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Guest Editorial:
Special Issue from ISCA Fall--2016 Conferences

This Special Issue of IJCA is a collection of four refereed papers selected from the CAINE 2016:  29th International Conference 
on Computer Applications in Industry and Engineering, held during September 26-28, 2016, in Denver, Colorado, USA, 

Each paper submitted to the conference was reviewed by at least two members of the International Program Committee, as well 
as by additional reviewers, judging the originality, technical contribution, significance and quality of presentation.  After the 
conferences, four best papers were recommended by the Program Committee members to be considered for publication in this 
Special Issue of IJCA.  The authors were invited to submit a revised version of their papers.  After extensive revisions and a second 
round of review, the four papers were accepted for publication in this issue of the journal.

The papers in this special issue cover a wide range of research interests in the community of computers and applications.  The 
topics and main contributions of the papers are briefly summarized below.

ANDRÁS FEKETE and ELIZABETH VARKI of University of New Hampshire, USA, presented RAIDX in their paper “RAID on a 
Heterogeneous Disk Array.'”  It is a new type of heterogeneous RAID that is an extended and enhanced version of RAID. Based on 
RAID, by modifying the RAID structure and adding a lookup table, RAIDX supports heterogeneous disk array.  So, different types 
of storage devices can be configured in RAIDX.

WEI LI of Nova Southeastern University, USA, in the paper “A Comparative Evaluation of Trust Models in P2P Networks,” 
presented a comparative study on three major trust models (Eigentrust, PeerTrust, and R2Trust) in P2P networks, proposed a 
generalized model for trust computation, and provided an analysis of how existing approaches can be encompassed in this model.

ANTOINE BOSSARD of Kanagawa University, Japan, and KEIICHI KANEKO of Tokyo University of Agriculture and Technology, 
Japan, discussed a scientific approach to Chinese characters in their paper “A Scientific Approach to Chinese Characters: Rationale, 
Ontology and Application.”  They presented an ontology from information science point of view, including phonetic, morphological 
and graphic.  Multi-lingual aspect of Chinese characters are considered in their study, as well as an algorithm for calculation of the 
distance between characters.

RUI WU, SERGIU M. DASCALU, LEE BARFORD and FREDERICK C. HARRIS, Jr of University of Nevada Reno, USA, and MUHANNA
MUHANNA of Princess Sumaya University for Technology, Jordan, introduced three methods to improve the performance of the 
traditional GFC compression algorithm in their paper “Data Lossless Compression Using Improved GFC Algorithm with Multiple 
GPUs.'”  Their methods are using clzll to count the leading zeros, remove if-else statements in program, and use multiple Graphics 
Processing Units.  Experimental results showed that the proposed methods improve the compression speed by more than 10-fold.

As guest editor’s we would like to express our genuine appreciation for the encouragement and support from the editor-in-chief 
of IJCA, Frederick C. Harris, Jr.  We also owe many thanks to the authors and program committees of the conferences these papers 
were selected from. 

We hope you enjoy this special issue of the IJCA and we look forward to seeing you at a future ISCA conference.  More 
information about ISCA Society can be found at http://www.isca-hq.org.

Guest Editors: 

Gongzhu Hu, Central Michigan University, USA, CAINE 2016 Conference Chair 
Takaaki Goto, Ryutsu Keizai University, Japan, CAINE 2016 Program Chair

November 2016
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Evaluating an Array of Heterogeneous Disks

Andras Fekete∗ and Elizabeth Varki*
University of New Hampshire, Durham, NH, USA

Abstract

RAID assumes homegeneous disks. When a disk in RAID
fails, it may be replaced by a larger disk, but the extra space
in the new disk is wasted. To address this problem, this paper
proposes RAIDX, RAID eXtended for heterogenous disks.
Similar to RAID, RAIDX bundles data across its disks; the
stripes of RAID and RAIDX are constructed differently. In
RAID, a stripe is a row of stripe units, one per disk; the stripe
units are at identical locations on each disk. In RAIDX, a bundle
is a row of chunks, with at most one chunk per disk; the chunks
in a bundle need not be on the same location on each disk.
Chunks of a bundle may be relocated dynamically when new
disks are added to or removed from RAIDX. RAIDX requires a
lookup table to map block numbers to chunk locations. This
table is at worst only 0.3% of the total array size. The
lookup tables add overhead to RAIDX, however, experiments
demonstrate that RAID and RAIDX have comparable speeds
when the array consists of similar disks. RAIDX supports
arrays that contain a mix of hard disks and solid state disks.
This combination can be used to increase the access speed
of the array by directing traffic to the faster disks. RAIDX
is compared to RAID by experiments that attempt to exercise
similar functionality on the same hardware. We show that the
proposed lookup table design adds only a little computational
overhead and RAIDX approaches the speed of a traditional
RAID array.

Key Words: RAID, heterogeneous disks, storage.

1 Introduction

Redundant Array of Inexpensive Disks (RAID) consists of
several disks logically bound together to form a single storage
unit, capable of higher performance than each individual disk.
Hardware RAID uses RAID cards between the storage devices
and the motherboard while software RAID uses the system CPU
and memory to achieve the same function. Additionally, RAID
offers redundancy to prevent data loss in the event of a drive
failure. While the redundancy causes computational overhead,
there is a net gain to this organization of storage.

There are several RAID configurations, of which RAID5,

*College of Engineering and Physical Science. Email:
afekete@wildcats.unh.edu and varki@cs.unh.edu

RAID10, and RAID6 are the most popular. All configurations of
RAID assume that the disks are identical. When disks fail, they
are usually replaced by identical disks. Disks have an increasing
Mean Time to Failure (MTTF), and they are growing in size.
The combination of these two facts makes it plausible that when
a disk fails in an array, it is likely replaced by a larger disk.
Over time, a homogeneous array gets replaced by a completely
new array with the old hardware discarded, a costly solution.
A second solution is to replace the failed disks by new large
disks, but the additional space in the new disks are not utilized.
A third option is to extend the second solution by using the
additional space as a separate storage unit, which interferes with
the operation of RAID. All these solutions are ad-hoc, wasteful,
and expensive. This paper addresses this issue by evaluating a
RAID configuration called RAIDX [4], for heterogeneous disks
and is an expansion of our prior work [5].

RAIDX - RAID eXtended for heterogeneous disks -
configures different types of disks into a single array. For
example, SSD and HDD could be combined into a single
RAIDX array. The configuration of RAIDX ensures that the
speed of the array approaches that of the faster disk in the array.
Moreover, when disks of several sizes are placed in a RAIDX
array, the additional space in the larger disks becomes available.
RAIDX also supports all the traditional RAID levels (striping,
mirroring, and parity). RAIDX, designed for heterogeneity of
disk sizes and speeds, provides optimal performance regardless
of homogeneous or heterogeneous disks.

This paper describes the RAIDX system architecture. The
traditional, homogeneous RAID organizes storage data into
stripes that span the disks uniformly. Each stripe (row) consists
of stripe units, one per disk; the stripe units corresponding
to a stripe at the same location on each disk. RAIDX has
a completely different organization since disks vary in size.
The bundles in RAIDX consist of chunks (not stripe units),
which are not necessarily at the same location of each disk.
Moreover, bundles need not span all the disks; larger disks
participate in more bundles than smaller disks. In traditional
RAID, stripes are just rows of storage data that logically follow
each other. In RAIDX, bundles are organized for maximizing
storage utilization of different sized disks.

