
A publication of ISCA*:
International Society for Computers

and Their Applications

INTERNATIONAL JOURNAL OF
COMPUTERS AND THEIR

APPLICATIONS

TABLE OF CONTENTS

Page

Guest Editorial: Special Issue from ISCA Fall-2016 Conference . 207
Gongzhu Hu and Takaaki Goto

Evaluating an Array of Heterogeneous Disks . 208
Andras Fekete and Elizabeth Varki

Evaluation and Generalization of Trust Modes in P2P Networks . 216
Wei Li

Chinese Characters Ontology and Induced Distance Metrics . 223
Antoine Bossard and Keiichi Kaneko

Data Lossless Compression Using Improved GFC Algorithm with
Multiple GPUs . 232

Rui Wu, Muhanna Muhanna, Sergiu M. Dascalu, Lee Barford,
Frederic C. Harris, Jr.

Index . 242

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPEC and
Scopus.”

Volume 23, No. 4, Dec. 2016 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…64 White Oak Court, Winona, MN 55987…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2016 by the International Society for Computers and Their Applications (ISCA)
All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Frederick C. Harris, Jr., Professor

Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA

Phone: 775-784-6571, Fax: 775-784-1877

Email: Fred.Harris@cse.unr.edu, Web: http://www.cse.unr.edu/~fredh

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid

University of Houston-Clear Lake,

USA

hisham@uhcl.edu

Dr. Antoine Bossard

Advanced Institute of Industrial

Technology, Tokyo, Japan

abossard@aiit.ac.jp

Dr. Mark Burgin

University of California,

Los Angeles, USA

mburgin@math.ucla.edu

Dr. Sergiu Dascalu

University of Nevada, USA

dascalus@cse.unr.edu

Dr. Sami Fadali

University of Nevada, USA

fadali@ieee.org

Dr. Vic Grout

Glyndŵr University,

Wrexham, UK

v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo

University of Michigan,

Dearborn, USA

magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA

hou@cs.siu.edu

Dr. Ramesh K. Karne

Towson University, USA

rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science and

Technology, USA

ff@mst.edu

Dr. Muhanna Muhanna

Princess Sumaya University for

Technology, Amman, Jordan

m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang

The American University, USA

owrang@american.edu

Dr. Xing Qiu

University of Rochester, USA

xqiu@bst.rochester.edu

Dr. Abdelmounaam Rezgui

New Mexico Tech, USA

rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA

James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology

Kharagpur, India

shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York at

Buffalo, USA

rsridhar@buffalo.edu

Dr. Junping Sun

Nova Southeastern University, USA

jps@nsu.nova.edu

Dr. Jianwu Wang

University of California

San Diego, USA

jianwu@sdsc.edu

Dr. Yiu-Kwong Wong

Hong Kong Polytechnic University,

Hong Kong

eeykwong@polyu.edu.hk

Dr. Rong Zhao

The State University of New York

 at Stony Brook, USA

rong.zhao@stonybrook.edu

IJCA, Vol. 23, No. 4, Dec. 2016 207

Guest Editorial:
Special Issue from ISCA Fall--2016 Conferences

This Special Issue of IJCA is a collection of four refereed papers selected from the CAINE 2016: 29th International Conference
on Computer Applications in Industry and Engineering, held during September 26-28, 2016, in Denver, Colorado, USA,

Each paper submitted to the conference was reviewed by at least two members of the International Program Committee, as well
as by additional reviewers, judging the originality, technical contribution, significance and quality of presentation. After the
conferences, four best papers were recommended by the Program Committee members to be considered for publication in this
Special Issue of IJCA. The authors were invited to submit a revised version of their papers. After extensive revisions and a second
round of review, the four papers were accepted for publication in this issue of the journal.

The papers in this special issue cover a wide range of research interests in the community of computers and applications. The
topics and main contributions of the papers are briefly summarized below.

ANDRÁS FEKETE and ELIZABETH VARKI of University of New Hampshire, USA, presented RAIDX in their paper “RAID on a
Heterogeneous Disk Array.'” It is a new type of heterogeneous RAID that is an extended and enhanced version of RAID. Based on
RAID, by modifying the RAID structure and adding a lookup table, RAIDX supports heterogeneous disk array. So, different types
of storage devices can be configured in RAIDX.

WEI LI of Nova Southeastern University, USA, in the paper “A Comparative Evaluation of Trust Models in P2P Networks,”
presented a comparative study on three major trust models (Eigentrust, PeerTrust, and R2Trust) in P2P networks, proposed a
generalized model for trust computation, and provided an analysis of how existing approaches can be encompassed in this model.

ANTOINE BOSSARD of Kanagawa University, Japan, and KEIICHI KANEKO of Tokyo University of Agriculture and Technology,
Japan, discussed a scientific approach to Chinese characters in their paper “A Scientific Approach to Chinese Characters: Rationale,
Ontology and Application.” They presented an ontology from information science point of view, including phonetic, morphological
and graphic. Multi-lingual aspect of Chinese characters are considered in their study, as well as an algorithm for calculation of the
distance between characters.

RUI WU, SERGIU M. DASCALU, LEE BARFORD and FREDERICK C. HARRIS, Jr of University of Nevada Reno, USA, and MUHANNA
MUHANNA of Princess Sumaya University for Technology, Jordan, introduced three methods to improve the performance of the
traditional GFC compression algorithm in their paper “Data Lossless Compression Using Improved GFC Algorithm with Multiple
GPUs.'” Their methods are using clzll to count the leading zeros, remove if-else statements in program, and use multiple Graphics
Processing Units. Experimental results showed that the proposed methods improve the compression speed by more than 10-fold.

As guest editor’s we would like to express our genuine appreciation for the encouragement and support from the editor-in-chief
of IJCA, Frederick C. Harris, Jr. We also owe many thanks to the authors and program committees of the conferences these papers
were selected from.

We hope you enjoy this special issue of the IJCA and we look forward to seeing you at a future ISCA conference. More
information about ISCA Society can be found at http://www.isca-hq.org.

Guest Editors:

Gongzhu Hu, Central Michigan University, USA, CAINE 2016 Conference Chair
Takaaki Goto, Ryutsu Keizai University, Japan, CAINE 2016 Program Chair

November 2016

208 IJCA, Vol. 23, No. 4, Dec. 2016

Evaluating an Array of Heterogeneous Disks

Andras Fekete∗ and Elizabeth Varki*
University of New Hampshire, Durham, NH, USA

Abstract

RAID assumes homegeneous disks. When a disk in RAID
fails, it may be replaced by a larger disk, but the extra space
in the new disk is wasted. To address this problem, this paper
proposes RAIDX, RAID eXtended for heterogenous disks.
Similar to RAID, RAIDX bundles data across its disks; the
stripes of RAID and RAIDX are constructed differently. In
RAID, a stripe is a row of stripe units, one per disk; the stripe
units are at identical locations on each disk. In RAIDX, a bundle
is a row of chunks, with at most one chunk per disk; the chunks
in a bundle need not be on the same location on each disk.
Chunks of a bundle may be relocated dynamically when new
disks are added to or removed from RAIDX. RAIDX requires a
lookup table to map block numbers to chunk locations. This
table is at worst only 0.3% of the total array size. The
lookup tables add overhead to RAIDX, however, experiments
demonstrate that RAID and RAIDX have comparable speeds
when the array consists of similar disks. RAIDX supports
arrays that contain a mix of hard disks and solid state disks.
This combination can be used to increase the access speed
of the array by directing traffic to the faster disks. RAIDX
is compared to RAID by experiments that attempt to exercise
similar functionality on the same hardware. We show that the
proposed lookup table design adds only a little computational
overhead and RAIDX approaches the speed of a traditional
RAID array.

Key Words: RAID, heterogeneous disks, storage.

1 Introduction

Redundant Array of Inexpensive Disks (RAID) consists of
several disks logically bound together to form a single storage
unit, capable of higher performance than each individual disk.
Hardware RAID uses RAID cards between the storage devices
and the motherboard while software RAID uses the system CPU
and memory to achieve the same function. Additionally, RAID
offers redundancy to prevent data loss in the event of a drive
failure. While the redundancy causes computational overhead,
there is a net gain to this organization of storage.

There are several RAID configurations, of which RAID5,

*College of Engineering and Physical Science. Email:
afekete@wildcats.unh.edu and varki@cs.unh.edu

RAID10, and RAID6 are the most popular. All configurations of
RAID assume that the disks are identical. When disks fail, they
are usually replaced by identical disks. Disks have an increasing
Mean Time to Failure (MTTF), and they are growing in size.
The combination of these two facts makes it plausible that when
a disk fails in an array, it is likely replaced by a larger disk.
Over time, a homogeneous array gets replaced by a completely
new array with the old hardware discarded, a costly solution.
A second solution is to replace the failed disks by new large
disks, but the additional space in the new disks are not utilized.
A third option is to extend the second solution by using the
additional space as a separate storage unit, which interferes with
the operation of RAID. All these solutions are ad-hoc, wasteful,
and expensive. This paper addresses this issue by evaluating a
RAID configuration called RAIDX [4], for heterogeneous disks
and is an expansion of our prior work [5].

RAIDX - RAID eXtended for heterogeneous disks -
configures different types of disks into a single array. For
example, SSD and HDD could be combined into a single
RAIDX array. The configuration of RAIDX ensures that the
speed of the array approaches that of the faster disk in the array.
Moreover, when disks of several sizes are placed in a RAIDX
array, the additional space in the larger disks becomes available.
RAIDX also supports all the traditional RAID levels (striping,
mirroring, and parity). RAIDX, designed for heterogeneity of
disk sizes and speeds, provides optimal performance regardless
of homogeneous or heterogeneous disks.

This paper describes the RAIDX system architecture. The
traditional, homogeneous RAID organizes storage data into
stripes that span the disks uniformly. Each stripe (row) consists
of stripe units, one per disk; the stripe units corresponding
to a stripe at the same location on each disk. RAIDX has
a completely different organization since disks vary in size.
The bundles in RAIDX consist of chunks (not stripe units),
which are not necessarily at the same location of each disk.
Moreover, bundles need not span all the disks; larger disks
participate in more bundles than smaller disks. In traditional
RAID, stripes are just rows of storage data that logically follow
each other. In RAIDX, bundles are organized for maximizing
storage utilization of different sized disks.

Like in traditional RAID, the chunk size is selectable at
initialization. With a smaller chunk size, the number of bundles
increases thus increasing the space requirements for the lookup

ISCA Copyright© 2016

IJCA, Vol. 23, No. 4, Dec. 2016 209

table both in memory as well as on disk. Nevertheless, the size
of the lookup table in the worst case is less than 0.3% percentage
of the array size. If the chunk size increases, the lookup table
size decreases. The lookup table still offers an O(1) retrieval of
chunk addresses. This is because once the array is assembled,
the lookup table no longer changes.

In this paper we compare RAIDX performance to that of
traditional RAID. We take into account one of the simpler
RAID types, namely mirroring as a comparison. While
there is a difference between the speeds achieved by the two
implementations, there are many things that can still improve
the speed of RAIDX. We have shown a 10 times speed increase
over an individual drive in our 7 disk array. Mirroring RAIDX
outperformed traditional RAID in terms of writes, but fell short
on transactions with mostly reads. The crossover point occurs in
transactions where at least 60% of the access is a read. A simple
remedy for this would be to add a cache layer which will keep
most frequently accessed bundles in memory.

2 Related Work

RAID [10] calls a piece of data or parity a stripe unit.
Multiple stripe units are organized into stripes. Stripe units at
the same logical location are in the same stripe. Stripe units are
the smallest blocks that a RAID system can access.

Although other RAID algorithms exist, typically, RAID10,
RAID5 and RAID6 is most commonly used. RAID10 is a
combination of mirroring and striping across the SUs where
RAID5 and RAID6 are single and double parity algorithms
respectively. A parity is calculated by taking the XOR of the
data SUs in the parity. For RAID5, these are the SUs in the
stripe other than the parity stripe unit. In RAID6, the first parity
can be the same that of RAID5, where the second is a myriad of
possibilities [7, 9, 15, 16].

The basic rule in making an algorithm redundant is that each
piece of the data and parity must be kept on a separate disk. The
only way this is possible on differently sized disks is to treat all
disks equal to the size of the smallest disk in the array. One
trick that has been done is to place a second array on top of the
remaining space on the disks. This process repeats until there
are only two disks with free space which is then combined with
a RAID1 array. The trouble this causes is that if both RAID
arrays are accessed simultaneously there is a steep performance
degradation. In any disk access, it is well known that the
throughput is heavily influenced by the seek time required to
access the data [11]. Therefore, any rotational disk that has
multiple RAIDs on it will suffer from this.

Many solutions to this have revolved around obfuscating
the underlying storage devices such as Logical Volume
Management [14] (LVM). This divides up a physical volume
(disk) to physical extents which can be allocated to logical
extents in a logical volume. LVM leads to waste by adding
a layer of abstraction in addition to sub-optimal utilization of
hardware by treating all disks as identical. Others have tried
to create virtual arrays [13] and combine them together into a

single system.
RAIDX combines the layer which creates an abstraction

of the underlying heterogeneous storage with the layer that
provides redundancy and speed improvements over a single
drive. Being aware of the low level storage, RAIDX can make
optimizations on the ordering of how transactions get executed.

3 RAIDX

Our current implementation is done entirely in software,
but there is no restriction that would prevent a hardware
implementation. Using the Linux network block device module,
it is possible to create a block-level user space environment
called BUSE [3]. This creates a block-level device that can
represent the RAID array. By avoiding kernel modules, a
much simpler implementation can be accomplished using object
oriented languages. Using direct file access, we can force the
kernel to retrieve data directly to the userspace memory and
avoid unnecessary memory copies.

3.1 RAIDX Instantiation

In RAIDX there are some additional steps to assembling the
RAID. When creating a new RAIDX set, one must define the
number of chunks per bundle. The smaller the number, the
closer to full utilization of the disks there is, but the larger the
lookup table will be. This is because for a smaller chunks per
bundle, there are more possible ways of spreading the chunks
across the disks to optimize the layout. Each disk in the array
can only store one chunk in a bundle to maintain redundancy. A
disk with more than one chunk out of a bundle would be a weak
link in the array where only a single disk failure is tolerated.
If the chunks per bundle is equal to the number of disks in the
array, then we have a traditional RAID layout and the number of
stripes is determined by the smallest disk in the array. RAIDX
is similar in that once the RAID is assembled, the chunks per
bundle cannot be easily changed. The difference exists in the
number of bundles. RAIDX allows for bundles to be added as
well as removed based on the number of available chunks in the
array. This means that as the array ages and transforms, it is
possible to further increase the storage capacity. With modern
filesystems, it is possible to resize the filesystem to follow the
size of the underlying device. Many filesystems also allow to do
this change on a live system.

The minimum necessary chunks per bundle for traditional
RAIDs are shown in Table 1. The largest traditional RAID
requires 4 chunks. In our experiments, where we have several
different sized disks, we can see that this still produces a RAID
with nearly the full size of the physical array. With a different
set of disk sizes this same phenomenon occurs. The larger the
number of disks in the array, the better the ability to make use
of the full disk space.

To initialize the array, the number of chunks on each disk
is calculated and these become the number of free chunks. It
is possible to estimate the maximum number of bundles (see

210 IJCA, Vol. 23, No. 4, Dec. 2016

Table 1: RAID level and minimum chunks per bundle

RAID Level 0 1 5 6 10
chunk per bundle 1 2 3 4 4

equation 1), but not every configuration of physical disk sizes
allows to have all the disks used. A simple example is taking
an array with a 1TB disk and two 250GB drives. There is no
possible way to make full use of the 1TB array in a redundant
array. If there were two chunks per bundle, the size of the array
is at most 750GB using equation 1, but because of the large
disparity between disk sizes and the small number of disks in
the array, the array size is going to be only 500GB. If we added
two more 250GB (or one 500GB) disks then we would reach the
maximum size of the array.

numStripes =
totalArraySize

chunksPerStripe∗ chunkSize
(1)

In traditional RAID, a hot spare is a drive that is put into
the array as a backup drive that is normally unused, but in the
event of a disk failure it becomes activated and the array fails
over to that drive. In RAIDX, the concept of hot spare becomes
unnecessary, because it is better to have the added performance
of an additional disk in parallel. It is possible to put a smaller
filesystem on the RAIDX array, so that if there is a disk failure,
the RAIDX array can reorganize the chunk locations without
needing to modify the filesystem.

3.2 RAIDX Lookup Table

As all chunks in a bundle can be arbitrarily allocated on the
disk, we must keep a lookup table to later determine the selected
locations. The table on the disk is much different than what is
kept in memory. The disks store only information about those
chunks that are stored on it. The size of the table on the disk is
constant, because the number of chunks a disk can store is based
on the size of the disk and the size of a chunk.

Figure 1 shows an example. The labels within each drive
show the lookup table on each disk. The table at the bottom of
the figure is representative of the lookup table stored in memory.
Note that if a disk fails there is no use in having knowledge
about which chunks were stored on it. In RAIDX a replacement
disk may not be the same size as the failed disk, therefore any
knowledge of previous chunks stored provides nothing. Each
disk stores the UUID of the RAIDX array it is a part of, how
many total stripes the RAIDX array has, the number of chunks
per stripe, the size of a chunk, and the table of offsets of chunks
on the disk. Individually, each disk knows nothing of other disks
in the array or how many disks are part of the array.

The size of the lookup table depends linearly on the size of the
chunks in the array. The smaller the chunks, the more that fit on
the disks thus larger the table. This is true for both on-disk and
in-memory tables. The lookup table only changes when there is
a disk added or removed. Once a table is read from disk, there
is no need to make any updates. The in-memory lookup table

Figure 1: RAIDX lookup table

is intended to provide an O(1) lookup for the location of each
chunk. Loss of the in-memory table is not a problem, because it
can always be reconstructed from the tables stored on the disk.

One of the many advantages of RAIDX is that it is possible
for the array to return to a fully redundant state after a disk
failure but before that disk is replaced. This is because with
a lookup table, the bundles can get redistributed across the
remaining disks. With most modern filesystems, it is possible to
reduce the filesystem size as long as the new size is greater than
the size of the data stored on the filesystem. Once the filesystem
has been resized, the RAIDX array can be restructured to
remove the additional bundles and update the lookup table
with the new locations of the chunks of a bundle. After the
restructure, the RAIDX array is now fully redundant and can
handle an additional disk failure. Conversely, when the data
storage on the RAIDX array has become full, it is possible to
add an additional disk to increase the physical storage capacity.
This additional disk can be incorporated into the array by
expanding the lookup table and reshuffling the chunks across
the array.

