. We
used cross validation to partition the datasets into k subsets of
equal sizes. One k subset was used as the testing dataset while
the remaining k -1 were used for training. Cross validation of
the dataset was done k times. In each validation k subsets of the
dataset was used only once as the training dataset. We used 10
as the value of k.

As indicated above, our learning algorithm comprises of lin-
ear regression, neural network, polynomial regression and KNN.
For the linear regression model, we used the ridge regression
model with Akaike criterion. Akaike criterion relatively

Figure 5: Block diagram of the predictive model

Learning
AlgorithmsDatasets Performance

Evaluation
Pre-

Processing
Cross

Validation

168 IJCA, Vol. 23, No. 3, Sept. 2016

measures the fitness of the model. We used 500 training circles
for the feed forward back propagation neural network algorithm
and 0.3 as the learning rate. Error epsilon was set to 1.0E-5 -
optimization of the model stopped if the training error gets
below this threshold. To avoid over fitting, we used a maximum
degree of 5, minimum coefficient of -100 and a maximum
coefficient of 100 for the polynomial regression model. For the
K-NN model, we set the value of k to 1 so that the testing
datasets were easily assigned to its nearest neighbor. Mixed
Euclidean distance was used to measure the relative distance
between data points. Performance of each model was measured
using Spearman’s rho. Spearman’s rho shows the correlation
between the actual value of the property and its predicted price.

6.4 Experimental Results and Analysis

The purpose of analyzing the experimental result was to
accomplish the following:

1. Confirm (or fail to confirm) the parameters that actually
influence the fair market value of a property.

2. Verify the presumed linear relationship between the
explanatory variables and the response variable (price of a
property).

3. Determine the co-efficient values of the explanatory
variables that best fit the relationship.

4. Compare the statistical significant value of each parameter
in the two counties.

5. Outline the efficiency of different learning algorithms
using Spearman’s rho.

6. Compared the Spearman’s rho value of each learning
algorithm.

6.4.1 Statistical Analysis. As stated above the same sample
size of the population of single residential properties listed on
the MLS in Montgomery and Baltimore counties, USA,
between January and March 2015 were used for the experiment.
We considered the correctness and completeness of datasets as
a necessary measure to reduce error of inductive inferences.
One important research question is “is there a statistical
relationship between the value of a property and the explanatory

variables considered for the study?” If the answer to this ques-
tion is yes, then the next question is “are the relationships the
same in all counties of the United States?” We considered the
two questions using scatter plot, covariance matrix, correlation
matrix and tests of significant of the sample data sets of the two
counties in the study.

6.4.1.1 Scatter Plot. Scatter plots were used to verify
associations between the parameters. A scatter plot reveals if
two variables are linearly or non-linearly related. Outliers are
also clearly identified in scatter plots. Figure 6 shows the scatter
plot of the Prices vs Latitude in Baltimore County. The figure
shows that the relationship between the parameters exhibits a
non-linear shape. A non-linear relationship is an indication that
changes in latitude does not correspond to a change in the price
of property in Baltimore County.

Figure 7 shows the scatter plot of the prices of properties
versus bedrooms in Baltimore County. The figure shows that
while some data are outliers, a large number shows a positive
relationship between prices of properties and number of
bedrooms. Thus, increasing the number of bedrooms may
increase the market value of a property.

6.4.1.2 Covariance Matrix. Statistical association
between the explanatory and response variables in the two
counties were also examined using a covariance matrix. A
covariance matrix takes the difference of two parameters from
their means and multiplies them together. If the product is
positive, the two parameters are said to have a positive
covariance, otherwise a negative covariance or a zero
covariance. Positive covariance indicates that the two
parameters vary in the same direction, while a negative
covariance shows the contrary. For example, in the
Montgomery, our analysis shows that the covariance of
bedrooms and price has a value of 135130.639, it means that
both parameters vary in a positive way. The analysis also shows
that there is a -4698.777 covariance between price and longitude
in the same county. A negative covariance is an indication that
the two parameters exhibit an opposite trajectory. It should be
noted however, that since both parameters are not in the same
scale, a high positive value does not necessarily mean a strong

Figure 6: Baltimore close prices vs latitude

IJCA, Vol. 23, No. 3, Sept. 2016 169

Figure 7: Scatter plot of the prices of properties versus bedrooms in Baltimore County

covariance relation, it just is an indication of association
between parameters. Covariance is an early indication of the
relationship between two attributes. A further test is necessary
to validate the strength of the relationships.

6.4.1.3 Correlation Matrix. We further examined the
datasets and obtained a correlations matrix between the
parameters. Correlation is a measure of the strength or degree
of statistical relationship that exist between two variables [30].
Since attributes were of different sizes it was necessary to
rescale them to the same range, therefore, normalization was
done as one of the preprocessing stages. Datasets were
normalized into a normal distribution with mean set to zero and

variance to 1. A correlation matrix of the variables were
obtained. Table 3 shows the correlation matrix of Baltimore and
Montgomery counties. The table shows that the parameter in
each county have different degrees of association or
relationships. The matrix shows an 11 by 11 matrix because 11
features were considered for the study. Values in each cell
ranges between -1and 1. On the diagonal axis, each cell is 1
because at this point a feature is mapped to itself, while values
at other cells are less than 1. A positive number indicates that
there is a positive correlation between the variable, on the other
hand a negative number shows that there is a negative
relationship. A high positive number is an indication that there
is a strong relationship between the two entities, which may be

Table 3: Correlation matrix of parameters
Pa-

rameter
County Lot Sqft Bedrooms Baths Full Baths

Half
Levels Fireplaces Basement Year Built Close

Price
Latitude Longitude

Lot
Sqft

Montg. 1 0.105 0.200 0.035 -0.053 0.251 -0.014 0.107 0.140 0.219 -0.267
Baltimore. 1 0.056 0.716 -0.109 0.051 0.062 0.018 -0.266 0.048 0.016 -0.067

Bed-
rooms

Montg. 0.105 1 0.620 0.190 0.257 0.230 0.142 0.413 0.443 0.060 -0.163
Baltimore. 0.056 1 0.175 0.361 0.475 0.355 0.322 0.128 0.517 -0.014 0.148

Baths
Full

Montg. 0.200 0.620 1 0.066 0.182 0.373 0.155 0.403 0.615 -0.071 -0.230
Baltimore 0.716 0.175 1 0.017 0.131 0.107 0.100 -0.114 0.173 -0.012 -0.08

Bath
Half

Montg. 0.035 0.190 0.066 1 0.397 0.219 0.165 0.381 0.273 0.057 -0.035
Baltimore. -0.109 0.361 0.017 1 0.397 0.360 0.281 0.183 0.441 0.133 0.094

Levels Montg. -0.053 0.257 0.182 0.397 1 0.117 0.414 0.172 0.285 -0.104 0.010
Baltimore. 0.051 0.475 0.131 0.397 1 0.329 0.643 -0.035 0.382 0.227 0.020

Fire-
places

Montg. 0.251 0.230 0.373 0.219 0.117 1 0.174 0.160 0.455 -0.080 -0.126
Baltimore. 0.062 0.355 0.107 0.360 0.329 1 0.211 -0.144 0.556 -0.020 0.012

Base-
ment

Montg. -0.014 0.142 0.155 0.165 0.414 0.174 1 0.110 0.160 -0.148 0.070
Baltimore. 0.018 0.322 0.100 0.281 0.643 0.211 1 0.142 0.222 0.214 -0.026

Year
Built

Montg. 0.107 0.413 0.403 0.381 0.172 0.160 0.110 1 0.225 0.406 -0.344
Baltimore. -0.266 0.128 -0.114 0.183 -0.035 -0.144 0.142 1 0.138 -0.180 0.123

Close
price

Montg. 0.140 0.443 0.615 0.273 0.285 0.455 0.160 0.225 1 -0.440 -0.151
Baltimore. 0.048 0.517 0.173 0.441 0.382 0.553 0.222 0.138 1 -0.079 0.123

Lati-
tude

Montg. 0.219 0.060 -0.071 0.057 -0.104 -0.080 -0.148 0.406 -0.440 1 -0.432
Baltimore. 0.016 -0014 -0.012 0.133 0.227 -0.020 0.214 -0.180 -0.079 1 -0.118

Longi-
tude

Montg. -0.267 -0.163 -0.230 -0.035 0.010 -0.126 0.070 -0.344 -0.151 -0.432 1
Baltimore -0.067 0.148 -0.080 0.094 0.020 0.012 -0.026 0.123 0.123 -0.118 1

170 IJCA, Vol. 23, No. 3, Sept. 2016

interpreted as a strong correlation; both attributes fall and rise
together. A negative number shows that the increase of one at-
tribute produces a decrease in the other attributes (movement is
in opposite trajectories). While more experiment is still neces-
sary, however the correlation matrix is another indication of the
strength of association between the parameters, a further test is
necessary to validate the relationships.

6.4.2 Test of Significance and Linear Regression. Test for
significance was used to confirm the relationship between the
variables. The research question here is “what is the probability
that the assumed statistical relationships between the
explanatory parameters and the fair market values of properties
are not random chance?” The question was answered by
conducting a t-test for the study. We selected a p-value of 0.05
to conduct the test. A p-value is a probability value that shows
a considerable evidence on whether to reject the null hypothesis.
The null hypothesis in our study stated that a given explanatory
feature does not have effect on the value of a property. A p-
value that is less than 0.05 on a “one-tailed” t-test is considered
significant evidence against the null hypothesis. In other words,
changes in the explanatory feature value are strongly related to
changes in the value of a property. Conversely, a high p-value
(p>0.05) indicates that changes in the explanatory feature value
are not related to changes in the value of a property. Table 4
shows the linear regression and test of significance tables for
Montgomery and Baltimore counties respectively.

Considering the test of significance of both counties, the sta-
tistics shows that while some features are statistically significant
in some counties, they are not significant in other counties. For
example, a high p-value of longitude and latitude in Baltimore
shows that the two features are not statistically significant in de-
signing an accurate model to predict the price of a property.

The table shows that each explanatory variable has different
coefficient values in both counties.

The code column indicates the degree of significance of each
parameter (one star represents minimum and four stars repre-
sents maximum). Coefficient values indicate that a unit change
in a given property parameter, produces an estimated change in
the value of a property, all other parameters being constant. For
example, in Montgomery County, for every additional increase
in the number of bedrooms (independent variable), the value of
a property (dependent variable) increases by an estimated value
of 41329.940, given that all other independent variables are held
constant.

Since the parameters are on different scales, the Standard Co-
efficient column shows the comparison of the weights on a uni-
form scale. It reveals which parameter has the highest influence
in determining the value of a property. The table shows that in
Montgomery County, prices of properties are mostly influenced
by the number of full baths with a standardized coefficient of
0.315. On the other hand, the table also shows that fireplaces
with a standardized weight of 0.392 has the greatest influence
on the value of a property in Baltimore County.

6.4.3 Neural Network. The neural network used for the
experiment had one input layer, one hidden layer and one output
layer. The input layer had twelve nodes (each node represents
one parameter with an additional node for bias), the hidden layer
had seven nodes and a bias node, while the output layer had only
one node. The output of the input layer served as the input to
the hidden layer (nodes in the input layer contributed a weighted
sum to each node of the hidden layer). For example, in
Montgomery County, the bedroom node contributed 0.692
weighted input to node 1of the hidden layer, while basement
node contributed -0.432 of its weighted value to node 5. In

Table 4: Test of significance and linear regression
Parameter County Coeff. Std. Error Std. Coeff. Tolerance t-start p-Value Code

Lot Sqft Mont. 27139.550 12239.213 0.076 0.991 2.217 0.031 **
Balt. N/A N/A N/A N/A N/A N/A

Bedrooms Mont. 41329.940 14899.389 0.116 0.794 2.774 0.006 ***
Balt. 112767.376 23654.386 0.239 0.715 4.767 0.000 ****

Baths
Full

Mont. 112414.466 16503.883 0.315 0.661 6.811 0 ****
Balt. 45287.392 19807.205 0.096 0.986 2.286 0.026 **

Bath Half Mont. 55765.308 13596.485 0.156 0.959 4.101 0.000 ****
Balt. 75152.207 22940.589 0.159 0.771 3.276 0.001 ***

Levels Mont. 25847.826 13527.424 0.073 0.929 1.911 0.068 *
Balt. 64860.334 28663.123 0.138 0.788 2.263 0.028 **

Fireplaces Mont. 60559.255 12759.997 0.170 0.844 4.746 0.000 ****
Balt. 185112.690 22370.044 0.393 0.814 8.275 0 ****

Basement Mont. -25683.903 12538.227 -0.072 0.932 -2.048 0.048 **
Balt. -39941.929 26022.329 -0.085 0.852 -1.535 0.159

Year Built Mont. 39146.742 15586.309 0.110 0.959 2.512 0.014 **
Balt. 68290.883 21633.187 0.145 0.999 3.157 0.002 ***

Latitude Mont. -206675.413 14384.326 -0.580 0.982 -14.368 0 ****
Balt. -3.2952.384 20761.872 -0.070 0.999 -1.587 0.142

Longitude Mont. -78627.878 13129.799 -0.221 1.00 -5.989 0 ****
Balt. 21235.428 19748.557 0.045 0.987 1.075 0.412

Intercept Mont. 633958.266 1134.530 56.936 0 ****
Balt. 457279.324 19117.745 23.919 0 ****

IJCA, Vol. 23, No. 3, Sept. 2016 171

Baltimore County, the bedroom node contributed 0.064
weighted input to node 1of the hidden layer, while basement
node contributed 0.213 of its weighted value to node 5. Table 5
shows the weight activation for the hidden unit of Montgomery
and Baltimore counties.

The output of nodes in the hidden layer contributed a
weighted sum into the final output layer. Errors were propa-
gated backwards in the network. The table shows that the
weights of each of the parameters are different in both counties.

6.4.4 Polynomial Regression. The polynomial regression
unlike a linear regression has a degree that is equal to or greater
than one in the coefficient value. While linear regression is
capable of modeling linear relationships between two variables,
a polynomial regression can model a non-linear relationship.
Table 6 shows the combinations of α and β, the intercept term
and regression coefficients respectively in each county with the
exponential terms that best fit the model.

Each explanatory variable in each county produced a corre-
sponding weight with their exponential terms. The intercept
term is the point where the explanatory variable crosses the re-
sponse variable (fair market value). The table shows that the
weights of each of the parameters are different in both counties.

6.5 Performance Comparison

We compared the performance of each learning algorithm in
Baltimore and Montgomery counties using Spearman’s rho.
Spearman’s rho is a monotonic functional description of the
statistical relationship, association or strength of linkage that
exists between two parameters. Spearman’s rho is suitable to
compare the performance of each learning algorithm because it

shows the degree of association between the target variable
(price of a property as predicted by appraisers) and our predicted
value. A Spearman’s rho value is between -1 and 1. Experi-
mental outcome with a positive Spearman’s rho value is an
indication that the predicted value and its targeted variable has
a positive correlation, while a negative value shows a negative
relationship. In other words, a positive Spearman’s correlation
coefficient shows that both variables (target and predicted)
increases and decreases in the same direction. A higher positive
value means a strong correlation, while a high negative value
shows the two variables trajectories are in extreme opposite.
Spearman’s rho value of zero shows that there is no statistical
relationship between the variables. We obtained the Spearman’s
rho of each learning algorithms in Baltimore and Montgomery
counties. Performances were tabulated and plotted on a bar
chart.

The outcome of our experiment shows that the predicted
outcome of most of the learning algorithms have a strong
association with the appraised price (actual price) of a property
- our target value. Table 7 shows a comparison table of the
learning algorithms. In the table, a 0.826 Spearman’s rho value
in the linear regression model of Montgomery County shows
that the appraised (actual price) and predicted values are 82.6 %
closer to becoming a perfect monotonic function of each other.
On the other hand, a 0.266 performance of the polynomial
regression in the same county is an indication that the predicted
and the appraised values are 26.6 % closer to becoming a perfect
monotonic function of each other. The table also shows that the
performance of the four learning algorithms are better in
Montgomery County than Baltimore County. Polynomial
regression has the worst performance, while neural network has
the best performance in both counties. Figure 8 shows the bar

Table 5: Output of the neural network input layer
Parameter County Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

Bedrooms Montgomery 0.692 -0.745 1.017 -0.395 0.736 0.132 2.929
Baltimore. 0.064 -1.532 0.789 -0.840 0.089 0.112 0.556

Full Bath Montgomery 0.415 -0.605 2.655 2.121 0.355 0.404 -0.45
Baltimore. 0.666 -6.539 0.777 1.492 0.652 0.601 2.151

Baths Half Montgomery 0.438 -0.019 0.515 1.281 0.415 1.056 1.348
Baltimore. 0.957 -1.439 1.076 1.342 1.018 0.112 1.129

Levels Montgomery 0.365 -0.51 -1.434 -0.948 0.304 -0.80 -1.255
Baltimore. 1.031 -1.583 1.196 0.081 1.087 0.885 0.175

Fireplaces Montgomery 0.921 -0.094 -0.425 1.103 0.810 0.571 -1.589
Baltimore. 0.137 -2.624 0.490 0.762 0.176 0.115 -3.366

Basement Montgomery -0.323 -0.056 -0.545 -0.112 -0.432 0.428 0.142
Baltimore. 0.308 -0.448 -1.019 -0.070 0.213 0.337 0.119

Lot Sqft Montgomery 1.433 -2.113 0.263 2.103 1.259 1.097 2.722
Baltimore. 0.585 -0.317 -0.296 0.364 0.523 0.710 0.498

Year Built Montgomery -0.605 1.199 2.294 0.600 -0.347 1.058 -0.316
Baltimore. -1.332 -7.932 -1.325 -1.008 1.339 1.156 0.213

Latitude Montgomery -0.182 2.498 -0.258 -0.020 -0.115 -0.645 -1.421
Baltimore. 0.958 0.314 -1.073 2.485 -0.993 -0.828 -1.868

Longitude Montgomery -0.417 1.038 -0.583 -2.503 -0.440 -0.640 0.559
Baltimore. -0.058 -0.263 -0.293 -0.778 -0.059 -0.111 -0.279

Bias Montgomery -1.093 0.144 -3.905 -1.138 -1.210 -1.676 -2.656
Baltimore. -0.568 0.608 0.304 -1.026 0.625 0.559 -2.148

172 IJCA, Vol. 23, No. 3, Sept. 2016

Table 6: Polynomial regression table chart.

7 Future Work

The outcome of the experiment showed that the design of
PREMLS is successful at predicting the fair market value of real
estate properties. However, our future work includes enlarging
the algorithm to be applicable to condominium properties where
factors such as condominium association fees factored into the
price of a real estate unit. Also, factors such as interest rates,
government policies, fraud, sentiments and media bias may
have significant effect on the real estate market. Any of these
factors or combinations of them may have a substantial effect
on the algorithm.

8 Conclusion.

The first phase of our study examined the capability of a pre-
dictive real estate multiple listing system using MVC architec-
ture with a linear regression. The experiment showed that using
multivariate explanatory variables, we predicted the fair market
value of real estate properties values using linear regression.
Raw data from the Multiple Listing Services (MLS) of real es-
tate agents from the Howard County, Maryland, USA, were used
as training and testing datasets. The accuracy of the algorithm
was measured using r-squared. R-squared was defined as an in-
dication of how well the model fit the target value. The outcome
of the study indicated an r-squared of 0.92. As a prerequisite to

Table 7: Performance comparison table

Figure 8: Learning algorithm performance comparison. Model performed differently in each county

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Mongomery

Baltimore

Performance Comparison Chart

Polynomial Regression K-NN Neural Network Linear Regression

Feature County Weight Exp
Bedrooms Montgomery 53.514 1

Baltimore - 40.640 1
Baths Full Montgomery 100 5

Baltimore 68.919 3
Baths Half Montgomery 55.359 3

Baltimore - 44.177 1
Levels Montgomery 99.995 2

Baltimore 100 5
Fireplaces Montgomery 100 5

Baltimore 51.095 5
Basement Montgomery 89.473 2

Baltimore 100 2
Lot Sqft Montgomery 100 4

Baltimore 99.996 3
Year Built Montgomery -75.722 1

Baltimore -71.153 1
Latitude Montgomery 55.613 5

Baltimore 93.044 4
Longitude Montgomery -35.30 5

Baltimore - 19.768 3
Intercept Term Montgomery 37.318

Baltimore 61.057

Linear Regression Neural Network K-NN Polynomial Regression
Montgomery County 0.826 0.836 0.699 0.266

Baltimore County 0.713 0.739 0.697 0.11

IJCA, Vol. 23, No. 3, Sept. 2016 173

the experiment, we developed a real estate software application
using Oracle 11g warehousing as the knowledge domain. PHP
and Apache were used to create a dynamic interface between the
user and the knowledge domain. We used forward engineering
in the design of PREMLS. Use case scenarios were used for the
requirement elicitation, Abbot technique was used for analyzing
textual use cases. Use case diagrams were used to determine the
functionality of the system. The static structure (behavior) of the
system was represented using class diagrams to show the class,
multiplicity and association. Sequence diagram was used to
illustrate the dynamic behavior of the system.