Like in traditional RAID, the chunk size is selectable at
initialization. With a smaller chunk size, the number of bundles
increases thus increasing the space requirements for the lookup

ISCA Copyright© 2016
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table both in memory as well as on disk. Nevertheless, the size
of the lookup table in the worst case is less than 0.3% percentage
of the array size. If the chunk size increases, the lookup table
size decreases. The lookup table still offers an O(1) retrieval of
chunk addresses. This is because once the array is assembled,
the lookup table no longer changes.

In this paper we compare RAIDX performance to that of
traditional RAID. We take into account one of the simpler
RAID types, namely mirroring as a comparison. While
there is a difference between the speeds achieved by the two
implementations, there are many things that can still improve
the speed of RAIDX. We have shown a 10 times speed increase
over an individual drive in our 7 disk array. Mirroring RAIDX
outperformed traditional RAID in terms of writes, but fell short
on transactions with mostly reads. The crossover point occurs in
transactions where at least 60% of the access is a read. A simple
remedy for this would be to add a cache layer which will keep
most frequently accessed bundles in memory.

2 Related Work

RAID [10] calls a piece of data or parity a stripe unit.
Multiple stripe units are organized into stripes. Stripe units at
the same logical location are in the same stripe. Stripe units are
the smallest blocks that a RAID system can access.

Although other RAID algorithms exist, typically, RAID10,
RAID5 and RAID6 is most commonly used. RAID10 is a
combination of mirroring and striping across the SUs where
RAID5 and RAID6 are single and double parity algorithms
respectively. A parity is calculated by taking the XOR of the
data SUs in the parity. For RAID5, these are the SUs in the
stripe other than the parity stripe unit. In RAID6, the first parity
can be the same that of RAID5, where the second is a myriad of
possibilities [7, 9, 15, 16].

The basic rule in making an algorithm redundant is that each
piece of the data and parity must be kept on a separate disk. The
only way this is possible on differently sized disks is to treat all
disks equal to the size of the smallest disk in the array. One
trick that has been done is to place a second array on top of the
remaining space on the disks. This process repeats until there
are only two disks with free space which is then combined with
a RAID1 array. The trouble this causes is that if both RAID
arrays are accessed simultaneously there is a steep performance
degradation. In any disk access, it is well known that the
throughput is heavily influenced by the seek time required to
access the data [11]. Therefore, any rotational disk that has
multiple RAIDs on it will suffer from this.

Many solutions to this have revolved around obfuscating
the underlying storage devices such as Logical Volume
Management [14] (LVM). This divides up a physical volume
(disk) to physical extents which can be allocated to logical
extents in a logical volume. LVM leads to waste by adding
a layer of abstraction in addition to sub-optimal utilization of
hardware by treating all disks as identical. Others have tried
to create virtual arrays [13] and combine them together into a

single system.
RAIDX combines the layer which creates an abstraction

of the underlying heterogeneous storage with the layer that
provides redundancy and speed improvements over a single
drive. Being aware of the low level storage, RAIDX can make
optimizations on the ordering of how transactions get executed.

3 RAIDX

Our current implementation is done entirely in software,
but there is no restriction that would prevent a hardware
implementation. Using the Linux network block device module,
it is possible to create a block-level user space environment
called BUSE [3]. This creates a block-level device that can
represent the RAID array. By avoiding kernel modules, a
much simpler implementation can be accomplished using object
oriented languages. Using direct file access, we can force the
kernel to retrieve data directly to the userspace memory and
avoid unnecessary memory copies.

3.1 RAIDX Instantiation

In RAIDX there are some additional steps to assembling the
RAID. When creating a new RAIDX set, one must define the
number of chunks per bundle. The smaller the number, the
closer to full utilization of the disks there is, but the larger the
lookup table will be. This is because for a smaller chunks per
bundle, there are more possible ways of spreading the chunks
across the disks to optimize the layout. Each disk in the array
can only store one chunk in a bundle to maintain redundancy. A
disk with more than one chunk out of a bundle would be a weak
link in the array where only a single disk failure is tolerated.
If the chunks per bundle is equal to the number of disks in the
array, then we have a traditional RAID layout and the number of
stripes is determined by the smallest disk in the array. RAIDX
is similar in that once the RAID is assembled, the chunks per
bundle cannot be easily changed. The difference exists in the
number of bundles. RAIDX allows for bundles to be added as
well as removed based on the number of available chunks in the
array. This means that as the array ages and transforms, it is
possible to further increase the storage capacity. With modern
filesystems, it is possible to resize the filesystem to follow the
size of the underlying device. Many filesystems also allow to do
this change on a live system.

The minimum necessary chunks per bundle for traditional
RAIDs are shown in Table 1. The largest traditional RAID
requires 4 chunks. In our experiments, where we have several
different sized disks, we can see that this still produces a RAID
with nearly the full size of the physical array. With a different
set of disk sizes this same phenomenon occurs. The larger the
number of disks in the array, the better the ability to make use
of the full disk space.

To initialize the array, the number of chunks on each disk
is calculated and these become the number of free chunks. It
is possible to estimate the maximum number of bundles (see
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Table 1: RAID level and minimum chunks per bundle

RAID Level 0 1 5 6 10
chunk per bundle 1 2 3 4 4

equation 1), but not every configuration of physical disk sizes
allows to have all the disks used. A simple example is taking
an array with a 1TB disk and two 250GB drives. There is no
possible way to make full use of the 1TB array in a redundant
array. If there were two chunks per bundle, the size of the array
is at most 750GB using equation 1, but because of the large
disparity between disk sizes and the small number of disks in
the array, the array size is going to be only 500GB. If we added
two more 250GB (or one 500GB) disks then we would reach the
maximum size of the array.

numStripes =
totalArraySize

chunksPerStripe∗ chunkSize
(1)

In traditional RAID, a hot spare is a drive that is put into
the array as a backup drive that is normally unused, but in the
event of a disk failure it becomes activated and the array fails
over to that drive. In RAIDX, the concept of hot spare becomes
unnecessary, because it is better to have the added performance
of an additional disk in parallel. It is possible to put a smaller
filesystem on the RAIDX array, so that if there is a disk failure,
the RAIDX array can reorganize the chunk locations without
needing to modify the filesystem.

3.2 RAIDX Lookup Table

As all chunks in a bundle can be arbitrarily allocated on the
disk, we must keep a lookup table to later determine the selected
locations. The table on the disk is much different than what is
kept in memory. The disks store only information about those
chunks that are stored on it. The size of the table on the disk is
constant, because the number of chunks a disk can store is based
on the size of the disk and the size of a chunk.