3.3 RAIDX1

Using RAIDX, we looked at mirroring RAID. With chunks
scattered across the disks, mirroring does not occur like it
does on a traditional RAID. It is more akin to a RAID10
implementation. Figure 2 shows an example with two chunks
per bundle that would be used for a mirrored RAID setup.
Notice that if bundles 1-4 are requested, all the disks could
be utilized. This does not necessarily mean that they should.
Depending on the speed of the disks, a better solution might be
to use only one disk to access the data. Recall that the time that
takes the longest on any magnetic disk is the seek time. So if
all four disks must seek to the same location to retrieve a small
chunk, then in essence, each of the slower disks in the set are
trying to keep up with the fastest disk. Disk scheduling methods
are nothing new [12], what is new is how to select the best disk

IJCA, Vol. 23, No. 4, Dec. 2016 211

Figure 2: RAIDX array showing a 2 chunk per bundle setup

among a set of different disks. For this, we tested 4 different
algorithms. The first (alg1), iterates through all disks, and only
considers disks that are either twice as fast as the selected, or
is idle while the selected is busy, or the distance the disk is
estimated to seek is less than the currently selected one. If any
of the considerations is true, then the disk under consideration is
set as the selected one. The second algorithm (alg2) considers
all disks independent of the speed. The third algorithm (alg3)
is like the second, except it omits the busy consideration. The
fourth algorithm (alg4) only looks at the seek distances.

Data access is treated as an individual chunk being the
smallest block of data accessible. If a transaction requires
multiple chunks, the best disk is decided on a per-chunk basis
starting with the chunk on the first logical bundle. In our tests,
we always had the bundles organized in ascending order. When
disks have been added and removed from the array, this may not
always be the case. It depends on how the algorithm that adds
in new disks to a previously degraded array places the chunks.
For the present experiments, we need not concern about this
scenario.

4 Simple RAID1

A simplified non-traditional RAID1 was implemented on the
heterogeneous disk set. In this case, the heterogeneity is the
speed of the disks. The goal is to understand how different speed
disks in a RAID affects performance and if there is a different
algorithm to take advantage of the variation in speed.

With this implementation, the disks were treated as identical
sized storage devices. Several different algorithms were created
to test different ways of using the write buffers.

Since the data on all the disks is identical, all writes to
the array were issued to all the disks simultaneously. There
were different algorithms for reads. They are discussed
in the following sections. While many of the algorithms
use asynchronous calls, the read only completes when all
asynchronous calls have completed.

4.1 Fastest Idle Read

This algorithm uses always the fastest disk from the set of
idle disks to execute the read. It is an attempt to ensure that the
RAID is not held back by waiting for a slow disk when a faster
one is available. When all disks are busy, it will wait for the first
one to become idle. We also use a synchronous read as there
is no need to have the overhead of an asynchronous call for the
particular data.

4.2 All Idle Read Async

All Idle Read makes an asynchronous call to each disk in the
set of idle disks to simultaneously read a portion of the requested
blocks. The presumption is that on a set of disks, it is better to
utilize all disks that are waiting idle.

4.3 Fastest Read

This procedure always issued all read requests to a single disk
which was determined to be the fastest at system startup. The
assumption is that there may be a really fast disk in the array that
can be able to keep up with the writes in addition to executing
the reads.

4.4 All Read

This algorithm attempts to simulate the traditional RAID1
such that all read operations are distributed evenly across all
disks.

4.5 Optimized Parallelism

Optimized Parallelism is a cross between Fastest Idle Read
and All Idle Read Async. There are small transactions that
would not make sense to issue to multiple disks. Thus, the
Fastest Idle Read is used in that case, otherwise the All Idle
Read Async method is used.

5 Experimental Setup

To test the speed of the array implementations, the standard
testing tool called flexible I/O tester (fio) [1] was used. Fio is a
tool for any arbitrary I/O throughput testing. It is commonly
used as a comparison tool by many researchers [2, 8] for
arbitrary I/O traffic generation. It is possible to generate random
reads and writes with a desired percentage being reads. The
main drawback is that it takes a long time to get the results as
the transactions have to be executed on the given hardware.

In our tests we use fio to issue random reads and writes,
starting with all writes and incrementing by 10% reads to
100% reads. This can show how the RAID performs with
different types of loads. In initial tests, the size of each read
or write is a constant 10MB. Subsequent tests were done with
a random size ranging from 1KB to 10MB. Each test iteration
was run for approximately 60 seconds. An iteration consisted of
creating constant transactions at a set reads to writes ratio from

212 IJCA, Vol. 23, No. 4, Dec. 2016

4 separate thread sources. This produced a very large number
of transactions to exhaust any kind of system buffer or cache
device and produce a reliable average transaction rate. The
speed of the disk was recorded as the amount of data transferred
in the actual amount of time.

A decision regarding the chunk size needs to be made when
allocating a RAID storage device. A multiple of the disk block
size is used for an optimal disk interface. In 2011, sector
sizes have been defined to be 4096 bytes on all commercial
drives [6]. In prior years, the sector size has been 512 bytes, but
the increase in drive capacity allowed for a block size increase
to make transactions more efficient.

In the RAIDX instance, the size of a chunk was varied across
tests. The tested sizes included: 16K, 32K, 64K, 128K, 256K
and 512K bytes. These are all the typical stripe unit sizes for
traditional RAID.

Our control in this experiment was using the standard Linux
MD RAID implementation on the same drives. For both the
control as well as RAIDX1, we used the same 7 drives that were
described in Section 3.1. All the drives were magnetic platter
disks. The speeds of the disks ranged from 10.7MB/s to 21MB/s
for reads and 2.2MB/s to 21.6MB/s for writes. The average
speed was 16.6MB/s for reads and 10.25MB/s for writes.

Our experiments had four 148.5GB, one 139.2GB, one
297.5GB and one 74GB drives for a total of 1104GB. When
the chunks per bundle equals the number of disks, this forces
the total available space to be a multiple of the smallest disk
in the array. In our case, that makes seven 74GB drives for a
total of 518GB. Had there been a traditional RAID on this set of
drives, over half of the physical storage would be unattainable
to the array. Using a chunk size of one, two or three yields a
total of 1104GB storage space for this set of drives. Therefore,
a RAID1 or RAID5 can be easily placed on these disks and have
the total capacity of the array while also being redundant. Using
a double disk redundancy technique where there are four chunks
per bundle like RAID6 would allow 1076GB of storage space.
In RAIDX, a double disk redundancy becomes unnecessary.
The reason for this is the possibility of dynamic array resizing
discussed in Section 3.2.

6 Results

This section describes the results of the experiments run with
both RAIDX and traditional RAID. First, an analysis of the base
structure of the RAID is examined. Many attributes that apply
to traditional RAID also applies to RAIDX. Subsequent sections
show how RAIDX compares to traditional RAID.

It is important to examine the trade-offs in chunks per bundle
and chunk size selection. We can easily determine that the
chunk size has a linear correlation with the amount of memory
the lookup table will consume and the allocation time of the
lookup table. This is because the smaller the chunk size, the
more bundles that fit on a disk. Smaller chunk sizes result
in more efficient transfers of small files, but would cause
slowdowns in larger files.

To understand how RAIDX performs, it is important to have
a baseline comparison. This test used the Linux multi-disk
module to create the RAID1 array with the parameters all set to
the default. The RAID1 was constructed to use all the available
space on the disks (see Figure 3). The total space available
on the RAID was equal to the smallest disk. After the RAID
was assembled, we ran the test routine to determine the baseline
speed. This scenario would never be realized in a system as
it would be too cost prohibitive. The reason for this test was
to provide a baseline for what kinds of results we should be
expecting with existing methods.

Figure 3: Using traditional RAID1 on a 7 disk array

6.0.1 Simplified RAID1. Using our simplified RAID1
implementation, we tested the performance of write buffers and
multi-disk transactions on disks with different speeds. Figures 4
and 5 illustrates the simple RAID1 algorithm’s transaction rate
when the same 10MB block transactions were issued across 7
disks. Each of the graphs have the same axis limits to make
comparisons easier to see. The All Read algorithm which is
the traditional RAID1 algorithm performs really well because
of the added parallelism. All Idle Read Async and Optimized
Parallelism showed similar improvement with more parallelism.
In fact, they performed better than the MD RAID system. The
total bandwidth was around 550-600MB/s in each of those tests.
In practice, this configuration would not be practical, but it does
show that the process scales very well.

Fastest Idle Read and Fastest Read were most responsive to
disk speeds. In tests where only two disks were used, when a
magnetic disk was replaced with an SSD, the array had almost
a 10x speedup in transaction speed. We can also observe that
those algorithms that excelled with greater parallelism did not
perform well in a situation where there were different speeds in
disks.

Overall, it makes most sense to use Fastest Read when there
is a disk that is orders of magnitude faster (like in the case of
an SSD), but otherwise the All Idle Read Async and All Read

IJCA, Vol. 23, No. 4, Dec. 2016 213

Figure 4: RAIDX1 throughput results for 7 disks with CPS=2

algorithms give the best performance.

6.1 RAIDX Performance

RAIDX also provides a set of write buffers to increase the
bandwidth of the disks by keeping the disks continuously active
during burst writes. These write buffers have been observed to
increase the write intensive workload speeds by up to 40% in our

Figure 5: RAIDX1 throughput results for 7 disks with CPS=2

experiments. The concept is that in a hardware implementation,
these write buffers would be placed in a non-volatile RAM so
even in the case of power loss, the data will have been written to
the RAID device and can resume writing when started up again.

Without the write buffers, the disk speeds suffer. Larger
chunk size arrays have the largest impact. In these cases, what
happens is that when a write transaction is taking place, it is
blocking any future write transactions. The larger the chunk
size, the larger the minimum size that a transaction must be to
be split across multiple disks.

With smaller sequential transactions (1KB to 10MB versus a
constant 10MB size), it is natural that the throughput shrinks on
magnetic disks. Even still, the RAID array performs better than
an individual disk due to the parallelism that is available. The
transactions are likely to be carried out by only a single disk
which leaves the rest of the disks idle.

When the same experiment was run with write buffers, the
transaction speeds gained a 30% boost for 512KB chunk sizes,
but only a 7.7% gain for 16KB chunk sizes. The buffers allowed
more disks to be processing writes at the same time, but since
the 16KB chunk size already split the transactions across more
disks, it didn’t see as much of an improvement. Consider that
if a transaction is 64KB and chunk size is 16KB, then the

214 IJCA, Vol. 23, No. 4, Dec. 2016

transaction will likely be split across 4 separate disks, whereas
if the chunk size was 512KB, then the transaction will fall on
a single disk unless it is on a chunk boundary where it will be
split across two disks. This reason is why write buffers help the
array with larger chunk sizes.

RAIDX1 on a set of heterogeneous disks is able to store
more data than a traditional RAID1 because of the different
layout. Traditionally, in RAID1, each two disks form a mirrored
set. Thus, if the data being requested is largely in a certain
logical location, then only two drives will have that data. The
other disks in the array would be sitting idle. With RAIDX1,
there wouldn’t be any mirrored sets, as the bundles would be
distributed evenly across all of the disks. Therefore, there is
greater parallelism in a RAIDX1 set.

We find that the best algorithm is alg4 where we strictly look
at the distance between where the head of the disk was last and
where the next transaction needs to be.

7 Conclusions

RAIDX, a new type of heterogeneous RAID was developed
and tested on a simple striping and mirroring RAID. RAIDX
is different in that it uses bundles which are arranged on the
disks in a fashion that is determined by the sizes of the disks.
While this requires the use of lookup tables to keep track of
where the bundles are, it does perform on par with traditional
RAID and allows for additional features (such as RAID size
extension) that can’t be done with traditional RAID. We have
shown that write speeds 10 times the speed of an individual
drive in the array are attainable and sustainable. While read
speeds are not as fast, it is possible to add a cache and prefetch
layer to improve it, like it is done on most systems. To also
help enhance reads on disks, we looked into how RAID1 will
perform on a simplified implementation treating unequal sized
disks as equal, but at different speeds. We then took this
and created a RAIDX1 implementation using a subset of these
algorithms and compared it to the traditional RAID1.

In this work, the main concentration was to ensure fast
writes to an array of heterogeneous disks. In the current
implementation of the algorithm, when several bundles are
requested, each chunk is requested on the disk individually.
Combining physically sequential chunk requests to disks have
been shown to give significant improvements in our simplified
tests.

In the future we will also consider RAIDX5, with the added
advantage, that it may be possible to use the parity blocks on
faster disks rather than data blocks to optimize the throughput.
For example, given a bundles with chunks on various speed
disks, it may be better to retrieve only those chunks that are on
the faster disks and calculate the parity than to always retrieve
the data blocks.

References

[1] J. Axboe. “fio - Flexible I/O Tester Synthetic
Benchmark.” URL https://github.com/axboe/

fio (Accessed: 2015-06-13).

[2] D. Bhagwat. “A Practical Implementation of Clustered
Fault Tolerant Write Acceleration in a Virtualized
Environment.” Proceedings of the 13th USENIX
Conference on File and Storage Technologies, pp. 287–
300. 2015.

[3] A. Fekete. “BUSE-CPP.” URL https://github.com/

bandi13/BUSE-CPP (Accessed: 2015-09-08).

[4] A. Fekete and E. Varki. “RAID-X : RAID eXtended for
Heterogeneous Arrays.” “30th International Conference
on Computers and Their Applications,” pp. 157–162. URL
http://bit.ly/2g3W6lH. 2015.

[5] A. Fekete and E. Varki. “RAID on a Heterogeneous Disk
Array.” “CAINE,” Denver, CO. 2016.

[6] IDEMA. “The Advent of Advanced Format.” URL http:

//www.idema.org/?page{_}id=2369 (Accessed:
2015-06-13). 2013.

[7] C. Jin, H. Jiang, D. Feng, and L. Tian. “P-Code: A
New RAID-6 Code with Optimal Properties.” “23rd
International Conference on Supercomputing,” URL
http://dl.acm.org/citation.cfm?id=1542326.
2009.

[8] H. K. Lee. “Minimizing Consistency-Control Overhead
with Rollback-Recovery for Storage Class Memory.”
2015.

[9] X. Luo and J. Shu. “Generalized X-code.” ACM
Transactions on Storage, 8(3):pp. 1–16. ISSN 15533077.
doi:10.1145/2339118.2339121. URL http://dl.acm.

org/citation.cfm?doid=2339118.2339121. sep
2012.

[10] D. A. Patterson, G. Gibson, and R. H. Katz. “A Case for
Redundant Arrays of Inexpensive Disks (RAID).” “ACM
SIGMOD Record,” vol. 17, pp. 109–116. URL http://

dl.acm.org/citation.cfm?id=50214. 1988.

[11] S. Schlosser, J. Schindler, S. Papadomanolakis, M. Shao,
A. Ailamaki, C. Faloutsos, and G. Ganger. “On
Multidimensional Data and Modern Disks.” on File
and Storage, pp. 225–238. doi:10.1016/j.ejogrb.2011.
11.018. URL http://static.usenix.org/events/

fast05/tech/schlosser/schlosser{_}html/. 2005.

[12] M. Seltzer, P. Chen, and J. Ousterhout. “Disk Scheduling
Revisited.” 1990.

IJCA, Vol. 23, No. 4, Dec. 2016 215

[13] A. Thomasian. “Disk Arrays with Multiple RAID Levels.”
ACM SIGARCH Computer Architecture News, 41(5):pp.
6–24. URL http://dl.acm.org/citation.cfm?id=

2641364. 2014.

[14] L. Vanel, R. V. D. Knaap, D. Foreman, K. Matsubara, and
A. Steel. “AIX Logical Volume Manager from A to Z-
Introduction and Concepts.” 1999.

[15] P. Xie, J. Huang, Q. Cao, X. Qin, and C. Xie. “A New Non-
MDS RAID-6 Code to Support Fast Reconstruction and
Balanced I/Os.” Computer Journal, 58:pp. 1811–1825.
doi:10.1093/comjnl/bxv006. 2015.

[16] P. Xie, J. Huang, Q. Cao, and C. Xie. “Balanced P-
Code: A RAID-6 Code to Support Highly Balanced I/Os
for Disk Arrays.” “9th IEEE International Conference
on Networking, Architecture, and Storage,” pp. 133–137.
IEEE. ISBN 978-1-4799-4087-5. doi:10.1109/NAS.2014.
29. URL http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=6923172. aug 2014.

András Fekete is a PhD candidate
in Computer Science at the
University of New Hampshire.
He received his M.Sc. in Electrical
Engineering in 2009, and B.Sc. in
Computer Science in 2006. His
research focuses on storage arrays
consisting of different types of
disks.

Elizabeth Varki received a
PhD in Computer Science from
Vanderbilt University in 1997. She
is an Associate Professor in the
Department of Computer Science at
the University of New Hampshire.
Her research and teaching interests
are distributed systems, storage
devices, and performance modeling.

216 IJCA, Vol. 23, No. 4, Dec. 2016

ISCA Copyright© 2016

Evaluation and Generalization of Trust Models in P2P Networks

Wei Li*
College of Engineering and Computing

Nova Southeastern University, Fort Lauderdale, FL 33314 USA

Abstract

Peer to Peer (P2P) networks have been widely used recently
in various applications such as file sharing, content distribution,
and e-commerce. At the same time, there were a number of
attacks on the reputation mechanisms in these P2P networks.
These attacks try to manipulate or misuse the reputation
systems so that ratings on certain peers are biased, changed, or
ignored. Many approaches have tried to defend against these
attacks. This paper first provides a comparative study on trust
models for P2P networks, with a focus on three major trust
models: Eigentrust, PeerTrust, and R2Trust. We then propose
a generalized trust model, show its parameters, and present a
detailed analysis on how existing approaches can be
encompassed in this model. In addition, we discuss issues
related to existing models, and indicate a few potential areas
for future research.

Key Words: Peer to peer (P2P) network, trust, reputation
system, attack, network security.

1 Introduction

Peer to peer (P2P) networks, sometimes referred to as P2P

overlay networks, have gained increasing popularity during the
past two decades. In these networks, a peer (or node, user) can
choose to join in or leave arbitrarily, and is able to connect to
other peers for point to point communications. The overlay
networks are built on top of existing TCP/IP network protocols
and can better utilize limited network resources such as
bandwidth or computational power. Due to their dynamic and
distributed nature, these networks provide desirable features
such as self-organization, robust routing, efficient searching,
redundant storage, massive scalability, inherent anonymity,
and fault tolerance, among others [1]. Different from the
traditional client-server model of the Internet, each peer can act
as the content provider (server) and content consumer (client)
simultaneously. P2P networks have been used widely in
applications such as e-commerce, file sharing, multimedia
streaming. It was estimated that P2P network traffic
constitutes more than half of today’s Internet traffic volume [1].

Despite all these features, P2P networks face a number of
security challenges. These challenges range from traditional

* 3301 College Avenue. Email: lwei@nova.edu.

issues such as access control, denial of service (DoS) attacks,
man-in-the-middle attacks, to distinctive issues such as routing
disruption, collusions among multiple peers, and sharing of
malware. One fundamental issue in P2P network is, which and
to what extent peers can be trusted. Over the past decade,
many trust/reputations based systems have been proposed to
address this issue [2-9, 11]. These systems generally rely on
the aggregation or estimation of ratings form peers in the same
network, and may integrate different parameters such as social
context, distance measurements, etc.