PREMLS has the capability of delivering a robust, usable,
efficient and dependable real estate software to the public.
Unlike the MLS, our software is accessible to all major
stakeholders in real estate business with an added advantage of
predicting values. In other words, using PREMLS, real estate
transactions can take place without real estate agents. Sellers
have the option of listing properties without going through listing
brokers, while buyers and banks have the privilege of verifying
estimated values without requests for an appraisal.

The second phase of our study investigated different factors
affecting the predictability of the fair market value of a property
in a county. We examined the performance of four different
learning algorithms; neural network, K-NN, linear regression
and polynomial regression. Real estate datasets of properties
from Baltimore and Montgomery counties in the state of
Maryland, United States were processed and analyzed.
Performance comparison of learning algorithms was done using
Spearman’s rho correlation coefficient. Statistical analysis were
conducted with scatter plot, correlation matrix, covariance
matrix and test of significance. The outcome of our investigation
shows that:

1. There exists a strong evidence of statistical relationship
between the explanatory variables of datasets of properties
listed on the Multiple Listing System and the fair market
values of properties.

2. The fair market value of a property is predictable using
datasets of properties listed on the Multiple Listing System.

3. The selection of learning algorithms has a considerable
impact on the predictability of the fair market value of
residential properties.

4. While some features in a real estate dataset are statistically
significant in some counties, they are not significant in
other counties.

Based on the statistical analysis of the result and the
performance of the four learning algorithms in the two counties,
the following are the implications of the study:

1. Different parameters influence the fair market value of
properties in different counties.

2. The weighted values of each explanatory parameter in a
predictive model are not the same in all counties.

3. Some learning algorithms are not suitable for predicting
the fair market values of properties.

Acknowledgement

This work is funded in part by the National Science Founda-
tion grant number HRD-1238784.

References

[1] Bruno Aiazzi, Stefano Baronti, and Luciano Alparone,
“Lossless Image Compression Based on an Enhanced
Fuzzy Regression Prediction,” Image Processing, 1:435-
439, 1999.

[2] Mohammad Abu Alsheikh, Shaowei Lin, Dusit Niyato, and
Hwee-Pink Tan, “Machine Learning in Wireless Sensor
Networks: Algorithms, Strategies, and Applications,”
IEEE Communications Surveys & Tutorials, 16(4):1996-
2018, Fourthquarter, 2014.

[3] Angelos Amanatiadis, Loukas Bampis, and Antonois
Gasteratos, “Accelerating Single-Image Super-Resolution
Polynomial Regression in Mobile Devices,” IEEE
Transactions on Consumer Electronics, 61(1):63-71,
February 2015.

[4] Bernd Bruegge and Allen H. Dutoit, Object-Oriented
Software Engineering using UML, Patterns and Java,”
Third Edition, Pearson Education, Inc., Prentice Hall,
2010.

[5] Han Dongmei, “Application Research of Rough-GA-BP
Method in the Real Estate Early-Warning System,”
International Conference on Electrical and Control
Engineering (ICECE), pp.483-485, 25-27 June 2010.

[6] Herbert A. Edelstein, Introduction to Data Mining and
Knowledge Discovery, Third Edition, Two Crows
Corporation, 1999.

[7] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic
Smyth, and Ramasamy Uthurusamy, Advances in
Knowledge Discovery and Data Mining, MIT Press, 1996.

[8] Paolo Gastaldo, Alessio Leoncini, and Rodolfo Zunino,
“Efficient Digital Implementation of Extreme Learning
Machines for Classification,” IEEE Transactions on
Circuits and Systems II: Express Briefs, 59(8):496-500,
Aug. 2012.

[9] Gavin Hackeling, Mastering Machine Learning with
Scikit-Learn, First Edition, Packt Publishing, 2014.

[10] Peter Harrington, Machine Learning in Action (First
Edition), Manning Publications, 2012.

[11] Lilian Hobbs and Susan Hillson, Oracle 8i Data
Warehousing, Digital Press, 2000.

[12] Markus Hofmann and Ralf Klinkenberg, RapidMiner
Data Mining Use Cases and Business Analytics Applica-
tions, First Edition, CRC Press, 2014.

[13] Yongzhou Hou and Chengdong Yi, “Housing Market
Dynamics in Urban China,” International Conference on
E -Business and E -Government (ICEE), pp. 1-4, 6-8 May
2011.

[14] Yating Hsu and David Lee, “Machine Learning for
Implanted Malicious Code Detection with Incompletely
Specified System Implementations,” 2011 19th IEEE

174 IJCA, Vol. 23, No. 3, Sept. 2016

International Conference on Network Protocols, Vancouver,
BC, pp. 31-36, 2011.

[15] http://www.mris.com/ 2016.
[16] Claudia Imhoff, Nicholas Galemmo, and Jonathan G.

Geiger, Mastering Data Warehouse Design, John Wiley &
Sons, 2003.

[17] Nurlaila Ismail, Mohd H. Rahiman, Mohd N. Tiab, Nor
Azah M. Ali, Mailina Jamil, and Saiful N. Tajuddin, “The
Grading of Agarwood Oil Quality using k-Nearest Neigh-
bor (k-NN),” 2013 IEEE Conference on Systems, Process
& Control (ICSPC), pp. 1-5, 13-15 Dec. 2013.

[18] Baffoe-Bonnie John, “The Dynamic Impact of
Macroeconomic Aggregates on Housing Prices and Stock
of Houses: A National and Regional Analysis,” The
Journal of Real Estate Finance and Economics, 17(2):179-
197, 1998.

[19] Yu-hong Kang and Li Xiang, “Research on Financial
Distress Prediction of China Real Estate Public
Companies Based on Z-Score Model,” International
Conference on Management Science and Engineering
(ICMSE), pp. 1166-1173, 13-15 Sept. 2011.

[20] Ahmed Khalafallah, “Neural Network Based Model for
Predicting Housing Market Performance,” Tsinghua
Science and Technology, 13(51):325-328, Oct. 2008.

[21] James. E. King, Samuel C. E. Jupe and Philip. C. Taylor,
“Network State-Based Algorithm Selection for Power
Flow Management Using Machine Learning,” IEEE
Transactions on Power Systems, 30(5):2657-2664, Sept.
2015.

[22] Willi Klosgen and Jan.M. Zytkow, Handbook of Data
Mining and Knowledge Discovery, Third Edition, Oxford
University Press, 2002.

[23] B. Lawrence, Kenneth Smith, T. Rosen, and George Fallis,
“Recent Developments in Economic Models of Housing
Markets,” Journal of Economic Literature, 26(1):29-64,
1988.

[24] Kyong H. Lee and Naveen Verma, “A Low-Power
Processor with Configurable Embedded Machine-
Learning Accelerators for High-Order and Adaptive
Analysis of Medical-Sensor Signals,” IEEE Journal of
Solid-State Circuits, 48(7):1625-1637, July 2013.

[25] Da-Ying Li, Wei Xu, Hong Zhao, and Rong-qiu Chen, “A
SVR Based Forecasting Approach for Real Estate Price
Prediction,” International Conference on Machine
Learning and Cybernetics, 2:970-974, 12-15 July 2009.

[26] Wanqing Li, Yong Zhao, Wenqing Meng, and Shipeng Xu,
“Study on the Risk Prediction of Real Estate Investment
Whole Process Based on Support Vector Machine,”
Knowledge Discovery and Data Mining, Second
International Workshop, pp. 167-170, 23-25 Jan. 2009.

[27] Zhang Xiao Li, “Using Fuzzy Neural Network in Real
Estate Prices Prediction,” Control Conference, Chinese,
pp. 399-402, June 31-July 26, 2007.

[28] Kang-yin Lu, Jin-xia Zhu, and Man-xue Chen, “An
Empirical Study on the Relationship between Real Estate
Price and Residents’ Income Gap,” International

Conference on Management Science & Engineering
(ICMSE), pp. 1860-1868, 17-19 Aug. 2014.

[29] Sumitra S. Nair, Robert M. French, Davy Laroche, and
Elizabeth Thomas, “The Application of Machine Learning
Algorithms to the Analysis of Electromyographic Patterns
from Arthritic Patients,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 18(2):174-184,
April 2010.

[30] Stephen Pudney and Limin Wang, “Housing Reform in
Urban China: Efficiency Distribution and the Implications
for Social Security,” Economics, 62:141-159, 1995.

[31] Jonathan Schachter and Pierluigi Mancarella, “A Short-
Term Load Forecasting Model for Demand Response
Applications,” 11th International Conference on European
Energy Market (EEM), pp. 1-5, 28-30 May 2014.

[32] You Xue-Shi, Tian Jin-Xin, and Li Jian, “Based on
Multiple Linear Regression Analysis of the
Macroeconomic Factors Affecting Real Estate Prices,”
Information Systems for Crisis Response and
Management (ISCRAM), pp. 41-44, 25-27 Nov. 2011

[33] Ian Sommerville, Software Engineering, Ninth Edition,
Addison-Wesley, 2001.

[34] Shao-rong Sun and Si-rong Ren, “System Dynamic Model
of Housing Price Fluctuations Based on the Impact of Real
Estate Tax Institution and Trading Behavior,” Fifth
International Conference on Business Intelligence and
Financial Engineering (BIFE), pp. 130-134, 18-21 Aug.
2012.

[35] Akhil Wali, “Clojure for Machine Learning, First Edition,
Packt Publishing, 2014.

[36] Shouyi Wang, Wanpracha Chaovalitwongse, and Robert
Babuska, “Machine Learning Algorithms in Bipedal Robot
Control,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews),
42(5):728-743, Sept. 2012.

[37] Ting Wang, Yan-Qing Li, and Shu-Fei Zhao, “Application
of SVM Based on Rough Set in Real Estate Prices
Prediction,” 4th International Conference on Wireless and
Communications, Networking and Mobile Computing, pp.
1-4, 12-14 Oct. 2008.

[38] Ting Wang and Yanqing Li, “Application of SVM Based
on Rough Set in Real Estate Investment Environment
Comprehensive Evaluation,” International Conference on
Risk Management & Engineering Management, pp. 644-
647, 4-6 Nov. 2008.

[39] Wuri Wedyawati and Meiliu Lu, “Mining Real Estate
Listings using Oracle Data Warehousing and Predictive
Regression,” Proceedings of the 2004 IEEE International
Conference on Information Reuse and Integration,
pp.296-301, 8-10 Nov. 2004.

[40] Guo Wei, Cao Meiyan, and Zheng Jianfeng, “Study on
Chinese Banks of Credit Risk Evaluation Models of Real-
Estate Based on the BP-Neural Network Model,” 2009
WRI World Congress on Computer Science and
Information Engineering, 2:288-292, March 31-April 2,
2009.

IJCA, Vol. 23, No. 3, Sept. 2016 175

[41] William Wheaton and Gleb Nechayev, “The 1998-2005
Housing ‘Bubble’ and the Current ‘Correction’: What’s
Different This Time?” Journal of Real Estate Research,
30(1):1-26, 2008.

[42] Ian H. Witten, Eibe Frank, and Mark A. Hall, Data Mining,
Third Edition, Morgan Kaufmann, 2011.

[43] Chih-Hung Wu, Chi-Hua Li, I-Ching Fang, Chin-Chia
Hsu, Wei-Ting Lin, Chia-Hsiang Wu, “Hybrid Genetic-
Based Support Vector Regression with Feng Shui Theory
for Appraising Real Estate Price,” First Asian Conference
on Intelligent Information and Database Systems, pp. 295-
300, 1-3 April 2009.

[44] Chih-Hung Wu, Wei-Han Su, and Ya-Wei Ho, “A Study on
GPS GDOP Approximation Using Support-Vector
Machines,” IEEE Transactions on Instrumentation and
Measurement, 60(1):137-145, Jan. 2011.

[45] Ming Xue and Changjun Zhu, “A Study and Application on
Machine Learning of Artificial Intellligence” International
Joint Conference on Artificial Intelligence, pp. 272-274,
25-26 April 2009.

[46] Zhang Xuefang and Ji Wei, “Study on the Risk Assess-
ment of Real Estate Project Based on BP Neural Network,”
2nd IEEE International Conference on Information and Fi-
nancial Engineering (ICIFE), pp. 535-537, 17-19 Sept.
2010.

[47] Muneki Yasuda and Kazuyuki Tanaka, “Approximate
Learning Algorithm in Boltzmann Machines,” Neural
Computation, 21(11):3130-3178, Nov. 2009.

[48] Liang Yunbin, “Basic Concept of China’s Real Estate
Forecasting and Early Warning System’s Economic
Indicators,” Beijing Real Estate, 11:18-20, 1995.

[49] Byoung-Tak Zhang, “Cognitive Learning and the
Multimodal Memory Game: Toward Human-Level
Machine Learning,” IEEE International Joint Conference
on Neural Networks, (IEEE World Congress on
Computational Intelligence), pp. 3261-3267, 1-8 June
2008.

[50] Yong Zhang, Peng Li, Yingyezhe Jin, and Yoosuck Choe,
“A Digital Liquid State Machine with Biologically Inspired
Learning and Its Application to Speech Recognition,”
IEEE Transactions on Neural Networks and Learning
Systems, 26(11):2635-2649, Nov. 2015.

[51] Li Zheng and Yu Bing, “Impacts of Land Supply Factors
on Housing Price: An Hedonic Price Model on Chengdu,
China,” International Conference on Management Science
and Engineering, pp. 2056-2060, 5-7 Oct. 2006.

Timothy Oladunni is a certified
realtor in the state of Mayland, United
States with more than ten years of
experience. He is presently a doctoral
student in the Department of Computer
Science, Bowie State University,
United States. He has an
undergraduate background in

Electrical Engineering from Yaba College of Technonology,
Lagos, Nigeria and a master’s degree from the department of
Computer Science, Bowie State University. Timothy’s research
interest is in machine learning, artificial intelligence distributed
systems and software engineering.

Sharad Sharma is an Associate
Professor in the Department of
Computer Science at the Bowie State
University. He has received a Ph.D in
Computer Engineering from Wayne
State University, Detroit, MI in 2006,
M.S. from University of Michigan,
Ann Arbor, MI in 2003, and B. Arch
from Birla Institute of Technolgy,

Mesra, India in 1999. Dr. Sharma is the Director of the Virtual
Reality Laboratory at the Bowie State University. His research
focuses on using virtual reality and augmented reality as as tool
for learning, training, and education.

176 IJCA, Vol. 23, No. 3, Sept. 2016

Creating a Probabilistic Model for WordNet

Lubomir Stanchev ∗

California Polytechnic State University
San Luis Obispo, California, 93407, USA

Abstract

We present a probabilistic model for extracting and storing
information from WordNet and the British National Corpus.
We map the data into a directed probabilistic graph that can
be used to compute the conditional probability between a pair
of words from the English language. For example, the graph
can be used to deduce that there is a 10% probability that
someone who is interested in dogs is also interested in the word
“canine”. We propose three ways for computing this probability,
where the best results are achieved when performing multiple
random walks in the graph. Unlike existing approaches that
only process the structured data in WordNet, we process all
available information, including natural language descriptions.
The available evidence is expressed as simple Horn clauses
with probabilities. It is then aggregated using a Markov
Logic Network model to create the probabilistic graph. We
experimentally validate the quality of the data on five different
benchmarks that contain collections of pairs of words and
their semantic similarity as determined by humans. In the
experimental section, we show that our random walk algorithm
with logarithmic distance metric produces higher correlation
with the results of the human judgment on three of the five
benchmarks and better overall average correlation than the
current state-of-the-art algorithms.

Key Words: Semantic similarity, probability-based semantic
similarity and distances, Markov logic network for representing
WordNet data, semantic similarity benchmarks for WordNet.

1 Introduction

Tens of scientists have spent decades to develop WordNet
[22]. This word corpus contains very accurate information about
150,000 word forms from the English language and their senses.
A word form is a word or a short phrase, such as “sports utility
vehicle”. Every word form can have multiple senses and every
sense can be represented by multiple word forms. For example
“a seat for one person” is the most popular sense of the word
“chair”.

The first problem that we will solve in this article is to show
how to map the data from WordNet into a probabilistic graph.

∗Computer Science Department. Email: stanchev@gmail.com.

The graph will contain a node for each word form and each
sense in WordNet. A directed edge between two nodes will be
labeled with the probability that a user who is interested in the
source node would also be interested in the destination node.
For example, based on the definition of the first sense of the
word “chair”, we can create an edge between this sense and
the word “seat”. WordNet also contains information about the
relationships between senses, where this information will also
be used in creating the probabilistic graph.

The second problem that we will address in the article is
how to measure the semantic similarity between two word
forms in the graph. We will show two algorithms that consider
disjoint paths between the two nodes. The first algorithm simply
multiplies the weights of the edges along a path, while the
second algorithm is more sophisticated and uses the Markov
Logic Network (MLN) model [30]. The third algorithm is a
Monte Carlo approximation algorithm that performs random
walks in the graph.

The third and last problem that we will examine is how to
experimentally validate the quality of the data in the graph
and the quality of the semantic similarity algorithm using
multiple benchmarks. As we will show in the next paragraph,
the probabilistic graph has many applications. However, its
usefulness is limited by the quality of the data in the graph.
We will examine five benchmarks that have 201, 28, 65, 65,
and 665 pairs of words, respectively. Each pair of words
was given to multiple people and the average of the semantic
similarity, as determined by their judgment, was recorded. We
will compare the results of our three algorithms to that of 16
algorithms that form the current state-of-the-art in computing
semantic similarity between words. Specifically, we will show
that one of our algorithms produces higher correlation than the
other 16 algorithms on three of the five benchmarks. Moreover,
this algorithm has the highest average correlation over the five
benchmarks.

The probabilistic graph has multiple applications. For
example, in this article and in [43, 46], we focus on computing
the degree of semantic similarity between a pair of word forms.
In [45], we show how a probabilistic graph can be used to
perform semantic search. This means that given a textual
query, we can return documents that contain related words.
For example, if we know that there is a 20% change that a

ISCA Copyright© 2016

IJCA, Vol. 23, No. 3, Sept. 2016 177

user who searches for cats will find documents that contain
the word “pet” relevant, then we can return such documents as
part of the query result. The documents that are returned are
ranked based on the probability of being relevant to the input
query, where the probabilistic graph can help us compute these
probabilities. Lastly, [47] shows how a probabilistic graph can
be used to perform semantic document clustering. For example,
an online store can use the probabilistic graph to cluster the
products that are offered in different categories. Two products
should appear in the same category only when they have textual
descriptions that contain words that are similar based on the
semantic similarity distance that can be computed from the
probabilistic graph.

Note that all the applications of the probabilistic graph rely on
an efficient and precise algorithm for computing the conditional
probability of a word form in the graph being relevant given
that a different word form in the graph is relevant. The semantic
similarity between two nodes can be computed as a function
of the average of the probability of the first word form being
relevant given that the second word form is relevant and the
reverse. Since most of the relationships in the graph are
between senses and not between word forms, we will present
an algorithm that explores all the paths between two word
form nodes in the graph in order to compute the conditional
probability of the second word form being relevant given that
the first word form is relevant.

Converting WordNet in a computer-friendly format is
a daunting task because WordNet contains heterogeneous
data. While there are a plethora of algorithms that process
structured information [15, 37] and textual information [3, 16],
experimental results have shown that processing both types of
information yields the best results (e.g., [44]). The fact that
processing natural language is intrinsically hard for computers
makes the problem even harder. Although significant effort
has been put in automated natural language processing (e.g.,
[9, 10, 25]), current approaches fall short of understanding
the precise meaning of human text. In fact, the questions of
whether computers will ever become as proficient as humans
in understanding natural language text is an open problem.
Lastly, note that the problem of computing the conditional
probability of a word form in the graph being relevant given
that a different word form in the graph is relevant is not trivial.
As [46] shows, we can use the MLN model to compute the
conditional probability along a single path. However, when
there are multiple interweaving paths between the two nodes,
exact computation of the conditional probability becomes
computationally intractable.

To the best of our knowledge, our previous research in the
area [46, 43, 45] is the only study on how structured and
unstructured information from WordNet can be combined to
capture the semantic relationship between word forms in a
probabilistic model. Other approaches that extract information
from WordNet (e.g., [18, 15, 37]) only consider the structured
information in WordNet. However, we believe it is beneficial
to capture all the information in WordNet, including the natural

language text descriptions for the definition and example use
of senses. Most existing research does not consider this
information because natural language text is intrinsically hard
to process.