Figure 1 shows an example. The labels within each drive
show the lookup table on each disk. The table at the bottom of
the figure is representative of the lookup table stored in memory.
Note that if a disk fails there is no use in having knowledge
about which chunks were stored on it. In RAIDX a replacement
disk may not be the same size as the failed disk, therefore any
knowledge of previous chunks stored provides nothing. Each
disk stores the UUID of the RAIDX array it is a part of, how
many total stripes the RAIDX array has, the number of chunks
per stripe, the size of a chunk, and the table of offsets of chunks
on the disk. Individually, each disk knows nothing of other disks
in the array or how many disks are part of the array.

The size of the lookup table depends linearly on the size of the
chunks in the array. The smaller the chunks, the more that fit on
the disks thus larger the table. This is true for both on-disk and
in-memory tables. The lookup table only changes when there is
a disk added or removed. Once a table is read from disk, there
is no need to make any updates. The in-memory lookup table

Figure 1: RAIDX lookup table

is intended to provide an O(1) lookup for the location of each
chunk. Loss of the in-memory table is not a problem, because it
can always be reconstructed from the tables stored on the disk.

One of the many advantages of RAIDX is that it is possible
for the array to return to a fully redundant state after a disk
failure but before that disk is replaced. This is because with
a lookup table, the bundles can get redistributed across the
remaining disks. With most modern filesystems, it is possible to
reduce the filesystem size as long as the new size is greater than
the size of the data stored on the filesystem. Once the filesystem
has been resized, the RAIDX array can be restructured to
remove the additional bundles and update the lookup table
with the new locations of the chunks of a bundle. After the
restructure, the RAIDX array is now fully redundant and can
handle an additional disk failure. Conversely, when the data
storage on the RAIDX array has become full, it is possible to
add an additional disk to increase the physical storage capacity.
This additional disk can be incorporated into the array by
expanding the lookup table and reshuffling the chunks across
the array.

3.3 RAIDX1

Using RAIDX, we looked at mirroring RAID. With chunks
scattered across the disks, mirroring does not occur like it
does on a traditional RAID. It is more akin to a RAID10
implementation. Figure 2 shows an example with two chunks
per bundle that would be used for a mirrored RAID setup.
Notice that if bundles 1-4 are requested, all the disks could
be utilized. This does not necessarily mean that they should.
Depending on the speed of the disks, a better solution might be
to use only one disk to access the data. Recall that the time that
takes the longest on any magnetic disk is the seek time. So if
all four disks must seek to the same location to retrieve a small
chunk, then in essence, each of the slower disks in the set are
trying to keep up with the fastest disk. Disk scheduling methods
are nothing new [12], what is new is how to select the best disk
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Figure 2: RAIDX array showing a 2 chunk per bundle setup

among a set of different disks. For this, we tested 4 different
algorithms. The first (alg1), iterates through all disks, and only
considers disks that are either twice as fast as the selected, or
is idle while the selected is busy, or the distance the disk is
estimated to seek is less than the currently selected one. If any
of the considerations is true, then the disk under consideration is
set as the selected one. The second algorithm (alg2) considers
all disks independent of the speed. The third algorithm (alg3)
is like the second, except it omits the busy consideration. The
fourth algorithm (alg4) only looks at the seek distances.

Data access is treated as an individual chunk being the
smallest block of data accessible. If a transaction requires
multiple chunks, the best disk is decided on a per-chunk basis
starting with the chunk on the first logical bundle. In our tests,
we always had the bundles organized in ascending order. When
disks have been added and removed from the array, this may not
always be the case. It depends on how the algorithm that adds
in new disks to a previously degraded array places the chunks.
For the present experiments, we need not concern about this
scenario.

4 Simple RAID1

A simplified non-traditional RAID1 was implemented on the
heterogeneous disk set. In this case, the heterogeneity is the
speed of the disks. The goal is to understand how different speed
disks in a RAID affects performance and if there is a different
algorithm to take advantage of the variation in speed.

With this implementation, the disks were treated as identical
sized storage devices. Several different algorithms were created
to test different ways of using the write buffers.

Since the data on all the disks is identical, all writes to
the array were issued to all the disks simultaneously. There
were different algorithms for reads. They are discussed
in the following sections. While many of the algorithms
use asynchronous calls, the read only completes when all
asynchronous calls have completed.

4.1 Fastest Idle Read

This algorithm uses always the fastest disk from the set of
idle disks to execute the read. It is an attempt to ensure that the
RAID is not held back by waiting for a slow disk when a faster
one is available. When all disks are busy, it will wait for the first
one to become idle. We also use a synchronous read as there
is no need to have the overhead of an asynchronous call for the
particular data.

4.2 All Idle Read Async

All Idle Read makes an asynchronous call to each disk in the
set of idle disks to simultaneously read a portion of the requested
blocks. The presumption is that on a set of disks, it is better to
utilize all disks that are waiting idle.

4.3 Fastest Read

This procedure always issued all read requests to a single disk
which was determined to be the fastest at system startup. The
assumption is that there may be a really fast disk in the array that
can be able to keep up with the writes in addition to executing
the reads.

4.4 All Read

This algorithm attempts to simulate the traditional RAID1
such that all read operations are distributed evenly across all
disks.

4.5 Optimized Parallelism

Optimized Parallelism is a cross between Fastest Idle Read
and All Idle Read Async. There are small transactions that
would not make sense to issue to multiple disks. Thus, the
Fastest Idle Read is used in that case, otherwise the All Idle
Read Async method is used.

5 Experimental Setup

To test the speed of the array implementations, the standard
testing tool called flexible I/O tester (fio) [1] was used. Fio is a
tool for any arbitrary I/O throughput testing. It is commonly
used as a comparison tool by many researchers [2, 8] for
arbitrary I/O traffic generation. It is possible to generate random
reads and writes with a desired percentage being reads. The
main drawback is that it takes a long time to get the results as
the transactions have to be executed on the given hardware.

In our tests we use fio to issue random reads and writes,
starting with all writes and incrementing by 10% reads to
100% reads. This can show how the RAID performs with
different types of loads. In initial tests, the size of each read
or write is a constant 10MB. Subsequent tests were done with
a random size ranging from 1KB to 10MB. Each test iteration
was run for approximately 60 seconds. An iteration consisted of
creating constant transactions at a set reads to writes ratio from
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4 separate thread sources. This produced a very large number
of transactions to exhaust any kind of system buffer or cache
device and produce a reliable average transaction rate. The
speed of the disk was recorded as the amount of data transferred
in the actual amount of time.

A decision regarding the chunk size needs to be made when
allocating a RAID storage device. A multiple of the disk block
size is used for an optimal disk interface. In 2011, sector
sizes have been defined to be 4096 bytes on all commercial
drives [6]. In prior years, the sector size has been 512 bytes, but
the increase in drive capacity allowed for a block size increase
to make transactions more efficient.

In the RAIDX instance, the size of a chunk was varied across
tests. The tested sizes included: 16K, 32K, 64K, 128K, 256K
and 512K bytes. These are all the typical stripe unit sizes for
traditional RAID.

Our control in this experiment was using the standard Linux
MD RAID implementation on the same drives. For both the
control as well as RAIDX1, we used the same 7 drives that were
described in Section 3.1. All the drives were magnetic platter
disks. The speeds of the disks ranged from 10.7MB/s to 21MB/s
for reads and 2.2MB/s to 21.6MB/s for writes. The average
speed was 16.6MB/s for reads and 10.25MB/s for writes.