This paper is intended to perform a comparative study on a
number of reputation models built for unstructured P2P
networks (no centralized control once the peer to peer
communication starts) and provide some directions for future
research. On the other hand, structured P2P networks are
tightly controlled and contents are distributed at specified
locations to make subsequent queries more efficient [1].

The rest of the paper is organized as follows. In Section 2,
we provide a general discussion on common risks and attacks
on trust/reputation models in P2P networks. Section 3 presents
a comparative review on three widely recognized trust models:
Eigentrust, PeerTrust, and R2Trust. Section 4 shows a
generalized trust model and discusses its parameters. Section 5
discusses issues related to existing models, and shows a few
potential areas for future research. Section 6 shows the
summary and conclusion of the paper.

2 Risks of Trust Models in P2P Networks

Risks in unstructured P2P networks are inherent in nature
due to its absence of tight control. Peers in these networks can
misuse the reputation systems either in isolated or in
collaborative ways. The attacks are specific to the P2P
network in which the reputation system was built. Broadly
speaking, reputation attacks can generally be classified into
three categories: unfair recommendations (peers spread unfair
ratings), inconsistent behaviors (peers strategically misbehave
that leads to an incorrect estimate of their reputation), and
identity management related attacks (misuse identity scheme
permitted by the P2P systems such as using multiple IDs with
different ratings) [7]. The first category has attracted more
focus than others in the research literature due to its direct
impact on reputation systems, more specifically, on the
calculation of ratings. Some typical unfair recommendations
include the following [6,7].

IJCA, Vol. 23, No. 4, Dec. 2016 217

 Collusion attacks. These attacks occur when a group of
malicious peers collude to subvert the reputation system.
In most cases the malicious peers are compromised or
hijacked by a misbehaved peer. This is one of the most
dangerous attacks because it is very difficult to track down
the attack if they function correctly in the short term. In
these attacks, malicious cooperate to spread bad ratings of
other peers (badmouthing) while promoting each other’s
rating [7]. These peer attacks compromise the anonymity
of peers.

 Forgery attacks. These attacks work by tampering the
transmitted rating data. As a result, the ratings from a
reputation system is not as trustworthy as it should be.
These attacks compromise the confidentiality and integrity
of reputation systems.

 Eclipse attacks. Sometimes referred to as membership
attacks, these attacks work by controlling part of the
overlay network to drop or reroute messages sent from
legitimate peers, so that the ratings from the legitimate
peers no longer count in the final ratings.

 Sybil attacks. These attack work by compromising the
reputation mechanism. More specifically, an attacker may
create a number of entities, and then use them together to
defeat the reputation system. The target can be a single
peer or a group of peers.

 Omission attacks. These attacks occur when the
reputation mechanism is compromised. All ratings
submitted by certain peers are ignored.

 Pollution attacks. These attacks are performed by sending
a large volume of fake data.

Other than the attacks shown above, P2P reputation systems

are also susceptible to traditional attacks such as Denial of
Service (DoS) attacks, where malicious peers send excessive
amounts of requests or ratings intended to overwhelm other
peers; man-in-the-middle attacks, where intermediate nodes
tamper messages they are supposed to deliver; or attacks
against the P2P networks themselves. The intention is either to
subvert the whole reputation system, or to create an unfair
reputation so that ratings on certain peers are biased or ignored.

3 Reputation-Based Models in P2P Networks

As an active research field, a number of reputation-based

models have been proposed during the past decade to address
the security concerns shown above [2-4]. A survey on current
status of reputation systems can be found in [5-8]. Due to the
large number of publications in this field, we focus on a subset
of representative approaches that tried to address the attacks
with “unfair recommendations” shown above, namely, the
PeerTrust [2], Eigentrust [3], and R2Trust [4].

There have been various definitions on reputation and trust
systems. In this paper, we adopt the one proposed in [5], “A
reputation system works by facilitating the collection,
aggregation and distribution of data about an entity that can, in
turn, be used to categorize and predict that entity’s future

actions”. Despite the fact that different reputation systems
might have differences on how data is collected, how data is
integrated, how data is used, and how the systems are deployed,
they all provide a source of trust from which peers’ future
actions can be regulated. It should also be noted that there are
delicate differences on the definitions of reputation and trust.
Reputation refers more to the character others think someone
has (the perception). On the other hand, trust focuses more on
the measured dependence and reliability. Trust can be
established through reputation, and a better reputation can lead
to greater trust [5]. In this paper, we use the two terms
interchangeably.

3.1 Eigentrust

One of the most cited trust/reputation systems is Eigentrust

[3]. It was designed to aggregate local trust values for a P2P
file-sharing network, and the transactions consist of uploading
and downloading tasks. Because of the distributed nature,
these systems do not require a centralized storage and
management system. Each peer maintains only trust values to
its neighbors. The motivation behind Eigentrust was called
“transitive trust” – a peer will have a high opinion of other
peers who have provided authentic files, and is likely to trust
the opinions of these peers. In other words, peers who are
honest about the files they have are also likely to be honest in
reporting their local trust values.

The local trust value sij is defined as follows.

௜௝ݏ ൌ ,ሺ݅ݐܽݏ ݆ሻ െ ,ሺ݅ݐܽݏ݊ݑ ݆ሻ

In this definition, ݐܽݏሺ݅, ݆ሻ is the number of satisfactory

transactions (e.g., downloads, uploads) peer i has had with peer
j, ݐܽݏ݊ݑሺ݅, ݆ሻ is the number of unsatisfactory peer i has had
with peer j.

Local trust values are then normalized according to the
following equation.

ܿ௜,௝ ൌ
max	ሺݏ௜௝, 0ሻ
∑ max	ሺݏ௜௝, 0ሻ௝

It is clear that 0 ൑ ܿ௜,௝ ൑ 1. If ∑ max൫ݏ௜௝, 0൯ ൌ 0௝ , then ܿ௜,௝
is undefined. To address this issue, the concept of a priori
notion of trust was introduced, which indicates that some
known peers (e.g., those established in the network at the
beginning) are trustworthy. Let P be the set of peers that are
known to be trusted, ݌௜ ൌ 1/|ܲ| where ݅ ∈ ܲ , and ݌௜ ൌ 0
otherwise. Normalized local trust values can then be rewritten
as:

ܿ௜,௝ ൌ ቐ

max	ሺݏ௜௝, 0ሻ
∑ max	ሺݏ௜௝, 0ሻ௝

														݂݅෍ max	ሺݏ௜௝, 0ሻ
௝

് 0	

݁ݏ݅ݓݎ݄݁ݐ݋																												௝݌

Normalized local trust values are then aggregated according

to the following equation.

218 IJCA, Vol. 23, No. 4, Dec. 2016

௜௞ݐ ൌ෍ ܿ௜௝ ௝ܿ௞
௝

Here ݐ௜௞ represents the trust peer i places in peer k by

querying trust from its friends. Let C be the matrix [cij], ࢚࢏ be
the vector containing the values ݐ௜௞ , and ࢏ࢉ be the vector
containing the values ܿ௜௝, then we have ࢚࢏ ൌ is ்ܥ where ࢏ࢉ்ܥ
the transpose of ܥ. At this point, the trust values stored by
peer i contains only the experience of i and its neighbors. To
get a broader view, i can continue to ask its friends’ friends
(࢚ ൌ ሺ்ܥሻଶࢉ௜), and the process will go on (࢚ ൌ ሺ்ܥሻ௡ࢉ௜). It
has been shown that if n is large, the vector ࢚࢏ will finally
converge to the same vector for every peer i. In other words, it
will converge to the left principle eigenvector of C. Here ࢚ is a
global trust vector and its elements ࢚࢐ contains how much trust
the system as a whole places on peer j.

To protect the trust system from malicious collective attacks
(more broadly, collusions and Sybil attacks), the global trust
values is re-defined as

࢚ሺ࢑ା૚ሻ ൌ ሺ1 െ ሺ࢑ሻ்࢚ܥሻߙ ൅ ࢖ߙ

where ߙ is a constant less than 1 and ࢚૙ ൌ ,࢖ is the start ࢖	
vectors. Using this sliding-window equation, a peer crawling
the network by the previous probabilistic model is unlikely to
get stuck in a malicious collective as it has a probability to
crawl to a pre-trusted network. The larger the value ߙ is, the
better chance that peer will place more trust in the pre-trusted
network. In a number of attack scenarios, this approach has
shown its effectiveness. It also supports distributed and
scalable computing [3]. The trust model was widely cited and
compared against, and was extended in a number of research
efforts such as [11].

3.2 PeerTrust

Another frequently cited work on reputation systems is

called PeerTrust [2]. The approach targets on distributed
e-commerce applications and reputation are calculated based
on transactions, but it can also be adapted to other domains. It
supports two main features. One is the inclusion of three basic
trust parameters (feedback a peer receives from other peers,
total number of transactions a peer performs, and the
credibility of the feedback sources) and two adaptive factors
(transaction context factor and the community context factor)
in trust computation. The other feature was the definition of a
general trust metric to combine these parameters.

The approach has the following parameters.

 ܫሺݑ, ݑ ሻ: total number of transactions performed by peerݒ

with peer ݒ;
 ܫሺݑሻ: total number of transactions performed by peer ݑ

with all other peers;
 ݌ሺݑ, ݅ሻ: other participating peers in ݑ's ith transaction;
 ܵሺݑ, ݅ሻ: normalized amount of satisfaction peer ݑ received

from ݌ሺݑ, ݅ሻ during its ith transaction;

 ݎܥሺݒሻ: credibility of the feedback submitted by ݒ;
 ܶܨሺݑ, ݅ሻ: adaptive transaction context factor for peer ݑ's

ith transaction;
 ܨܥሺݑ, ,௞ݐ ݑ ሻ: adaptive community context factor for peerݐ

during the period of ݐ௞ and ݐ.

The trust value of peer ݑ during the period of time ݐ௞ and ݐ

can then be defined as

ܶሺݑሻ ൌ ߙ ∗෍ܵሺݑ, ݅ሻ ∗ ,ݑሺ݌ሺݎܥ ݅ሻሻ

ூሺ௨ሻ

௜ୀଵ

∗ ,ݑሺܨܶ ݅ሻ ൅ ߚ ∗ ሻݑሺܨܥ

where ߙ and ߚ denote the normalized weight factors for
collective evaluation and the community context factors. The
above equation can be simplified by manipulating the weight
factors. When ߚ ൌ 0 and ߙ ൌ 1 , it will result in a “basic
metric” where community context is excluded from
consideration.

To evaluate the credibility of feedback, PeerTrust includes
two credibility measures. The first is to use a function of trust
value of a peer as its credibility factor. It implies that feedback
from trustworthy peers are considered more credible.
Consequently, they are weighted more than those from
untrustworthy peers. The metric can be defined as follows.

,ݑሺ݌൫ݎܥ ݅ሻ൯ ൌ
ܶሺ݌ሺݑ, ݅ሻሻ

∑ ܶሺ݌ሺݑ, ݅ሻሻூሺ௨ሻ
௜ୀଵ

Another credibility measure is used for peer ݓ to rate the

credibility of another peer ݒ through ݓ’s personal experience,
and will affect the feedback by ݒ on other peers. It contains
the following parameters.

 ISሺvሻ: set of peers that have interacted with peer v;
 IJSሺv, wሻ: common set of peers that have interacted with

both peer w and v, thus IJSሺv, wሻ ൌ ISሺvሻ ∩ ISሺwሻ.

Subsequently, the measure is defined as

,ݑሺ݌൫ݎܥ ݅ሻ൯ ൌ
ௌ௜௠ሺ௣ሺ௨,௜ሻ,௪ሻ

∑ ௌ௜௠ሺ௣ሺ௨,௜ሻ,௪ሻ಺ሺೠሻ
೔సభ

,

Where

ܵ݅݉ሺݓ,ݒሻ

ൌ 1 െ
ඩ∑ ሺ

∑ ܵሺݔ, ݅ሻூሺ௫,௩ሻ
௜ୀଵ
,ݔሺܫ ሻݒ 	െ	

∑ ܵሺݔ, ݅ሻூሺ௫,௪ሻ
௜ୀଵ
,ݔሺܫ ሻݓ ሻଶ௫∈ூ௃ௌሺ௩,௪ሻ

,ݒሺܵܬܫ| |ሻݓ

Here ܵ݅݉ሺݓ,ݒሻ is the similarity between the two feedback

vectors. The rooted mean square measure is used to compute
the similarity. Intuitively it implies that value as feedback
from similar raters are given more weight. The design has the
potential to defend against potential collusions, as the feedback

IJCA, Vol. 23, No. 4, Dec. 2016 219

similarity between a peer in and a peer outside the collision
group tend to be low. As a result it will filter out dishonest
peers [2]. The transaction factor ܶܨሺݑ, ݅ሻ can be based on
transaction contexts such as the size, the category or time
stamps. Recent transactions are generally assigned higher
weight than other older transactions. The community context
factor ܨܥሺݑሻ can be defined as ܨܥሺݑሻ ൌ ሻݑሺܫ/ሻݑሺܨ where
 gives to ݑ ሻ represnet the total number of feedback peerݑሺܨ
others, as a building incentive to users who perform
transactions or providing ratings [2].

3.3 R2Trust

A more recent model called R2Trust was proposed [4]. It

integrated both the reputation and risk information into the
model, and claimed to be able to handle malicious attacks,
collusive attacks, and strategic attacks. It has a few distinctive
features. First, the concept of risk was introduced in the
computation of a peer's trust value. The risk represents various
malicious behaviors, such as misuse of trust. Second, the
recommender’s credibility is updated quantitatively to
minimize the effects from collusive peers. Third, the approach
considers quality of service as probabilistic ratings in the
interval [0, 1], not necessarily binary as appeared in most
approaches [2].

In R2Trust, the overall trust value of peer ݆ at peer ݅ can be
represented as

ܶ ௜ܸ௝ ൌ ߙ ∗ ௜ܶ௝ െ ߚ ∗ ܴ ௜ܸ௝					݁ݎ݄݁ݓ	0 ൑ ,ߙ ߚ ൑ 1

In this equation, ௜ܶ௝ and ܴ ௜ܸ௝ represent the trust value and

risk value over peer ݆, ߙ, ߚ represent the weights for ௜ܶ௝ and
ܴ ௜ܸ௝, and are set based on the optimistic perception of peer ݆.
The computation of ௜ܶ௝ relies on two parts: direct trust and
reputation value. The computation of direct trust relies on
cases when a peer has direct transactions with other peers. In
this part, the approach introduces a timing discount function,
with the assumption that most recent ratings are more accurate
to reflect a peer’s reputation in the near future. The
computation of reputation value relies on the aggregation of all
the “referrals” from other peers. The reputation also considers
the "credibility" of peers to identify peers that might be
involved in collusive cheating attacks. The computation of
risk value ܴ ௜ܸ௝ is based on the “interaction-derived information”
(local view of a peer on the whole network) by utilizing the
concept of entropy. It was claimed that the use of risk
evaluation provides a better chance to identify misbehaved
peers. Despite the complex computations in this approach, the
experimental results showed that R2Trust performed better
than similar systems with a given set of parameters and has the
potential to identify misbehaved peers [4].

3.4 Other Trust Models

Other than the trust models discussed above, there were

quite a few other approaches proposed. In PowerTrust [12], a
trust overlay network was used to model trust relationships.

The system dynamically chose most reputable nodes (the
“power” nodes) based on a distributed ranking mechanism.
Local trust scores were computed based on Bayesian inference.
A distributed hash table (DHT) was used to propagate trust
values among peers. The calculation of global trust was
expedited by using look-ahead random walk strategy. The
approach was able to adapt to situations with nodes
dynamically joining and leaving the P2P network, and was
able to withstand malicious users based on experiments with
eBay data of more than 10,000 users [12]. However, it has
been indicated by other researchers that in PowerTrust,
subjective opinions from each node may be ignored as all
participating nodes in the whole P2P network may assume the
same trust value [13].

Some other models, such as SFTrust [14], have also been
used for trust management in unstructured P2P networks,
where there is no strict control over network topology, and
there is no direct relationship between network topology and
trust storage. Unlike most other approaches where trust was
evaluated as a single metric, in SFTrust, trust values are
categorized into two groups – service trust and feedback trust.
It implies that a peer that provides high quality service may not
necessarily provide high quality ratings, and vice versa. In
other words, a peer may be used for service purposes even if
feedback on other peers may not be trustworthy. Because of
this, a double trust metric was used to evaluate trust values.
Trust storage was implemented by using a topology adaptation
protocol [14]. The approach has been criticized for lack of
consideration on transactions with time variance and on the
quality of transaction [13].

In a more recent model, a neighbor similarity trust measure
was proposed to defend against specific attacks such as the
Sybil Attack [15]. The approach assumes that 1) Sybil attack
peers have relatively loose connections with the rest of the
network; and 2) the attacks tend to use graph analysis
techniques to estimate connection graph topology. Sybil
attacks happen when a malicious peer creates multiple non-
existent peers with different identities. To detect this, a peer is
evaluated by referencing to its trustworthiness and the
similarity to the neighbors. If the peer does not have the same
trust/similarity data as its neighbors, it is considered as having
multiple identities. In a small simulation network with 40
peers, the approach has shown to have better performance than
Eigentrust in the detection of Sybil attacks [15]. However, the
performance seemed to degrade in a sparsely connected net-
work, and the similarity determination was based on threshold
values, which in some cases might require expert opinions.

4 A Generalized Model for Trust Computation

In addition to the reputation models discussed above, there

were various models proposed as extensions – especially those
based on Eigentrust and PeerTrust. Here we want to
consolidate the three models and develop a generic version, so
that future researchers may look into their common features. It
is also helpful for the research community to “think out of the
box” of existing models and propose innovative solutions.

220 IJCA, Vol. 23, No. 4, Dec. 2016

Most (if not all) P2P reputation models proposed can be
generalized into the following generic form. A trust ܶݐݏݑݎ௜௝ is
defined as a two-way relationship that peer ݅ places on peer ݆.

௜௝ݐݏݑݎܶ ൌ ݂ሺݎ݅ܦሺ݅, ݆ሻ, ,ሺ݆ݎ݅ܦ݊ܫ ݇ሻ, ሺ݅ሻሻ (1)ݒ݊ܧ

In this equation, ݎ݅ܦሺ݅, ݆ሻ means the direct relationship

between peer ݅ and peer ݆, which can be interpreted differently
in different P2P systems – when there are direct transactions
[2,3], when ݅ downloaded contents from ݆, or when there is a
direct connection between ݅ and ݆ in the overlay network. In
this relationship, a peer ݆ can simply have a binary direct
impact on ݅ (e.g., there is a transaction or no transaction), some
type of numerical-value impact on ݅ (e.g., there is a certain
probability that a transaction might be successful), or an
accumulated value such as the number of transactions.
,ሺ݆ݎ݅ܦ݊ܫ ݇ሻ indicates an indirect relationship with peer ݇
which is the set of peers that have an indirect relationship with
݆. The set of ݇ can be interpreted as i’s neighbors’ neighbors
in a P2P overlay network. Note that both ݎ݅ܦሺ݅, ݆ሻ and
,ሺ݆ݎ݅ܦ݊ܫ ݇ሻ can be as simple as a single value, positive or
negative values, discrete or continuous values [4], or complex
functions that take into account past transaction history.
ሺ݅ሻݒ݊ܧ denote the environmental factors in the network

where peer ݅ resides – such as the community context factors
used in [2]. These environmental factors may include, but are
not limited to, a pre-defined subset of trustworthy peers, how
much weight should be applied to past and current transactions
or credibility values, network topology, application areas, and
could be updated dynamically. For example, a peer may not
be initially included in the set of trustworthy peers. However,
after a number of transactions and the peer showed its
credibility, it can be included. Similarly, a peer may be
excluded from the set due to malicious or irregular behaviors.