The algorithm for creating the probabilistic graph first
examines WordNet and creates a node for each word form and
each sense. The label of a word form node is the word form and
the label of a sense node is the definition of the sense. Next, we
represent the relationship between nodes using logical formulas
with weights. Following the MLN approach, the weight of a
formula is equal to the natural logarithm of the odds of the
formula being true. We slightly modify this expression to ensure
that all the weights are positive. Our probability space consists
of a random variable for each node in the graph and a single
predicate called rel (stands for relevant). For example, we can
model the relationship between the main sense of the word chair
(“a seat for one person”) and the first word in the definition of
the sense using the Horn clause rel(aseat f or one person) ⇒
rel(seat). A weight will also be assigned to the formula and
it will be based on how strongly we believe that someone who
is interested in the sense will also be interested in the first non-
noise word in its definition. After all the formulas are created,
we draw edges between each pair of nodes that participate in
a formula. We use the MLN model to aggregate the evidence
about the conditional probability for each of these pairs. The
resulting weight of an edge between two nodes is a normalized
probability value that assures that the sum of the weights of all
the edges that leave each node add up to one.

This article presents three algorithms for computing the
conditional probability that a node is relevant given that a
different node in the graph is relevant. Computing this
probability using the MLN model without approximating the
result is possible, but computationally intractable. Although
[46] shows how to compute this probability along a single
path, we are not aware of a practical algorithm that computes
the probability when there are interweaving paths between the
two nodes. In this article, we introduce a randomized Monte
Carlo algorithm that performs multiple random walks, where the
algorithm contains parameters for tuning the expected accuracy
of the result.

In what follows, in Section 2 we cover related research.
In Section 3, we present an overview of WordNet and our
algorithm for creating the probabilistic graph. The main
contributions of the article are in the next two sections. In
Section 4, we present two existing algorithms and a novel Monte
Carlo algorithm for computing the conditional probability
between two nodes in the probabilistic graph. Section 5 shows
previously unpublished experimental results that test the quality
of the data in the probabilistic graph and the accuracy of
the different algorithms for finding the conditional probability
between two nodes on five different benchmarks. Lastly,
Section 6 summarizes the article and suggests avenues for
further research.

178 IJCA, Vol. 23, No. 3, Sept. 2016

2 Related Research

First, note that this article builds on several previous papers
by the same author. The paper [43] proposes how to build a
similarity graph, where the weights of the edges in the graph
correspond to the degree of directional semantic similarity
between the nodes. However, the weight of the edges are not
probabilities in the strict sense. The paper [46] extends this
working by showing how to use the MLN model to convert the
weights of the edges in the graph to strict probabilities. This
article extends [46] by presenting more detailed introduction
and related research sections. The algorithm for computing
the probabilistic graph is slightly modified. However, the most
important contribution is the new Monte Carlo algorithm for
computing the conditional probability between two nodes in
the probabilistic graph and the new experimental results that
test the quality of the proposed model on five independent
benchmarks and compare the results to 16 algorithms that form
the current state-of-the-art in algorithms that compute semantic
word similarity.

Existing research that applies Bayesian networks to represent
knowledge deals with the uncertain or probabilistic information
in the knowledgebase [26, 23]. Our approach slightly differs
because we do not store the probability that a word form
is relevant given that an adjacent word form in the graph is
unrelated. We only store a single number along every edge (the
conditional probability that the destination concept is relevant
given that the source concept is relevant) and we do not store all
the information that is needed to create the full joint distribution
of the word forms. Our model is more compact and, as we will
show in the experimental section, contains high quality data.

The idea of creating a graph that stores the degree of semantic
similarity between word forms is not new. For example, Simone
Ponzetto and Michael Strube show how to create a graph that
only represents inheritance of words [15, 37]. Specifically, [28]
proposed one of the first models that computes the information
content by counting the number of occurrences of different
words in the WordNet hierarchy. Alternatively, Glen Jeh
and Jennifer Widom show how to approximate the similarity
between words based on information about the structure of the
graph in which they appear [13]. These papers, however, differ
from our approach because we suggest representing available
evidence from all type of sources, including natural language
descriptions. Our approach is also different from the use of a
semantic network [48] because the latter does not assign weights
to the edges of the graph.

In this article, we show a method that uses the probabilistic
graph to measure the semantic similarity between word forms.
However, there are alternative methods to measure the semantic
similarity between word forms. The most notable approach is
the Google approach [6] in which the similarity between two
word forms is measured as a function of the number of Google
results that are returned by each word form individually and the
two word forms combined. Note that there is a second relevant
paper by Google research [20]. The paper explains how input

text can be used to train a two-layer neural network. Once
trained, the neural network can be used to predict what words
will appear together in a text. This differs from our approach
because we are interested in the semantic similarity between
words, where similar words do not necessarily appear in the
same sentence.

Other approaches that rely on data from the Internet include
papers by Danushka Bollegala, Yutaka Matsuo, and Mitsuru
Ishizuka [3] and by Swarnim Kulkami and Doina Caragea [16].
The first paper searches for lexicographical patterns between
the words using a search engine. For example, in order to
compute the similarity between the words “dog” and “cat”,
the system will search the Internet for the phrase “dog is a
cat”, among others. The second paper uses the Internet to
create a concept cloud around each word and then computes
the semantic distance between two words as a function of
the distance between their concept clouds. For example,
the word “feline” is part of the concept cloud for the word
“cat”. Although these approaches produce good measurement
of semantic similarity, they have their limitations. First, they do
not make use of structured information, such as the hyponym
(i.e., is-a) relationship in WordNet. Second, they do not provide
evidence about the strength of the relationship between the two
word forms that are compared. In contrast, our approach can
show the paths in the probabilistic graph between the two word
forms, which serves as evidence that supports the similarity
score.

Since the early 1990s, research on LSA (stands for latent
semantic analysis) has been carried out [7]. The approach has
the advantage of not relying on external information. Instead,
it considers the closeness of word forms in text documents as
proof of their semantic similarity. For example, LSA can be
used to detect words that are synonyms [17]. This differs from
our approach because we do not consider the closeness of the
words in a document. For the most part, we process natural
language text as a bag of terms, where the main exception is
that we consider the order of the words in the definition of a
WordNet sense when we create the logical formulas. The reason
is that we assume that the first words in the definition of a sense
are more important. The other difference is that our algorithm
can extract overlapping terms from a text source. Although the
LSA approach has its applications, we believe that using a high-
quality word corpus, such as WordNet, is beneficial. Note as
well that the LSA approach cannot be directly used to process
structured knowledge.

Research from information retrieval is also relevant to
creating and using the probabilistic graph. For example, if the
word “ice” appears multiple times in the definition of one of the
senses of the word “hockey”, then this provides evidence about
the relationship between the two words. Our approach uses a
model that is similar to TF-IDF [14] (stands for term frequency
– inverse document frequency) to compute the strength of the
relationship. In the TF-IDF model, if the word “ice” appears two
times in the definition of one of the senses of the word “hockey”,
then the term frequency can be computed as two. This number

IJCA, Vol. 23, No. 3, Sept. 2016 179

is multiplied by a number that is inversely proportional to how
often the word “ice” appears in the definition of other senses.
For example, if most senses contain the word “ice” as part of
their definition, then the fact that one of the senses of the word
“hockey” contains this word in its definition is inconsequential.
Conversely, if the word “ice” appears only in the definition of a
few senses, then the fact that the definition of one of the senses
of the word “hockey” contains the word “ice” in its definition is
statically meaningful.

Note that a plethora of research effort has recently focused
on using a description language, such as the ontology web
language (OWL) [51], to describe resources. A semantic query
language, such as SPARQL [39] (a recursive acronym that
stands for SPARQL Protocol and RDF Query Language), can
be used to search for relevant items. This research differs
from our approach to semantic search in [45] because it does
not provide ranking of the query result. At the same time,
a SPARQL query returns exactly the resources that fulfill the
query description. Alternatively, [45] returns resources that are
related to the input query in ranked order. There is no need to
describe the resources using a mathematical language, there is
no need to phrase the query using a mathematical language, and
the system is much more scalable (OWL knowledgebases are
usually applied only to a limited knowledge domain because
query answering over them is intrinsically computationally
expensive.) Lastly, there are papers that consider a hybrid
approach for information retrieval using both an ontology and
keyword matching. For example, [32] examines how queries
can be expanded based on the information from an OWL
knowledgebase. Alternatively, [49] proposes a ranking function
that depends on the length of the logical derivation of the result,
where the assumption is that shorter derivations will produce
more relevant documents. Unfortunately, these approaches are
only useful in the presence of an ontology and research on
automatic annotation of resources with OWL descriptions is still
in its early stages of development.

There has also been research in the area of combining a subset
of OWL called RDF [27] (stands for Resource Description
Framework) with information retrieval approaches, such as
BM25F [31] (a version of the TF-IDF approach). For example,
[2] shows how to use natural language to query RDF stores.
Note that this is a keywords-matching search approach and it
does not take into account that the same query can be phrased
differently using different words and terms. There have also
been several papers that explore how to rank the result of queries
over RDF data. For example, [5] uses the TF-IDF algorithm to
rank the result of an RDF query.

Lastly, note that the probabilistic graph can be applied to the
problem of query expansion in natural language search systems
[38]. For example, a user may search for “Mediterranean
Restaurants”. A smart search engine needs to expand the search
query and also search for Egyptian, Moroccan, Syrian, and
Turkish restaurants, among others. This expansion is based on
the knowledge in the probabilistic graph.

3 Building the Probabilistic Graph

3.1 About WordNet

WordNet [22] gives us information about the words in the
English language. In our study, we use WordNet 3.0, which
contains approximately 150,000 different words. WordNet also
contains phrases, such as “sports utility vehicle”. WordNet uses
the term word form to refer to both the words and the phrases
in the corpus. Note that the meaning of a word form is not
precise. For example, the word “spring” can mean the season
after winter, a metal elastic device, or the natural flow of ground
water, among others. This is the reason why WordNet uses the
concept of a sense. For example, earlier in this paragraph we
cited three different senses of the word “spring”. Every word
form has one or more senses and every sense is represented by
one or more word forms. A human can usually determine which
of the many senses a word form represents by the context in
which the word form is used.

WordNet contains a plethora of information about word forms
and senses. For example, it contains the definition and example
use of each sense. Consider the word “chair”. One of its senses
has the definition: “a seat for one person, with a support for the
back” and the example use: “he put his coat over the back of
the chair and sat down”. Two other senses of the word have the
definitions: “the position of a professor” and “the officer who
presides at the meetings of an organization”. We will process
these textual descriptions to extract evidence about the strength
of the relationship between the initial word forms and the word
forms that appear in the definition and example use of their
senses. Note that WordNet also provides information about the
frequency of use of each sense. This represents the popularity of
the sense in the English language relative to the popularity of the
other senses of the word form. For example, the first sense of the
word “chair” (a seat for one person, with a support for the back)
is given a frequency of 35, the second sense (the position of a
professor) is given frequency of just two, while the third sense
(the officer who presides at the meetings of an organization) is
given a frequency of one.

WordNet also contains information about the relationship
between senses. The senses in WordNet are divided into
four categories: nouns, verbs, adjectives, and adverbs. For
example, WordNet stores information about the hypernym
and hyponym relationships between nouns. The hypernym
relationship corresponds to the “kind-of” relationship. For
example, “canine” in a hypernym of “dog”. The hyponym
relationship is the reverse. For example, “dog” is a hyponym
of “canine”. WordNet also provides information about the
meronym and holonym relationships between noun senses. The
meronym relationship corresponds to the “part-of” relationship.
Note that WordNet provides three types of meronyms: part,
member, and substance. The three types of meronyms can be
explained with the following examples: a “tire” is part of a
“car”, a “car” is a member of “traffic jam”, and a “wheel” is
made from “rubber”, respectively. The holonym relationship
is the reverse of the meronym relationship. For example,

180 IJCA, Vol. 23, No. 3, Sept. 2016

“building” is a holonym of “window”. For verbs, WordNet
defines the hypernym and troponym relationships. X is a
hypernym of Y if performing X is one way of performing Y.
For example, “to perceive” is a hypernym of “to listen”. The
verb Y is a troponym of the verb X if the activity Y is doing
X in some manner. For example, “to lisp” is a troponym
of “to talk”. Lastly, WordNet defines the related to and
similar to relationships between adjective senses, which are self
explanatory. We will use all this structured information from
WordNet as evidence about the degree of conditional probability
between senses.

3.2 The Probabilistic Model

We create a random variable for each sense and each word
form in WordNet. We will refer to a random variable by its
label, where the label of a word form variable is the word form
and the label of a sense variable is the definition of the sense. In
order to avoid ambiguity, we convert all labels to lower case. In
this model, each random variable will have a string label and no
two random variables will have the same label.

We add a single predicate to the model. The name of the
predicate is rel and it tells us if a word form or sense is relevant
in the current world. Our model contains only logical formulas
that are Horn clauses of the form: rel(X)⇒ rel(Y). We will
add a weight to each logical formula, where the weight will be
computed using the following expression.

w(rel(X)⇒ rel(Y)) = ln(
P+(Y |X)

1−P+(Y |X)
) (1)

Following the MLN model [30], the weight of a logical
formula is equal to the natural logarithm of the odds of the
formula being true, that is ln(p

1−p). However, this will allow
formulas with negative weights, which is undesirable. When
aggregating evidence, a MLN works by interpreting formulas
with positive weights as positive reinforcement and formulas
with negative weights as evidence why the formula does not
hold. By making all weights positive, we ensure that all the
formulas will have a positive contribution to the aggregated
conditional probability between two concepts. Note that when
we say that there is a 10% probability that the word “table” is
relevant given that the word “chair” is relevant, we want this
evidence to increase the conditional probability of the word
“table” being relevant given the word “chair” is relevant. We
make the weights positive by performing a linear transformation
of the probability to the range [0.5,1]. Specifically, we define
P+ as follows.

P+(Y |X) = 0.5+
Pe(Y |X)

2
(2)

We use Pe(Y |X) to denote our confidence of the formula
being true and refer to this value as the evidence probability.
For example, if we know that the evidence probability is 0.10
(i.e., we are 0.10 confident that someone who is interested in
the word “chair” will also be interested in the word “table”),

then P+(table|chair) = 0.55 and the weight of the formula will
be calculated as ln(0.55/0.45) = 0.2.

Note that the same formula can appear multiple times in our
knowledgebase, but possibly with different weights. At the end
of this section, we will show how we can apply the MLN model
to aggregate multiple evidence about the conditional probability
between two concepts. Before that, we describe an algorithm
that models WordNet as a set of Horn clauses with weights.
Note that, for the most part, we will only describe how to
compute the evidence probability, where the weight of each
formula can be computed using Equations 1 and 2.

3.3 Processing the Senses

We first show how to create logical formulas that show the
relationship between a word form and all its senses. Consider
the word chair and its three meanings: “a seat for one person”,
“the position of a professor” and “the officer who presides at
meetings”. Suppose that WordNet gives a frequency of 35, 2,
and 1, respectively, for the three senses. We will then crate the
following formulas and probabilities.

rel(chair)⇒ rel(aseat for oneperson),(35/38)
rel(chair)⇒ rel(thepositionof aprofessor),(2/38)
rel(chair)⇒ rel(theofficer whopresidesat meetings),(1/38)

Note that the word “chair” has three meanings. Based on
the frequencies that we are given, the evidence probabilities for
the three relationships are 35/38, 2/38, and 1/38, respectively.
Note that for each formula, we put the evidence probability in
parentheses. We can then compute the weight of the formula
using Equations 1 and 2. When we assign an actual weight to a
formula, we omit the parenthesis around the number. In general,
we will compute the evidence probability as the frequency of the
sense divided by the sum of the frequencies of all the senses for
the word form. Here is the general formula, where {sensei}n

i=1
are all the senses of the word form.

rel(word form)⇒ rel(senseof theword form),

(
frequency(sense)

n
∑
i

frequency(sensei)
) (3)

In our example, we will also add the following formulas and
weights. Since there are no parentheses, the expressions show
weights and not evidence probabilities.

rel(aseat for oneperson)⇒ rel(chair),10
rel(thepositionof aprofessor)⇒ rel(chair),10
rel(theofficer whopresidesat meetings)⇒ rel(chair),10

In general, we always add a formula with weight 10 between
a sense and all the word forms that it represents. The general
formula is shown next.

rel(senseof aword form)⇒ rel(word form),10 (4)

IJCA, Vol. 23, No. 3, Sept. 2016 181

The reason for this formula is that we have a very high degree
of confidence that if a sense is relevant, then so are all the word
forms that represent the sense. A weight of 10 corresponds to
evidence probability of above 99.99%. Note that in a MLN
we cannot assign an evidence probability of one to a formula
because this translates to a weight that is equal to infinity.

3.4 Processing the Definitions of the Senses

We next show how to model the relationship between a sense
and the non-noise word forms in its definition. Note that our
algorithm uses a list of about one hundred noise words, such as
“who”, “where”, “at”, “about” and so on. Consider the second
sense of the word “chair”: “the position of a professor”. The
noise words: “the”, “of”, and “a” will be ignored. We will
therefore be left with two words: “position” and “professor”.
As a result, we will create the following formulas.

rel(thepositionof aprofeesor)⇒ rel(position), (0.6)
rel(thepositionof aprofeesor)⇒ rel(professor), (0.48)

The formulas represent the connection between a sense and
the non-noise words in its definition. We assume that the first
words in the definition of a sense are far more important than
the later words. We will therefore multiply the probability
by coef = 1.0 for the first non-noise word form and keep
decreasing this coefficient by 0.2 for each sequential word form
until the value of the coefficient reaches 0.2. We compute the
evidence probability of each formula using the equation coef ∗
minMax(0,0.6,ratio), where the variable ratio is calculated as
the number of times the word form appears in the definition of
the sense divided by the total number of non-noise words in the
sense.

rel(sense)⇒ rel(word formin thesensedefinition),(coef∗

minMax(0,0.6,
frequencyofwordform

sumof frequencies
))

(5)
The third parameter of the minMax function expresses the

importance of the word form in the definition of the sense. For
example, if there are only two word forms in the definition of
the sense, then they are both very important. However, if there
are 20 word forms in the definition of the sense, then each
individual word form is less important. The minMax function
makes the difference between the two cases less extreme. Using
this function, the evidence probability of the formula in the
second case will be only roughly four times smaller than the
evidence probability of the formula in the first case. This is a
common approach when processing text. The importance of a
word in a text decreases as the size of the text increases, but the
importance of the word decreases at a slower rate than the rate
of the growth of the text. We use the minMax function every
time we compare the number of occurrences of a word form
in a document compared to the total number of words in the
document.

The minMax function returns a number that is in most
cases between the first two arguments, where the magnitude
of the number is determined by the third argument. Since the
appearance of a word form in the definition of a sense is not a
reliable source of evidence about the relationship between the
word form and the sense, the value of the second argument is
set to 0.6. The constant 0.6 is related to the probability that
someone who is interested in a sense will also be interested
in one of the word forms in the definition of the sense. Note
that throughout this paper we introduce multiple constants. In
[44], we give experimental evidence why these constants are
meaningful and produce good results.

Formally, the minMax function is defined as follows.

minMax(minValue,maxValue,ratio) =

minValue+(maxValue−minValue)∗ −1
log2(ratio)

Note that when ratio = 0.5, the function returns maxValue. An
unusual case is when the value of the variable ratio is bigger
than 0.5. For example, if ratio = 1, then we have division by
zero and the value for the function is undefined. We handle
this case separately and assign value to the function equal to
1.2 ∗maxValue. This is an extraordinary case when there is a
single non-noise word in the text description and we need to
assign higher evidence probability to the formula.

In our example, ratio = 1
2 and therefore

minMax(0,0.6,ratio) = 0.6. Therefore, the evidence
probability of the first formula is coef ∗ 0.6 = 1 ∗ 0.6 = 0.6
and for the second formula: coef ∗ 0.6 = 0.8 ∗ 0.6 = 0.48.
To summarize, we assume that the probability that a user is
interested in a word form will be higher if : (1) the word form
appears multiple times in the definition of the sense, (2) the
word form is one of only few words in the definition of the
sense, and (3) the word form is one of the first word forms of
the definition of the sense.