Our experiments had four 148.5GB, one 139.2GB, one
297.5GB and one 74GB drives for a total of 1104GB. When
the chunks per bundle equals the number of disks, this forces
the total available space to be a multiple of the smallest disk
in the array. In our case, that makes seven 74GB drives for a
total of 518GB. Had there been a traditional RAID on this set of
drives, over half of the physical storage would be unattainable
to the array. Using a chunk size of one, two or three yields a
total of 1104GB storage space for this set of drives. Therefore,
a RAID1 or RAID5 can be easily placed on these disks and have
the total capacity of the array while also being redundant. Using
a double disk redundancy technique where there are four chunks
per bundle like RAID6 would allow 1076GB of storage space.
In RAIDX, a double disk redundancy becomes unnecessary.
The reason for this is the possibility of dynamic array resizing
discussed in Section 3.2.

6 Results

This section describes the results of the experiments run with
both RAIDX and traditional RAID. First, an analysis of the base
structure of the RAID is examined. Many attributes that apply
to traditional RAID also applies to RAIDX. Subsequent sections
show how RAIDX compares to traditional RAID.

It is important to examine the trade-offs in chunks per bundle
and chunk size selection. We can easily determine that the
chunk size has a linear correlation with the amount of memory
the lookup table will consume and the allocation time of the
lookup table. This is because the smaller the chunk size, the
more bundles that fit on a disk. Smaller chunk sizes result
in more efficient transfers of small files, but would cause
slowdowns in larger files.

To understand how RAIDX performs, it is important to have
a baseline comparison. This test used the Linux multi-disk
module to create the RAID1 array with the parameters all set to
the default. The RAID1 was constructed to use all the available
space on the disks (see Figure 3). The total space available
on the RAID was equal to the smallest disk. After the RAID
was assembled, we ran the test routine to determine the baseline
speed. This scenario would never be realized in a system as
it would be too cost prohibitive. The reason for this test was
to provide a baseline for what kinds of results we should be
expecting with existing methods.

Figure 3: Using traditional RAID1 on a 7 disk array

6.0.1 Simplified RAID1. Using our simplified RAID1
implementation, we tested the performance of write buffers and
multi-disk transactions on disks with different speeds. Figures 4
and 5 illustrates the simple RAID1 algorithm’s transaction rate
when the same 10MB block transactions were issued across 7
disks. Each of the graphs have the same axis limits to make
comparisons easier to see. The All Read algorithm which is
the traditional RAID1 algorithm performs really well because
of the added parallelism. All Idle Read Async and Optimized
Parallelism showed similar improvement with more parallelism.
In fact, they performed better than the MD RAID system. The
total bandwidth was around 550-600MB/s in each of those tests.
In practice, this configuration would not be practical, but it does
show that the process scales very well.

Fastest Idle Read and Fastest Read were most responsive to
disk speeds. In tests where only two disks were used, when a
magnetic disk was replaced with an SSD, the array had almost
a 10x speedup in transaction speed. We can also observe that
those algorithms that excelled with greater parallelism did not
perform well in a situation where there were different speeds in
disks.

Overall, it makes most sense to use Fastest Read when there
is a disk that is orders of magnitude faster (like in the case of
an SSD), but otherwise the All Idle Read Async and All Read
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Figure 4: RAIDX1 throughput results for 7 disks with CPS=2

algorithms give the best performance.

6.1 RAIDX Performance

RAIDX also provides a set of write buffers to increase the
bandwidth of the disks by keeping the disks continuously active
during burst writes. These write buffers have been observed to
increase the write intensive workload speeds by up to 40% in our

Figure 5: RAIDX1 throughput results for 7 disks with CPS=2

experiments. The concept is that in a hardware implementation,
these write buffers would be placed in a non-volatile RAM so
even in the case of power loss, the data will have been written to
the RAID device and can resume writing when started up again.

Without the write buffers, the disk speeds suffer. Larger
chunk size arrays have the largest impact. In these cases, what
happens is that when a write transaction is taking place, it is
blocking any future write transactions. The larger the chunk
size, the larger the minimum size that a transaction must be to
be split across multiple disks.

With smaller sequential transactions (1KB to 10MB versus a
constant 10MB size), it is natural that the throughput shrinks on
magnetic disks. Even still, the RAID array performs better than
an individual disk due to the parallelism that is available. The
transactions are likely to be carried out by only a single disk
which leaves the rest of the disks idle.

When the same experiment was run with write buffers, the
transaction speeds gained a 30% boost for 512KB chunk sizes,
but only a 7.7% gain for 16KB chunk sizes. The buffers allowed
more disks to be processing writes at the same time, but since
the 16KB chunk size already split the transactions across more
disks, it didn’t see as much of an improvement. Consider that
if a transaction is 64KB and chunk size is 16KB, then the



214 IJCA, Vol. 23, No. 4, Dec. 2016

transaction will likely be split across 4 separate disks, whereas
if the chunk size was 512KB, then the transaction will fall on
a single disk unless it is on a chunk boundary where it will be
split across two disks. This reason is why write buffers help the
array with larger chunk sizes.

RAIDX1 on a set of heterogeneous disks is able to store
more data than a traditional RAID1 because of the different
layout. Traditionally, in RAID1, each two disks form a mirrored
set. Thus, if the data being requested is largely in a certain
logical location, then only two drives will have that data. The
other disks in the array would be sitting idle. With RAIDX1,
there wouldn’t be any mirrored sets, as the bundles would be
distributed evenly across all of the disks. Therefore, there is
greater parallelism in a RAIDX1 set.

We find that the best algorithm is alg4 where we strictly look
at the distance between where the head of the disk was last and
where the next transaction needs to be.

7 Conclusions

RAIDX, a new type of heterogeneous RAID was developed
and tested on a simple striping and mirroring RAID. RAIDX
is different in that it uses bundles which are arranged on the
disks in a fashion that is determined by the sizes of the disks.
While this requires the use of lookup tables to keep track of
where the bundles are, it does perform on par with traditional
RAID and allows for additional features (such as RAID size
extension) that can’t be done with traditional RAID. We have
shown that write speeds 10 times the speed of an individual
drive in the array are attainable and sustainable. While read
speeds are not as fast, it is possible to add a cache and prefetch
layer to improve it, like it is done on most systems. To also
help enhance reads on disks, we looked into how RAID1 will
perform on a simplified implementation treating unequal sized
disks as equal, but at different speeds. We then took this
and created a RAIDX1 implementation using a subset of these
algorithms and compared it to the traditional RAID1.

In this work, the main concentration was to ensure fast
writes to an array of heterogeneous disks. In the current
implementation of the algorithm, when several bundles are
requested, each chunk is requested on the disk individually.
Combining physically sequential chunk requests to disks have
been shown to give significant improvements in our simplified
tests.