The weights can also be adjusted according to the context of
transactions, and specific type of P2P networks. In e-
commerce applications, the focus should be on the volume of
successful transactions and on the monetary amount these
transactions involve. On the other hand, in P2P streaming
applications [6], more focus should be on the volume of
content that a peer can successfully deliver.

The ݂ሺሻ function defines how the direct impact, the indirect
impact, and the environmental factors are aggregated.
Considering the computational overhead, most approaches
adopt a linear combination (e.g., summation) of these elements
[2-4]. A reputation aggregation approach called FuzzyTrust
was proposed in the literature, which has comparable
performance with Eigentrust in experimenting with transaction
data from eBay [9]. In this context, the ݂ሺሻ function is defined
as fuzzy inference rules and can be reasoned using the
inference engine. The fuzzy inference engine has the
distinctive benefit to handle imprecise linguistic terms. In
addition to these efforts, with the adoption of compact data
structures, there might be other approaches that may better
reflect the trust relationship between peer ݅ and peer ݆ with
similar or comparable computational overheads.

Figure 1 illustrates relationships among factors shown in
Equation (1). Here i and j are directly connected peers, and
,ሺ݆ݎ݅ܦ݊ܫ ݇ሻ consists of a number of indirect relationships
between i and j's neighbors k1, k2, …, kn.

Trust computation is not a one-step process in distributed
networks. These values are dynamic and can evolve as more
transactions/activities accumulate over time. More importantly,
due to the distributed nature of P2P networks, the initial
computation of ܶݐݏݑݎ௜௝ is solely based on peer i’s local
perspective on the P2P network. The trust values need to
propagate so that at one point, the values will converge. As a
result, most reputation systems define the following (generic)
function for trust propagation.

Figure 1: Generalized model for Trust Computation in P2P networks

i j

k1

k2

kn

…
…

…
…

Dir(i, j)

InDir(i, k1)

InDir(i, k2)

InDir(i, kn)

Env(i)

…
…

IJCA, Vol. 23, No. 4, Dec. 2016 221

௜௝ݐݏݑݎܶ

ሺ௧ାଵሻ ൌ ݀ሺܶݐݏݑݎ௜௝
ሺ௧ሻ, ܿሻ

The equation denotes that the trust peer ݅ places on peer ݆ at

time (ݐ ൅ 1ሻ depends on the trust obtained at time ݐ, and other
factors ܿ (e.g., the start vector in [3]). The ݀ሺሻ function
defines how these factors are aggregated. It can be a sliding
window function [3], entropy based function [4], or other
functions.

It should be noted that the generalized model hides many
computational issues incurred by various functions. In real
implementations, they may vary greatly. Despite this, the
generic model should shed some light on how a generic
trust/reputation model works, and how to develop future
reputation models as improvements.

5 Discussion

Trust models (not necessarily in P2P networks) has been

utilized in a number of e-commerce websites such as eBay,
Amazon, Digg, ePoints, and Yelp. The models were also used
in special purpose web page rankings, such as PageRank used
by Google, Slashdot, StackOverFlow, etc. A wider usage is on
P2P file-sharing networks such as Napster, YourBittorrent,
Kazaa, Gnutella, and eDonkey. Many reputation systems are
built with potential malicious behaviors in mind, but they still
suffer a number of challenges shown below.

5.1 Basic Assumption

Any existing trust model implies a fundamental assumption

that most peers in a P2P network behave honestly, and the
misbehaved peers are relatively rare. The assumption is
reasonable, but may not always be valid especially in large-
scaled attacks such as DoS.

5.2 Aggregation Function

The aggregation function used in most approaches are based

on a linear combination of trust or rating scores from peers,
which by nature can be misused or manipulated. There also
needs to be a mechanism to adjust the number of peers
included in aggregation. Complex data fusion techniques (e.g.,
non-linear algorithms) can also be used here.

5.3 Convergence

The coverage refers to whether the trust function ܶݐݏݑݎ௜௝
ሺ௧ሻ

is able to converge after a number of iterations. Existing
approaches did not provide a formal analysis, and a
convergence is not guaranteed. Empirically, it has been shown
that the Eigentrust algorithm adopted a simple evolvement
function, which will converge after 100 query cycles for a
network of 1000 peers [3]. For a general convergence case,
the algorithm does not provide an upper bound on n – the
number of peers. The issue is more complex in a dynamic
network.

5.4 Constant Factors in the Trust Function

Many trust systems use some type of constant values in their

computation, for example, to what extent the trust should rely
on the start vector (ߙ as defined in Eigentrust [3]), the
community context (ߙ and ߚ as defined in PeerTrust [2]),
relative values between trust and risk (ߙ and ߚ as defined in
R2Trust [4]), and on recent/distant transactions. Although
different algorithms define mechanisms to update these values
based on empirical studies, constant factors still play a major
role in trust computation, and may lead to inaccuracies.

5.5 Attacks Against Trust Systems as a Whole

Although some mechanisms are used to detect

collusion/Sybil/Eclipse attacks, the attacks can only be
detected for obvious versions. The elusive attacks are hard to
detect since each rating seems legitimate individually. A
recent attack, RepHi, has shown to be effective to subvert the
rating systems [10]. As a result, we expect that these attacks
will remain active in P2P networks for a long time.

5.6 Computational Overhead

In almost any reputation systems, there was a lack of formal

analysis on how much computational overhead they may
involve. More specifically, we wish to see an asymptotic
analysis in the form of ܱሺܶݐݏݑݎ௜௝

ሺ௧ሻሻ. It is understandable that
such a formal analysis is difficult for any distributed algorithm,
however even the formal upper bounds on key resources
(memory, storage, and bandwidth) on a number of factors of
computation will be helpful. It should be noted that the
reputation systems are built on top of existing P2P networks,
and in many cases, the peer needs a quick decision to choose
peers to communicate. It is not desirable when computational
overhead degrades the performance of overall P2P networks.

5.6 Alternative Approaches/Future Research Directions

The original trust issue in P2P networks can be attributed to

a pattern recognition problem: given a local view of each peer
in a dynamic P2P network, how to develop a robust and
efficient trust mechanism so that peers can rely upon for future
transactions? This is a difficult issue due to the following
constraints: lack of centralized monitoring and management;
limited view of each peer over the entire network; limited
transactions among peers; convergence; computational
overhead, among others. The following research directions
may be worth future efforts: 1) more detailed analysis on real-
world attacks against trust systems in P2P networks; 2) the use
of compact digital signatures for validation of peers; 3) the use
of compact data structure for storage; 4) machine learning
techniques applied to trust computation; and 5) network
simulation and performance evaluation of large-scale P2P
networks.

222 IJCA, Vol. 23, No. 4, Dec. 2016

6 Summary and Conclusions

Peer to Peer (P2P) networks have been widely adopted in

recent years in various of applications such as file sharing,
content distribution, and e-commerce. At the same time, there
were a number of attacks on the reputation mechanisms in
these P2P networks. These attacks intend to manipulate or
misuse the reputation systems so that ratings on certain peers
are biased or ignored. Many approaches have been proposed
in the academia to defend against these attacks. This paper
provided a comparative study on three major trust models in
the research literature: Eigentrust, PeerTrust, and R2Trust.
Key parameters of each model was shown and discussed in
detail. We then proposed a generalized trust model, shown its
parameters, and presented a detailed analysis how existing
approaches work. In addition, we discussed issues related to
existing models, and shown several potential areas for future
research.

References

[1] Do-sik An, Byong-lae Ha, and Gi-hwan Cho, “A Robust

Trust Management Scheme against the Malicious Nodes
in Distributed P2P Network”, International Journal of
Security and Its Applications, 7(3):317-326, 2013.

[2] Jingyu Feng, Yuqing Zhang, Shenglong Chen, and Anmin
Fu, “Rephi: A Novel Attack against P2P Reputation
Systems”, 2011 IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS),
IEEE, pp. 1088-1092, 2011.

[3] Gabriela Gheorghe, Renato Lo Cigno, and Alberto
Montresor, “Security and Privacy Issues in P2P Streaming
Systems: A Survey”, Peer-to-Peer Networking and
Applications, 4(2):75-91, 2011.

[4] Ferry Hendrikx, Kris Bubendorfer, and Ryan Chard,
“Reputation Systems: A Survey and Taxonomy”, Journal
of Parallel and Distributed Computing 75 (2015): 184-
197.

[5] Sepandar D. Kamvar, Mario T. Schlosser, and Hector
Garcia-Molina, “The Eigentrust Algorithm for Reputation
Management in P2P Networks”, Proceedings of the 12th
International Conference on World Wide Web, ACM, pp.
640-651, 2003.

[6] Eleni Koutrouli and Aphrodite Tsalgatidou, “Taxonomy of
Attacks and Defense Mechanisms in P2P Reputation
Systems—Lessons for Reputation System Designers”,
Computer Science Review, 6(2):47-70, 2012.

[7] Xiong, Li, and Ling Liu, “Peertrust: Supporting
Reputation-Based Trust for Peer-to-Peer Electronic
Communities”, IEEE Transactions on Knowledge and
Data Engineering, 16(7):843-857, 2004.

[8] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi
Sharma, and Steven Lim, “A Survey and Comparison of
Peer-to-Peer Overlay Network Schemes”, IEEE
Communications Surveys & Tutorials, 7(2):72-93, 2005.

[9] Félix Gómez Mármol and Gregorio Martínez Pérez, “State
of the Art in Trust and Reputation Models in P2P
Networks”, Handbook of Peer-to-Peer Networking,
Springer, US, pp. 761-784, 2010.

[10] Shen Rao, Yong Wang, and Xiao-ling Tao, “The
Comprehensive Trust Model in P2P Based on Improved
EigenTrust Algorithm”, 2010 International Conference on
Measuring Technology and Mechatronics Automation,
IEEE, 3:822-825, 2010.

[11] Shanshan Song, Kai Hwang, Runfang Zhou, and Y-K.
Kwok, “Trusted P2P Transactions with Fuzzy Reputation
Aggregation”, IEEE Internet computing, 9(6):24-34, 2005.

[12] Chunqi Tian, and Baijian Yang, “R2Trust, a Reputation
and Risk Based Trust Management Framework for Large-
Scale, Fully Decentralized Overlay Networks”, Future
Generation Computer Systems, 27(8):1135-1141, 2011.

[13] Guojun Wang, Felix Musau, Song Guo, and Muhammad
Bashir Abdullahi, “Neighbor Similarity Trust against
Sybil Attack in P2P E-Commerce”, IEEE Transactions on
Parallel and Distributed Systems, 26(3):824-833, 2015.

[14] Yunchang Zhang, Shanshan Chen, and Geng Yang,
“SFTrust: A Double Trust Metric Based Trust Model in
Unstructured P2P System”, IEEE International
Symposium on Parallel & Distributed Processing, 2009,
IPDPS 2009, IEEE, pp. 1-7 2009.

[15] Runfang Zhou and Kai Hwang, “Powertrust: A Robust
and Scalable Reputation System for Trusted Peer-to-Peer
Computing”, IEEE Transactions on Parallel and
Distributed Systems, 18(4):460-473, 2007.

Wei Li is a Professor in the College
of Engineering and Computing at
Nova Southeastern University. His
research interests include attack
modeling and simulation, intrusion
detection, firewall management, role-
based access control, and the
application of AI techniques in
various security problems. He has
published over two dozen papers in
referred journals and conferences. He
is a senior member of IEEE and a

member of ACM.

IJCA, Vol. 23, No. 4, Dec. 2016 223

Chinese Characters Ontology and Induced Distance Metrics*

Antoine Bossard†
Kanagawa University, Hiratsuka 259-1293, JAPAN

Keiichi Kaneko‡
Tokyo University of Agriculture and Technology, Koganei 184-8588, JAPAN

Abstract

Saying that writing systems based on Chinese characters
are perceived as difficult to master is no overstatement. At
the same time, Chinese characters are ubiquitous across a
large part of Asia, being used in several countries such as
China and Japan. Hence, various methodologies supporting
the learner memorization process have been proposed. Given
the huge number of characters involved, memorization is a
herculean, never ending task. At the difference of most
previous methods, we detail in this paper a scientific approach
to Chinese characters. Building on our previous research
results, we conduct ontological discussion regarding Chinese
characters from an information science point of view. Aiming
at maximizing the versatility of such an information model, we
shall consider multi-lingual properties of these characters. We
subsequently review an important application of this foundation
work by introducing the notion of distance between any
two Chinese characters. Being a critical component for the
pedagogical method of character chaining, several distance
metrics are proposed in addition to a character chain construction
algorithm.
Key Words: Linguistics; model; relation; natural; language;

script.

1 Introduction

Due to the huge number of characters involved, memorization
of Chinese characters is an extremely demanding task. ๠is
can be easily assessed by looking at the curriculum of Japanese
elementary schools: a large part of curricula for successive years
is occupied by Chinese characters studies. It is thus a fortiori
very challenging for non-native learners of such a script, like
the ones used by the Japanese and Chinese languages, amongst
a few others such as Vietnam’s chữ nôm.
๠e first objective of the this paper is the description of

an ontology for Chinese characters, and from an information
*An extended abstract of this paper has been published in [3].
†Graduate School of Science. Email: abossard@kanagawa-u.ac.jp.
‡Graduate School of Engineering.

science point of view. We thus aim at proposing an information
model as complete as possible, for that considering Chinese
characters from various point of views (e.g. graphical, phonetic,
morphological, etc.) and various languages (scripts). ๠is
research work should therefore be considered as a foundation
for scientifically approaching Chinese characters. Effectively,
by providing a highly detailed information model, we would
ideally gather all the information available for theoretical
work with respect to Chinese characters, and with applications
including for example automatic character processing, like
assembling a character database. To the knowledge of authors,
this is unprecedented work, although critical for numerous
applications. ๠e second objective is to use the previously
introduced model to define the notion of distance between any
two Chinese characters. A metric has important applications
such as the automatic construction of character chains which
facilitate character memorization.
Several pedagogic methods have been discussed in the

literature aiming at easing the character memorization burden
on the learner. A few examples of such works are recalled here.
Always interesting are the short stories provided by Heisig for
characters in his famous approach he applied to both Chinese
[8, 9] and Japanese [7] scripts. In her classification work,
Castelain has described an innovative method to lookup Chinese
characters [4], thus by extension applicable to memorization as
well. ๠e phonetic approach has been explored amongst others
by Vaccari and Vaccari [16]. In addition, the work by Henshall
[10] provides a good overview of the classical approach to
Chinese characters. Lastly, with our own work introducing the
premises of an algebra of Chinese characters [2] (and related
work by Sproat [15] describing a theoretical approach to writing
systems in general), as well as the seminal works on writing
systems by Sampson [13], Coulmas [5] and De Francis [6], we
have briefly reviewed a rather large spectrum of what can be
expected in the field.
๠e rest of this paper is organized as follows. In Section 2,

the motivations for this research are further discussed. Next,
preliminary results reused in this paper are briefly recalled in
Section 3. ๠e proposed ontology is described in Section 4 and
examples are detailed in Section 5. ๠en, we focus in Section 6

ISCA Copyright© 2016

224 IJCA, Vol. 23, No. 4, Dec. 2016

on an interesting application of the proposed character ontology:
by using the defined characters properties and relations, the
notion of distance between characters is introduced. Finally, this
paper is concluded in Section 7.

2 Rationale: Informal Discussion

We discuss in this section one important part of the motivation
behind our approach. We start by making the link with
philosophy, which is relevant here as we conduct this work of
ontological discussion.
One does not learn philosophy, but rather learns, better

practices, philosophy, that is to philosophize. Since extremely
close to philosophy (precisely, focusing on say the technicality
of philosophy), it is reasonable to assume that the same can
be said about mathematics. One does not learn mathematics,
but rather practices how to use them. Yet, this fundamental
and essential aspect is lost, at least partially, in most other
disciplines. Why? Possibly amongst other reasons, because
the learner has to comply with various constraints, for instance
material constraints for the physicist, natural ones for the
biologist, and communication-related ones for the linguist. So,
somehow, one “simply” learns biology, a language, etc.
Although unaware at first, it became clear to the authors that

adopting a scientific approach to Chinese characters was a way
to regain freedom lost by such constraints. When considering
Chinese characters from a logical, algebraic point of view, we
free ourselves from the communication barriers and bonds such
as grammar, ruling how to communicate, and in other words
being a kind of establishment in place for this Chinese characters
topic. ๠is is just one example, and it can be generalized to,
say, other scripts and languages, and possibly to other unrelated
subjects.
With such an algebraic approach, thus anchoring back to

mathematics, we recover much freedom and set our minds free
to not only learn characters (conventionally), but to practice
them, considering these characters for instance as elements of
a large set, and with relations between these elements – “for
instance” is purposely emphasized here to show that with such
an approach, it is entirely up to the individual to decide from
where, in other words with what, to start. ๠is aspect usually
hidden to the language learner should be seen as another, novel
and very natural way to approach and become used to Chinese
characters.
Moreover, when considering natural languages, and more

precisely sets including the various objects, like glyphs, defining
such language, it is very common to discover punctual relations
between these objects. Since reflecting natural languages, and
thus empirically assembled, it is improbable that such sets
originally include logical order or structure. But because of the
applications mentioned previously, it is extremely interesting
to try to formalize the possibly existing relations, potentially
defining new ones, and eventually obtaining a logical structure
that is much easier to use: simplified processing by computers
and facilitated acquisition by learners are two examples.

3 Preliminaries

Let us recall that Chinese character decomposition operations
have been introduced in previous works [2, 15]. For the sake
of clarity, we recall in this section the two main operations
introduced in [2].
Introduced initially for the subset J of the Chinese

characters used in Japanese, but nonetheless applicable to
Chinese characters in general, the following two decomposition
operations have been defined, amongst others – it is effectively
important to note that the research conducted in this paper is
applicable no matter the sorts and numbers of decomposition
operations considered.

Definition 1. [2] ୡe operation + realizes the horizontal
combination of the left operand with the right operand.

+ : J×J → J

a + b 7→ a b

Let us illustrate this + operation with the following example.
Consider the three Chinese characters 木,南,楠 ∈ J (“tree”,
“south” and “camphor tree”, respectively); the equality 楠 =
木+南 holds.