3.5 Processing the Example Uses of a Senses

WordNet also includes example uses for each sense. In
this subsection, we show how to represent this information as
formulas with weights. For example, in WordNet the sentence
“he put his coat over the back of the chair and sat down” is
shown as an example use of the first sense of word “chair”.
Since the example use represents evidence that is weaker than
the evidence from the definition of a sense, we will calculate
the evidence probability as minMax(0,0.2,ratio). Here, the
variable ratio is the number of times the word form appears in
the example use divided by the total number of non-noise words
in the example use. The constant 0.2 is related to the probability
that someone who is interested in a sense will be also interested
in one of the word forms in the example use of the sense. The
following formulas are created from the first sense of the word
“chair” and its example use. Note that the noise words have

182 IJCA, Vol. 23, No. 3, Sept. 2016

been omitted.

rel(aseat for oneperson)⇒ rel(put), (0.09)
rel(aseat for oneperson)⇒ rel(coat), (0.09)
rel(aseat for oneperson)⇒ rel(back), (0.09)
rel(aseat for oneperson)⇒ rel(sat), (0.09)
rel(aseat for oneperson)⇒ rel(down), (0.09)

The evidence probability is the same for all edges because all
words appear once in the example use. For all words, the value
of ratio is equal to 1

5 . Unlike the case with the definition of
a sense, the first words in the example use are not considered
to be more important. Therefore, we ignore the order of the
words in the example use of a sense. The precise calculation for
the evidence probability is 0.2 ∗ (−1

log2(0.2)
) = 0.09. The general

formula is shown next.

rel(sense)⇒ rel(word formintheexampleuseo f thesense),

(coef ∗minMax(0,0.2,
frequencyof word forminexampleuse

sumof frequencies
))

(6)

3.6 Processing the Backward Relationships

We also create formulas for the probability that a sense is
relevant given that a word form that appears in its definition is
relevant. The evidence probability of the formula is computed
as minMax(0,0.3,ratio), where the variable ratio is the number
of times the word form appears in the definition of the sense
divided by the total number of occurrences of the word form
in the definition of all senses. The constant 0.3 relates to the
probability that someone who is interested in a word form will
also be interested in one of the senses that have the word form in
their definition. Here, we assume that the backward relationship
is not as strong as the forward relationship. As an example, if
the word “position” occurs as part of the definition of only three
senses and exactly once in each definition, then we will add the
following formula for the second sense of the word “chair”. The
evidence probability is computed as minMax(0,0.3,ratio) =
0.3∗ −1

log2(
1
3)

= 0.19 and the formula is as follows.

rel(position)⇒ rel(thepositionof aprofessor), (0.19)

The general formula is shown next.

rel(aword forminasense)⇒ rel(sense),(minMax(0,0.3,
frequencyof word forminsensedefinition

sumof frequencies
)

(7)
Similarly, we will create a formula that shows the conditional

probability between a word form and a sense that contains the
word form in its example use. The weight of an edge in this
case will be computed as minMax(0,0.1,ratio). Here, the ratio
parameter is the number of times the word form appears in
the example use of the sense divided by the total number of
occurrences in the example uses of all senses. The constant 0.1

relates to the probability that someone who is interested in a
word form will also be interested in one of the senses that have
the word form in their example use. This value is smaller than
the value for the definition of a sense because the words in the
definition of a sense are more closely related to the meaning
of the sense. As an example, if the word “coat” occurs as
part of the example use of only three senses and exactly once
in each sense, then we will add the following formula for the
first sense of the word “chair”. The evidence probability is
computed as minMax(0,0.1, 1

3) = 0.1 ∗ −1
log2(

1
3)

= 0.06. Recall

that the example use of this sense is: “he put his coat over the
back of the chair and sat down”.

rel(coat)⇒ rel(aseat for oneperson), (0.06)

The general formula is shown next.

rel(aword formin theexampleuseof asense)⇒ rel(sense),

minMax(0,0.1,
frequencyof word forminexampleuse

sumof frequencies
)

(8)

3.7 Populating the Frequencies of the Senses

So far, we have shown how to extract information from
textual sources, such as the text for the definition and example
use of a sense. We will next show how structured knowledge,
such as the hyponym (a.k.a. kind-of) relationship between
senses, can be represented as logical formulas. Most existing
approaches [28] explore these relationships by evaluating the
information content of different word forms. Here, we adjust
this approach and focus on the frequency of use of each
word in the English language as described in the University
of Oxford’s British National Corpus. The description of this
corpus, as presented in [4], is: “The British National Corpus is
a 100 million word collection of samples of written and spoken
language from a wide range of sources, designed to represent a
wide cross-section of British English, both spoken and written,
from the late twentieth century.”

Definition 1. Let s be a sense. Let {wf i}n
i=1 be the word forms

for that sense. We will use BNC(wf) to denote the frequency of
the word form in the British National Corpus. Let ps(wf) be the
frequency of use of the sense s of the word form wf , as specified
in WordNet, divided by the sum of the frequencies of use of all
senses of wf (also as defined in WordNet). Then we define the

size of s to be equal to |s|=
n
∑

i=1
(BNC(wf i)∗ ps(wf i)).

The above formula approximates the size of a sense by
looking at all the word forms that represent the sense and
figuring out how much each word form contributes to the sense.
The size of a sense approximates its popularity. For example,
according to WordNet the word “president” has six different
senses with frequencies: 14, 5, 5, 3, 3, and 1. Let us refer
to the fourth sense: “The officer who presides at the meetings
...” as s. According to Definition 1, ps(president) = 3/31 =

IJCA, Vol. 23, No. 3, Sept. 2016 183

0.096 because the frequency of s is 3 and the sum of all the
frequencies is 31. Since the British National Corpus shows
the frequency of the word “president” as 9781, the contribution
of the word “president” to the size of the sense s is equal to
|s| = BNC(president)∗ ps(president) = 9781∗0.096 = 938.98.
Other word forms that represent the sense s, such as “chairman”,
will also contribute to the size of the sense.

3.8 Processing Structured Knowledge About Nouns

WordNet defines the hyponym (a.k.a. kind-of) relationship
between senses that represent nouns. For example, the most
popular sense of the word “dog” is a hyponym of the most
popular sense of the word “canine”. Consider the first sense
of the word “chair”: “a seat for one person”. WordNet defines
15 hyponyms for this sense, including senses for the words
“armchair” and “wheelchair”. We will add formulas that show
the conditional probability between this first sense of the word
“chair” and each of the hyponyms. Let the probability that
someone who is interested in a sense is also interested in one
of the sub-senses be equal to 0.9. This probability is high
because, for example, someone who is interested in the first
sense of the word “chair” is probably also interested in one of
the chair types. In order to determine the evidence probability
of each formula, we need to compute the size of each sense.
In the British National Corpus, the frequency of “armchair”
is 657 and the frequency of “wheelchair” is 551. Since both
senses are associated with a single word form, we do not need
to consider the frequency of use of each sense. If “armchair”
and “wheelchair” were the only hyponyms of the sense “a seat
for one person”, then we need to add the following formulas.

rel(aseat for oneperson)⇒
rel(chair withsupport oneachside for arms), (0.49)

rel(aseat for oneperson)⇒
rel(amoveablechair mounted onlargewheels), (0.41)

The evidence probabilities were computed as 0.9∗657/1208 =
0.49 and 0.9 ∗ 551/1208 = 0.41. In general, the evidence
probability is computed as 0.9 multiplied by the size of the sense
and divided by the sum of the sizes of all the hyponym senses
of the initial sense.

rel(sense)⇒ rel(hyponymof thesense),

(0.9∗ |hyponymof thesense|
∑

s isahyponymof thesense
|s|

) (9)

The idea is that the conditional probability for “bigger” senses
will be bigger because it is more likely that a bigger sense is
relevant. Note that here we do not apply the minMax function.
The reason is that the function is only relevant when computing
the ratio of the number of occurrences of a word form in text
relative to the size of the text.

We will also create formulas for the hypernym relationship
(the inverse of the hyponym relationship). For example, the first

sense of the word “canine” is a hypernym of the first sense of
the word “dog”. The evidence probability for each formula will
be the same and equal to the constant 0.3. This represents the
probability that someone who is interested in a sense will be
also interested in the hypernym of the sense. For example, if a
user is interested in the sense “wheelchair”, then they may be
also interested in the first sense of the word chair. However, this
probability is not a function of the different hypernyms of the
sense. Next, we show the formula from our example.

rel(chair withsupport oneachside for arms)⇒
rel(aseat for oneperson), (0.3)

The general formula is shown below.

rel(sense)⇒ rel(hypernymof thesense), (0.3) (10)

We next consider the meronym (a.k.a. part-of) relationship
between nouns. Note that we do not make a distinction between
the three types of meronyms (part, member, and substance)
and process them identically. For example, WordNet contains
information that the sense of the word “back”: “a support that
you can lean against ...” and the sense of the word “leg”: “one
of the supports for a piece of furniture” are both meronyms of
the first sense of the word “chair”. In other words, back and
‘legs are building parts of a chair. Part of this information can
be represented using the following equations.

rel(aseat for oneperson)⇒
rel(asupport that youcanleanagainst), (0.3)

rel(aseat for oneperson)⇒
rel(oneof thesupports for apieceof furniture), (0.3)

In general, we compute the evidence probability as 0.6/n,
where n is the number of meronyms of the sense. Here is the
general formula.

rel(sense)⇒ rel(meronymof thesense),

(
0.6

number o f meronymso f thesense
)

(11)

The constant 0.6 represents the probability that a user who is
interested in a sense of a word form is also interested in one of its
meronyms. In our system, this coefficient is set to 0.6 because
the meronym relationship provides weaker evidence than the
hyponym relationship. The reasoning behind the formula is that
the more meronyms a sense has, the less likely it is that we are
interested in a specific meronym.

We also represent the holonym (a.k.a. contains) relationship.
For example, the main sense of the word “building” is a
holonym of the main sense of the word “window”. Similar to
hypernyms, we set the evidence probabilities for the holonym
relationship to a constant. The constant is 0.15 because the
holonym relationship is not as strong as the hypernym relation.
For example, the fact that someone is interested in the first sense
of the word “window” does not translate in strong confidence

184 IJCA, Vol. 23, No. 3, Sept. 2016

that they are also interested in the whole building. For our
running example, we create the following formulas.

rel(asupport that youcanleanagainst)⇒
rel(aseat for oneperson), (0.15)

rel(oneof thesupports for apieceof furniture)⇒
rel(aseat for oneperson), (0.15)

(12)

The general formula is shown next.

rel(sense)⇒ rel(holonymof thesense), (0.15)

3.9 Processing Structured Knowledge About Verbs

We will first represent the troponym (a.k.a. doing in some
manner) relationship for verbs. For example, to lisp is a
troponym of to talk. Suppose that the verb “talk” has only three
troponyms: “lisp”, “orate”, and “converse”. If the sizes of the
main senses of the three verbs are 18, 1, and 95 (as determined
by the formula in Definition 1), respectively, then we will create
the following equations.

rel(anexchangeof ideasviaconversation)⇒
rel(talk witha lisp), (0.14)

rel(anexchangeof ideasviaconversation)⇒
rel(talk pompously), (0.01)

rel(anexchangeof ideasviaconversation)⇒
rel(carryonaconversation)(0.75)

The left side of the formulas contains the first sense of the
word “talk”: “an exchange of ideas via conversation”, while the
right side of the formulas contains the senses for “lisp”, “orate”
and “converse”. The first formula expresses the conditional
probability between the senses for “talk” (an exchange of ideas
via conversation) and “lisp”. The evidence probability for the
formula is equal to 0.9∗ 18

114 = 0.14. The constant 0.9 represents
that there is a 90% chance that if someone is interested in a verb,
then they are also interested in one of its troponyms. We arrive
at the expression 18/114 by dividing the size of the sense by the
sum of the sizes of all the troponym senses. The general formula
is shown next.

rel(sense)⇒ rel(troponymof thesense),

(0.9∗ |sense|
∑

s isatroponymo f thesense
|s||

) (13)

We will also add formulas for the reverse relationship with
evidence probability of 0.3. For example, we will add the
following formula.

rel(talk witha lisp)⇒ rel(anexchangeof ideasvia . . .), (0.3)

This means that if someone is interested in one of the
troponyms, then there is a 30% chance that they are also

interested in the original verb. The general formula is shown
next.

rel(troponymof thesense)⇒ rel(sense), (0.3) (14)

The hyponym and hypernym relationships are defined not
only for nouns, but also for verbs. The two relationships are the
reverse of each other. In other words, if X is a hyponym of Y,
then Y is a hypernym of X. The hypernym relationship for verbs
corresponds to the “one way to” relationship. For example, the
verb “perceive” is the hypernym of the verb “listen” because
one way of perceiving something is by listening. As expected,
the verb “listen” is a hyponym of the verb “perceive”. The first
sense of the word “perceive” is “to become aware of through the
senses”. Suppose that the first senses of the verbs “listen” and
“see” are the only hypernyms of the verb “perceive”.

We will assume that the probability that someone who is
interested in a verb sense is also interested in one of the
hyponym senses is equal to 0.9. This probability is high
because, for example, someone who is interested in perceiving
is probably also interested in one of the ways to perceive. In
order to determine the evidence probabilities of the formulas, we
need to compute the size of each sense. In the British National
Corpus, the frequency of “listen” is 1241 and the frequency of
“see” is 3624. Since both senses are associated with a single
word form, we do not need to consider the frequency of use of
each sense. If “perceive” and “see” were the only hyponyms of
the sense “to become aware of thought and senses”, then we will
create the following formulas.

rel(tobecomeawareof thought and senses)⇒
rel(payattention tosound), (0.23)

rel(tobecomeawareof thought and senses)⇒
rel(percievebysight), (0.67)

The evidence probability for each formula is equal to 0.9
multiplied by the size of the sense and divided by the sum
of the sizes of all the hyponym senses of the initial sense.
For example, the evidence probability of the first formula is
0.9 ∗ 1241/4865 = 0.23 and the evidence probability of the
second formula is 0.9∗3624/4865 = 0.67. The idea behind the
formula is that the conditional probabilities to “bigger” senses
will be bigger because it is more likely that they are relevant.
The general formula is shown next.

rel(sense)⇒ rel(hyponymof thesense),

(0.9∗ |sense|
∑

s isahyponymo f thesense
|s|

) (15)

We will use an evidence probability of 0.3 for the hypernym
(the reverse of the hyponym) relationship. For example, the
main sense of the verb “perceive” is a hypernym of the main
senses of the verbs “listen” and “see”. This information can be

IJCA, Vol. 23, No. 3, Sept. 2016 185

expressed using the following formulas.

rel(payattention tosound)⇒
rel(tobecomeawareof thought and senses), (0.3)

rel(percievebysight)⇒
rel(tobecomeawareof thought and senses), (0.3)

The number 0.3 represents the probability that someone who
is interested in a sense will also be interested in the hypernym
of the sense. For example, if a user is interested in the sense
“see”, then they may be also interested in the first sense of the
word perceive. However, this probability is not a function of the
different hypernyms of the sense. The general formula is shown
next.

rel(sense)⇒ rel(hypernymof thesense), (0.3) (16)

3.10 Processing Structured Knowledge About Adjectives

WordNet defines two relationships for adjectives: related to
and similar to. For example, the first sense of the adjective
“slow” has definition: “not moving quickly”, while the first
sense of the adjective “fast” has the definition: “acting or
moving or capable of acting or moving quickly”. WordNet
specifies that the two senses are related to each other. We will
represent this relationship using the following formulas.

rel(not movingquickly)⇒ rel(actingor movingquickly), (0.6)
rel(actingor movingquickly)⇒ rel(not movingquickly), (0.6)

This represents that there is a 60% probability that someone
who is interested in an adjective is also interested in a “related
to” adjective. This probability is high because the “related to”
relationship represents relatively strong semantic similarity. The
general formula is shown below.

rel(sense)⇒ rel(related tosense), (0.6) (17)

WordNet also defines the similar to relationship between
adjectives. We create formulas with evidence probability of
0.8 for this relationship because the “similar to” relationship
is stronger than the “related to” relationship. In other words,
we believe that there is an 80% probability that someone who
is interested in an adjective is also interested in a “similar to”
adjective. For example, WordNet contains the information that
the sense for the word “frequent”: “coming at short intervals”
and the sense for the word “prevailing”: “most frequent or
common” are similar to each other. We will therefore create
the following formulas.

rel(comingat short intervals)⇒ rel(most frequent . . .), (0.8)
rel(most frequent or common)⇒ rel(comingat . . .), (0.8)

(18)
Note that both the “similar to” and “related to” relationships
are symmetric and therefore the evidence probability for each

formula and its reverse is the same. The general formula is
shown next.

rel(sense)⇒ rel(similar tosense), (0.6) (19)

3.11 Building the Probabilistic Graph

Equations 3-19 from the previous subsections show how to
create Horn clauses from WordNet. Once the formulas are
extracted, they are converted into a probabilistic graph. In order
to do so, first, we create a node for each random variable,
that is, for each word form and each sense. Next, we convert
the evidence probabilities of the formulas to weights using
Equation 1 and 2. Note that there can be several identical
formulas with possibly different weights that are generated.
When this is the case, we will merge all such formulas into a
single formula. The weight of the new formula is equal to the
sum of the weights of the old formulas. For example, consider
the following two formulas.

rel(X)⇒ rel(Y), 2.3
rel(X)⇒ rel(Y), 1.1

(20)

The old formulas will be removed and the following new
formula will be created.

rel(X)⇒ rel(Y), 3.4 (21)

First, note that we are adding the weights of the formulas
and not the probabilities and therefore the evidence probability
of the formula will always stay below 1.0. Second, note that
since the evidence probabilities are always above 0.5, our model
is monotonic (i.e, adding a new formula will always increase
the evidence probability of the final formula). Lastly, note
that adding the weights is consistent with the MLN model.
Specifically, the probability of a world X is computed using the
following formula.

P(X) =
1

total
e
(∑
F

w(F)∗|F(X)|)
(22)

In the formula, total is a normalizing constant that is used
to make sure that all the probabilities over all worlds add up to
one. The sum is over all formulas F in our knowledgebase. The
expression w(F) is used to denote the weight of the formula
F and |F(X)| is equal to one when the formula F is true in
the world X and is equal to 0 otherwise. Obviously, merging
identical formulas by adding up their weights follows the above
formula.

Next, we add an edge between X and Y in the graph for each
logical formula of the following type.

rel(X)⇒ rel(Y), w

186 IJCA, Vol. 23, No. 3, Sept. 2016

The weight of the edge will be converted to a probability and
will be computed using the following formulas.

p =
1

1+ e−w

edgeweight =
2∗ p−1

total

The first formula converts the weight to a probability. The
second formula maps the probability from the interval [0.5,1]
back to the interval [0,1] and divides the result by the sum of
the weights of all edges that leave the source node X . This
guarantees that the sum of the weights of all the edges that leave
a node will be equal to one.

In the probabilistic graph that was constructed, the weight of
each edge is equal to the probability that a user is interested
in the destination concept given that they are interested in the
source concept, where we assume that the user is interested in
only one of the destination concepts.

4 Measuring the Semantic Distance Between Word Forms

We will next show how to compute the semantic similarity
between two arbitrary word form nodes in the graph. Our
algorithm will return a number that is between zero and one.
One will be returned when the two word forms are the same.
Also, note that it is perfectly reasonable for two word forms
to represent completely unrelated concepts and the semantic
similarity between the word forms to be equal to zero. The
semantic distance will be computed as a function of the average
of the probability that the first word form is relevant given the
second word form is relevant and the probability that the second
word form is relevant given the first word form is relevant.

Consider two nodes n1 and nk in the probabilistic graph. We
will show three different ways to compute the probability that
nk is relevant given that n1 is relevant. In Section 5, we will
compare the accuracy of the different approaches.

4.1 Multiplication Approach

A version of this approach was initially published in [43].
Consider a node sequence n1 · · ·nk that forms a directed acyclic
path in the graph. Let Ai be a random variable that represents the
event that ni is relevant for i = 1 to k. From probability theory,
we have the following equation.

P(A2 · · ·Ak|A1) =
P(A1 · · ·Ak)

P(A1)
=

=
P(A1)P(A2|A1)P(A3|A1A2) · · ·P(Ak|A1 · · ·Ak−1)

P(A1)
=

= P(A2|A1)P(A3|A1A2) · · ·P(Ak|A1 · · ·Ak−1)

(23)

Next, we will simplify the formula by assuming some level
of independence. Suppose that the event Ai only depends on the
preceding event Ai−1. This is the same assumptions that is made

in Bayesian networks. Given this assumption, we can rewrite
the equation as follows.

P(A2 · · ·Ak|A1) = P(A2|A1)P(A3|A2) · · ·P(Ak|Ak−1) (24)

The idea of this approach is that if nk is relevant because n1
is relevant and there is an acyclic directed path n1 · · ·nk in the
graph, then the nodes n2, . . . ,nk must also be relevant. Next, we
can use the above formula and compute the probability that nk
is relevant given that n1 is relevant by simply multiplying the
weights of the edges along the path. If there are multiple paths
between n1 and nk in the graph, then we can add the conditional
probability from each path. The result will be a probability
because the weights of the edges are normalized. (Note that
this is not the case in [43].) The formulas for computing the
conditional probability are shown next.