In the future we will also consider RAIDX5, with the added
advantage, that it may be possible to use the parity blocks on
faster disks rather than data blocks to optimize the throughput.
For example, given a bundles with chunks on various speed
disks, it may be better to retrieve only those chunks that are on
the faster disks and calculate the parity than to always retrieve
the data blocks.
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Abstract 
 

Peer to Peer (P2P) networks have been widely used recently 
in various applications such as file sharing, content distribution, 
and e-commerce.  At the same time, there were a number of 
attacks on the reputation mechanisms in these P2P networks.  
These attacks try to manipulate or misuse the reputation 
systems so that ratings on certain peers are biased, changed, or 
ignored.  Many approaches have tried to defend against these 
attacks.  This paper first provides a comparative study on trust 
models for P2P networks, with a focus on three major trust 
models:  Eigentrust, PeerTrust, and R2Trust.  We then propose 
a generalized trust model, show its parameters, and present a 
detailed analysis on how existing approaches can be 
encompassed in this model.  In addition, we discuss issues 
related to existing models, and indicate a few potential areas 
for future research.  

Key Words:  Peer to peer (P2P) network, trust, reputation 
system, attack, network security. 

 
1 Introduction 

 
Peer to peer (P2P) networks, sometimes referred to as P2P 

overlay networks, have gained increasing popularity during the 
past two decades. In these networks, a peer (or node, user) can 
choose to join in or leave arbitrarily, and is able to connect to 
other peers for point to point communications.  The overlay 
networks are built on top of existing TCP/IP network protocols 
and can better utilize limited network resources such as 
bandwidth or computational power.  Due to their dynamic and 
distributed nature, these networks provide desirable features 
such as self-organization, robust routing, efficient searching, 
redundant storage, massive scalability, inherent anonymity, 
and fault tolerance, among others [1].  Different from the 
traditional client-server model of the Internet, each peer can act 
as the content provider (server) and content consumer (client) 
simultaneously.  P2P networks have been used widely in 
applications such as e-commerce, file sharing, multimedia 
streaming.  It was estimated that P2P network traffic 
constitutes more than half of today’s Internet traffic volume [1]. 

Despite all these features, P2P networks face a number of 
security challenges.  These challenges range from traditional 
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issues such as access control, denial of service (DoS) attacks, 
man-in-the-middle attacks, to distinctive issues such as routing 
disruption, collusions among multiple peers, and sharing of 
malware.  One fundamental issue in P2P network is, which and 
to what extent peers can be trusted.  Over the past decade, 
many trust/reputations based systems have been proposed to 
address this issue [2-9, 11].  These systems generally rely on 
the aggregation or estimation of ratings form peers in the same 
network, and may integrate different parameters such as social 
context, distance measurements, etc. 

This paper is intended to perform a comparative study on a 
number of reputation models built for unstructured P2P 
networks (no centralized control once the peer to peer 
communication starts) and provide some directions for future 
research.  On the other hand, structured P2P networks are 
tightly controlled and contents are distributed at specified 
locations to make subsequent queries more efficient [1].  

The rest of the paper is organized as follows. In Section 2, 
we provide a general discussion on common risks and attacks 
on trust/reputation models in P2P networks.  Section 3 presents 
a comparative review on three widely recognized trust models: 
Eigentrust, PeerTrust, and R2Trust.  Section 4 shows a 
generalized trust model and discusses its parameters. Section 5 
discusses issues related to existing models, and shows a few 
potential areas for future research.  Section 6 shows the 
summary and conclusion of the paper.  

 
2 Risks of Trust Models in P2P Networks 

 

Risks in unstructured P2P networks are inherent in nature 
due to its absence of tight control.  Peers in these networks can 
misuse the reputation systems either in isolated or in 
collaborative ways.  The attacks are specific to the P2P 
network in which the reputation system was built.  Broadly 
speaking, reputation attacks can generally be classified into 
three categories:  unfair recommendations (peers spread unfair 
ratings), inconsistent behaviors (peers strategically misbehave 
that leads to an incorrect estimate of their reputation), and 
identity management related attacks (misuse identity scheme 
permitted by the P2P systems such as using multiple IDs with 
different ratings) [7].  The first category has attracted more 
focus than others in the research literature due to its direct 
impact on reputation systems, more specifically, on the 
calculation of ratings.  Some typical unfair recommendations 
include the following [6,7]. 
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 Collusion attacks.  These attacks occur when a group of 
malicious peers collude to subvert the reputation system.  
In most cases the malicious peers are compromised or 
hijacked by a misbehaved peer.  This is one of the most 
dangerous attacks because it is very difficult to track down 
the attack if they function correctly in the short term.  In 
these attacks, malicious cooperate to spread bad ratings of 
other peers (badmouthing) while promoting each other’s 
rating [7].  These peer attacks compromise the anonymity 
of peers.   

 Forgery attacks.  These attacks work by tampering the 
transmitted rating data.  As a result, the ratings from a 
reputation system is not as trustworthy as it should be.  
These attacks compromise the confidentiality and integrity 
of reputation systems.  

 Eclipse attacks.  Sometimes referred to as membership 
attacks, these attacks work by controlling part of the 
overlay network to drop or reroute messages sent from 
legitimate peers, so that the ratings from the legitimate 
peers no longer count in the final ratings.  

 Sybil attacks.  These attack work by compromising the 
reputation mechanism.  More specifically, an attacker may 
create a number of entities, and then use them together to 
defeat the reputation system.  The target can be a single 
peer or a group of peers.  

 Omission attacks.  These attacks occur when the 
reputation mechanism is compromised.  All ratings 
submitted by certain peers are ignored. 

 Pollution attacks.  These attacks are performed by sending 
a large volume of fake data. 

 
Other than the attacks shown above, P2P reputation systems 

are also susceptible to traditional attacks such as Denial of 
Service (DoS) attacks, where malicious peers send excessive 
amounts of requests or ratings intended to overwhelm other 
peers; man-in-the-middle attacks, where intermediate nodes 
tamper messages they are supposed to deliver; or attacks 
against the P2P networks themselves.  The intention is either to 
subvert the whole reputation system, or to create an unfair 
reputation so that ratings on certain peers are biased or ignored.  

 
3 Reputation-Based Models in P2P Networks 

 
As an active research field, a number of reputation-based 

models have been proposed during the past decade to address 
the security concerns shown above [2-4].  A survey on current 
status of reputation systems can be found in [5-8].  Due to the 
large number of publications in this field, we focus on a subset 
of representative approaches that tried to address the attacks 
with “unfair recommendations” shown above, namely, the 
PeerTrust [2], Eigentrust [3], and R2Trust [4]. 

There have been various definitions on reputation and trust 
systems.  In this paper, we adopt the one proposed in [5], “A 
reputation system works by facilitating the collection, 
aggregation and distribution of data about an entity that can, in 
turn, be used to categorize and predict that entity’s future 

actions”.  Despite the fact that different reputation systems 
might have differences on how data is collected, how data is 
integrated, how data is used, and how the systems are deployed, 
they all provide a source of trust from which peers’ future 
actions can be regulated.  It should also be noted that there are 
delicate differences on the definitions of reputation and trust.  
Reputation refers more to the character others think someone 
has (the perception).  On the other hand, trust focuses more on 
the measured dependence and reliability.  Trust can be 
established through reputation, and a better reputation can lead 
to greater trust [5].  In this paper, we use the two terms 
interchangeably.  