Definition 2. [2] ୡe operation × realizes the vertical
combination of the left operand on top of the right operand.

× : J×J → J

a × b 7→ a
b

For example, we consider the three characters山,石,岩 ∈ J
(“mountain”, “stone” and “rock”, respectively). ๠e equality
岩=山×石 holds.
Finally, it is worth mentioning that these two character

decomposition operations + and × have the same evaluation
priorities, and that they are applicable to a large majority of
Chinese characters.

4 Proposal of a Chinese Character Ontology

In this section, we propose a detailed information model of
Chinese characters. As we focus on a natural language, and
especially its writing, it is a difficult task to formalize considered
objects and their relations. ๠e described ontology aims at
addressing this issue. In order to facilitate the model description,
we rely on the UML class diagram standard to represent the
identified objects and their mutual relations. ๠e diagram is
given in Figure 1.
At the center of the diagram is the Character class,

with its associations to multiple other classes. Hence, a
Chinese character is described by the whole diagram, not
only the Character class. In total, we have introduced seven
classes (Character, Radical, Script, Pronunciation, Meaning,

IJCA, Vol. 23, No. 4, Dec. 2016 225

2F00-2FDF 2E80-2EFF

+ name

Radical

3400-4BBF SIP
4E00-9FFF 20000-
F900-FAFF 2F1AF

+ identifier

Character

+ name
+ country

Script

+ name
+ rendering

Graphical Rp.

+ name
+ rendering

Pronunciation

31C0-31EF

+ identifier

Stroke

2FF0-2FFF

+ operation

Composition
decomposed as >

included in >

< is member of
includes >

< for (1w)

1..* 1..*

1..* 1..* 1..*

1..*

1..*

1..3

*

*

*

*

1

< for

defines >

1..*

+ name

Variant

+ definition

Meaning
1..*

< for (1w)1..*

variant of

1..*

variant of

*
*

1..*

Figure 1: Class diagram illustrating the proposed Chinese character ontology. (1w stands for one-way association.)

Stroke, Graphical Representation) plus two association classes
(Composition, Variant).
First, we discuss the Character class. An instance of

this class, i.e. corresponding to a Chinese character, has one
identifier, which can be conveniently derived from the Unicode
standard or any other similar code (the JIS standard [11] is
another example), and may be decomposed into several other
characters according to a decomposition operation. Reversely,
a character may be included in another character as a “sub-
character”. ๠is explains the Composition self-association.
In addition, the Character class has a second self-association:

it enables the identification of character variants. As illustrated
in Section 5, a same ideogram might be writable with several
different characters, characters which are thus variants of that
same ideogram (i.e. variants of each other). ๠ere exist several
character variant sorts; they are distinguished by their names,
such as “old form”, “simplified form”, etc.
A character has one unique radical, yet such radicals can have

variants. ๠is explains the self-association for the Radical class.
A radical is identified by its name, some may have several,
has at least one meaning and one graphical representation. ๠e
number, shape, etc. of radicals may vary slightly from one script
to another (e.g. depending on the language or country); this
explains the association to the Script class.
A character is part of at least one script, and conversely a script

includes several characters. Script examples include simplified
Chinese, traditional Chinese, Korean, etc. A character obviously

has at least one graphical representation, for instance the one
based on the seal character style; more details are given in
Section 5.
A character has at least one meaning as well as at least

one pronunciation (i.e. phonetic information). ๠ese two
character properties depend on the script considered for a
particular character; this explains the two one-way associations
from the Pronunciation and Meaning classes to the Script
class. Regarding the pronunciation information, the reason
is straightforward: a same character is expressed phonetically
in a different manner considering for instance the Japanese
and Mandarin Chinese languages. Justification is less obvious
regarding the meaning of a character: even though originating
from the same roots, and thus from a samemeaning, the meaning
for one character may have evolved over time, and may thus
today possibly differ from one language to another.
Finally, a character consists of one or several strokes.

๠ere exist 36 different strokes which are combined to
represent Chinese characters; each stroke is usually identified
by a name. In the diagram, several classes include at the
bottom additional information under a dotted line: this is
the Unicode range (i.e. characters, glyphs) applicable to the
corresponding class. For example, the Stroke objects actually
match the glyphs described by the Unicode standard in the
range 31C0–31EF, and whose graphical representation can be:
㇀㇁㇂㇃㇄㇅㇆㇇㇈㇉㇊㇋㇌㇍㇎㇏㇐㇑㇒㇓㇔㇕㇖㇗㇘
㇙㇚㇛㇜㇝㇞㇟㇠㇡㇢㇣ (36 glyphs in total; the last 12

226 IJCA, Vol. 23, No. 4, Dec. 2016

glyphs of the range remain unused). Similarly, the Composition
association, which is based on the formally introduced
decomposition operations + and × (see Section 3), matches
the glyphs described in the Unicode range 2FF0–2FFF:
⿰⿱⿲⿳⿴⿵⿶⿷⿸⿹⿺⿻ (12 glyphs in total; the last 4
glyphs of the range remain unused).
As a next step, several concrete and non-trivial examples of

object and association instances will be discussed in Section 5
below.

5 Object Instance Examples

We illustrate in this section the information model described
in Section 4 by giving object instance examples of the defined
classes and associations. ๠ese examples will be given in
a classic object-oriented programming writing style (dotted
notation), as in C++ and Java. In addition, it is assumed in
the following notations that members of an object instance are
implicitly instantiated. For example, a Character object has an
instance radical of the Radical class.
First, we give as example a possible way to instantiate a

Character object. ๠e radical name given in this example is the
one used in Japanese.

Character c
c.meaning.definition = {belief, trust}
c.radical.name = ninben
c.graphicalRp.rendering = {信}

๠en, the Composition association between several characters
is illustrated. Asmentioned previously, this is related to previous
work focused on the algebraical approach to Chinese characters
[2, 15].

Character c1(相) // simplified construction
Character c2(木), c3(目), c4(湘)

Composition co(c1)
co.operation = <+> // meaningful for decomposedAs only
co.decomposedAs = {c2, c3}
co.includedIn = {c4}

Next, we present an instance example of the Variant
association. Attention should be paid to the order used to declare
such relation between two characters.

Character c1(学), c2(學)

Variant v(c2)
v.name = old_form
v.variantOf = c1 // c2 is an old-form variant of c1

We continue by illustrating the relation between characters of
different languages and scripts.

Character c1(业), c2(業)
c1.script.name = Simplified_Chinese

c1.script.country = {China, Singapore}
c2.script.name = Japanese
c2.script.country = {Japan}

Variant v(c1)
v.name = simplified_shape
v.variantOf = c2 // c1 is a simplified-form variant of c2

Effectively, in our approach, it is meaningful to consider that
a simplified Chinese character (业 above) is a variant of
the corresponding traditional character (業 above), rather than
just a different graphical representation. Indeed, a graphical
representation is not related to a script or language. Refer to
the additional examples given below with respect to graphical
representations.
Because it is definitely worth paying attention to radicals, a

non-trivial example is given below. Once again, the radical
names given in this example are the ones used in Japanese.

Radical r1, r2
r1.name = mizu
r1.meaning.definition = {water}
r1.graphicalRp.rendering = {水}
r2.name = sanzui
r2.graphicalRp.rendering = {氵}

RadicalVariant rv(r2)
rv.variantOf = r1 // r2 is a radical variant of r1

Character c(洪)
c.radical = r1 // NB: r2 also valid here since variant of r1

Finally, Graphical Representation objects are illustrated. ๠e
character shapes used in this example originate from the Ancient
Chinese characters project [17] and are in the public domain.
For the sake of clarity, this example uses the name: rendering
syntax to denote the instantiation of a Graphical Representation
object, thus directly assigning in practice the name of a rendering
(i.e. here, a graphical style) to the rendering itself (i.e. image
information, such as a bitmap).

Character c;
c.meaning.definition = {horse}
c.graphicalRp = {

oracle bone: ,

bronze: ,

big seal: ,

seal: ,

clerical: ,

regular:
}

IJCA, Vol. 23, No. 4, Dec. 2016 227

6 Application: Character Distance

In this section, we propose the definition of a distance metric
between any two Chinese characters. ๠is is a direct application
of the character ontology presented previously since we rely
entirely on the identified character properties and relations.
Defining such a distance metric between characters is indeed
meaningful in the pedagogical context. Effectively, it enables
the creation of character chains, which are in practice sequences
of characters with the least possible changes between two
consecutive characters in such a sequence. Here is an example
of such a sequence: 単→單→戦→蝉→虫→蟲; additional
sample sequences can be found in various reference works such
as [14]. As a result, memorization is highly facilitated for the
learner when relying on such character chains for memorization
– refer to [1] in which is addressed the closely related character
layerization and cartography concept. By formally defining such
a character distance metric, we enable the automatic generation
of character chains.
In search of a suitable and coherent distance metric, we

shall propose and discuss hereinafter several such measures.
Each metric (except the last one, d) can be seen as a
morphological and semantic distance between two characters
since we simultaneously rely on morphological information for
a character such as decomposition matters, as well as semantic
information such as variants and radicals for characters.
Informally, the calculated distance is a real number that
gets larger if the two characters have little in common, and
conversely a real number that gets smaller if the two characters
share several attributes.

6.1 ๠e δ Metric

In this section, we describe the distance δ (a,b) between
any two Chinese characters a and b. ๠is distance δ (a,b) is
expressed as a positive real number. To start, let us consider
several specific properties for a character. For instance, we
consider the following two character properties – note that more
or fewer such properties could be similarly treated. First, the
variant property, which is satisfied if and only if the character a
is a variant of the character of b. Second, the radical property,
which is satisfied if and only if the two characters a and b share
the same character radical.
Let p represent the number of satisfied properties between

the two characters a and b. Since we have considered in this
example two such character properties, we have 0 ≤ p ≤ 2.
๠en, as recalled in Section 3, we shall rely on decomposition
operations. Let oa,b (resp. ob,a) be the number of decomposition
operation levels required for a (resp. b) until finding a common
element (i.e. a sub-character) for a and b. ๠us, the value of oa,b
(resp. ob,a) is minimal at any time. In the case the characters a
and b share no common element, define oa,b + ob,a = Ω, with
Ω ∈ R a large positive constant.
As example, for the characters a=峠 and b=雫, we have the

two decompositions a=山+(上×下) and b=雨×下. It takes
two levels of decomposition for a, and one single decomposition

level for b before finding the first common element, here
precisely下. Hence, we have oa,b = 2 and ob,a = 1.
๠is number of decomposition operations is further refined by

excluding the radical as follows. Given two characters a and
b of radicals ra and rb, respectively, in the case both ra = rb,
a ̸= b, a ̸= ra, b ̸= rb hold, let õa,b (resp. õb,a) be the number
of decomposition operation levels required for a (resp. b) until
finding a common element for a and b (i.e. a sub-character) other
than the radical ra (= rb). If the characters a and b share no
common element except their radical, define similarly õa,b +
õb,a = Ω. Otherwise, that is in the case either ra ̸= rb, a = b,
a = ra or b = rb is satisfied, simply define õa,b (resp. õb,a) as oa,b
(resp. ob,a). For example, given the two characters a =沽 and
b =沼 of same radical r =氵, we have a =沽= r+(十×口),
which induces õa,b = 2, and we have b =沼 = r +(刀×口),
which induces õb,a = 2. Also, for any character a, we have
δ (a,a) = 0.

Definition 3. For any two characters a and b, their distance
δ (a,b) ∈ R is defined as

δ (a,b) =
õa,b + õb,a

p+1

One should note that if the distance δ (a,b) depends on Ω, it
will necessarily be of the form Ω/n with n ∈ N∗, thus allowing
for total ordering of distances. Several additional examples
are given in Table 1. ๠e “variant” and “radical” columns are
Boolean values respectively meaning “a is a variant of b” and
“a and b share the same radical”, or their opposites.

Table 1: Examples of character distance calculations with the δ
metric

a b variant radical p õa,b õa,b δ (a,b)
洪 浜 no yes 1 2 2 2
榎 夏 no no 0 1 0 1
桜 櫻 yes yes 2 2 2 4/3

峠 雫 no no 0 2 1 3
湘 眼 no no 0 2 1 3
木 林 no yes 1 0 1 1/2

木 水 no no 0 Ω Ω
沐 浴 no yes 1 Ω Ω/2

Hence, given a set of characters and one starting character, a
character chain can be established rather simply as follows. For
example, consider the character set E = {蟲,戦,蝉,虫,單,単}
used as example at the beginning of this section, and単 ∈ E the
starting current character of the character chain to be obtained.
By iterating the set E repetitively to find the character which
is at a closest distance from the current character, subsequently
updating the current character, we have the following steps:

1. 単 : {(蟲,Ω),(戦,1),(蝉,1),(虫,Ω),(單,2/3)}
2. 單 : {(蟲,Ω),(戦,3),(蝉,3),(虫,Ω)}

228 IJCA, Vol. 23, No. 4, Dec. 2016

3. 戦 : {(蟲,Ω),(蝉,2),(虫,Ω)}
4. 蝉 : {(蟲,1),(虫,1/2)}
5. 虫 : {(蟲,1/3)}

where a pair (e ∈ E,γ ∈ R) means that the current character c
(on the left of the colon), and the character e are at distance
δ (c,e) = γ . ๠erefore, we obtain the character chain単→單→
戦→蝉→虫→蟲, which indeed matches the chain given as
example previously. For additional details, the pseudo-code of
this chaining algorithm is given in Algorithm 1.

Algorithm 1: CHAINING(E, c)
Input: An unordered set of characters E; a starting

character c ∈ E.
Result: A character chain corresponding to E.
if |E|= 1 then

{e} := E;
return e

else
E ′ := argmine∈E\{c} δ (c,e);
{e′1,e

′
2, . . . ,e

′
|E ′|} := E ′ ; // c equidistant to e′i

return e′1 → CHAINING(E \{c}, e′1)
end

6.2 Property Independence and the δ ′, δ ′′ Metrics

๠e δ metric described previously includes in its definition
p+ 1 as denominator so as to take into account the properties
shared between characters. Yet, this denominator may
legitimately seem unnatural. So here, we refine the δ metric
by handling shared properties differently.
As with the δ metric, let us consider the two radical and

variant properties; more would be handled similarly. Let ε be
the symbolic constant associated with the radical property; 0 <
ε < 1 holds. Similarly, let φ be the symbolic constant associated
with the variant property; 0 < φ < 1 holds. Such constants shall
be subtracted from the calculated character distance in case the
corresponding property is satisfied: a shared property induces a
shorter distance.
Moreover, considered properties may not always be

independent. Hence, for two properties p and q of respective
symbolic constants cp and cq, if p ⇒ q holds, then cp > cq
is induced, and cp only is subtracted (not subtracting both
cp and cq). For instance, in the case of the two constants ε
and φ , respectively corresponding to the radical and variant
properties, when satisfied the variant property induces the
radical property (character variants simply signify appearance
changes, thus retaining the same radical), hence 0 < ε < φ < 1.
So, when calculating the distance between two characters that
are variants, φ is subtracted.
๠erefore, in Definition 4 below, we can assume without

loss of generality that the shared properties p1, p2, . . . , pk of any
two characters are independent, and we introduce the following
definition.

Definition 4. For any two characters a and b sharing
independent properties p1, p2, . . . , pk, their distance δ ′(a,b)∈R
is defined as

δ ′(a,b) = õa,b + õb,a −
k

∑
i=1

ci

and their distance δ ′′(a,b) ∈ R as

δ ′′(a,b) = oa,b +ob,a −
k

∑
i=1

ci

with ci the symbolic constant corresponding to pi.

๠e sample distances calculated in Table 1 are expressed with
the δ ′ and δ ′′ metrics in Table 2: the two dependent properties
p1, p2 corresponding to variant and radical (thus p1 ⇒ p2)
and of symbolic constants c1 = φ , c2 = ε , respectively, are
considered.

Table 2: Examples of character distance calculations with the δ ′

and δ ′′ metrics

a b p1 p2 õa,b õa,b δ ′(a,b) oa,b oa,b δ ′′(a,b)

洪 浜 no yes 2 2 4− ε 1 1 2− ε
榎 夏 no no 1 0 1 1 0 1
桜 櫻 yes yes 2 2 4−φ 1 1 2−φ
峠 雫 no no 2 1 3 2 1 3
湘 眼 no no 2 1 3 2 1 3
木 林 no yes 0 1 1− ε 0 1 1− ε
木 水 no no Ω Ω Ω Ω
沐 浴 no yes Ω Ω− ε 1 1 2− ε

6.3 Discussing the δ , δ ′ and δ ′′ Metrics

First, the original δ metric makes use of the p + 1
denominator, which may seem unnatural. Hence, the
introduction of refined metrics δ ′ and δ ′′.
Second, with the δ ′′ metric, as shown in Table 2 the equality

δ ′′(洪,浜)= δ ′′(沐,浴) holds, which induces some incoherency
given that the two sub-characters 共,兵 are closer (i.e. more
related) than the two sub-characters木,谷.
๠ird, with the δ ′ metric, as shown in Table 2 the equality

δ ′(沐,浴) = Ω− ε holds. In other words, even though the two
characters 沐, 浴 share the same radical (氵), their distance
involves Ω and is thus large. Even though this may seem
disturbing at first glance, coherence is retained. Yet, one
possibly concerning aspect of this δ ′ metric, is that it may not
treat character variants fairly enough, that is, not reducing the
distance value enough in case the two characters are variants
of each other. For instance, we have δ ′(桜,櫻) = 4 − φ
for the two variant characters 桜, 櫻, while for instance we
have δ ′(峠,雫) = 3 for the two, not variants, characters 峠,
雫, with δ ′(桜,櫻) > δ ′(峠,雫) thus holding. Again, even
though this may seem disturbing at first glance given that

IJCA, Vol. 23, No. 4, Dec. 2016 229

桜,櫻 are variants while 峠,雫 are not, some coherence is
retained. For comparison, the original, δ metric induced
distances δ (桜,櫻) = 4/3 and δ (峠,雫) = 3. ๠is issue is
mitigated with the δ ′′ metric since we have δ ′′(桜,櫻) = 2−φ ,
and δ ′′(峠,雫) = 3.

6.4 ๠e d Metric

๠e previously defined δ , δ ′ and δ ′′ distance metrics are not
distances in the mathematical sense. Effectively, it is easy to
show that they do not satisfy the triangle inequality. In this
section, we propose another distance metric, this time satisfying
the requirements for a mathematical distance, most notably the
symmetry property and the triangle inequality. Each character
is assumed without loss of generality to be either a combination
of sub-characters, or a canonical element [2], the /0 symbol
representing the empty character and thus being canonical.
Distinguishing between canonical characters and others is not
trivial [2]; for the sake of clarity it is simplified in this discussion.
๠e proposed distance d has some relation to the Levenshtein
distance (a.k.a. edit distance) [12]. It is defined as follows.