P(Ak|A1) = ∑
Pt is acyclic path from node n1 to node nk

P(Pt) (25)

P(Pt) = ∏
(ni,n j) is an edge in the path Pt

edgeWeight(ni,n j) (26)

The edgeWeight function simply returns the weight of the
edge. Note that the algorithm is not deterministic because
there are different ways to select disjoint paths between two
nodes in the graph. In our experiments we use the depth-first
algorithm that is shown in Figure 1. Before calling the method,
totalDistance is set to zero. After the method is called, the
variable contains the result. When the method is initially called,
distance is equal to one and depth is equal to zero. As the
method is recursively called, the distance decreases and the
depth is incremented by one after every call. In order to find the
probability that nk is relevant given that n1 is relevant, we will
call the method as follows: depthFirst(n1,nk,1,0). The method
starts at n1 and recursively calls itself on all adjacent nodes in
the graph. The recursion terminates when we have reached nk,
we have reached a node that has already been visited, we are on
a path of more than 20 edges, or the value for the conditional
probability for the path has dropped below the threshold of
0.0001.

4.2 Markov Logic Network Approach

A version of this approach was initially published in [46].
This approach is similar to the previous algorithm in the sense
that the conditional probabilities over the different paths are
aggregated. However, this approach uses the MLN approach
to compute the conditional probability along a single path.

Let n1 and nk be two nodes in the probabilistic graph. We will
next describe an efficient way of computing the probability that
nk is relevant given that n1 is relevant using only the evidence
along the path n1 · · ·nk. From probability theory, we have the
following formula.

P(rel(nk)|rel(n1)) =
P(rel(n1)∧ rel(nk))

P(rel(n1))
(27)

IJCA, Vol. 23, No. 3, Sept. 2016 187

Algorithm 1 depthFirst(currentNode, endNode, distance, depth)

if currentNode = endNode then
totalDistance← totalDistance+distance
return

end if
if depth > 20 or distance < 0.0001 or currentNode is visited
then

return
end if
for all neighbors neighbor of currentNode do

depthFirst(neighbor, endNode, distance ∗
edgeWeigth(currentNode, neighbor) , depth+1)

end for

Figure 1: Recursive method for finding disjoint paths between
two nodes and computing the conditional probability

We will next show how to compute the numerator and
denominator of the above expression using the weights of the
edges along the path n1 · · ·nk.

Let f 00(i) be the non-normalized probability from
Equation 22 (i.e., we do not divide by total) that ni and
nk are both irrelevant. Similarly, let f 01(i) be the non-
normalized probability that ni is irrelevant and nk is relevant,
f 10(i) be the non-normalized probability that ni is relevant and
nk is irrelevant, and f 11(i) be the non-normalized probability
that both ni and nk are relevant. In order to understand why we
need these functions, note that Equation 27 can be rewritten as
follows.

P(rel(n1)∧ rel(nk))

P(rel(n1))
=

f 11(1)
f 10(1)+ f 11(1)

(28)

The numerator expresses the non-normalized probability that
both n1 and nk are relevant. The non-normalized probability of
n1 being relevant is computed as f 10(1)+ f 11(1). The reason
is that this formula computes the probability that n1 is relevant
and nk is irrelevant plus the probability that n1 is relevant and
nk is relevant, which is equal to exactly the probability that
n1 is relevant. Lastly, note that the fact that the probabilities
are not-normalized will not affect the result because we divide
a non-normalized probability by a non-normalized probability.
That is, if the probabilities are normalized, then we will divide
both the numerator and the denominator of the expression by
the same constant total from Equation 22 and the result will not
change.

We will compute f 00, f 01, f 10, and f 11 using dynamic
programming. Using MLN theory, we have the following base

case.

f 00(k−1) =
1+ edgeWeight(nk−1,nk)

1− edgeWeight(nk−1,nk)

f 01(k−1) =
1+ edgeWeight(nk−1,nk)

1− edgeWeight(nk−1,nk)

f 10(k−1) = 1

f 11(k−1) =
1+ edgeWeight(nk−1,nk)

1− edgeWeight(nk−1,nk)

(29)

The four values follow from Equation 22 and Equations 1
and 2. Note that we have the following formula and evidence
probability.

rel(nk−1)⇒ rel(nk),(edgeWeight(nk−1,nk))

The weight of the formula can be computed using Equations 1

and 2 as ln(0.5+
edgeWeight(nk−1,nk)

2

1−(0.5+ edgeWeight(nk−1 ,nk)
2)

), which is equal to

ln(1+edgeWeight(nk−1,nk)
1−edgeWeight(nk−1,nk)

). Now, if nk−1 is not relevant and nk is
not relevant, then the formula rel(nk−1)⇒ rel(nk) will be true
and according to Equation 22 the non-normalized probability

for this world will be equal to e
ln(

1+edgeWeight(nk−1 ,nk)
1−edgeWeight(nk−1,nk)

)
=

1+edgeWeight(nk−1,nk)
1−edgeWeight(nk−1,nk)

. However, if nk−1 is relevant and nk is
irrelevant, then the formula will be false and the non-normalized
probability will be equal to e0 = 1.

Next, we present the recursive formulas for computing the
four functions.

f 00(i) = f 00(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)
+

f 10(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)

f 10(i) = f 00(i+1)∗1+ f 10(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)

f 01(i) = f 01(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)
+

f 11(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)

f 11(i) = f 01(i+1)∗1+ f 11(i+1)∗ 1+ edgeWeight(ni,ni+1)

1− edgeWeight(ni,ni+1)
(30)

Let us examine the first formula in detail. In this case, we
want to compute the non-normalized probability of the world
where both ni and nk are irrelevant. We have two sub-cases:
when ni+1 is relevant and when ni+1 is irrelevant. When ni+1 is
relevant, the following formula will be true.

rel(ni)⇒ rel(nn+1),(edgeWeight(ni,ni+1)) (31)

We will therefore add to the probability f 00(i + 1) ∗

e
ln(

1+edgeWeight(ni ,ni+1)
1−edgeWeight(ni ,ni+1)

)
in this case, which is equal to f 00(i+ 1) ∗

1+edgeWeight(ni,ni+1)
1−edgeWeight(ni,ni+1)

. We use the expression f 00(i+ 1) because

188 IJCA, Vol. 23, No. 3, Sept. 2016

we know that both ni+1 and nk are irrelevant in this sub-
case. The second sub-case is when ni+1 is irrelevant. The
above formula will be true again and therefore we add to the
probability the expression f 10(i+1)∗ 1+edgeWeight(ni,ni+1)

1−edgeWeight(ni,ni+1)
.

Next, let us examine the second formula from Equation 30.
In this case, we want to compute the non-normalized probability
of the world where ni is relevant, but nk is irrelevant. We have
two sub-cases: when ni+1 is relevant and when ni+1 is irrelevant.
When ni+1 is irrelevant, Equation 31 does not hold and therefore
will add the probability f 00(i+1)∗ e0. The second sub-case is
when ni+1 is relevant and we will add the probability f 10(i+
1)∗ 1+edgeWeight(ni,ni+1)

1−edgeWeight(ni,ni+1)
because Equation 31 holds. The last two

formulas from Equation 30 can be derived similarly.

Note that our program for computing the f functions uses
dynamic programming instead of recursion and runs in linear
time relative to the size of the path. It first computes the value
for the functions with input k−1 and then it applies the formulas
from Equation 30 with values for i from k−2 up to 1. At the end,
Equation 28 can be applied to find the conditional probability
along the path n1 · · ·nk. If there are multiple paths along n1 and
nk, then the conditional probabilities from the disjoint paths are
aggregated using the algorithm from Figure 1.

4.3 Markov Logic Network Combined with Random Walk

Our experimental section (Section 5) shows that this approach
produces the most accurate results. The drawback of the two
previous approaches is that only disjoint paths between the
nodes that are compared are explored. However, in most
cases there are multiple interweaving paths between the two
nodes and looking at only disjoint paths is not a very accurate
approximation of the conditional probability. Here, we propose
a simple alternative using a random walk. The algorithm from
Figure 2 starts at currentNode and randomly visits 20 nodes in
the search of endNode. If endNode is found, then the algorithm
returns 1. Otherwise, it returns 0. We call this algorithm 10,000
times for the two nodes that we are comparing and aggregate
the result. If we divide the total by 10,000, then we will get the
conditional probability that the second node is relevant given
that the first node is relevant, where the accuracy will be 4
digits after the decimal dot. We chose to look at paths of at
most 20 nodes because we believe that longer paths give very
little evidence about the semantic relationship between the word
forms that the nodes represent.

Note that it is possible for the randomWalk algorithm to reach
a dead end. For example, if we reach a node and there are no
adjacent nodes that are not visited, the algorithm will return
0. This means that the random walk was unable to find the
endNode. Specifically, the algorithm tries 100 times to find an
adjacent node that is not visited and it gives up if it is unable to
find such a node.

Algorithm 2 randomWalk(currentNode, endNode)

for i← 0 to 20 do
if currentNode = endNode then

return 1
end if
repeat

nextNode← getRandomNextNode(currentNode)
until nextNode is not already visited or loop has run for
100 times
if above loop ran 100 times then

return 0
end if
curentNode← nextNode

end for
return 0

Figure 2: The method takes a random walk from currentNode
and it returns 1 if it reaches endNode and 0 otherwise

4.4 Linear and Logarithmic Distance Metrics

Let P(Y |X) denote the result of computing P(rel(Y)|rel(X))
using one of the three algorithms that we presented in the
last three subsections. Next, we present two functions for
measuring semantic similarity between two word forms. The
linear function is shown in Equation 32.

|wf 1,wf 2|lin = min(α,
P(wf 1|wf 2)+P(wf 2|wf 1)

2
)∗ 1

α
(32)

The minimum function is used in order to cap the value of
the similarity function at one. The coefficient α amplifies the
available evidence (α ≤ 1). The experimental section of the
article shows how the value for α is picked. Note that when α

is equal to one, then the function simply takes the average of the
two numbers and caps the result at one.

The second semantic similarity function is inverse
logarithmic, that is, it amplifies the smaller values. It is
shown in Equation 33. The norm function simply multiplies the
result by a constant (i.e., −log2(α)) in order to move the result
value in the range [0,1]. Note that the norm function does not
affect the correlation results. Again, the experimental section of
the article shows how the value for α is picked.

|wf 1,wf 2|log = norm(
−1

log2(min(α, P(wf 1|wf 2)+P(wf 2|wf 1)
2))

)

(33)

IJCA, Vol. 23, No. 3, Sept. 2016 189

5 Experimental Validation

The system consists of two programs: one that creates the
probabilistic graph and one that queries the graph. We used
the Java API for WordNet Searching (JAWS) to connect to
WordNet. The interface was developed by Brett Spell [40]. All
experiments were performed on a laptop with Intel i7 CPU and
16GB of main memory. It takes about three minutes to build
the probabilistic graph and save it to the hard disk. The size
of the graph file is 81MB and it easily fits in main memory. It
takes about 5 seconds to load the graph in main memory. We
will refer to the three algorithms for finding the conditional
probability between two nodes as the Multiplication, MLN,
and MLN+Random Walk. The average time for computing
the similarity distance between two word forms is about 100
milliseconds for the first two algorithms and about 1 second for
the MLN+Random Walk algorithm. It takes about three minutes
to build the initial probabilistic graph.

We evaluated our system on five different benchmarks.
For each benchmark, experiments with human subjects were
conducted and the average human judgment for each pair of
words was recorded. The RG65 data set was created by
Rubenstein and Goodenough and contains 65 pairs of words
([33]). The MC28 dataset contains 28 pairs of words and was
created by Miller and Charles [21]. The Agirre201 dataset
contains 201 pairs of words and was developed by Agirre et
al. [1]. It is a subset of the WordSim-353 dataset that contains
353 pairs or words and was created by Finkelstein et al. [8].
Pierro and Euzenant recently ran a new study on the RG65
dataset and got slightly different results ([24]) – we will refer to
this benchmark as the P&S f ull dataset. Lastly, the SimLex665
dataset contains 665 pairs of words and was introduced by Hill
et al. [12]. This happens to be the largest and most recent word
similarity benchmark in literature.

For each dataset, we computed the Person and Spearman
correlation between the data from the studies and the data
that was produced by our system. The Person correlation is
computed as shown in Equation 34. Note that we have used
X̄ to define the average of the numbers in the vector. We assume
that the two vectors: X = 〈x1, . . . ,xn〉 and Y = 〈y1, . . . ,yn〉 are
the input to the formula.

PearsonCorrelation(X ,Y) =

n
∑

i=1
(xi− X̄)(yi− Ȳ)√

n
∑

i=1
(xi− X̄)2

√
n
∑

i=1
(yi− Ȳ)2

(34)

A notable property of the Pearson correlation is that it is
invariant as regards to any Euclidean operation, such as scaling,
translation, or rotation of the data.

The formula for the Spearman correlation is shown in

Equation 35.

SpearmanCorrelation(X ,Y) = 1−
6

n
∑

i=1
(rank(xi)− rank(yi))

2

n(n2−1)
(35)

The rank(xi) expression returns the position of the number
xi in the sorted version of the list X . A notable property of
the Spearman correlation is that it is rank invariant, that is, a
monotonic transformation would not affect its value.

In Tables 1, 2, and 3 we show the Pearson, Spearman,
and the average of the two correlations, respectively, for our
algorithms. We compare our results to the current state-of-the-
art, which includes 16 algorithms. The correlation data for these
16 algorithms was taken as report by Lastra-Diaz and Garcia-
Serrano in [18].

Note that both our linear and logarithmic similarity metrics
take as input the parameter α (see Equations 32 and 33). Table 4
shows the values for α that were used to create our experimental
results. These values were selected because they produce the
highest Pearson correlation for the RG65 dataset. It turns
out that they are close to optimal (i.e., produce the highest
correlation) for both the Pearson and Spearman correlation on
the other benchmarks as well.

Looking at Table 1, we see that our MLN+RandomWalk
algorithm that uses the logarithmic similarity metric gives us
the highest Pearson correlation on three of the five benchmarks.
More over, this algorithm also gives us the highest value for
the average of the Pearson correlation over the five benchmarks.
These are significant results that demonstrate the high quality
of the data inside the probabilistic graph. It is also worth noting
that the MLN+RandomWalk algorithm produces higher average
Pearson correlation than the MLN algorithm, which in turns
produces higher average correlation than the Multiplication
algorithm. The reason is that the MLN+RandomWalk algorithm
is based on strict probabilistic theory and is able to take into
account the interweaving paths in the graph between the two
nodes that we are comparing. Note as well that the logarithmic
similarity metric produces slightly better results than the linear
case. Specifically, the average over the three algorithms is
0.7513 for the logarithmic similarity metric and 0.7440 for the
linear one.

Next, consider Table 2. Again, the MLN+RandomWalk
algorithm that uses the logarithmic similarity metric produces
Spearman correlation that is higher than the current state-of-
the-art algorithms on three of the five benchmarks. In addition,
the algorithm produces the highest value for the average of the
Spearman correlation over the five benchmarks. Again, the
logarithmic similarity metric produces a little higher correlation:
0.6931 average Spearman correlation for the linear case and
0.6996 average Spearman correlation for the logarithmic case.
Note that the Spearman correlation for the MLN algorithm
is the same for the linear and logarithmic similarity distance
metric. The reason is that α = 0.3 for both algorithms. This
number means that results that are equal to above 0.3 for
both metrics are mapped to 1. In other words, the ranking

190 IJCA, Vol. 23, No. 3, Sept. 2016

Table 1: Pearson correlation on the five different benchmarks (the highest values are in bold)

Algorithm/Data Set RG65 MC28 Agirre201 P&S f ull SimLex665 Average
Resnikic−treebank−add1 [29] 0.8653 0.8809 0.6913 0.9003 0.5955 0.7867
Yuan et al. [52] 0.8675 0.8407 0.7061 0.9082 0.6106 0.7866
Seco et al. [36] 0.8642 0.8557 0.6969 0.9042 0.6048 0.7852
Sanchez et al. [34] 0.8752 0.8595 0.6946 0.9025 0.5941 0.7852
Meng et al. [19] 0.8723 0.8393 0.7039 0.9057 0.6010 0.7844
Harispe et al. [11] 0.8589 0.8575 0.6960 0.9003 0.6056 0.7836
Resnikic−semcorraw−add1 [29] 0.8658 0.8621 0.6955 0.8997 0.5930 0.7832
Sanchez et al.[35] 0.8616 0.8507 0.6973 0.9042 0.5995 0.7827
CondProbCosine [18] 0.8634 0.8562 0.6902 0.9015 0.5964 0.7815
CondProbHypo [18] 0.8658 0.8552 0.6874 0.9015 0.5940 0.7808
CondProbLeaves [18] 0.8635 0.8511 0.6891 0.9008 0.5934 0.7796
CPCorpusic−treebank−add1 [18] 0.8633 0.8678 0.6807 0.8987 0.5863 0.7794
CPCorpusic−semcorraw−add1 [18] 0.8647 0.8504 0.6792 0.8979 0.5843 0.7753
Zhou et al. [53] 0.8589 0.8403 0.6848 0.8905 0.5985 0.7746
CondProbLogistick8 [18] 0.8692 0.8142 0.6809 0.9064 0.5972 0.7736
Hadj Taieb et al. [50] 0.7933 0.6899 0.6490 0.8167 0.4921 0.6570
Multiplication(linear) 0.8690 0.8391 0.6256 0.8993 0.3995 0.7265
Multiplication(log) 0.8536 0.8220 0.5962 0.8996 0.4392 0.7221
MLN (linear) 0.8173 0.8653 0.7115 0.8475 0.4438 0.7371
MLN (log) 0.8160 0.8661 0.7273 0.8382 0.4575 0.7410
MLN +RandomWalk (linear) 0.8874 0.8913 0.7002 0.9152 0.4472 0.7683
MLN +RandomWalk (log) 0.8992 0.9290 0.7105 0.9237 0.4914 0.7908

Table 2: Spearman correlation on the five different benchmarks (the highest values are in bold)

Algorithm/Data Set RG65 MC28 Agirre201 P&S f ull SimLex665 Average
Resnikic−treebank−add1 [29] 0.7831 0.8882 0.6461 0.7783 0.5810 0.7353
Yuan et al. [52] 0.8206 0.8274 0.6656 0.8199 0.6027 0.7473
Seco et al. [36] 0.8012 0.8727 0.6643 0.7919 0.5901 0.7441
Sanchez et al. [34] 0.8034 0.8492 0.6576 0.8003 0.5906 0.7402
Meng et al. [19] 0.8166 0.8296 0.6581 0.8127 0.5957 0.7426
Harispe et al. [11] 0.7977 0.8697 0.6539 0.7904 0.5918 0.7407
Resnikic−semcorraw−add1 [29] 0.7922 0.8712 0.6505 0.7835 0.5782 0.7351
Sanchez et al.[35] 0.7911 0.8551 0.6590 0.7854 0.5850 0.7351
CondProbCosine [18] 0.7896 0.8606 0.6524 0.7834 0.5828 0.7337
CondProbHypo [18] 0.8017 0.8554 0.6466 0.7910 0.5806 0.7350
CondProbLeaves [18] 0.7877 0.8389 0.6478 0.7808 0.5799 0.7270
CPCorpusic−treebank−add1 [18] 0.7722 0.8502 0.6364 0.7691 0.5735 0.7203
CPCorpusic−semcorraw−add1 [18] 0.7916 0.8247 0.6389 0.7813 0.5712 0.7216
Zhou et al. [53] 0.8051 0.8244 0.6591 0.7999 0.5945 0.7366
CondProbLogistick8 [18] 0.7993 0.8034 0.6460 0.7921 0.5791 0.7240
Hadj Taieb et al. [50] 0.7417 0.6961 0.6175 0.7463 0.4833 0.6570
Multiplication(linear) 0.7365 0.7653 0.4893 0.7348 0.3964 0.6245
Multiplication(log) 0.7424 0.7859 0.4969 0.7456 0.4140 0.6370
MLN (linear) 0.7704 0.8420 0.6953 0.7687 0.4552 0.7063
MLN (log) 0.7704 0.8420 0.6953 0.7687 0.4552 0.7063
MLN +RandomWalk (linear) 0.8375 0.9236 0.6789 0.8235 0.4794 0.7486
MLN +RandomWalk (log) 0.8392 0.9423 0.6801 0.8253 0.4909 0.7556

IJCA, Vol. 23, No. 3, Sept. 2016 191

Table 3: Average of Pearson and Spearman correlation on the five benchmarks (the highest values are in bold)

Algorithm/Data Set RG65 MC28 Agirre201 P&S f ull SimLex665 Average
Resnikic−treebank−add1 [29] 0.8242 0.8846 0.6687 0.8393 0.5883 0.7610
Yuan et al. [52] 0.8441 0.8341 0.6859 0.8641 0.6067 0.7670
Seco et al. [36] 0.8327 0.8642 0.6806 0.8481 0.5975 0.7647
Sanchez et al. [34] 0.8393 0.8544 0.6761 0.8514 0.5924 0.7627
Meng et al. [19] 0.8445 0.8345 0.6810 0.8592 0.5984 0.7635
Harispe et al. [11] 0.8283 0.8636 0.6750 0.8454 0.5987 0.7622
Resnikic−semcorraw−add1 [29] 0.8290 0.8667 0.6730 0.8416 0.5856 0.7592
Sanchez et al.[35] 0.8264 0.8529 0.6782 0.8448 0.5923 0.7589
CondProbCosine [18] 0.8265 0.8584 0.6713 0.8425 0.5896 0.7576
CondProbHypo [18] 0.8338 0.8553 0.6670 0.8463 0.5873 0.7579
CondProbLeaves [18] 0.8256 0.8450 0.6685 0.8408 0.5867 0.7533
CPCorpusic−treebank−add1 [18] 0.8178 0.8590 0.6586 0.8339 0.5799 0.7499
CPCorpusic−semcorraw−add1 [18] 0.8282 0.8376 0.6591 0.8396 0.5778 0.7485
Zhou et al. [53] 0.8320 0.8324 0.6720 0.8452 0.5965 0.7556
CondProbLogistick8 [18] 0.8343 0.8088 0.6635 0.8493 0.5882 0.7488
Hadj Taieb et al. [50] 0.7675 0.6930 0.6333 0.7815 0.4877 0.6570
Multiplication(linear) 0.8028 0.8022 0.5575 0.8171 0.3980 0.6755
Multiplication(log) 0.7980 0.8040 0.5466 0.8226 0.4266 0.6795
MLN (linear) 0.7939 0.8537 0.7034 0.8081 0.4495 0.7217
MLN (log) 0.7932 0.8541 0.7113 0.8035 0.4564 0.7237
MLN +RandomWalk (linear) 0.8625 0.9075 0.6896 0.8694 0.4633 0.7584
MLN +RandomWalk (log) 0.8692 0.9357 0.6953 0.8745 0.4912 0.7732

Table 4: Values for α

Algorithm α linear metric α log metric
Multiplication 0.002 0.1
MLN 0.3 0.3
MLN+RandomWalk 0.006 0.015

is the same after applying the linear or logarithmic similarity
distance metric and therefore the Spearman correlation is the
same. Lastly, note that again the MLN+RandomWalk algorithm
produces the highest average correlation, followed by the MLN
and the Multiplication algorithm. However, the MLN algorithm
produces the best results on the Agirre201 benchmark.