 
3.1 Eigentrust 

 
One of the most cited trust/reputation systems is Eigentrust 

[3].  It was designed to aggregate local trust values for a P2P 
file-sharing network, and the transactions consist of uploading 
and downloading tasks.  Because of the distributed nature, 
these systems do not require a centralized storage and 
management system.  Each peer maintains only trust values to 
its neighbors.  The motivation behind Eigentrust was called 
“transitive trust” – a peer will have a high opinion of other 
peers who have provided authentic files, and is likely to trust 
the opinions of these peers.  In other words, peers who are 
honest about the files they have are also likely to be honest in 
reporting their local trust values.   

The local trust value sij is defined as follows. 
 

௜௝ݏ ൌ ,ሺ݅ݐܽݏ ݆ሻ െ ,ሺ݅ݐܽݏ݊ݑ ݆ሻ 
 
In this definition, ݐܽݏሺ݅, ݆ሻ  is the number of satisfactory 

transactions (e.g., downloads, uploads) peer i has had with peer 
j, ݐܽݏ݊ݑሺ݅, ݆ሻ is the number of unsatisfactory peer i has had 
with peer j.  

Local trust values are then normalized according to the 
following equation. 

 

ܿ௜,௝ ൌ
max	ሺݏ௜௝, 0ሻ
∑ max	ሺݏ௜௝, 0ሻ௝

 

 

It is clear that 0 ൑ ܿ௜,௝ ൑ 1. If ∑ max൫ݏ௜௝, 0൯ ൌ 0௝ , then ܿ௜,௝ 
is undefined.  To address this issue, the concept of a priori 
notion of trust was introduced, which indicates that some 
known peers (e.g., those established in the network at the 
beginning) are trustworthy.  Let P be the set of peers that are 
known to be trusted, ݌௜ ൌ 1/|ܲ|  where ݅ ∈ ܲ , and ݌௜ ൌ 0 
otherwise.  Normalized local trust values can then be rewritten 
as: 

 

ܿ௜,௝ ൌ ቐ

max	ሺݏ௜௝, 0ሻ
∑ max	ሺݏ௜௝, 0ሻ௝

														݂݅෍ max	ሺݏ௜௝, 0ሻ
௝

് 0	

݁ݏ݅ݓݎ݄݁ݐ݋																												௝݌
 

 
Normalized local trust values are then aggregated according 

to the following equation.  
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௜௞ݐ ൌ෍ ܿ௜௝ ௝ܿ௞
௝

 

 
Here ݐ௜௞  represents the trust peer i places in peer k by 

querying trust from its friends.  Let C be the matrix [cij], ࢚࢏ be 
the vector containing the values ݐ௜௞ , and ࢏ࢉ  be the vector 
containing the values ܿ௜௝, then we have ࢚࢏ ൌ  is ்ܥ where ࢏ࢉ்ܥ
the transpose of ܥ.  At this point, the trust values stored by 
peer i contains only the experience of i and its neighbors.  To 
get a broader view, i can continue to ask its friends’ friends 
(࢚ ൌ ሺ்ܥሻଶࢉ௜), and the process will go on (࢚ ൌ ሺ்ܥሻ௡ࢉ௜).  It 
has been shown that if n is large, the vector ࢚࢏  will finally 
converge to the same vector for every peer i.  In other words, it 
will converge to the left principle eigenvector of C.  Here ࢚ is a 
global trust vector and its elements ࢚࢐ contains how much trust 
the system as a whole places on peer j.  

To protect the trust system from malicious collective attacks 
(more broadly, collusions and Sybil attacks), the global trust 
values is re-defined as  

 
࢚ሺ࢑ା૚ሻ ൌ ሺ1 െ ሺ࢑ሻ்࢚ܥሻߙ ൅  ࢖ߙ

 
where ߙ  is a constant less than 1 and ࢚૙ ൌ ,࢖  is the start ࢖	
vectors.  Using this sliding-window equation, a peer crawling 
the network by the previous probabilistic model is unlikely to 
get stuck in a malicious collective as it has a probability to 
crawl to a pre-trusted network.  The larger the value ߙ is, the 
better chance that peer will place more trust in the pre-trusted 
network.  In a number of attack scenarios, this approach has 
shown its effectiveness.  It also supports distributed and 
scalable computing [3].  The trust model was widely cited and 
compared against, and was extended in a number of research 
efforts such as [11]. 

 
3.2 PeerTrust 

 
Another frequently cited work on reputation systems is 

called PeerTrust [2].  The approach targets on distributed  
e-commerce applications and reputation are calculated based 
on transactions, but it can also be adapted to other domains.  It 
supports two main features.  One is the inclusion of three basic 
trust parameters (feedback a peer receives from other peers, 
total number of transactions a peer performs, and the 
credibility of the feedback sources) and two adaptive factors 
(transaction context factor and the community context factor) 
in trust computation.  The other feature was the definition of a 
general trust metric to combine these parameters.  

The approach has the following parameters.  
 
 ܫሺݑ,  ݑ ሻ: total number of transactions performed by peerݒ

with peer ݒ; 
 ܫሺݑሻ: total number of transactions performed by peer ݑ 

with all other peers; 
 ݌ሺݑ, ݅ሻ: other participating peers in ݑ's ith transaction; 
 ܵሺݑ, ݅ሻ: normalized amount of satisfaction peer ݑ received 

from ݌ሺݑ, ݅ሻ during its ith transaction; 

 ݎܥሺݒሻ: credibility of the feedback submitted by ݒ; 
 ܶܨሺݑ, ݅ሻ: adaptive transaction context factor for peer ݑ's 

ith transaction; 
 ܨܥሺݑ, ,௞ݐ  ݑ ሻ: adaptive community context factor for peerݐ

during the period of ݐ௞ and ݐ.  
 
The trust value of peer ݑ during the period of time ݐ௞ and ݐ 

can then be defined as  
 

ܶሺݑሻ ൌ ߙ ∗෍ܵሺݑ, ݅ሻ ∗ ,ݑሺ݌ሺݎܥ ݅ሻሻ

ூሺ௨ሻ

௜ୀଵ

∗ ,ݑሺܨܶ ݅ሻ ൅ ߚ ∗  ሻݑሺܨܥ

 
where ߙ  and ߚ  denote the normalized weight factors for 
collective evaluation and the community context factors.  The 
above equation can be simplified by manipulating the weight 
factors.  When ߚ ൌ 0  and ߙ ൌ 1 , it will result in a “basic 
metric” where community context is excluded from 
consideration.  

To evaluate the credibility of feedback, PeerTrust includes 
two credibility measures.  The first is to use a function of trust 
value of a peer as its credibility factor.  It implies that feedback 
from trustworthy peers are considered more credible.  
Consequently, they are weighted more than those from 
untrustworthy peers.  The metric can be defined as follows. 

 

,ݑሺ݌൫ݎܥ ݅ሻ൯ ൌ
ܶሺ݌ሺݑ, ݅ሻሻ

∑ ܶሺ݌ሺݑ, ݅ሻሻூሺ௨ሻ
௜ୀଵ

 

 
Another credibility measure is used for peer ݓ to rate the 

credibility of another peer ݒ through ݓ’s personal experience, 
and will affect the feedback by ݒ on other peers.  It contains 
the following parameters. 