Definition 5. For any two characters a and b, their distance
d(a,b) ∈ R is defined as

d(a,b) =



0 a,b canonical,a = b
1 a,b canonical
min{d(a,b1)+d(/0,b2),

d(/0,b1)+d(a,b2)} a canonical
min{d(a1, /0)+d(a2,b),

d(a1,b)+d(a2, /0)} b canonical
min{d(a1,b1)+d(a2,b2),

d(a1,b2)+d(a2,b1),

d(a1, /0)+d(a2,b),
d(a1,b)+d(a2, /0),
d(a,b1)+d(/0,b2),

d(/0,b1)+d(a,b2)} otherwise

where a (resp. b) is either canonical or of the form a = a1 • a2
(resp. b = b1 •b2), with • a character decomposition operation
(see Definitions 1 and 2).

Proposition 1. ୡe d metric is a mathematical distance.

Proof. Consider any two characters a and b. Obviously,
d(a,b) ≥ 0. First, we show by recurrence that d(a,b) = 0 ⇔
a = b, which becomes thus our induction hypothesis. We show
that this holds in the case a,b canonical; this is the base case
of the recursion. Assume a = b. Since a canonical, we have
d(a,b) = d(a,a) = 0 directly. Assume d(a,b) = 0. Since a,b
canonical, by definition we directly have a = b.
We show in the general case that d(a′,b′) = 0 ⇔ a′ = b′ holds

with a′ = a • ã, b′ = b • b̃ and ã, b̃ canonical. ๠e case a′ = ã •
a, b′ = b̃ • b is shown similarly. By definition, and as per our

hypothesis, we have d(a′,b′) = d(a,b)+ d(ã, b̃) = d(ã, b̃). So
clearly, d(a′,b′) = 0 ⇔ d(ã, b̃) = 0 and d(ã, b̃) = 0 ⇔ ã = b̃.
Next, the equality d(a,b) = d(b,a) trivially holds since all the

sub-character pair combinations are systematically exhausted by
definition. Hence, a and b can be swapped freely.
Finally, we show that the triangle inequality d(a,c) ≤

d(a,b)+d(b,c) holds for any characters a,b,c. We proceed by
recurrence. We show that this holds in the case a,b,c canonical;
this is the base case of the recursion. If a = b = c, d(a,c) =
d(a,b) = d(b,c) = 0 and the hypothesis d(a,c) ≤ d(a,b) +
d(b,c) is satisfied. If a = b and a ̸= c, d(a,c) = d(b,c) = 1
and d(a,b) = 0, and the hypothesis holds. If a = c and a ̸= b,
d(a,b) = d(b,c) = 1 and d(a,c) = 0, and the hypothesis holds.
If a ̸= b ̸= c, d(a,c) = d(a,b) = d(b,c) = 1 and the hypothesis
holds.
We show in the general case that d(a′,c′)≤ d(a′,b′)+d(b′,c′)

holds with a′ = a • ã, b′ = b • b̃, c′ = c • c̃ and ã, b̃, c̃ canonical.
๠e case a′ = ã•a, b′ = b̃•b, c′ = c̃•c is shown similarly. First,
0 ≤ d(ã, b̃)≤ 1 since ã, b̃ canonical. ๠us, d(a′,b′)≥ d(a,b)+
d(ã, b̃) and d(a′,b′)−d(ã, b̃) ≥ d(a,b) for any a,b. Hence, we
have by induction hypothesis

d(a′,c′)−d(ã, c̃)≤ d(a,c)

≤ d(a,b)+d(b,c)

≤ d(a′,b′)−d(ã, b̃)+d(b′,c′)−d(b̃, c̃)

d(a′,c′)≤ d(a′,b′)+d(b′,c′)

+d(ã, c̃)−d(ã, b̃)−d(b̃, c̃)

It is recalled that 0 ≤ d(ã, c̃),d(ã, b̃),d(b̃, c̃) ≤ 1 since ã, b̃, c̃
canonical. Hence, d(ã, b̃) = d(b̃, c̃) = 0 holds if and only if ã =
b̃ = c̃, and thus d(ã, b̃) = d(b̃, c̃) = 0 ⇒ d(ã, c̃) = 0. ๠erefore,
d(ã, c̃)−d(ã, b̃)−d(b̃, c̃)≤ 0 holds, and we have

d(a′,c′)≤ d(a′,b′)+d(b′,c′)

One should note that the properties shared between characters
as distinguished previously in this section are ignored by the
metric d so as to satisfy the triangle inequality. ๠e sample
distances calculated in Table 1 are expressed this time with the
d metric in Table 3.
We now discuss the d metric. First, it is important to note that

even though coherence is retained, the meaning of this distance
metric is different from that of the previous ones: mainly,
since the number of decompositions is counted, two unrelated
canonical characters have distance 1, while they would be at
distance Ω with the previous metrics. ๠is is a change of point
of view: the less the number of decomposition operations, the
shorter the distance.
Next, it should be noted that the distance expressed with this

d metric is less “sharp” than when expressed with the previous
metrics. Effectively, in comparison, many more instances of
character pairs will have the same distance value. ๠is is also
symptomatic of the exclusion of character properties such as
radical from the distance calculation.

230 IJCA, Vol. 23, No. 4, Dec. 2016

Table 3: Examples of character distance calculations with the d
metric

a b d(a,b)

洪 浜 d(氵,氵)+d(共,兵) = d(龷,丘)+d(八,八) = 1

榎 夏 d(木, /0)+d(夏,夏) = 1

桜 櫻 d(木,木) + d(,嬰) = d(⺍,賏) + d(女,女) =
d(⺍,貝) + d(/0,貝) = d(⺍,目) + d(/0,八) +
d(/0,目)+d(/0,八) = 4

峠 雫 d(山,雨)+d(𠧗,下) = 1+d(上, /0)+d(下,下) = 2

湘 眼 d(氵,艮)+d(相,目) = 1+d(木, /0)+d(目,目) = 2

木 林 d(木,木)+d(/0,木) = 1

木 水 1
沐 浴 d(氵,氵)+d(木,谷) = 1

For example, the equality d(洪,浜)= d(氵,氵)+d(共,兵)=
d(共,兵) is satisfied: rather than counting the first horizontal
combination operation and then subtracting some constant
since these two characters share the same radical, the first
decomposition operation directly results in no impact on the final
distance value since involving two same sub-characters.

7 Conclusions and Future Works

Chinese characters are challenging for various reasons, their
huge number being the most prominent. In this paper, we have
first discussed the motivations behind our scientific approach
to these characters. ๠en, in order to make this approach as
versatile as possible, we have proposed an informationmodel for
Chinese characters, a rather innovative perspective in this field.
Several points of view have been taken into account, including
the phonetic, morphological and graphic ones. Importantly, we
have considered the multi-lingual aspect of Chinese characters
in our work. ๠is information model has then been used to
propose a novel concept: the definition of distance between
any two characters, enabling further important applications
such as character chains. An algorithm for character chain
computation has been given and illustrated with examples.
Nevertheless, defining such a distance metric with respect to
Chinese characters is a complex topic, thus several metrics have
been successively proposed and discussed. As each of these
metrics has its own pros and cons, the choice of a distance metric
would depend on the application considered.
As for future works, it would be meaningful to conduct a

similar ontological discussion in the case of characters of other,
unrelated scripts. For instance, Korea’s Hangul script is one
possible candidate, yet being much simpler to handle since
being a phonic writing system, not using ideograms. Other
script candidates include cuneiform writing as well as Egyptian
hieroglyphs.

References

[1] Antoine Bossard, “Japanese Characters Cartography
for Efficient Memorization,” International Journal of
Computers and ୡeir Applications, 21(3):170–177, 2014.

[2] Antoine Bossard, “Premises of an Algebra of Japanese
Characters,” Proceedings of the Eighth International C*
Conference on Computer Science & Software Engineering,
Yokohama, Kanagawa, Japan, pp. 79–87, July 13–15,
2015.

[3] Antoine Bossard and Keiichi Kaneko, “A Scientific
Approach to Chinese Characters: Rationale, Ontology
and Application,” Proceedings of the 29th International
Conference on Computer Applications in Industry and
Engineering, Denver, CO, USA, pp. 111–116, September
2016.

[4] Anne Castelain, Direct Access Instant Kanji Dictionary,
Nichigai Associates, Tokyo, 1998.

[5] Florian Coulmas, Writing Systems of the World, Wiley-
Blackwell, Hoboken, NJ, 1991.

[6] John DeFrancis, Visible Speech: ୡe Diverse Oneness of
Writing Systems, University of Hawai’i Press, Honolulu,
1989.

[7] James W. Heisig, Remembering the Kanji, Volume 1: A
Complete Course on How Not to Forget the Meaning and
Writing of Japanese Characters, University of Hawai’i
Press, Honolulu, 2010.

[8] James W. Heisig and Timothy W. Richardson,
Remembering Simplified Hanzi, Volume 1: How Not
to Forget the Meaning & Writing of Chinese Characters,
University of Hawai’i Press, Honolulu, 2012.

[9] James W. Heisig and Timothy W. Richardson,
Remembering Traditional Hanzi, Volume 1: How Not to
Forget the Meaning & Writing of Chinese Characters,
University of Hawai’i Press, Honolulu, 2012.

[10] Kenneth G. Henshall, A Guide to Remembering Japanese
Characters, Tuttle Publishing, 1988.

[11] Japanese Industrial Standards Committee (JISC), 7-
Bit and 8-Bit Coded Character Sets for Information
Interchange (７ビット及び８ビットの情報交換用符
号化文字集合, in Japanese), 1969.

[12] Vladimir I. Levenshtein, “Binary Codes Capable of
Correcting Deletions, Insertions, and Reversals,” Soviet
Physics Doklady, 10(8):707–710, 1966.

[13] Geoffrey Sampson, Writing Systems, Equinox Publishing,
Sheffield, 2015.

[14] Shizuka Shirakawa, Creating a Dictionary (字書を作る,
in Japanese), Heibonsha, Tokyo, 2002.

[15] Richard Sproat, A Computational ୡeory of Writing
Systems, Cambridge University Press, Cambridge, United
Kingdom, 2000.

[16] Oreste Vaccari and Enko Elisa Vaccari, Pictorial Chinese-
Japanese Characters: A New and Fascinating Method to
Learn Ideographs, C. E. Tuttle Co., Tokyo, 1958.

IJCA, Vol. 23, No. 4, Dec. 2016 231

[17] Wikimedia Commons, Ancient Chinese Characters
Project, https://commons.wikimedia.org/wiki/
Commons:Ancient_Chinese_characters_project, last
accessed December 2016.

Antoine Bossard is an Assistant
Professor of the Graduate School
of Science, Kanagawa University,
Japan. He received the B.E. and M.E.
degrees from Université de Caen
Basse-Normandie, France in 2005
and 2007, respectively, and the Ph.D.
degree from Tokyo University of
Agriculture and Technology, Japan
in 2011. His research is focused
on graph theory, interconnection

networks and dependable systems. For several years, he has
also been conducting research regarding Chinese characters and
their memorization. He is a member of ACM, ACIS and ISCA.

Keiichi Kaneko is a Professor at
Tokyo University of Agriculture
and Technology. His main research
areas are dependable systems,
interconnection networks, functional
programming, parallel and distributed
computation, partial evaluation and
educational systems. He received the
B.E., M.E. and Ph.D. degrees from
the University of Tokyo in 1985,
1987 and 1994, respectively. He is a

member of IEEE, ACM, IEICE, IPSJ and JSSST.

232 IJCA, Vol. 23, No. 4, Dec. 2016

ISCA Copyright© 2016

Data Lossless Compression Using Improved GFC Algorithm with Multiple GPUs

Rui Wu*
University of Nevada Reno, Reno, Nevada USA

Muhanna Muhanna†

Princess Sumaya University for Technology, Amman, JORDAN

Sergiu M. Dascalu*, Lee Barford*,‡, Frederick C. Harris, Jr*

University of Nevada Reno, Reno, Nevada USA

Abstract

Compression is widely used in both scientific research and
industry. The most common use is that people compress the
backup data and infrequently used data to save space.
Compression is significantly meaningful for big data because
it will save a lot of resources with the help of a good
compression algorithm. There are two criteria for a good
compression algorithm—compression ratio and time
consumption. GFC is one of the fastest compression
algorithms with a mediocre compression ratio, which is
designed for real-time compression with the help of Graphics
Processing Units (GPU). This paper introduces three methods
to increase the speed of GFC algorithm by using the clzll
function, removing if-else statements, and using multi-GPUs.
The first and third methods improve the original algorithm
performance. However, the if-else-removal method cannot
always guarantee better results. The final compression speed
is more than 1,000 gigabits/s, which is much faster than 75
gigabits/s—the original GFC algorithm speed.

Key Words: GFC; lossless compression; high-speed;
floating-point data.

1 Introduction

Big data and its management is a hot topic for both
businessmen and scientists. The digital era brings us many
opportunities and also tons of problems. Almost every device
keeps generating data all the time. For example, the Large
Synoptic Survey Telescope (LSST) needs to manage over 100
PB of data [4]. The Facebook warehouse stores upwards of
300 PB with a daily incoming rate around 600 TB [16]. There
are 300 hours of video material uploaded to YouTube every
minute [6]. However, it is hard to manage and analyze big
data. To uncover the “gold mines” buried in these datasets,

* Department of Computer Science and Engineering. Email: {rui,
dascalus, fred.harris}@cse.unr.edu.
†Department of Computer Graphics. Email:
m.muhanna@psut.edu.jo.
‡ Keysight Laboratories, Keysight Technologies, Reno, NV. Email:
lee_barford@ieee.org.

researchers hold many conferences to resolve these hard big
data problems, such as XLDB [15].

Compression is one of the keys to manage big data and it
helps businessmen and scientists save resources. One of the
most common rules is that the data management system will
compress data if the data is not frequently used. If a
compression algorithm compresses original data 20% smaller
than before, it means people can save 20% more space, which
means a lot for petabyte-scale datasets. Therefore, a good
compression algorithm is significant to a big data project.
Also, compression is very significant for some big data web-
based application. Dr. Holub and his colleagues introduced a
method about how to transmit HD, 2K, and 4K videos with
the low-latency network in their paper [7]. The core idea of
this project is to compress and decompress JPEG efficiently
with the help of GPUs. Figure 1 displays a simplified network
diagram of the pilot deployment of their project [7].

There are many mature and good CPU compression
algorithms. Some of them are designed for image
compressions, such as JPEG [17], some of them are designed
for audio and video compression, such as MPEG [10], and
some of them are for general use, such as LZ4 [3]. Also, some
scientists tried to take advantage of GPU to increase the speed
of CPU compression algorithms. For example, [2] tried to
improve the Huffman compression algorithm using GPU.

GPU is short for Graphics Processing Unit. It is originally
designed for computer graphics and image processing, and it
is very popular in high-performance computing today. Also,
there is a trend that scientists use multi-GPUs, instead of a
single GPU to improve performances of different algorithms.
However, GPU is not suitable for all kinds of algorithms.. If
an algorithm is not parallelizable or highly divergent, it is
better not to use GPU.

Here are some reasons that we chose GFC instead of other
algorithms. First, GFC is one of the fastest existing lossless
compression algorithms. The original algorithm is 75
gigabits/s [14]. It is gigabit, instead of gigabyte, because the
core ideas of GFC algorithm are based on bitwise operations.
The speed is much faster than most other compression
algorithms.

For example, LZ4 is around 14.56 gigabits/s [3], which is
much slower than wide-band network speed. If we do not
choose a fast algorithm for high-speed web-based

IJCA, Vol. 23, No. 4, Dec. 2016 233

Figure 1: Transfer HD videos with slow network by compressing each frame in the server
side and uncompressing the frame in the client side

applications, the algorithm will slow down the throughput of
these applications. Second, GFC is designed for GPU directly.
To contrast to GFC, most of the GPU algorithms are
converted from CPU algorithms, which means some
compromises have have to be made and it will have a negative
impact on the algorithm performance most of the time. Third,
GFC aims to compress large datasets, which is critical for both
business and scientific uses.

Some basic concepts about GPU, such as grid, block, warp,
and thread can be found in the paper [12] and Figure 2 dis-

plays a common GPU structure, which presents the relations
between threads, blocks, and grids. Different GPU video card
structures may be different from each other, but they all share
some common features: if users want their GPU algorithms to
perform best, they have to use all the threads in a warp; if
different threads, in the same block need to communicate with
each other, programmers can use shared memory; if different
threads, in different blocks need to communicate with each
other, programmers can use global memory.

The rest of this paper is organized as follows in the remain-

Figure 2: GPU structure. Threads in different blocks should try to avoid communicating
with each other because it cannot use local memory and performance is not good

234 IJCA, Vol. 23, No. 4, Dec. 2016

remaining part: Section 2 introduces the original GFC
algorithm; Section 3 introduces our three methods to improve
GFC algorithm; Section 4 introduces the results and our
opinions about these results; Section 5 concludes the main
ideas of this paper.

2 Original GFC Algorithm

GFC is a lossless double-precision floating-point data com-
pression algorithm. It is designed for GPU specifically. By
using [9], GFC algorithm replaces 64-bit floating-point values
with 64-bit integers. Therefore, GFC needs only integer
operations, although it compresses floating-point datasets.

Overview of warp, block and chunk assignment of GFC is
displayed in Figure 3. The uncompressed data is separated
into r chunks and each chunk contains 32 doubles. Each chunk
is processed by one warp in the GPU. After all warps finish
compressing the assigned chunk, GFC combines all the results
together, which is compressed data. The reason that each
chunk contains 32 doubles is that there are 32 threads in each
warp for most of GPU video cards and it is most effective
when a program uses all the threads in a warp.

Figure 4 presents the details about GFC compression
algorithm. According to GFC, we need to subtract p, which is
in the previous chunk, from i, which is in the current chunk,
and [14]. Dim means
“dimension” in this equation. If the subtraction is negative, we
need to use operation—negate to make it positive. The magic
part of GFC is the rectangle named residual in the bottom part
of Figure 4. By counting the leading zeros of this part,

removing these zeros, and adding the leading zeros
metadata, GFC compresses the original datasets. The most
significant theory behind GFC algorithm is that most scientific
datasets interleave values from multiple dimensions [14]. For
example, weather temperature will follow a pattern each year
for most of the time, which means temperature scientific data
can have many leading zeros by using GFC compression
algorithm. Users need to find the interleave orders, gets the
maximum leading zeros and removes them to have the highest
compression ratio.

It is possible that the compressed data is larger than the
original data using GFC compression algorithm if we choose a
bad interleave dimensionality. For example, all the eight
bytes of residuals are non-zeros and it results in the output
sub-chunk being 16 bytes larger than the original chunk,
which is 6% larger than the original part [14]. Before users
use GFC compression with their data, it is better to preprocess
their data and find out the suitable data interleave
dimensionality to obtain the best performance.

O'Neil and Burtscher created GFC and published this
algorithm in [14]. They avoided using long if-else statements
and assigned datasets reasonably according to the structure of
GPU to improve the performance of their algorithm. If-else
statements can slow down a program, especially a GPU
program. This is because of the structure of video cards. Each
warp has 32 threads (for most video cards) and all these
threads (in the same wrap) must execute the same instruction
in one cycle [12]. When these threads execute If-else
statements, some threads may fulfill the if statement and
execute that part of the code, and the remaining threads will.