Lastly, consider Table 3 that shows the average of the Pearson
and Spearman correlation. Again, the MLN+RandomWalk
algorithm that uses the logarithmic similarity measure produces
higher correlation than previous algorithms on four of the
five benchmarks and the highest average correlation over
the five benchmarks. The logarithmic similarity metric
produces a little higher correlation than the linear one: 0.7185
average correlation for the linear case and 0.7255 average
correlation for the logarithmic case. The MLN+RandomWalk
algorithm produces higher average correlation than the MLN
algorithm, which produces higher average correlation than the
Multiplication algorithm.

The Java source code and all text files that are needed to
reproduce the experimental results can be found at [41].

6 Conclusion and Future Research

In this article, we presented a new Markov Logic Network
algorithm that uses a random walk to compute the semantic
similarity between two word forms of the English language. We
showed that the logarithmic version of the algorithm produces
higher average correlation over five benchmarks than the current
state-of-the-art algorithms. We believe that these results are
due to the fact that our algorithm processes not only structured
data, but also natural language information from WordNet.
Moreover, unlike our previous work, the algorithm considers
all the evidence from the probabilistic graph and not only the
disjoint paths between the nodes that are compared.

Although the random walk algorithm gives very accurate
results, it is not necessarily the most efficient way of computing
the semantic similarity between two nodes in the probabilistic
graph. In the future, we plan to explore alternative methods for
computing the semantic similarity distance between two nodes,
such as Gibbs sampling, belief propagation, and approximation
via pseudolikelihood. We also plan on conducting experiments
on the full-blown version of the probabilistic graph that includes
data from Wikipedia ([42]) and determining if this can improve
the correlation values with the five benchmarks.

References

[1] E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Pasca,
and A. Soroa. “A Study on Similarity and Relatedness
using Distributional and WordNet-based Approaches.”

192 IJCA, Vol. 23, No. 3, Sept. 2016

Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, pp. 19–27,
2009.

[2] R. Blanco, P. Mika, and S. Vigna. “Effective and
Efficient Entity Search in RDF Data.” Tenth International
Conference on The Semantic Web, pp. 83–97, 2011.

[3] D. Bollegala, Y. Matsuo, and M. Ishizuka. “A Relational
Model of Semantic Similarity Between Words Using
Automatically Extracted Lexical Pattern Clusters from
Web.” Conference on Empirical Methods in Natural
Language Processing, 2009.

[4] L. Burnard. “ Reference Guide for the British National
Corpus (XML Edition).” http://www.natcorp.ox.ac.uk,
2007.

[5] P. Castells, M. Fernandez, and D. Vallet. “An
Adaptation of the Vector-space Model for Ontology-based
Information retrieval.” IEEE Transactions on Knowledge
and Data Engineering, 19(2):pp. 261–272, 2007.

[6] R. L. Cilibrasi and P. M. Vitanyi. “The Google Similarity
Distance.” IEEE ITSOC Inforamtion Theory Workshop,
2005.

[7] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K.
Landauer, and R. Harshman. “Indexing by Latent
Semantic Analysis.” Journal of the Society for Information
Science, 41(6):pp. 391–407, 1990.

[8] L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin,
Z. Solan, G. Wolfman, and E. Ruppin. “Placing Search in
Context: The Concept Revisited.” ACM Transactions on
Information Systems, 20(1):pp. 116–131, January 2002.

[9] C. Fox. “Lexical Analysis and Stoplists.” Information
Retrieval: Data Structures and Algorithms, pp. 102–130,
1992.

[10] W. Frakes. “Stemming Algorithms.” Information
Retrieval: Data Structures and Algorithms, pp. 131–160,
1992.

[11] S. Harispe, S. Ranwez, S. Janaqi, and J. Montmain.
“Semantic Similarity from Natural Language and
Ontology Analysis.” Synthesis Lectures on Human
Language Technologies, pp. 81–254, 2015.

[12] F. Hill, R. Reichart, and A. Korhonen. “SimLex-999:
Evaluating Semantic Models with (Genuine) Similarity
Estimation.” arXiv:1408.3456, 2014.

[13] G. Jeh and J. Widom. “SimRank: A Measure of
Structural-context Similarity.” Proceedings of the Eight
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 538–543, 2002.

[14] K. Jones. “A Statistical Interpretation of Term
Specificity and its Application in Retrieval.” Journal of
Documentation, 28(1):pp. 11–21, 1972.

[15] R. Knappe, H. Bulskov, and T. Andreasen. “Similarity
Graphs.” Fourteenth International Symposium on
Foundations of Intelligent Systems, 2003.

[16] S. Kulkami and D. Caragea. “Computation of the Semantic
Relatedness Between Words Using Concept Clouds.”
International Conference of Knowledge Discovery and
Information Retrieval, 2009.

[17] T. K. Landauer, P. Foltz, and D. Laham. “Introduction to
Latent Semantic Analysis.” Discourse Processes, pp. 259–
284, 1998.

[18] J. J. Lastra-Diaz and A. Garcia-Serrano. “A New Family of
Information Content Models with an Experimental Survey
on WordNet.” Elsevier Knowledge-Based Systems,
89(1):pp. 509–526, 2015.

[19] L. Meng, J. Gu, and Z. Zhou. “A New Model of
Information Content Based on Concept’s Topology for
Measuring Semantic Similarity in WordNet.” International
Journal on Grid Distributed Computing, 5(3):pp. 81–93,
2012.

[20] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. “Distributed Representations of Words and
Phrases and their Compositionality.” Advances in Neural
Information Processing Systems, 26(1):pp. 3111–3119,
2013.

[21] G. Miller and W. Charles. “Contextual Correlates of
Semantic Similarity.” Language and Cognitive Processing,
6(1):pp. 1–28, 1991.

[22] G. A. Miller. “WordNet: A Lexical Database for English.”
Communications of the ACM, 38(11):pp. 39–41, 1995.

[23] R. Pan, Z. Ding, Y. Yu, and Y. Peng. “A Bayesian Network
Approach to Ontology Mapping.” Proceedings of the
Fourth International Semantic Web Conference, pp. 563–
577, 2005.

[24] G. Pirro and J. Euzenat. “A Feature and Information
Theoretic Framework for Semantic Similarity and
Relatedness.” Proceedings of the ninth international
semantic web conference on the semantic web, pp. 615–
630, 2010.

[25] M. F. Porter. “An Algorithm for Suffix Stripping.”
Readings in Information Retrieval, pp. 313–316, 1997.

[26] Q. Rajput and S. Haider. “Use of Bayesian Networks in
Information Extraction from Unstructured Data Sources.”
Proceedings of International Conference on Ontological
and Semantic Engineering, pp. 325–331, 2009.

IJCA, Vol. 23, No. 3, Sept. 2016 193

[27] RDF Wordking Group. “Resource Description Framework
(RDF).” http://www.w3.org/RDF/, 2014.

[28] P. Resnik. “Using Information Content to Evaluate
Semantic Similarity in a Taxonomy.” International Joint
Conference on Artificial Intelligence, pp. 448–453, 1995.

[29] P. Resnik. “Semantic Similarity in a Taxonomy: An
Information-based measure and its application to problems
of ambiguity in natural language.” Journal of Artificial
Intelligence, 11:pp. 95–130, 1999.

[30] M. Richardson and P. Domingos. “Markov Logic
Networks.” Machine Learning, 62(1-2):pp. 107–136,
2006.

[31] S. Robertson and H. Zaragoza. “The Probabilistic
Relevance Framework: BM25 and Beyond, Foundations
and Trends in Information Retrieval.” Foundations and
Trends in Information Retrieval, 3(4):pp. 333–389, 2009.

[32] C. Rocha, D. Schwabe, and M. Aragao. “A Hybrid
Approach for Searching in the Semantic Web.” Thirteenth
International World Wide Web Conference (WWW 2004),
pp. 374–383, 2004.

[33] H. Rubenstein and J. B. Goodenough. “Contextual
Correlates of Synonymy.” Communications of the ACM,
8(10):pp. 627–633, 1965.

[34] D. Sanchez, M. Baret, and D. Isern. “Ontology-based
Information Content Computation.” Knowledge-Based
Systems, 24(2):pp. 297–303, 2011.

[35] D. Sanchez and M. Batet. “A New Model to Compute
the Information Content of Concepts from Taxonomic
Knowledge.” International Journal on Semantic Web
Information Systems, 8(2):pp. 34–50, 2012.

[36] N. Seco, T. Veale, and J. Hayes. “An Intrinsic Information
Content Metric for Semantic Similarity in WordNet.”
Sixteenth European Conference on Artificial Intelligence,
16:pp. 1089–1094, 2014.

[37] Simone Paolo Ponzetto and Michael Strube. “Deriving
a Large Scale Taxonomy from Wikipedia.” 22nd
International Conference on Artificial Intelligence, 2007.

[38] S. Simske, I. Boyko, and G. Koutrika. “Multi-Engine
Search and Language Translation.” ExploreDB, 2014.

[39] E. Sirin and B. Parsia. “SPARQL-DL: SPARQL Query
for OWL-DL.” 3rd OWL: Experiences and Directions
Workshop (OWLED), 2007.

[40] B. Spell. “Java API for WordNet Searching (JAWS).”
http://lyle.smu.edu/ tspell/jaws/index.html, 2009.

[41] L. Stanchev. “Experimental Results.”
http://users.csc.calpoly.edu/∼lstanche/kbs.

[42] L. Stanchev. “Creating a Phrase Similarity Graph from
Wikipedia.” Eight IEEE International Conference on
Semantic Computing, 2014.

[43] L. Stanchev. “Creating a Similarity Graph from WordNet.”
Fourth International Conference on Web Intelligence,
Mining and Semantics, 2014.

[44] L. Stanchev. “Fine-Tuning an Algorithm for Semantic
Search Using a Similarity Graph.” International Journal
on Semantic Computing, 9(3):pp. 283–306, 2015.

[45] L. Stanchev. “Semantic Search using a Similarity
Graph.” Ninth IEEE International Conference on Semantic
Computing, 2015.

[46] L. Stanchev. “Creating a Probabilistic Graph for WordNet
using Markov Logic Network.” Sixth International
Conference on Web Intelligence, Mining and Semantics,
2016.

[47] L. Stanchev. “Semantic Document Clustering Using a
Similarity Graph.” Tenth IEEE International Conference
on Semantic Computing, 2016.

[48] M. Steyvers and J. Tenenbaum. “The Large-Scale
Structure of Semantic Networks: Statistical Analyses
and a Model of Semantic Growth.” Cognitive Science,
29(1):pp. 41–78, 2005.

[49] N. Stojanovic. “On Analyzing Query Ambiguity for
Query Refinement: The Librarian Agent Approach.”
Twenty Second International Conference on Conceptual
Modeling, pp. 490–505, 2003.

[50] M. A. H. Taieb, M. B. Aouicha, and A. B. Hamadou.
“Ontology-based Approach for Measuring Semantic
Similarity.” Elsevier Engineering Applications of
Artificial Intelligence, 36:pp. 238–261, 2014.

[51] The World Wide Web Consortium. “OWL Web Ontology
Language Guide.” http://www.w3.org/TR/owl-guide/,
2014.

[52] Q. Yuan, Z. Yu, and K. Want. “A New Model
of Information Content for Measuring the Semantic
Similarity Between Concepts.” International Conference
on Cloud Computing and Big Data, pp. 141–146, 2013.

[53] Z. Zhou, Y. Want, and J. Gu. “A New Model of
Information Content for Semantic Similarity in WordNet.”
Second International Conference on Future Generation
Communication and Networking Symposia, 3:pp. 85–89,
2008.

194 IJCA, Vol. 23, No. 3, Sept. 2016

Lubomir Stanchev is an Associate
Professor at California Polytechnic
State University, San Luis Obispo,
California. Before joining Cal Poly,
he was an Assistant and then an
Associate Professor at Indiana-
University Purdue-University Fort
Wayne. He got his Ph.D. in Computer
Science from the University of
Waterloo in Canada. His research
interests include databases, parallel

algorithms, and semantic computing. He has published more
than thirty papers in peer-reviewed conferences and journals.

IJCA, Vol. 23, No. 3, September 2016 195

Virtual Watershed Visualization for the WC-WAVE Project

Chase Carthen, Thomas J. Rushton, Nolan P. Burfield,
Christine M. Johnson, Aaron Hesson, Daniel Nielson and Bryan Worrell

University of Nevada at Reno, Reno, NV 89557 USA

Donna Delparte, Tucker Chapman and W. Joel Johansen
Idaho State University, Pocatello, ID 83209 USA

Roger Lew, Nicholas R. Wood, Mathew Ziegler and John W. Anderson
University of Idaho, Moscow, ID 83844 USA

Sergiu M. Dascalu and Frederick C. Harris Jr.
University of Nevada at Reno, Reno, NV 89557 USA

Fred.Harris@cse.unr.edu

Abstract

The platform discussed in this paper, Virtual Watershed
Client, provides a tool that allows researchers, students, and
stakeholders to observe and analyse both geospatial datasets
and theoretical model data. The system created ingests
the geospatial data and can create three-dimensional terrain,
satellite imagery, shapes, and model data. This was done using
the Unity3D game development engine and libraries to work
with geospatial data such as GDAL and NetCDF. These tools
that are developed are used by researchers, most specifically
hydrologist for the purpose of this paper, to interact in a
three-dimensional environment with their gathered data. The
design of the Virtual Watershed Client, as well as its currently
implemented analysis and visualization tools are discussed in
detail throughout this paper.

Key Words: Visualization, geospatial, model data,
hydrology, virtual watershed platform, virtual watershed client,
terrain.

1 Introduction

Today there is a need to visualize and analyze datasets
captured by sensors in an environmental watershed and
produced by biophysical models. This need stems from the
watershed scientists; the ability to view their collected and
model data on an actual terrain is beneficial. Having the
ability to see the peaks and valleys of data values line up in
accordance to actual peaks and valleys of the terrain is just one
example of the usefulness visualizing the datasets. Researchers
use sensors to provide information about the surrounding
environment of the watershed and they allow the researchers
to run models to analyze the data captured from these sensors.
Researchers use this acquired data to develop models that
effectively reflect the environment of the watershed. These

models can then be used to predict water runoff, precipitation,
snow melt, underground water flow, and other environmental
factors within a watershed. Models consist of many input and
output variables that require visualization and tuning. There are
several existing tools used to visualize this data and provide a
researcher sufficient information to modify variables in their
models. These tools include QGIS [30], ArcMap [6], and
other Geographical Information System (GIS) and non-GIS
programs. However, most of these tools lack the ability to
visualize and interact with data from a first person perspective,
that is to say viewing the watershed as if you were actually there
in person. The Virtual Watershed Client [4] is currently being
implemented and has been designed to provide researchers a
3D analytical tool to visualize model data. Researchers will
be able to provide data to a web service, the Virtual Watershed
Platform, and the Virtual Watershed Client can then be used
to visualise this data. The Virtual Watershed Platform uses
the Open Geospatial Consortium (OGC) services for serving
data [28]. The client uses libraries such as the Geospatial
Data Abstraction Library (GDAL) to parse any data that gets
delivered to the Virtual Watershed Client [10]. Researchers are
then able to observe this visualization to evaluate the outcomes
of their model runs. With the modern gaming development
engines, and the processing power of computers fusing a game
atmosphere with large data manipulation is possible. The
current implementation of the Virtual Watershed Client was
built using the Unity game engine [36]. The Unity Game Engine
was chosen because it allows our platform to be published on
many potential platforms, such as Windows, Mac, Linux, and
the web browser.

The capabilities of researchers to gather data in their
respective watershed environments has coincided with the
ability to aggregate and analyze that data in meaningful ways.
The authors of [29] discuss methods of determining the optimal
locations for dam placement in order to harvest water. They

ISCA Copyright© 2016

196 IJCA, Vol. 23, No. 3, September 2016

do this by analyzing a multitude of data maps overlaid onto a
Digital Elevation Model (DEM). In [23] the authors describe
a toolkit built for hydrological modeling using a geographic
information system such as ArcView GIS. Their system, the
Automated Geospatial Watershed Assessment tool (AGWA)
is capable of executing and then visualizing results inside
of ArcView GIS from models such as the Soil and Water
Assessment Tool (SWAT) and Kinematic Runoff and Erosion
Model (KINEROS2). The virtual watershed implemented in
the Sevier River Basin [3] was designed for the purpose of
improving operation of river and irrigation canals. To do this,
a real-time representation of the watershed was created using
remote sensors that constantly stream data to a server, allowing
for rapid decision making. Finally, in Advanced Techniques
for Watershed Visualization [1], the authors discuss using
hydroshading algorithms on NASA’s Shuttle Radar Topography
Mission DEM datasets in order to generate high quality 3D
models of the watersheds that the the datasets pertain to.

The following discussion expands upon the details given
in the paper Design of a Virtual Watershed Client for the
project [4]. Section 2 discusses the overview of the funded
project, and how the Virtual Watershed Client fits into that
project. Section 3 explains the models used by the watershed
scientists on the funded project. Section 4 covers the details of
the design and implementation of the Virtual Watershed Client.
Next, we demonstrate two separate watersheds in Section 5,
those two watersheds being located in Dry Creek and Lehman
Creek. Finally, we present conclusions and future work of this
project in Section 6.

2 Project Overview

The Western Consortium for Watershed Analysis,
Visualization, and Exploration (WC-WAVE) [38] is a tri-
state consortium composed of researchers and students in
Idaho, Nevada, and New Mexico. Its overall aim is to study
the localized impact of climate change on high-mountain
catchments. The WC-WAVE project is comprised of three
components: Watershed Science, Visualization and Data
Cyberinfrastructure (CI), and Workforce Development.
Participants in these three components are collaborating to
better understand interactions between precipitation, snow-
pack, groundwater flow, and other watershed properties
within mountain catchments. To enhance the collaborative
nature of this project and future work, as well as to promote
data exploration and analysis, one of the main outcomes
of the WC-WAVE project is a Virtual Watershed Platform
(VWP). The VWP framework will provide data access and
visualization through individual workstations (desktop),
web-based environments, and advanced interactive 3D
environments, including stereoscopic, and immersive CAVE
and Virtual Reality environments. The VWP will also allow a
user to run specific hydrologic models and visualize the results.
During the preliminary meetings for this proposal, project team
members put together the design for the Virtual Watershed

Platform. Figure 1 illustrates this VWP design.