 
 ISሺvሻ: set of peers that have interacted with peer v; 
 IJSሺv, wሻ: common set of peers that have interacted with 

both peer w and v, thus IJSሺv, wሻ ൌ ISሺvሻ ∩ ISሺwሻ.  
 
Subsequently, the measure is defined as  
 

,ݑሺ݌൫ݎܥ ݅ሻ൯ ൌ
ௌ௜௠ሺ௣ሺ௨,௜ሻ,௪ሻ

∑ ௌ௜௠ሺ௣ሺ௨,௜ሻ,௪ሻ಺ሺೠሻ
೔సభ

,  

 
Where 
 

ܵ݅݉ሺݓ,ݒሻ

ൌ 1 െ
ඩ∑ ሺ

∑ ܵሺݔ, ݅ሻூሺ௫,௩ሻ
௜ୀଵ
,ݔሺܫ ሻݒ 	െ	

∑ ܵሺݔ, ݅ሻூሺ௫,௪ሻ
௜ୀଵ
,ݔሺܫ ሻݓ ሻଶ௫∈ூ௃ௌሺ௩,௪ሻ

,ݒሺܵܬܫ| |ሻݓ
 

 
Here ܵ݅݉ሺݓ,ݒሻ is the similarity between the two feedback 

vectors.  The rooted mean square measure is used to compute 
the similarity.  Intuitively it implies that value as feedback 
from similar raters are given more weight.  The design has the 
potential to defend against potential collusions, as the feedback 
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similarity between a peer in and a peer outside the collision 
group tend to be low.  As a result it will filter out dishonest 
peers [2].  The transaction factor ܶܨሺݑ, ݅ሻ  can be based on 
transaction contexts such as the size, the category or time 
stamps.  Recent transactions are generally assigned higher 
weight than other older transactions.  The community context 
factor ܨܥሺݑሻ  can be defined as ܨܥሺݑሻ ൌ ሻݑሺܫ/ሻݑሺܨ  where 
 gives to ݑ ሻ represnet the total number of feedback peerݑሺܨ
others, as a building incentive to users who perform 
transactions or providing ratings [2].  

 
3.3 R2Trust 

 
A more recent model called R2Trust was proposed [4].  It 

integrated both the reputation and risk information into the 
model, and claimed to be able to handle malicious attacks, 
collusive attacks, and strategic attacks.  It has a few distinctive 
features.  First, the concept of risk was introduced in the 
computation of a peer's trust value.  The risk represents various 
malicious behaviors, such as misuse of trust. Second, the 
recommender’s credibility is updated quantitatively to 
minimize the effects from collusive peers.  Third, the approach 
considers quality of service as probabilistic ratings in the 
interval [0, 1], not necessarily binary as appeared in most 
approaches [2].  

In R2Trust, the overall trust value of peer ݆ at peer ݅ can be 
represented as  

 
ܶ ௜ܸ௝ ൌ ߙ ∗ ௜ܶ௝ െ ߚ ∗ ܴ ௜ܸ௝					݁ݎ݄݁ݓ	0 ൑ ,ߙ ߚ ൑ 1 

 
In this equation, ௜ܶ௝  and ܴ ௜ܸ௝  represent the trust value and 

risk value over peer ݆, ߙ, ߚ  represent the weights for ௜ܶ௝  and 
ܴ ௜ܸ௝, and are set based on the optimistic perception of peer ݆. 
The computation of ௜ܶ௝  relies on two parts: direct trust and 
reputation value.  The computation of direct trust relies on 
cases when a peer has direct transactions with other peers.  In 
this part, the approach introduces a timing discount function, 
with the assumption that most recent ratings are more accurate 
to reflect a peer’s reputation in the near future.  The 
computation of reputation value relies on the aggregation of all 
the “referrals” from other peers.  The reputation also considers 
the "credibility" of peers to identify peers that might be 
involved in collusive cheating attacks.  The computation of 
risk value ܴ ௜ܸ௝ is based on the “interaction-derived information” 
(local view of a peer on the whole network) by utilizing the 
concept of entropy.  It was claimed that the use of risk 
evaluation provides a better chance to identify misbehaved 
peers.  Despite the complex computations in this approach, the 
experimental results showed that R2Trust performed better 
than similar systems with a given set of parameters and has the 
potential to identify misbehaved peers [4].   

 
3.4 Other Trust Models 

 
Other than the trust models discussed above, there were 

quite a few other approaches proposed.  In PowerTrust [12], a 
trust overlay network was used to model trust relationships.  

The system dynamically chose most reputable nodes (the 
“power” nodes) based on a distributed ranking mechanism.  
Local trust scores were computed based on Bayesian inference.  
A distributed hash table (DHT) was used to propagate trust 
values among peers.  The calculation of global trust was 
expedited by using look-ahead random walk strategy.  The 
approach was able to adapt to situations with nodes 
dynamically joining and leaving the P2P network, and was 
able to withstand malicious users based on experiments with 
eBay data of more than 10,000 users [12].  However, it has 
been indicated by other researchers that in PowerTrust, 
subjective opinions from each node may be ignored as all 
participating nodes in the whole P2P network may assume the 
same trust value [13].  

Some other models, such as SFTrust [14], have also been 
used for trust management in unstructured P2P networks, 
where there is no strict control over network topology, and 
there is no direct relationship between network topology and 
trust storage.  Unlike most other approaches where trust was 
evaluated as a single metric, in SFTrust, trust values are 
categorized into two groups – service trust and feedback trust.  
It implies that a peer that provides high quality service may not 
necessarily provide high quality ratings, and vice versa.  In 
other words, a peer may be used for service purposes even if 
feedback on other peers may not be trustworthy.  Because of 
this, a double trust metric was used to evaluate trust values.  
Trust storage was implemented by using a topology adaptation 
protocol [14].  The approach has been criticized for lack of 
consideration on transactions with time variance and on the 
quality of transaction [13].  

In a more recent model, a neighbor similarity trust measure 
was proposed to defend against specific attacks such as the 
Sybil Attack [15].  The approach assumes that 1) Sybil attack 
peers have relatively loose connections with the rest of the 
network; and 2) the attacks tend to use graph analysis 
techniques to estimate connection graph topology.  Sybil 
attacks happen when a malicious peer creates multiple non-
existent peers with different identities.  To detect this, a peer is 
evaluated by referencing to its trustworthiness and the 
similarity to the neighbors.  If the peer does not have the same 
trust/similarity data as its neighbors, it is considered as having 
multiple identities.  In a small simulation network with 40 
peers, the approach has shown to have better performance than 
Eigentrust in the detection of Sybil attacks [15].  However, the 
performance seemed to degrade in a sparsely connected net-
work, and the similarity determination was based on threshold 
values, which in some cases might require expert opinions.  

 
4 A Generalized Model for Trust Computation 

 
In addition to the reputation models discussed above, there 

were various models proposed as extensions – especially those 
based on Eigentrust and PeerTrust.  Here we want to 
consolidate the three models and develop a generic version, so 
that future researchers may look into their common features.  It 
is also helpful for the research community to “think out of the 
box” of existing models and propose innovative solutions.  
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Most (if not all) P2P reputation models proposed can be 
generalized into the following generic form.  A trust ܶݐݏݑݎ௜௝ is 
defined as a two-way relationship that peer ݅ places on peer ݆.  