Figure 3: Overview of GFC algorithm warp, block, and chunk assignment.
Each warp is assigned 32 doubles because there are usually 32 threads in each warp

IJCA, Vol. 23, No. 4, Dec. 2016 235

Figure 4: GFC compression algorithm
The original file is shrunk by removing the leading zeros.

stay idle, which means threads are not fully used. Therefore,
GFC avoids using long if-else statements

The line chart is not always above zero. This means “if-
else-removal” method cannot always improve the
performance.

3 Improved GFC Algorithm

We tried to improve the performance of GFC algorithm with
three methods: 1) using clzll to count the leading zeros; 2)
removing if-else statements in the program; 3) using multi-
GPUs.

3.1 Clzll

In the summary and conclusions part of [14], the authors
mentioned that they wrote their own function to count the
leading zeros, because their video card was GTX-285 and it
does not support clzll, which is used to count the number of
consecutive leading zeros bits, starting at the most significant
bit (bit 63) of x [13]. They believe GFC could be improved by
using clzll to count the leading zeros to replace their code. We
agree with their idea because professional programmers in
Nvidia know secrets of their video cards. Therefore, it is not
strange that their GPU functions are more suitable to the
structure of video cards and more effective than our codes.
The results in Section 5 also prove this idea is right.

3.2 If-Else-Removals

In our opinion, if-else statements can slow down programs,
especially for GPU programs. Because if-else statements will
make some of the threads in a warp idle, when these threads
cannot fulfil the if-else statement. Here is an example
presented in Figure 5:

Figure 5: If-else Statement Example

Each warp has 32 threads (for most current video cards).
Only the threads that fulfil the condition, a > 3, they will
execute a =7. Other threads will be idle till the whole warp
goes through this if-statement.

There are some materials, such as [11], proving long if-else
statements will also have a negative impact on the performance
of normal programs. Therefore, we tried to remove if-else
statements in GFC algorithm by using bitwise operations.
Here is an example, as Figure 6 displays:

236 IJCA, Vol. 23, No. 4, Dec. 2016

Figure 6: If else-removal example, less lines but more
complex

“>>31” means a right shift for 31 bits. For most cases, signed
integers have 32 bits and the left most bit is used for a sign
(positive or negative). (b – 2)>>31 is -1 when b – 2 is negative
and it is 0 when (b – 2)>>31 is positive. Therefore, the two
statements are the same in Figure 6.

However, we found when if-else statement is short (for
example, there is just one line of statement under “if”), the
replacement of if-else statements with bitwise operations will
slow down the program. We think it may be because
something undisclosed in the compiler to optimize the program.
The authors of [14] also tried to avoid long if-else statements in
their program, except one part in the decompress kernel.
Therefore, we replaced that part with bitwise operations as
Figure 7 shows.

Figure 7: If-else-removal in GFC decompress

But, the method cannot guarantee better results all the time.
Figure 8 displays the delta time between the original algorithm
and the improved algorithm for a dataset named obs_info.
When the line is above zero, it means the improved algorithm is
faster. Even if the improved algorithm is better, the
improvement is not really obvious. Therefore, we don’t apply
this method in the final improved algorithm. In our opinion, the
reasons that this method does not improve the performance are
that each thread needs to spend more time than before because
the code is more complex and the total time consumption is
worse, even if there are no idle threads in the wrap.

3.3 Multi-GPUs

After reading some GPU technique papers, we found that

Figure 8: If-else-removal time delta

some authors try to improve the performance of an algorithm
by parallelizing the algorithm and others try to enhance an
algorithm by parallelizing tasks. For example, in [8], the author
proposed to separate strings and assign a thread for each
segment to increase the speed of Boyer-Moore algorithm. We
also found there was a trend that scientists used multi-GPUs
instead of a single GPU to improve their algorithms.

We found the task—compression is parallelizable. “Paral-
lelizable” means that we can separate the task into several parts
and each part can be processed independently. GFC is a GPU
algorithm and it uses both blocks and threads. Therefore, we
need to assign a GPU for every segment to enhance the
performance. So we tried to use multi-GPUs instead of single
GPU and the basic idea is displayed in Figure 9. The
uncompressed dataset is separated into N chunks, each chunk is
pro-cessed by a GPU, and each GPU processes the assigned
data with GFC algorithm. After all the GPUs finish their jobs,
a CPU will combine the results together, which is the
compressed data.

Figure 9: Multi-GPUs method

4 Results

We did experiments with a Cubix machine, which has eight
GeForce GTX 780 video cards, Intel(R) Xeon(R) CPU E5-2620
@ 2.00GHz, and PCI 3.0.

All the flowing experiment datasets are offered by Martin
Burtscher, who is one of the authors of [14]. The datasets can
be downloaded in [1]. From our experiences about GPU
programming, the best results of different problems need
different numbers of blocks and threads. After experiments
with four of these datasets, we found that we need to use all the
threads in the chosen number of blocks to get the best results
(throughputs). Therefore, we only did experiments to find the

IJCA, Vol. 23, No. 4, Dec. 2016 237

best number of blocks for each dataset and used all the threads.
All the experiments were ran 11 times and we chose the median
value of these 11 results to be theJ final result. For example, in
multi-GPUs part, we tested different numbers of blocks for a
dataset named obs_info. We did the same experiment 11 times
and finally found we should use 51 blocks and all the threads in
these blocks to get the maximum throughput 1073.376
gigabits/s.

Because [14] mentioned that PCIe bus is too slow for GFC
(compression speed is limited to 8GB/s [5]), O'Neil and
Burtscher did not record the time of transferring data from CPU
to GPU. Therefore, we did not do that for all the following
experiments. We also compared decompressed files with
original files to make sure that our methods do not change files.

4.1 Clzll

The first improvement is to use __clzll(), which is used to
count the number of consecutive leading zeros bits, starting at
the most significant bit (bit 63) of x [13]. The results are
presented in Figure 10.

In Figure 10, we subtracted original GFC’s throughput from
improved GFC’s throughput. And we found most of the time,
the deltas are above zero, which means the improved
algorithms’ throughput are better. This proves the idea that is
introduced in Section 3.1.

4.2 Multi-GPUs

We did the experiments with one, two, four, and eight GPUs to
study the relation between the number of GPUs and the
speedup. We recorded time consumptions of each GPU and
used the maximum time to be the final time consumption. For
example, we used 8 GPUs and GPU1 spent T1, … GPU2 spent

T2 … GPU8 spent T8. The final time consumption was
Max(T1, T2, … T8). We used the maximum time for the final
time because we set up a synchronizing point, which resulted
in GPUs waiting for others until all the GPUs finish their jobs.
Table 1 displays the throughputs (gigabits/s) of a dataset
named num_plasma. To save time, we did not do the
experiment with block number from 1 to 1024. The step of
BlockNum in Table 1 is int(sqrt(2)).

Table 1: Num_plasma throughputs
BlockNum 8-GPU 4-GPU 2-GPU 1-GPU

1 159.26 81.40 41.18 21.25
2 304.68 158.78 81.51 42.00
3 436.46 233.39 120.21 62.06
5 668.01 376.61 196.12 102.86
8 987.06 572.33 304.24 159.44
12 1,233.31 804.09 438.55 233.19
17 1,214.70 768.86 420.02 219.24
25 1,219.77 715.74 386.17 202.43
36 1,212.85 803.42 438.75 233.02
51 1,268.61 815.37 465.57 250.08
73 1,365.97 955.67 541.73 261.71

104 1,381.89 876.36 481.61 258.48
148 1,312.64 871.23 523.82 264.98
210 1,266.23 860.80 500.14 274.39
297 1,214.87 838.03 496.44 274.89
421 1,170.78 818.49 480.72 266.15
596 1,140.80 743.96 457.01 264.19
843 1,079.34 715.57 439.54 253.56

Table 2 presents the maximum throughputs of different
number of GPUs. From this table, we can tell that the speedup
is better with more GPUs. However, the relationship between
the speedup and the GPU number is not linear. For example, 8-
GPU speedup does not equal eight times 1-GPU speedup. In

Figure 10: Clzll throughput delta.
Most cases on the line charts are above zero. This means “Clzll” function can improve the performaces.

238 IJCA, Vol. 23, No. 4, Dec. 2016

our opinions, this is because of the more GPUs we have, the
more segment file will be generated (our program will separate
the original file into N parts and each GPU is in charge of a
segment). Our program needs to combine all the segment files
together to be the fiinal compressed file in the last compression
step, which is done by a CPU sequentially. This step will use
more time if we have more segment files.

Table 2: Maximum throughput

Name Max Throughput
(gigabits/s) BlockNum Speedup

8-GPU 1,381.89 104 5.03
4-GPU 955.67 73 3.48
2-GPU 541.73 73 1.97
1-GPU 274.89 297 1.00

Figure 11 visualizes the relation between the throughputs of
each number of GPUs with a line chart. For each line in Figure
11, we found they went up first and then went down, which
means that too many blocks will reduce the throughputs
(gigabit/s) after a certain threshold. When the blocks number is
small, N GPUs will increase the throughput almost N times.
However, when the blocks number is increased, the speedup is
less than N times. We think it may be because of the impact of
blocks, as we just discussed. This negative impact will reduce
the gap between each of the multi-GPUs results. Therefore, the
final results are less than N times, when the blocks number is
large.

4.3 Final Improved GFC Algorithm

Finally, we combined two methods—clzll and multi-GPUs
together to improve GFC. We did experiments to datasets from
[1] and obtained speedup results (the improved GFC algorithm
over the original GFC algorithm) as Figure 12 presents.

The maximum speedup of the improved GFC algorithm is
8.705 and the maximum throughput of the improved GFC
algorithm is 2454.603 gigabits/s, which is much faster than
original GFC throughputs in [10]. Of course, the good result is
partially because we used better hardware than the original
GFC paper.

5 Conclusion and Future Work

In this paper, we introduced three methods to increase the
speed of a lossless compression algorithm named GFC. These
three methods are: 1) using clzll to count the leading zeros; 2)
replacing if-else statements with bitwise operations in the
program; 3) using multi-GPUs instead of a single GPU.

After some experiments with datasets downloaded from [15],
we found 1) and 3) were effective and the maximum speedup is
8.705 and the maximum throughput of the improved GFC
algorithm is 2,454.60 gigabits/s, by using 1) and 3) together.
However, 2) cannot guarantee good results all the time.

In the future, we want to do more experiments to find out the
rules between the performance and number of blocks and
GPUs. For example, an equation can obtain the number of
blocks and GPUs for a specific problem to get the best results
done sequentially using a CPU core. We have designed a new

Figure 11: Multi-GPUs throughput of num_plasma

IJCA, Vol. 23, No. 4, Dec. 2016 239

(throughputs). The last step of our method is to combine all the
compressed file segments into the final compressed file. This is
method to do it parallel using multiple CPU cores. Figure 13
presents the details of this method. The basic idea is to use one
CPU core to combine two compressed file segments.

Therefore, we can use N CPU cores to combine 2N file
segments in one step. We also want to extend our previous
work introduced in [18, 19, 20] with the improved data
compression algorithm.

Figure 13: Segment files combination in parallel

Figure 12: Speedup of improved GFC algorithm
The speedups of most cases are above 4 for all the datasets

240 IJCA, Vol. 23, No. 4, Dec. 2016

Acknowledgements

The authors of this paper acknowledge the help from O'Neil
and Burtscher. They kindly answered some hard questions
about GFC by email and offered us test datasets.

This material is based upon work supported in part by The
National Science Foundation under grant numbers IIA-
1301726 and IIA-1329469, and by Cubix Corporation through
use of their PCIe slot expansion hardware solutions and
HostEngine.

Any opinions, finds, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation or Cubix Corporation.

Reference

[1] M. Burscher, “Martin Burscher/FPdouble,”
http://cs.txstate.edu/~burtscher/research/datasets/FPdoubl
e/, (accessed 5/5/2015).

[2] R. L. Cloud, M. L. Curry, H. L. Ward, A. Skjellum, and
P. Bangalore, “Accelerating Lossless Data Compression
with GPUs,” arXiv, 3:26-29, 2009.

[3] Y. Collet, “LZ4-Extremely Fast Compression
Algorithm,” https://code.google.com/p/lz4/ , (accessed
5/4/2015).

[4] P. Cudré-Mauroux, H. Kimura, K. T. Lim, J. Rogers, R.
Simakov, E. Soroush, P. Velikhov, D. L. Wang, M.
Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S.
Madden, J. Patel, M. Stonebraker and S. Zdonik, “A
Demonstration of SciDB: A Science-Oriented DBMS”
Proceedings of the VLDB Endowment, 2(2):1534-1537,
2009.

[5] A. Eirola, Lossless Data Compression on GPGPU
Architectures,” arXiv preprint arXiv: 1109.2348, 2011.

[6] Google Inc., “Statistics—YouTube,” https://www.you
tube.com/yt/press/statistics.html, (accessed 5/4/2015).

[7] P. Holub, M. Šrom, M. Pulec, J. Matela, and M. Jirman,
“GPU-Accelerated DXT and JPEG Compression
Schemes for Low-Latency Network Transmissions of
HD, 2K, and 4K Video,” Future Generation Computer
Systems, 29(8):1991-2006, 2013.

[8] M. Jaiswal, “Accelerating Enhanced Boyer-Moore String
Matching Algorithm on Multicore GPU for Network
Security,” International Journal of Computer
Applications, 97(1):30-35, 2014.

[9] W. Kahan, Lecture Notes on the Status of IEEE Standard
754 for Binary Floating-Point Arithmetic.” Manuscript,
30 pp., May 1996.

[10] D. Le Gall, “MPEG: A Video Compression Standard for
Multimedia Applications,” Communications of the ACM,
34(4), 46-58, 1991.

[11] S. Loinel, “Does a Lot of “if … else” Statements Slow
Down the Code?” https://software.intel.com/en-
us/forums/topic/283268, (accessed 5/5/2015).

[12] J. Luitjens and S. Rennich, “CUDA Warps and
Occupancy,” GPU Computing Webinar, 11:2-19, 2011.

[13] NuDoq. “NuDoq – CUDAfy.NET,” http://www.nudoq.
org/#!/Packages/CUDAfy.NET/Cudafy.NET/IntegerIntri
nsicsFunctions/M/clzll, (accessed 5/5/2015).

[14] M. A. O'Neil and M. Burtscher, “Floating-Point Data
Compression at 75 Gb/s on a GPU,” Proceedings of the
Fourth Workshop on General Purpose Processing on
Graphics Processing Units, ACM, p. 7, 2011.

[15] M. Stonebraker, J. Becla, D. J. DeWitt, K. T. Lim, D.
Maier, O. Ratzesberger, and S. B. Zdonik,
“Requirements for Science Data Bases and SciDB,”
Proceedings of the Fourth Biennial Conference on
Innovative Data System, 7:173-184, January 2009.

[16] P. Vagata. and K. Wilfong, “Scaling the Facebook Data
Warehouse to 300 PB,” https://code.facebook.com/posts/
229861827208629/scaling-the-facebook-data-warehouse-
to-300-pb/, (accessed 5/4/2015).

[17] G. K. Wallace, “The JPEG Still Picture Compression
Standard,” Communications of the ACM, 34(4):30-44,
1991.

[18] M. Zhang, T. Yang, and R. Wu, “Space-Efficient
Multiple String Matching Automata. International
Journal of Wireless and Mobile Computing, 5(3):308-
313, 2012.

[19] R. Wu., S. Dascalu, and F. Harris, (2015) Environment
for Datasets Processing and Visualization Using SciDB.
Proceedings of the 24th International Conference on
Software Engineering and Data Engineering (SEDE
2015), San Diego, CA, pp. 223-229, October 12-14,
2015.

[20] R. Wu, C. Chen, S. Ahmad, J. Volk, C. Luca, F. Harris,
and S. Dascalu, “A Real-time Web-Based Wildfire
Simulation System, Proceedings of the 2016 IEEE
Industrial Electronics Conference (IECON 2016),
Florence, Italy, Oct 24-27, 2016.

Rui Wu is a Ph.D. student in the
Department of Computer Science and
Engineering at the University of
Nevada, Reno, USA. He started the
Ph.D. program in Spring 2014 after
obtaining in 2013 a Bachelor's degree in

Computer Science and Technology from Jilin University,
China. His main research interests are in data analysis, data
visualization, and software engineering.

IJCA, Vol. 23, No. 4, Dec. 2016 241

Muhanna Muhanna is an Assistant
Professor in the Department of
Computer Graphics at Princess Sumaya
University for Technology, Jordan,
which he joined in 2011 after receiving
his Ph.D. in Computer Science and
Engineering from the University of
Nevada, Reno earlier that year. In
2007, he received his M.S. in
Computer Science from the University
of Nevada, Reno as well. His main

research interests are in human-computer interaction, user
experience, and software engineering. Moreover, he has been
the Assistant President for Accreditation and Quality
Assurance at Princess Sumaya University for Technology
since 2013.

Sergiu Dascalu is a Professor in the
Department of Computer Science and
Engineering at the University of
Nevada, Reno, USA, which he joined
in 2002. In 1982 he received a
Master’s degree in Automatic Control
and Computers from the Polytechnic
University of Bucharest, Romania and
in 2001 a Ph.D. in Computer Science
from Dalhousie University, Halifax,

NS, Canada. His main research interests are in the areas of
software engineering and human–computer interaction. He
has published over 140 peer-reviewed papers and has been
involved in numerous projects funded by industrial companies
as well as federal agencies such as NSF, NASA, and ONR.

Lee Barford is a Fellow at Keysight
Laboratories and Professor of Computer
Science and Engineering (adjunct) at the
University of Nevada, Reno, Nevada.
He leads research to identify and apply
emerging technologies in software,
applied mathematics, and statistics to
enable new kinds of measurements and

increase measurement accuracy and speed. Lee’s work has
been used to improve R&D productivity and reduce
manufacturing cost in the leading companies in the technology
and transportation industries, including Apple, Boeing, Cisco,
Ford, HP, Microsoft, and NASA. Dr. Barford has given
invited talks at universities worldwide, including MIT,
Cambridge, Stanford, and Tsinghua. Previously, he managed
a number of research projects at Agilent Laboratories and
Hewlett-Packard Laboratories, for example in visible light and
X-ray imaging systems, calibration methods for non-linear and
dynamical disturbances, and fault isolation from automatic test
equipment results. He is the author of over 50 peer-reviewed
publications and inventor of approximately 60 patents.

Frederick C. Harris, Jr. is a
Professor in the Department of
Computer Science and Engineering
and the Director of the High
Performance Computation and
Visualization Lab and the Brain
Computation Lab at the University of
Nevada, Reno, USA. He received his
B.S. and M.S. degrees in
Mathematics and Educational

Administration from Bob Jones University in 1986 and 1988
respectively, and his M.S. and Ph.D. degrees in Computer
Science from Clemson University in 1991 and 1994
respectively. He is a SeniorMember of ACM and ISCA, and a
member of IEEE. His research interests are in parallel
computation, computational neuroscience, computer graphics
and virtual reality.