Figure 1: Diagram illustrating the relationships of proposed
project components; virtual watershed platform,
data management services, and portals. The
Virtual Watershed Client is on the Visualization
Environments block, which gets data required from
the Virtual Watershed Platform. The data to the VWP
comes from multiple locations. Then all data transfer
is done through adapters

To implement and test the VWP, project participants selected
four watersheds throughout the tri-state region to focus on:
Dry Creek, Reynolds Creek Experimental Watershed in Idaho,
Jemez watershed in New Mexico, and Lehman Creek in
Nevada. These watersheds were chosen partly for their unique
characteristics. For example, Dry Creek and Reynolds Creek
provide an ideal environment for studying and developing tools
related to snow pack, while the Jemez watershed is more
suitable for vegetation studies. These watersheds were also
chosen for their extensive data networks. Since the models
within the VWP call for several different forms of data,
watersheds with adequate datasets and instrumentation were
required.

Members of the Watershed Science component of the
WC-WAVE project selected four main models to include in
the VWP: ISNOBAL [18], PRMS [35], ParFlow [20], and
DFLOW [34]. The ISNOBAL (image SNOw mass and energy
BALance) model is used to predict snowmelt and runoff.
PRMS (Precipitation Runoff Modeling System) simulates the
hydrologic process. ParFlow (PARallel FLOW) model is useful
for modeling soil moisture and the interaction between surface
and sub-surface flow. The DFLOW model is used for simulating
river channel flow and hydrologics. These datasets are later
explained in Section 3.

3 Data Models

As stated, the WC-WAVE project uses four primary
models for conducting watershed science. Out of the four
models ISNOBAL is the most established in VWC. During
the development of the VWC, ISNOBAL datasets were
most readily available for testing and development purposes,

IJCA, Vol. 23, No. 3, September 2016 197

therefore features were designed around the data provided from
this model. Section 3.1 describes this model in depth, and
discusses one of the watersheds in the project that contains
ISNOBAL data. The other models used in VWC are represented
in the same method as ISNOBAL, and are described in Section
3.2.

3.1 Snowpack Modeling

Several models have been developed for the purpose of
predicting snowpack properties over the course of a season.
SNOW17 [2] was designed as part of the National Weather
Service’s River Forecasting System, and is still in use today [8].
The SNTHERM [13] and SHAW [7] models accurately simulate
snow properties at a point, while the Utah Energy Balance
(UEB) model [33] and the United States Geological Survey’s
Precipitation-Runoff Modeling System [15] can be applied as
distributed simulations over small areas. SnowModel [16]
utilizes input meteorological conditions along with wind
conditions, vegetation and surface energy exchange to simulate
snow depth and water equivalent. The ISNOBAL model [19]
is part of our current implementation, as well as the Image
Processing Workbench (IPW) suite of software tools [17, 37].

ISNOBAL is effective at predicting snowmelt and runoff
when applied to a range of watershed sizes (1 to 2500 km2) as
well as temporal ranges (one week to an entire season). When
run through IPW, ISNOBAL requires three different types of
input: an initial conditions image, precipitation images, and
input forcing data images. The same initial condition image
can be used for an entire model run and is comprised of seven
bands: elevation, roughness length, total snowcover depth,
average snowcover density, active snow layer temperature,
average snowcover temperature, and percentage of liquid H2O
saturation. Precipitation images consist of four bands: total
precipitation mass, percentage of precipitation mass that was
snow, density of snow portion of precipitation, and average
precipitation temperature. These bands are only included for
times of precipitation events (i.e. storms). Individual input
forcing data images are required for each time step (typically
three hours) throughout the model run, and are made up
of six bands: incoming thermal (long-wave) radiation, air
temperature, vapor pressure, wind speed, soil temperature, and
net solar (short-wave) radiation. All of these images can be
visualized in the 3D environment of the VWP. This allows the
user to check for errors, anomalies, and patterns before an actual
model run. Using these images as input, ISNOBAL uses a
two layer snow model to calculate energy and mass balance
terms and produces two images as output. The first is a ten-
band energy and mass flux image which includes predicted
evaporation, snowmelt, and runoff layers. The second is a
nine-band snow conditions image which contains layers for
predicted thickness of snowcover, snow density, and mass of the
snowcover. Similar to the input images, these output layers can
be visualized with the VWP for further analysis. A visualization
of several of the ISNOBAL variables can be seen in Figure 2.

Figure 2: A visualization of different ISNOBAL Variables

3.2 Other Data Models

3.2.1 The DFLOW Model calculates the flows of streams
specifically for low flowing streams. DFLOW takes daily stream
flow information, and can calculate biologically-based design
flows, hydrologically-based design flows, and harmonic and
percentile flows. This model can be used to calculate across
multiple bodies of water.

3.2.2 The PRMS Model is part of our current
implementation. The Precipitation Runoff Modeling System
(PRMS) has been developed to simulate the hydraulic
processes, simulate the hydraulic water budgets of the
watershed, integrate with other models, and have a modular
design to allow alternative hydrologic-process algorithms.
The hydrologic processes modelled in the system include
evaporation, transpiration, runoff, infiltration, and interflow.
The interflow is determined by the waterbudgets of plant
canopy, snowpack, and soil zones calculated by temperature,
precipitation, and solar radiation. Additionally, the hydraulic
water budget simulation produces temporal data ranging in
scale from days to years [35].

3.2.3 The ParFlow Model (PARallel FLOW) simulates
surface and subsurface flow as an integrated hydrological
model. This model runs the parallel simulation with an option
of three modes. The first two simulation modes, steady-
state saturated and variably saturated, show the flow through
heterogeneous porous media. The third mode enables the
coupling of the surface and subsurface flow. This enables
ParFlow to account for the hillslope runoff and channel

198 IJCA, Vol. 23, No. 3, September 2016

routing. ParFlow is the massively parallel computations that
run advanced numerical solvers and multigrid preconditioners.
This parallel environment takes advantage of octrees to run
octree-space partitioning in order to handle input variables in
three-space. These features allow ParFlow to run large scale
watershed simulations [20].

4 Design and Implementation of the Virtual Watershed

The primary intention for the Virtual Watershed Client is
to aid in the visualization of data collected by environmental
scientists for better understanding of the watershed environment
and the models (ISNOBAL, Parflow, etc.). Several
dependencies are needed for the Virtual Watershed Client to
be functional. The Virtual Watershed Client requires the Unity
game engine, libraries similar to GDAL, and the OGC services.
These dependencies in conjunction with the Unity game engine
make it possible to implement a geospatial tool and application
that is unique in comparison to other applications. The
Virtual Watershed Clients architecture, functional requirements,
implementation, and main use cases are explained in detail in
this section.

4.1 Model View Controller Architecture

The Virtual Watershed Client utilizes a Model-View-
Controller (MVC) architectural pattern for the user interface
(Figure 3). The Model component is responsible for querying
the Virtual Watershed Platform for data, the View component is
responsible for displaying the data with the currently applied
settings, and the Controller is responsible for handling any
configuration changes and movement in the world generated
by the VWC. The Model component retrieves data through the
OGC services that can be displayed in the form of terrains,
shapes (rivers, streams, and roads), model data, and imagery.
The model and view component will be discussed more in this
section.

Figure 3: A representation of the Model View Controller
architecture of the Virtual Watershed Client

4.2 Use Cases

The users of the Virtual Watershed Client are able to create
watershed simulations using data retrieved from the Virtual
Watershed Platform. In addition to selecting the data for the
simulation, users also have the option of configuring various
settings to analyze desired variables of the data in more detail.
One of the approaches taken to enable this level of analysis is
to allow the user to immerse themselves into the simulation
in the sense that he or she can interact with various objects
throughout the environment such as trees and sensors. Users
also have the option to configure settings for data download
speeds, image quality, etc., in order to give greater flexibility
in viewing aspects of the data that are most important to the
specific users analyses. Once data has been downloaded, users
will also be able to configure the representation of that data on
the terrain. Figure 4 demonstrates a general use case model [32].

The system being referred to in Figure 4 is the running
application of the Virtual Watershed Client [14]. Within the use
case model, the server is any outside service that the system
utilizes to acquire data. When the application launches, the
user can select a dataset to be loaded from a file or downloaded
from the server, as well as configure the watershed. The system
will use the selected dataset and configurations to start and
generate a simulation. Then the Virtual Watershed Client will
display the terrain and user/model selected weather conditions.
Once the visualization has begun, the user can configure a
model run, and have it prepared for simulation by the system.
Any data required for the generation of the model run will
be acquired from the server at this time. While the model is
running, information corresponding to water runoff, snow melt,
underground moisture, etc. will be displayed.

Figure 4: A use case model of the Virtual Watershed Client
demonstrates different scenarios from the perspectives
of a user, the VWC, and the data server of the VWP

The use cases of Figure 4 are detailed below:

Initialise GUI
The GUI of the Virtual Watershed Client is initialized.

Query for/ Select Dataset
Datasets can be queried for or selected that are acquired
from the virtual watershed platform or cached by the VWP.

IJCA, Vol. 23, No. 3, September 2016 199

Create New Watershed Instance
The user has the option of creating a new watershed
instance by selecting a different watershed to start in.

Configure Watershed
The VWC can be configured where the user can change
what datasets are added to the current watershed.

Start Simulation
Once the watershed has been properly configured the
watershed can start loading all necessary datasets and load
a scene.

Generate Simulation
Once the simulation is started the scene in Unity will be
generated.

Run Simulation
After the scene has been generated, the scene will continue
to run automatically.

Set Terrain Parameters
Several options are available for the user to select options
such as where the terrain will be located in the real world.

Configure Model Run
The Virtual Watershed Client allows the user to configure
a model run for running it.

Generate Model Run
After a model run has been configured it can be generated.

Display Weather Conditions
The virtual watershed has the ability to visualize different
weather conditions that the user can select.

Run Model
The user can run models from VWC using the VWP.
Currently the VWC has the ability visualize datasets from
previously ran models.

Display Information
All of the current datasets, location, elevation, and other
useful conditions are provided for the user to view either
through the UI or by inspecting the dataset itself.

4.3 Graphical User Interface

4.3.1 The Time Slider shown in Figure 5 on the bottom
of the image is a tool that allows users to view data maps over
time. Once a model run has been downloaded and selected for
viewing by the user, it will be loaded into the time slider, as well
as a projector onto the terrain in the data’s correct geospatial
positioning. There are multiple components of the Time Slider
feature. The bar through the center of the Time Slider contains
a cursor that shows the current data’s position in time related to
the overall dataset. The text fields underneath this bar display
the information such as the count of the frame currently being
displayed, the time that the data corresponds to, how much of
the dataset has been downloaded into the Time Slider, and the
model run variable that the data represents. On the right side
of the Time Slider is a scale configuration tool. This slider
allows the user to specify the speed at which they wish to view
the data, depending on the overall time differential between the
individual data maps. The play button will simply play through

the data at the time specified on the speed slider. Finally, the
window above the cursor of the Time Slider shows a replica of
the data being displayed via the projector. In this way, even if
the user is not able to view the data directly on the terrain from
their current position, they can see the representation of data
played out through time.

Figure 5: The time slider used to visualize temporal data sets
such as model run variables

4.3.2 The Configuration Panel to the left of Figure 6
is used to configure the representation of data in the virtual
world. One of the major ways that the data can be configured,
is by editing the color-map that is applied to the data. When
the data is loaded, the minimum and maximum values are
recorded and set to specific color values. All potential values
of the data points between the minimum and maximum are then
mapped to an interpolated color defined by the five colors of
the color-map. These color ranges are predefined at first, but
the user can change the value ranges that each color represents.
Multiple predefined color-maps are available to the user, with
options available to accommodate users with color-blindness.
Extending from the color-map is the ability to project the
resulting data using either a point or bi-linear interpolation
mode. The point interpolation mode simply matches one data
point in the grid to a single color value, whereas the bilinear
mode blends between the values of the surrounding points to
produce a more natural looking representation of the data.

Figure 6: The configuration panel used to alter aspects of data
presentation on the terrain

200 IJCA, Vol. 23, No. 3, September 2016

At the bottom of the panel are three text fields, allowing the
user to shift the data projection or models in the X, Y, and Z
coordinates. This is necessary for cases that a dataset did not
come with a predefined position, or that the position given was
incorrect. Finally, there are options to export the current data
frame being displayed to either an image, showing the color-
map representation, or a comma separated value (CSV) file with
the values of each point in the data frames grid.

4.3.3 The Data-Point Graph shown in the bottom right
of the Figure 7 displays the value at a point on the dataset
throughout the time-line of the dataset. The user is able to
select a single location on the projected data and the graph will
display the data values at that spatial location plotted over the
time range of the dataset. The vertical yellow bar of the graph
shows the user where in time the currently projected data frame
is in relation to the graph as a whole. If the user has two datasets
loaded, then there will be two lines present on the graph. This
feature allows the user to compare data values of a specific
location over two separate model runs or variables. The user
will also have the option to download the current graph data as
a CSV.

Figure 7: The data-point graph showing the fluctuating data
values of a point over time

4.3.4 The Terrain Slicer on the right side of Figure 8 is
used for taking 2D cross-sections of the terrain. Two slicer
nodes can be placed in the world, and the window of the Terrain
Slicer will show a 2D image representing the elevation of the
terrain between the two nodes placed. This feature allows for
exciting future developments, including the ability to take slices
of not only the terrain, but 3D datasets. For example, ParFlow
data that models underground water flow could be displayed
using the slicer to visualize water flow or ground moisture at
differing depths.

Figure 8: The terrain slicer showing a 2D slice of the
environment height-map

Figure 9: A programmatic flow diagram of the Virtual
Watershed Client. The VWP box indicates some of
the different services that the VWC can communicate
with and the operations box indicates the different
operations that the VWC can take on the data. The
data box demonstrates the core types of data that the
VWC receives from the VWP

4.4 Implementation

4.4.1 Virtual Watershed Client The VWC has several
dependencies that make it possible to bring geospatial datasets
into Unity for visualization and for analysis. Unity was chosen
to be used as the visualization due its cross platform capabilities
and its relative ease of use in developing visualizations that
could take longer in lower level graphics pipelines such
as OpenGL or DirectX. Unity actually handles the lower
level graphics pipelines in its own implementation. These
dependencies are GDAL, ProjNet, JSON.net, and Gavaghan
Geodesy library. GDAL can parse several different geospatial
data formats such as geotiffs, netcdf, and many other formats.
Both GDAL and ProjNet include the core functionality to do
different types of geospatial calculations such as to reproject
one coordinate system into another. JSON.net was included
in the VWC due to its capability to parse JSON files and has
been primarily for parsing the RESTful services coming from
the VWP. Figure 9 demonstrates the functionality of the VWC
in a block diagram.

IJCA, Vol. 23, No. 3, September 2016 201

The VWC makes use of the RESTful services from the
VWP to provide the user with data to generate a watershed and
visualize different model runs stored on the VWP. One key thing
that the VWC has to do is be able to internalize these datasets
into a common form that the application can then generate the
proper visualization. Several different parsers have been written
using the dependencies described previously to bring these
datasets into the VWC. As the datasets are acquired from the
Virtual Watershed they will be cached onto local file system to
allow for fast loading if the dataset is selected again for loading.
These parsers allow us to extract data to build visualizations
of many different datasets such as terrains, models that were
explained previously, shape files, and images such as landsat
imagery. These visualizations are made possible by the API
and functionality provided by Unity. Another key feature of the
VWC is the ability to incorporate other data sets granted that
another parser is written for that particular server.

4.4.2 Data Capabilities The Virtual Watershed Client has
the capability to load datasets from the VWP or from the local
file system. The VWP serves many different types of data in
various formats such as NetCDF [31], TIFF, shapefile, JSON,
XML, CSV, and other formats supported by GDAL due to the
OGC services supported by the VWP. We use GDAL to parse
these formats whether they are from a web service inside of the
VWP, or from the local file system into a common data format
that is understandable to the VWC. GDAL effectively expands
the VWC and allows us to support multiple formats. Along with
GDAL we have designed parsers for the VWP that allows us to
parse and pull data out of the VWP itself.

The VWC has been designed in such a way that other web
services can be easily incorporated as long as the perspective
parsers are written for the web service. These web services can
be other servers such as NASA Modis’s [26] web services. With
the incorporation of web services into the VWC, the ability to
add other datasets and models is now possible.

With the ability to acquire datasets both locally and the VWP,
the VWC is able to create different types of visualizations.
These visualizations include procedurally built terrain, bring
shape files that may be weather stations or roads, load imagery,
and temporal-spatial data sets at run time rather than being
preprocessed. With the ability to acquire datasets from web
services, it will be possible to create other different types of
visualizations such as procedurally vegetation, running models
inside the VWP, and uploading datasets.

4.4.3 Coordinate System Design The VWC supports a
variety of coordinate systems such that it can represent world
datasets in a 3D world and takes into consideration the distance
in meters between two objects in order to properly map an object
into the virtual world. Our coordinate system utilizes libraries
such as GDAL and Gavaghan’s Geodesy Library [9] to perform
operations such as handling the placement of entities into the
world, calculating distances between two points, and changing
the projection of other datasets into the VWC’s coordinate

system. These libraries have allowed us to create a robust
coordinate system that can handle a variety of datasets.

In our coordinate system we have decided to use the Universal
Transverse Mercator (UTM) coordinate system projections to
preserve euclidean relationships between two points. The UTM
coordinate system allows the VWC to represent objects with
accurate relational distances. Figure 10 demonstrates the UTM
coordinate system’s 60 longitudinal zones that the Earth is sliced
into; measurements using UTM coordinates are usually done
within a single zone. A GPS will make use of this coordinate
system for relatively short distances due to its accuracy. We
utilize this coordinate system for its accuracy in short distances
allowing the VWC to place two objects within a reasonable
distance of their real world positions, or to project imagery
accurately. Though effective when working within an individual
zone, the accuracy of the UTM coordinate system diminishes
when taking into consideration points that span across two
zones.

The limitations of the UTM coordinate system make it
difficult to use datasets that span two zones. Calculating the
distance between points overlapping a UTM zone boundary
results in major distortions. Additionally, calculations of
distance overlapping the equator produce similar distortions.
These distortions make it necessary for the addition of
other coordinate systems into the VWC that deal with these
distortions and effectively estimate the distance for two points.

The coordinate system makes use of a frame of reference for
placing real world objects into the virtual world of the Unity
Game Engine. This frame of reference is paired with the origin
in the Unity Game Engine and a location in the real world.
This frame of reference allows the VWC to translate real world
coordinates into the VWC’s coordinate system. Real world
points are coordinates having some geospatial relationship to the
Earth. These coordinates can be either Latitude and Longitude,
UTM points, or other types of coordinates. Unity Game
Engine coordinates refer to points that are inside Unity Game
Engine with one unit in the Unity Game Engine represented as
one meter. This frame of reference makes it easy to convert

Figure 10: A cartographic projection of the Earth demonstrating
the UTM Latitudinal and Longitudinal zones.
Typically UTM uses the Longitudinal zones where
each has a width of six degrees [25]

202 IJCA, Vol. 23, No. 3, September 2016

between the real world and the VWC’s visualization. The
frame of reference requires coordinates to be in the Latitude and
Longitude system. We utilize Latitude and Longitude points
since they are optimal in distance equations, and are easily
converted to other coordinate systems. Our coordinate system
first converts real world points into a Latitude and Longitude
coordinate representation given that they were not originally
presented in that format. Algorithm 1 demonstrates how the
VWC can convert from real world points to the Unity coordinate
system and Algorithm 2 demonstrates the inverse.

The two algorithms utilize the reference coordinate points
in order to move between the Earth’s coordinate system and
Unity’s coordinate system. The VWC uses two formula’s
(Haversine and Vincenty) to calculate the distance between two
points. The implementation for Haversine comes from [5], and
the implementation for Vincenty comes from [9]. Algorithm 1
is able to handle cases where a data point may be outside the
zone currently being observed by the VWC. To account for
these cases, Algorithm 3 is used to estimate the equivalent
point in Unity. This algorithm estimates a projected point using
either the Haversine or Vincenty formula based on the converted
Latitude and Longitude calculated in Algorithm 1, and the world
Latitude Longitude reference point. Despite the effectiveness of
the Haversine and Vincenty formula, they are only accurate to
a certain degree. Both of these formula’s will work relatively
well, however they may not accurately represent the scale of the
UTM coordinate system. To account for these inaccuracies our
system will allow the user to move datasets if their positions in
the virtual world differ from the proper location.