242 IJCA, Vol. 23, No. 4, Dec. 2016

Index

Authors

A

Akour, Mohammed, see Banitaan,
Shadi; IJCA v23 n1 March 2016 29-
34

Anderson, John W., see Carthen,
Chase; IJCA v23 n3 Sept 2016 195-
207

Arad, Behnam S., see Durai,
Maththaiya; IJCA v23 n2 June 2016
87-95

Assefi, Mehdi, Guangchi Liu, Mike P.
Wittie, and Clemente Izurieta;
Measuring the Impact of Network
Performance on Cloud-Based Speech
Recognition; IJCA v23 n1 March
2016 19-28

B

Badri, Linda, see Flageol, William;
IJCA v23 n1 March 2016 69-76

Badri, Mourad, see Flageol, William;
IJCA v23 n1 March 2016 69-76

Banitaan, Shadi, Kevin Daimi,
Mohammed Akour, and Yujun Wang;
Test Suite Selection in Junit Testing
Environment Based on Software
Metrics; IJCA v23 n1 March 2016 29-
34

Barford, Lee, see Wu, Rui; IJCA v23
n4 Dec 2016 232-241

Bossard, Antoine and Keiichi Kaneko;
Chinese Characters Ontology and
Induced Distance Metrics; IJCA v23
n4 Dec 2016 223-231

Bossard, Antoine and Les Miller;
Guest Editor’s Note; IJCA v23 n2
June 2016 77

Burfield, Nolan P., see Carthen, Chase;
IJCA v23 n3 Sept 2016 195-207

C

Carthen, Chase, Thomas J. Rushton,
Nolan P. Burfield, Donna Delparte,
Tucker Chapman, W. Joel Johansen,
Roger Lew, Nicholas R. Wood,
Mathew Ziegler, John W. Anderson,
Sergiu M. Dascalu, and Frederick C.
Harris, Jr.; Virtual Watershed
Visualization for the WC-WAVE

Project; IJCA v23 n3 Sept 2016 195-
207

Chapman, Tucker, see Carthen, Chase;
IJCA v23 n3 Sept 2016 195-207

Codabux, Zadia, see Deo, Ajay K.;
IJCA v23 n1 March 2016 35-56

D-G

Daimi, Kevin, see Banitaan, Shadi;
IJCA v23 n1 March 2016 29-34

Dascalu, Sergin M., see Carthen,
Chase; IJCA v23 n3 Sept 2016 195-
207

….see Wu, Rui; IJCA v23 n4 Dec 2016
232-241

Delparte, Donna, see Carthen, Chase;
IJCA v23 n3 Sept 2016 195-207

Deo, Ajay K., Zadia Codabux, Kazi
Zakia Sultana, and Byron J. Williams;
Assessing Software Defects Using
Nano-Patterns Detection; IJCA v23 n1
March 2016 35-56

Ding, Tao, see Xu, Weifeng; IJCA v23
n3 Sept 2016 141-159

Duri, Maththaiya, Behnam S. Arad; A
Pipelined Implementation of Hash
Stream1-Synthetic Initialization
Vector Encryption Algorithm; IJCA
v23 n2 June 2016 87-95

El Ariss, Omar, see Xu, Weifeng; IJCA
v23 n3 Sept 2016 141-159

El-Kadi, Amr, see Sobh, Karim; IJCA
v23 n2 June 2016 124-139

Etschmaier, Maximilian M. and
Gordon Lee; Defining the Paradigm
of a Highly Automated System that
Protects Against Human Failures and
Terrorist Acts and Application to
Aircraft Systems; IJCA v23 n1 March
2016 4-11

Fekete, Andras and Elizabeth Varki;
Evaluating an Array of
Heterogeneous Disks; IJCA v23 n4
Dec 2016 208-215

Feng, Wenying see Hu, Gongzhu; IJCA
v23 n1 March 2016 2-3

Flageol, William, Mourad Badri, and
Linda Badri; Investigating the
Relationships between Use Cases
Attributes and Source Code Size;
IJCA v23 n1 March 2016 69-76

Goto, Takaaki, See Hu, Gongzhu;
IJCA v23 n1 March 2016 2-3

see Hu, Gongzhu; IJCA v23 n4 Dec
2016 207

Gray, Jeff, see Yue, Songqing; IJCA
v23 n1 March 2016 57-68

H-J

Hanaki, Hidenobu, see Yokoyama,
Michio; IJCA v23 n1 March 2016 12-
18

Harris, Jr., Frederick C.; Editor’s
Note: March 2016; IJCA v23 n1
March 2016 1

see Hu, Gongzhu; IJCA v23 n1
March 2016 2-3
see Carthen Chase; IJCA v23 n3
Sept 2016 195-207

....see Wu, Rui; IJCA v23 n4 Dec
2016 232-241

Hasegawa, Kazuki and Kiyofumi
Tanaka; Server Mechanisms for
Guaranteeing Schedulability with
RTOS Processing and Improving
Application Responsiveness by Slack
Reclaiming; IJCA v23 n2 June 2016
116-123

Hesson, Aaron, see Carthen, Chase;
IJCA v23 n3 Sept 2016 195-207

Hu, Gongzhu and Takaaki Goto,
Frederick C. Harris, Jr., Yan Shi, and
Wenying Feng; Guest Editorial:
Special Issue from ISCA Fall-2015
Conference; IJCA v23 n1 March 2016
2-3
and Takaaki Goto; Guest Editorial:

Special Issue from ISCA Fall--2016
Conference, IJCA v23 n4 Dec 2016
207

Izurieta, Clemente, see Assefi, Mehdi;
IJCA v23 n1 March 2016 19-28

Johansen, W. Joel, see Carthen, Chase;
IJCA v23 n3 Sept 2016 195-207

Johnson, Christine M., see Carthen,
Chase; IJCA v23 n3 Sept 2016 195-
207

K-L

Kaneko, Keiichi, see Bossard, Antoine;
IJCA v23 n4 Dec 2016 223-231

Katsumata, Kaori, see Kinoshita,
Toshiyuki; IJCA v23 n2 June 2016
78-86

Kinoshita, Toshiyuki, Matrazali

IJCA, Vol. 23, No. 4, Dec. 2016 243

Noorafiza, and Kaori Katsumata;
IJCA v23 n2 June 2016 78-86

Lee, Gordon see Etschmaier,
Maximilian M.; IJCA v23 n1 March
2016 4-11

Lew, Roger, see Carthen, Chase; IJCA
v23 n3 Sept 2016 195-207

Li, Wei; Evaluation and Generalization
of Trust Models in P2P Networks;
IJCA v23 n4 Dec 2016 216-222

Liu, Guangchi, see Assefi, Mehdi;
IJCA v23 n1 March 2016 19-28

M-O

Miller, Les, Bossard, Antoine; IJCA
v23 n2 June 2016 77

Mizunuma, Mitsuru, see Yokoyama,
Michio; IJCA v23 n1 March 2016 12-
18

Muhanna, Muhanna, see Wu, Rui;
IJCA v23 n4 Dec 2016 232-241

Negishi, Takumi, see Yokoyama,
Michio; IJCA v23 n1 March 2016 12-
18

Nielson, Daniel, see Carthen, Chase;
IJCA v23 n3 Sept 2016 195-207

Nishimura, Kozo, see Yokoyama,
Michio; IJCA v23 n1 March 2016 12-
18

Noorafiza, Matrazali, see Kinoshita,
Toshiyuki; IJCA v23 n2 June 2016
78-86

Oladunni, Timothy and Sharad
Sharma; Predicting Fair Housing
Market Value: A Machine Learning
Investigation; IJCA v23 n3 Sept 2016
160-175

Otani, Kazuya, see Yokoyama, Michio;
IJCA v23 n1 March 2016 12-18

P-Q

Periyasamy, Kasi and Karamveer
Yadav; Consolidation of Data in
Multiple Databases; IJCA v23 n2 June
2016 96-104

R-S

Rushton, Thomas J., see Carthen,
Chase; IJCA v23 n3 Sept 2016 195-
207

Sharma, Sharad, see Oladunni,
Timothy; IJCA v23 n3 Sept 2016 160-
175

Shi, Yan, see Hu, Gongzhu; IJCA v23
n1 March 2016 2-3

Sobh, Karim and Amr El-Kadi; A
Unified Cloud Metering Framework;
IJCA v23 n2 June 2016 124-139

Stanchev, Lubomir; Creating a
Probabilistic Model for WordNet;
IJCA v23 n3 Sept 2016 176-194

Sultana, Kazi Zakia, see Deo, Ajay K.;
IJCA v23 n1 March 2016 35-56

T-V

Tanaka, Kiyofumi, see Hasegawa,
Kazuki; IJCA v23 n2 June 2016 116-
123

Varki, Elizabeth, see Felete. Andras;
IJCA v23 n4 Dec 2016 208-215

W

Wang, Yujun, see Banitaan, Shadi;
IJCA v23 n1 March 2016 29-34

Williams, Byron J., see Deo, Ajay K.;
IJCA v23 n1 March 2016 35-56

Wittie, Mike P., see Assefi, Mehdi;
IJCA v23 n1 March 2016 19-28

Wood, Nicholas R., see Carthen,
Chase; IJCA v23 n3 Sept 2016 195-
207

Worrell, Bryan, see Carthen, Chase;
IJCA v23 n3 Sept 2016 195-207

Wu, Rui, Muhanna Muhanna, Sergiu
M. Dascalu, Lee Barford, Frederick
C. Harris, Jr.; Data Lossless
Compression Using Improved GFC
Algorithm with Multiple GPUs; IJCA
v23 n4 Dec 2016 232-241

X-Z

Xu, Dianxiang, see Xu, Weifeng; IJCA
v23 n3 Sept 2016 141-159

Xu, Weifeng, Tao Ding, Dianxiang Xu,
and Omar El Ariss; Mining Decision
Trees as Test Oracles for Java
Bytecode; IJCA v23 n3 Sept 2016
141-159

Yadav, Karamveer, see Periyasamy,
Kasi; IJCA v23 n2 June 2016 96-104

Yokoyama, Michio, Takumi Negishi,
Mitsuru Mizunuma,Kazuya Otani,
Hidenobu Hanaki, and Kozo
Nishimura; Multiple Regression
Analysis and Learning System for
Estimation of Blood Pressure

Variation Using Photo-
Plethysmograph Signals; IJCA v23 n1
March 2016 12-18

Yue, Songqing and Jeff Gray;
Transforming C Applications with
Meta-Programming; IJCA v23 n1
March 2016 57-68

Ziegler, Mathew, see Carthen, Chase;
IJCA v23 n3 Sept 2016 195-207

244 IJCA, Vol. 23, No. 4, Dec. 2016

Key Words

A

Abstraction
IJCA v23 n1 March 2016 57-68

Aircraft safety and security
IJCA v23 n1 March 2016 4-11

Attack
IJCA v23 n4 Dec 2016 216-222

Autonomous cloud metering objects
IJCA v23 n2 June 2016 124-139

B-C

Biological sound processing
IJCA v8 n1 March 2001 7-12

Blood pressure
IJCA v23 n1 March 2016 12-18

Blood pressure estimation
IJCA v23 n1 March 2016 12-18

Causality
IJCA v8 n1 March 2001 23-32

Central server model
IJCA v23 n2 June 2016 78-86

Cloud computing
IJCA v23 n2 June 2016 124-139

Cloud metering
IJCA v23 n2 June 2016 124-139

Cloud metering markup language
IJCA v23 n2 June 2016 124-139

Cloud speech recognition
IJCA v23 n1 March 2016 19-28

Computational reflection
IJCA v23 n1 March 2016 57-68

Computer security
IJCA v23 n2 June 2016 105-115

Computer system performance
IJCA v23 n2 June 2016 78-86

Constraint matching
IJCA v23 n2 June 2016 96-104

Content matching
IJCA v23 n2 June 2016 96-104

Correlation
IJCA v23 n1 March 2016 12-18

D

Decision tree
IJCA v23 n3 Sept 2016 141-159

Defect detection
IJCA v23 n1 March 2016 35-56

Deferrable sever
IJCA v23 n2 June 2016 116-123

Domain-specific language
IJCA v23 n1 March 2016 57-68

E-F

Encryption
IJCA v23 n2 June 2016 87-95

Finite input source
IJCA v23 n2 June 2016 78-86

Floating-point data
IJCA v23 n4 Dec 2016 232-241

G-H

Geospatial
IJCA v23 n3 Sept 2016 195-207

GFC
IJCA v23 n4 Dec 2016 232-241

Hardware accelerator
IJCA v23 n2 June 2016 87-95

Heterogeneous disks
IJCA v23 n4 Dec 2016 208-215

High-speed
IJCA v23 n4 Dec 2016 232-241

Housing prices prediction
IJCA v23 n3 Sept 2016 160-175

Human factors
IJCA v23 n1 March 2016 4-11

Human failures
IJCA v23 n1 March 2016 4-11

Human-machine symbiosis
IJCA v23 n1 March 2016 4-11

Hydrology
IJCA v23 n3 Sept 2016 195-207

I-J

Infrared LED sensor
IJCA v23 n1 March 2016 12-18

Jimple
IJCA v23 n3 Sept 2016 141-159

K-L

Kernel level transport layer
IJCA v23 n2 June 2016 124-139

K-NN
IJCA v23 n3 Sept 2016 160-175

Linear regression
IJCA v23 n3 Sept 2016 160-175

Language
IJCA v23 n4 Dec 2016 223-231

Learning system
IJCA v23 n1 March 2016 12-18

Linguistics
IJCA v23 n4 Dec 2016 223-231

Lossless compression
IJCA v23 n4 Dec 2016 232-241

M

Machine learning
IJCA v23 n3 Sept 2016 160-175

Markov logic network for represent-
ing WordNet data
IJCA v23 n3 Sept 2016 176-194

Meta-object protocol
IJCA v23 n1 March 2016 57-68

Metering framework
IJCA v23 n2 June 2016 124-139

Metrics
IJCA v23 n1 March 2016 69-76

Mining
IJCA v23 n3 Sept 2016 141-159

Model
IJCA v23 n4 Dec 2016 223-231

Model data
IJCA v23 n3 Sept 2016 195-207

Multicollinearity
IJCA v23 n1 March 2016 12-18

Multiple regression analysis
IJCA v23 n1 March 2016 12-18

MVC
IJCA v23 n3 Sept 2016 160-175

N-O

Nano-patterns
IJCA v23 n1 March 2016 35-56

Natural
IJCA v23 n4 Dec 2016 223-231

Netfilter hooks
IJCA v23 n2 June 2016 124-139

Network security
IJCA v23 n4 Dec 2016 216-222

Neural network
IJCA v23 n3 Sept 2016 160-175

P-Q

Peer to peer (P2P) network
IJCA v23 n4 Dec 2016 216-222

Performance evaluation
IJCA v23 n2 June 2016 78-86

Photo-plethysmography
IJCA v23 n1 March 2016 12-18

Pipelining
IJCA v23 n2 June 2016 87-95

Polling Server
IJCA v23 n2 June 2016 116-123

Polynomial regression
IJCA v23 n3 Sept 2016 160-175

Probability-based semantic similarity
and distances
IJCA v23 n3 Sept 2016 176-194

IJCA, Vol. 23, No. 4, Dec. 2016 245

Proc filesystem
IJCA v23 n2 June 2016 124-139

Program transformation
IJCA v23 n1 March 2016 57-68

Purposeful systems
IJCA v23 n1 March 2016 4-11
IJCA v23 n2 June 2016 105-115

Quality of experience
IJCA v23 n1 March 2016 19-28

Queuing network
IJCA v23 n2 June 2016 78-86

Queuing theory
IJCA v23 n2 June 2016 78-86

R

RAID
IJCA v23 n4 Dec 2016 208-215

Real Estate
IJCA v23 n3 Sept 2016 160-175

Real-time scheduling
IJCA v23 n2 June 2016 116-123

Real-time systems
IJCA v23 n1 March 2016 19-28

Relation
IJCA v23 n4 Dec 2016 223-231

Relationships
IJCA v23 n1 March 2016 69-76

Reputation system
IJCA v23 n4 Dec 2016 216-222

RTOS
IJCA v23 n2 June 2016 116-123

S

Schema matching
IJCA v23 n2 June 2016 96-104

Script
IJCA v23 n4 Dec 2016 223-231

Semantic similarity benchmarks for
WordNet
IJCA v23 n3 Sept 2016 176-194

Semantic similarity
IJCA v23 n3 Sept 2016 176-194

Simulation
IJCA v23 n2 June 2016 87-95

Slack
IJCA v23 n2 June 2016 116-123

Software development effort
IJCA v23 n1 March 2016 69-76

Software measurement
IJCA v23 n1 March 2016 19-28

Software metrics
IJCA v23 n1 March 2016 29-34

Software patterns
IJCA v23 n1 March 2016 35-56

Software quality
IJCA v23 n1 March 2016 35-56

Software testing
IJCA v23 n1 March 2016 29-34
IJCA v23 n3 Sept 2016 141-159

Source code size
IJCA v23 n1 March 2016 69-76

Storage
IJCA v23 n4 Dec 2016 208-215

Streaming Media
IJCA v23 n1 March 2016 19-28

Synthesis
IJCA v23 n2 June 2016 87-95

System security
IJCA v23 n1 March 2016 4-11

System Verilog
IJCA v23 n2 June 2016 87-95

Systolic/diastolic blood pressure
IJCA v23 n1 March 2016 12-18

T

Terrain
IJCA v23 n3 Sept 2016 195-207

Test case selection
IJCA v23 n1 March 2016 29-34

Test Oracle
IJCA v23 n3 Sept 2016 141-159

Traceable patterns
IJCA v23 n1 March 2016 35-56

Trust
IJCA v23 n4 Dec 2016 216-222

U-Z

UML
IJCA v23 n3 Sept 2016 160-175

Unit testing
IJCA v23 n1 March 2016 29-34

Use cases
IJCA v23 n1 March 2016 69-76

Use case points
IJCA v23 n1 March 2016 69-76

Virtual watershed client
IJCA v23 n3 Sept 2016 195-207

Virtual watershed platform
IJCA v23 n3 Sept 2016 195-207

Visualization
IJCA v23 n3 Sept 2016 195-207

Instructions for Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr., Fred.Harris@cse.unr.edu.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence.
Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11

inch pages.
2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word
format should be submitted to the Editor-in-Chief.

2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should
be included:

 Paper text (required).
 Bios (required for each author). Integrate at the end of the paper.
 Author Photos (jpeg files are required by the printer, these also can be integrated into your paper).
 Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps).

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper.

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of
$50.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA
members, $100 of publication charges will be waived if requested.

January 2014

ISCA
 IN

TERN
A

TIO
N

A
L JO

U
RN

A
L O

F CO
M

PU
TERS A

N
D

 TH
EIR A

PPLICA
TIO

N
S

V
ol. 23, N

o. 4, D
ec.2016