Algorithm 1 World to Unity

1: function WORLD TO UNITY(WorldPoint)
2: ConvertedWorldPoint ←

CONVERTTOLATLONG(WorldPoint)
3: Zone = CALCULATEZONE(ConvertedWorldPoint)
4: if Zone 6=WorldZone then
5: ConvertedWorldPoint ←

ESTIMATEPROJECTION(ConvertedWorldPoint)
6: else
7: ConvertedWorldPoint ←

CONVERTTOUTM(ConvertedWorldPoint)
8: end if
9: return (UnityRe f erenceOrigin+

10: (UT MWorldRe f erencePoint−
ConvertedWorldPoint))

11: end function

5 Virtual Watershed Examples: Lehman Creek and Dry
Creek

The Unity engine is a platform for building interactive
virtual environments. It provides an integrated development
environment (IDE) consisting of a GUI and scripting to
define the appearance and behavior of objects in the virtual

Algorithm 2 Unity to World

1: function UNITY TO WORLD(UnityPoint)
2: ConvertedWorldPoint ←

CONVERTTOLATLONG(UT MWorldRe f erencePoint +
(UnityRe f erenceOrigin−UnityPoint),ZoneNumber)

3: return ConvertedWorldPoint
4: end function

Algorithm 3 Estimate Projection

1: function ESTIMATEPROJECTION(WorldPoint)
2: if Vincenty then
3: Distance←
4: VINCENTYDISTANCEESTIMATION(WorldPoint,

LatLongWorldRe f erencePoint)
5: else if Haversine then
6: Distance←
7: HAVERSINEDISTANCEESTIMATION(WorldPoint,

LatLongWorldRe f erencePoint)
8: end if
9: Direction ← WorldPoint −

LatLongWorldRe f erencePoint
10: Pro jectedWorldPoint← Distance∗Direction
11: return Pro jectedWorldPoint
12: end function

environment. The Unity engine allows developers to combine
2D and 3D visual assets, audio, and network access to data. The
Unity engine is built with Mono, which is a cross-platform open
source implementation of the .NET framework [24, 22]. Using
Mono allows for procedural control, creation, and manipulation
of objects in UnityScript (Javascript) and C#. The engine
provides a well optimized code base capable of displaying
high-fidelity interactive 3D virtual environments with real-time
physics and shading. Although Unity offers great potential to
geoscience visualization and education outreach, the IDE has a
steep learning curve and is not natively equipped with essential
features like geo-referencing, Gregorian time, or the ability to
handle geospatial datasets (GeoTiffs, ShapeFiles, etc.) common
to GIS Desktop solutions.

The Virtual Watershed Client will provide a simple GUI for
communicating to a centralized Virtual Watershed Platform.
Acquiring datasets for visualization is now possible through
the VWP within the VWC or the local file system. Several
visualizations have been developed for the Virtual Watershed
Client using preprocessed files from the local file system.
Datasets acquired from the VWP can be used to procedurally
build a terrain for visualization at run time of the Virtual
Watershed Client. We have constructed preprocessed terrains
for the WC-WAVE project that are being used for analyzing
datasets that are specific to the WC-WAVE project.

The process of building preprocessed terrains requires
certain datasets to create a well built visualization. When
available, high-resolution LiDAR can be represented by the

IJCA, Vol. 23, No. 3, September 2016 203

Figure 11: A photograph of Dry Creek Figure 12: The VWC image of Dry Creek

Figure 13: A photograph of Lehman Creek Figure 14: The VWC image of Lehman Creek

Figure 15: The entire user interface shown on the Dry Creek
terrain with a thermal long wave radiation dataset
projected on to the surface

terrain. High-resolution orthoimagery is then placed on the
terrain, and procedurally splatted with detailed textures and
vegetation (as shown in Figure 12 and Figure 14). Both
Figure 12 and Figure 14 can be compared to their respective
counterparts, Figure 11 and Figure 13, that demonstrate the
overall effectiveness of our visualization.

Once a base map has been constructed, scientific data can

Figure 16: A picture of the Dry Creek sub-catchment with
choropleth (right) and without choropleth (left)

be incorporated. A projector with a customized shader allows
for choropleths (thematic maps) to be overlaid onto the terrain
as shown in Figures 15 and 16. These maps could represent
characteristics of terrain topology like slope or spatial-temporal
variables associated with hydrology models such as ISNOBAL,
Parflow, or PRMS. An example of a spatial-temporal output of
an ISNOBAL variable can be seen in Figure 15.

We can also visualize the outputs of a PRMS model by

204 IJCA, Vol. 23, No. 3, September 2016

playing back the output file onto the terrain as a choropleth. As
explained previously in Section 4, the user can alter the values
of the projector, change the times on the time slider, or compare
two model runs.

6 Future Work and Conclusions

We have covered the design and implementation of the
Virtual Watershed Client, the different models of the WC-
WAVE project, and new additions to the VWC. This paper
discussed the unique design of a three-dimensional project for
the use with geospatial data. The project incorporates the
GDAL libraries into a game development engine, Unity3D, for
purposes of research. Additionally the unique tools designed
into the project to interact with the data will help researchers
gather more information from the provided data. The VWC
has several new features that include elements that have been
added to the UI, a new coordinate system, the ability to visualize
spatial-temporal datasets, generate terrains procedurally, and
the incorporation of the Virtual Watershed Platform. With the
addition of these new features researchers can visit different
areas in the world and utilize the new features for the purposes
of analyzing datasets that are both stored locally and on the
VWP.

In terms of future work the team is planning new features
that would be both beneficial and needed for the Virtual
Watershed Client. Integration with the VWP has allowed
us to incorporate procedural terrain generation and allows us
to consider implementing procedural vegetation generation.
Being able to procedurally generate vegetation alongside terrain
would allow us to simulate different models such as CASiMiR
that have a vegetation output. Watershed researchers could
effectively analyze the effect of changing seasons, climate, and
fire scenarios. We will soon incorporate the ability to visualize
vector motion fields that would be useful for showing stream
flow in the bottom of a river or to demonstrate wind. To
provide a more immersive experience of the Virtual Watershed
Client with virtual reality, we would like to allow the user
to to use Head Mounted Displays (HMD) such as the Oculus
Rift [27], HTC Vive [12], or Google Cardboard [11]. We
would like to also build a visualization for a six-sided CAVE
(Cave auto virtual environment). We would like to incorporate
other sensors such as the Microsoft Kinect [21] and others.
Beyond new visualizations features and the incorporation of
other sensors we have plans to incorporate other services from
the Virtual Watershed Platform and other servers.

The Virtual Watershed Client currently is able to interface
with the Virtual Watershed Platform and download datasets
from it. We would like to expand our functionality to allow
users to upload datasets to the Virtual Watershed Platform and
run models on those datasets. While the Virtual Watershed
Platform support for many other different types of datasets relate
to the WC-WAVE project, we would want to include other
servers such as NASA’s Modis web services [26] that have
global datasets that could be beneficial to the Virtual Watershed

Client. Incorporation of these other web services would be both
beneficial and useful for the Virtual Watershed Client and would
allow for a greater diversity of datasets to be visualized and
analyzed within the VWC.

Acknowledgments

This material is based in part upon work supported by
the National Science Foundation under grant numbers: IIA-
1329469, IIA-1329470, IIA-1329513, and IIA-1301726, and
the EPSCoR MILES grant number: IIA-1301792. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation

References

[1] V. Alarcon and C. O’Hara, “Advanced Techniques
for Watershed Visualization,” Applied Image Pattern
Recognition Workshop, vol. 35, 2006.

[2] E. A. Anderson, “National Weather Service River Forecast
System Snow Accumulation and Ablation Model: NOAA
Tech,” Memorandum NWS Hydro-17, US Dept. of
Commerce, pp. 3–7, 1973.

[3] B. Berger, R. Hansen, and I. Cowley, “Developing a
Virtual Watershed: Sevier River Basin,” Decision Support
Systems for Water Resources Management (Specialty
Conference). American Water Resources Association,
2001.

[4] C. D. Carthen, T. J. Rushton, C. M. Johnson, A. Hesson,
D. Nielson, B. Worrell, D. M. Delparte, W. J. Johansen,
J. W. Anderson, R. Lew, N. R. Wood, M. Ziegler, S. M.
Dascalu, and F. C. Harris, “Design of a Virtual Watershed
Client for the WC-WAVE Project,” IEEE International
Conference on Collaboration Technologies and Systems
(CSA), June 2015, pp. 90–96.

[5] D. Dennehy, “Haversine Algorithm in C#,”
[Accessed on 15 March 2016]. [Online].
Available: http://damien.dennehy.me/blog/2011/01/15/
haversine-algorithm-in-csharp/

[6] Esri, “Arcgis Platform,” [Accessed on 14 March 2016].
[Online]. Available: www.esri.com/software/arcgis

[7] G. N. Flerchinger and K. E. Saxton, “Simultaneous Heat
and Water Model of a Freezing Snow-Residue-Soil System
I. Theory and Development,” Transactions of the ASAE,
vol. 32, no. 2, pp. 565–0571, 1989.

[8] K. J. Franz, T. S. Hogue, and S. Sorooshian, “Operational
Snow Modeling: Addressing the Challenges of an Energy
Balance Model for National Weather Service Forecasts,”
Journal of Hydrology, vol. 360, no. 1, pp. 48–66, 2008.

[9] M. Gavaghan, “C# Geodesy Library for GPS
Vincenty’s Formula,” [Accessed on 1 March 2016].
[Online]. Available: http://www.gavaghan.org/blog/
free-source-code/geodesy-library-vincentys-formula/

IJCA, Vol. 23, No. 3, September 2016 205

[10] Gdal, “Gdal - Geospatial Data Abstraction Library,”
[Accessed on 14 March 2016]. [Online]. Available:
http://www.gdal.org/

[11] Google, “Google Cardboard,” [Accessed on 29
February 2016]. [Online]. Available: www.vr.google.
com/cardboard/

[12] HTC, “Htc vive,” [Accessed on 29 February 2016].
[Online]. Available: www.htcvive.com/us/

[13] R. Jordan, “A One-Dimensional Temperature Model for a
Snow Cover: Technical Documentation for SNTHERM.
89.” DTIC Document, Tech. Rep., 1991.

[14] S. Lauesen, “Task Descriptions as Functional
Requirements,” IEEE Software, vol. 20, no. 2, pp.
58–65, 2003.

[15] G. H. Leavesley, R. W. Lichty, B. M. Thoutman, and L. G.
Saindon, Precipitation-Runoff Modeling System: User’s
Manual. US Geological Survey Colorado, CO, 1983.

[16] G. E. Liston and K. Elder, “A Distributed Snow-
Evolution Modeling System (SnowModel),” Journal of
Hydrometeorology, vol. 7, no. 6, pp. 1259–1276, 2006.

[17] D. Marks, J. Domingo, and J. Frew, “Software Tools
for Hydro-Climatic Modeling and Analysis: Image
Processing Workbench, ARS-USGS Version 2,” ARS Tech.
Bull. 99, vol. 1, 1999.

[18] D. Marks, J. Domingo, D. Susong, T. Link, and
D. Garen, “A Spatially Distributed Energy Balance
Snowmelt Model for Application in Mountain Basins,”
Hydrological Processes, vol. 13, no. 12-13, pp. 1935–
1959, 1999.

[19] ——, “A Spatially Distributed Energy Balance Snowmelt
Model for Application in Mountain Basins,” Hydrological
Processes, vol. 13, no. 12-13, pp. 1935–1959, 1999.

[20] R. M. Maxwell, S. J. Kollet, S. G. Smith, C. S. Woodward,
R. D. Falgout, I. M. Ferguson, C. Baldwin, W. J. Bosl,
R. Hornung, and S. Ashby, “ParFlow User’s Manual,”
International Ground Water Modeling Center Report
GWMI, vol. 1, no. 2009, p. 129, 2009.

[21] Microsoft, “Kinect for Windows,” [Accessed on 2 March
2016]. [Online]. Available: http://www.microsoft.com/
en-us/kinectforwindows/

[22] ——, “.NET Framework and .NET SDK Downloads,”
[Accessed on 3 March 2016]. [Online]. Available:
https://msdn.microsoft.com/en-us/vstudio/aa496123.aspx

[23] S. Miller, D. Semmens, D. Goodrich, M. Hernandez,
R. Miller, W. Kepner, and D. Guertin, “The Automated
Geospatial Watershed Assessment Tool,” Environmental
Modelling & Software, vol. 22, no. 3, pp. 365–377, 2007.

[24] Mono-Project, “Home — mono,” [Accessed on
28 February 2016]. [Online]. Available: http:
//www.mono-project.com/

[25] A. Morton, “Dmap: UTM Grid Zones of the World,”
[Accessed on 1 March 2016]. [Online]. Available:
http://www.dmap.co.uk/utmworld.htm

[26] National Aeronautics and Space Administration, “Modis

Web,” [Accessed on 3 March 2016]. [Online]. Available:
http://modis.gsfc.nasa.gov

[27] Oculus, “Oculus Rift - Virtual Reality Headset for
Immersive 3D Gaming,” [Accessed on 29 February 2016].
[Online]. Available: www.oculus.com/

[28] Opengeospatial, “Open Geospatial Consortium — OGC,”
[Accessed on 14 March 2016]. [Online]. Available:
http://www.opengeospatial.org/

[29] D. Patel, M. Dholakia, N. Naresh, and P. Srivastava,
“Water Harvesting Structure Positioning by Using
Geo-Visualization Concept and Prioritization of Mini-
Watersheds Through Morphometric Analysis in the Lower
Tapi Basin,” J Indian Soc Remote Sens, vol. 40, no. 2, pp.
299–312, 2011.

[30] QGIS, “Qgis Project,” [Accessed on 14 March 2016].
[Online]. Available: http://www2.qgis.org/en/site/

[31] R. Rew and G. Davis, “NetCDF: An Interface for
Scientific Data Access,” Computer Graphics and
Applications, vol. 10, no. 4, pp. 76–82, 1990.

[32] I. Sommerville, Software Engineering. Boston: Pearson,
2011.

[33] D. G. Tarboton and C. H. Luce, Utah Energy Balance
Snow Accumulation and Melt Model (UEB). Citeseer,
1996.

[34] United States Environmental Protection Agency,
“DFLOW — Water Data and Tools,” [Accessed
on 2 March 2016]. [Online]. Available: http:
//www.epa.gov/waterdata/dflow

[35] United States Geological Survey, “Prms,” [Accessed on
11 March 2016]. [Online]. Available: ftp://brrftp.cr.usgs.
gov/pub/mows/software/prms/release notes.pdf

[36] Unity3D, “Unity - Game Engine,” [Accessed on 14 March
2016]. [Online]. Available: http://unity3d.com/

[37] USDA Agricultural Research Service, “Ipw Command:
isnobal,” [Accessed on 14 March 2016]. [Online].
Available: ftp://ftp.nwrc.ars.usda.gov/ipw/Marks%20et%
20al%201999/man1/isnobal.html

[38] Western Consortium, “Western Tri-State Consortium,”
[Accessed on 14 March 2016]. [Online]. Available:
http://westernconsortium.org/

Chase Carthen graduated from the
University of Nevada, Reno with
both a B.S. and a M.S. in Computer
Science and Engineering in 2014 and
2016 respectively. He is currently
working in industry as a software
engineer. His research interests
include human-computer interaction,

graphics and simulations, and artificial intelligence.

206 IJCA, Vol. 23, No. 3, September 2016

Thomas J. Rushton graduated
with a B.S. in Computer Science
and Engineering 2016 from the
University of Nevada, Reno. His
research interests include virtual
reality, data visualization, and
artificial intelligence. He is currently
working in industry as a software

engineer.

Nolan P. Burfield graduate with
a B.S. in Computer Science and
Engineering in 2015 and is working
towards a M.S. in Computer Science
and Engineering at the University
of Nevada, Reno. He works as
a research assistant in the High
Performance Computation and
Visualization Lab. His research
interests are in the areas of
computer graphics and financial

data computation.

Christine M. Johnson graduated
from the University of Nevada, Reno
with both a Bachelors of Science and
a Masters of Science in Computer
Science and Engineering in 2014 and
2015 respectively. She is currently
working in industry for Intentional
Software Corporation as a software

engineer.

Aaron Hesson graduated with a B.S. degree in Computer
Science and Engineering at the University of Nevada, Reno in
2014. His specialization is Intelligent Systems.

Daniel Nielson graduated with a B.S. in Computer Science
and Engineering from the University of Nevada,Reno in 2014.
He also has a degree in English from the University of Southern
California. He is currently working in industry as a software
engineer.

Bryan Worrell graduated with
a B.S.in Computer Science and
Engineering at the University of
Nevada, Reno in 2014. His interest
lies in the field of Games and
Simulations and he is currently
working as a software engineer in
industry.

Donna Delparte is an Assistant
Professor in the Department
of Geosciences at Idaho State
University. She received her BS in
Geography (1989) at the University
of Regina, Canada and MS (1998)
and PhD in Geography (2008) at
the University of Calgary, Canada.
Dr. Delparte has an extensive

background in the applications of GIS and remote sensing
to the fields of geosciences, resource management and
conservation/environmental planning. She has active research
in using Unmanned Aircraft Systems for conservation mapping
and precision agriculture applications and analysis.

Tucker Chapman received his B.S.
degree in Geology from Brigham
Young University, Provo, UT, USA,
in 2015. He is currently pursuing
a M.S. degree in Geographic
Information Science, being advised
by Donna Delparte, at Idaho State
University, Pocatello, ID, USA and

is expecting to graduate in 2017. He is the lead developer of
the gridding tool, including performance testing, its REST and
Python APIs, and its ArcGIS package.

W. Joel Johansen completed his
Masters in GIS in 2015 at Idaho State
University and is currently working
as a Precision Agriculture Specialist
for the J. R. Simplot company. He
received a BS in Geology from
Brigham Young University in 2013.
His current job includes database

management, data processing, software development, and
analyzing satellite imagery to monitor crop health.

IJCA, Vol. 23, No. 3, September 2016 207

Roger Lew has a B.S. in psychology
from University of Idaho in 2004,
a M.S. in human factors psychology
from University of Idaho in 2007,
and a Ph.D. in neuroscience from
University of Idaho in 2014. He
is currently working as a Research
Assistant Professor to manage the

Virtual Technology Laboratory and conduct research related to
social-ecological systems and nuclear human factors.

Nicholas R. Wood is currently
working on his Masters of Science in
Integrated Architecture and Design,
at the University of Idaho. He
received his Bachelors of Science in
Virtual Technology and Design at the
University of Idaho in 2014. His
research interests are integration of
data based visualization and Video
game narrative.

Matthew Ziegler received his Bachelors of Science in Virtual
Technology and Design at the University of Idaho in 2014.

John W. Anderson is an Associate
Professor in the College of Art
and Architecture, co-founder of
the Virtual Technology & Design
program and Co-Director of the
Virtual Technology Laboratory at the
University of Idaho. His teaching

and research are focused in the areas of trans-architectures,
tele-present environments, evolutionary game theory and
design visualization technologies with an emphasis on complex
system design and analysis. He is a design thinker who
leads interdisciplinary communities of virtual design experts,
scientists, engineers, educators, and artists where the focus
is the incorporation of virtual technology in all aspects of
education, research, modeling, and simulation.

Sergiu M. Dascalu is a Professor in
the Department of Computer Science
and Engineering at the University
of Nevada, Reno, USA, which he
joined in 2002. In 1982, he received
a Master’s degree in Automatic
Control and Computers from the
Polytechnic University of Bucharest,
Romania and in 2001, a Ph.D. in
Computer Science from Dalhousie
University, Halifax, NS, Canada. His
main research interests are in the

areas of software engineering and humancomputer interaction.
He has published over 140 peerreviewed papers and has been
involved in numerous projects funded by industrial companies
as well as federal agencies such as NSF, NASA, and ONR.

Frederick C. Harris Jr. is currently
a Professor in the Department of
Computer Science and Engineering
and the Director of the High
Performance Computation and
Visualization Lab and the Brain
Computation Lab at the University
of Nevada, Reno, USA. He received
his BS and MS in Mathematics and
Educational Administration from

Bob Jones University in 1986 and 1988 respectively, his MS
and Ph.D. in Computer Science from Clemson University
in 1991 and 1994 respectively. He is a member of ACM
(Senior Member), IEEE, and ISCA (Senior Member). His
research interests are in parallel computation, computational
neuroscience, computer graphics and virtual reality.

Instructions for Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr., Fred.Harris@cse.unr.edu.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence.
Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11

inch pages.
2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word
format should be submitted to the Editor-in-Chief.

2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should
be included:

 Paper text (required).
 Bios (required for each author). Integrate at the end of the paper.
 Author Photos (jpeg files are required by the printer, these also can be integrated into your paper).
 Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps).

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper.

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of
$50.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA
members, $100 of publication charges will be waived if requested.

January 2014

ISCA
 IN

TERN
A

TIO
N

A
L JO

U
RN

A
L O

F CO
M

PU
TERS A

N
D

 TH
EIR A

PPLICA
TIO

N
S

V
ol. 23, N

o. 3, Sept.2016