 
 

௜௝ݐݏݑݎܶ  ൌ ݂ሺݎ݅ܦሺ݅, ݆ሻ, ,ሺ݆ݎ݅ܦ݊ܫ ݇ሻ,  ሺ݅ሻሻ  (1)ݒ݊ܧ
 
In this equation, ݎ݅ܦሺ݅, ݆ሻ  means the direct relationship 

between peer ݅ and peer ݆, which can be interpreted differently 
in different P2P systems – when there are direct transactions 
[2,3], when ݅ downloaded contents from ݆, or when there is a 
direct connection between ݅ and ݆ in the overlay network.  In 
this relationship, a peer ݆  can simply have a binary direct 
impact on ݅ (e.g., there is a transaction or no transaction), some 
type of numerical-value impact on ݅  (e.g., there is a certain 
probability that a transaction might be successful), or an 
accumulated value such as the number of transactions.  
,ሺ݆ݎ݅ܦ݊ܫ ݇ሻ  indicates an indirect relationship with peer ݇ 
which is the set of peers that have an indirect relationship with 
݆.  The set of ݇ can be interpreted as i’s neighbors’ neighbors 
in a P2P overlay network.  Note that both ݎ݅ܦሺ݅, ݆ሻ  and 
,ሺ݆ݎ݅ܦ݊ܫ ݇ሻ  can be as simple as a single value, positive or 
negative values, discrete or continuous values [4], or complex 
functions that take into account past transaction history.  
ሺ݅ሻݒ݊ܧ  denote the environmental factors in the network 

where peer ݅ resides – such as the community context factors 
used in [2].  These environmental factors may include, but are 
not limited to, a pre-defined subset of trustworthy peers, how 
much weight should be applied to past and current transactions 
or credibility values, network topology, application areas, and 
could be updated dynamically.  For example, a peer may not 
be initially included in the set of trustworthy peers.  However, 
after a number of transactions and the peer showed its 
credibility, it can be included.  Similarly, a peer may be 
excluded from the set due to malicious or irregular behaviors.   
 

The weights can also be adjusted according to the context of 
transactions, and specific type of P2P networks.  In e-
commerce applications, the focus should be on the volume of 
successful transactions and on the monetary amount these 
transactions involve.  On the other hand, in P2P streaming 
applications [6], more focus should be on the volume of 
content that a peer can successfully deliver.  

The ݂ሺሻ function defines how the direct impact, the indirect 
impact, and the environmental factors are aggregated.  
Considering the computational overhead, most approaches 
adopt a linear combination (e.g., summation) of these elements 
[2-4].  A reputation aggregation approach called FuzzyTrust 
was proposed in the literature, which has comparable 
performance with Eigentrust in experimenting with transaction 
data from eBay [9].  In this context, the ݂ሺሻ function is defined 
as fuzzy inference rules and can be reasoned using the 
inference engine.  The fuzzy inference engine has the 
distinctive benefit to handle imprecise linguistic terms.  In 
addition to these efforts, with the adoption of compact data 
structures, there might be other approaches that may better 
reflect the trust relationship between peer ݅  and peer ݆  with 
similar or comparable computational overheads.  

Figure 1 illustrates relationships among factors shown in 
Equation (1).  Here i and j are directly connected peers, and 
,ሺ݆ݎ݅ܦ݊ܫ ݇ሻ consists of a number of indirect relationships 
between i and j's neighbors k1, k2, …, kn.  

Trust computation is not a one-step process in distributed 
networks.  These values are dynamic and can evolve as more 
transactions/activities accumulate over time.  More importantly, 
due to the distributed nature of P2P networks, the initial 
computation of ܶݐݏݑݎ௜௝  is solely based on peer i’s local 
perspective on the P2P network.  The trust values need to 
propagate so that at one point, the values will converge.  As a 
result, most reputation systems define the following (generic) 
function for trust propagation. 

  

 
Figure 1:  Generalized model for Trust Computation in P2P networks 
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௜௝ݐݏݑݎܶ

ሺ௧ାଵሻ ൌ ݀ሺܶݐݏݑݎ௜௝
ሺ௧ሻ, ܿሻ 

 
The equation denotes that the trust peer ݅ places on peer ݆ at 

time (ݐ ൅ 1ሻ depends on the trust obtained at time ݐ, and other 
factors ܿ  (e.g., the start vector in [3]).  The ݀ሺሻ  function 
defines how these factors are aggregated.  It can be a sliding 
window function [3], entropy based function [4], or other 
functions.  

It should be noted that the generalized model hides many 
computational issues incurred by various functions.  In real 
implementations, they may vary greatly.  Despite this, the 
generic model should shed some light on how a generic 
trust/reputation model works, and how to develop future 
reputation models as improvements.   

 
5 Discussion 

 
Trust models (not necessarily in P2P networks) has been 

utilized in a number of e-commerce websites such as eBay, 
Amazon, Digg, ePoints, and Yelp.  The models were also used 
in special purpose web page rankings, such as PageRank used 
by Google, Slashdot, StackOverFlow, etc.  A wider usage is on 
P2P file-sharing networks such as Napster, YourBittorrent, 
Kazaa, Gnutella, and eDonkey.  Many reputation systems are 
built with potential malicious behaviors in mind, but they still 
suffer a number of challenges shown below.  

 
5.1 Basic Assumption 

 
Any existing trust model implies a fundamental assumption 

that most peers in a P2P network behave honestly, and the 
misbehaved peers are relatively rare.  The assumption is 
reasonable, but may not always be valid especially in large-
scaled attacks such as DoS.  

 
5.2 Aggregation Function 

 
The aggregation function used in most approaches are based 

on a linear combination of trust or rating scores from peers, 
which by nature can be misused or manipulated.  There also 
needs to be a mechanism to adjust the number of peers 
included in aggregation.  Complex data fusion techniques (e.g., 
non-linear algorithms) can also be used here.  
 
5.3 Convergence 

 

The coverage refers to whether the trust function ܶݐݏݑݎ௜௝
ሺ௧ሻ 

is able to converge after a number of iterations.  Existing 
approaches did not provide a formal analysis, and a 
convergence is not guaranteed.  Empirically, it has been shown 
that the Eigentrust algorithm adopted a simple evolvement 
function, which will converge after 100 query cycles for a 
network of 1000 peers [3].  For a general convergence case, 
the algorithm does not provide an upper bound on n – the 
number of peers.  The issue is more complex in a dynamic 
network.   

 
5.4 Constant Factors in the Trust Function 

 
Many trust systems use some type of constant values in their 

computation, for example, to what extent the trust should rely 
on the start vector ( ߙ  as defined in Eigentrust [3]), the 
community context (ߙ  and ߚ  as defined in PeerTrust [2]), 
relative values between trust and risk (ߙ and ߚ as defined in 
R2Trust [4]), and on recent/distant transactions.  Although 
different algorithms define mechanisms to update these values 
based on empirical studies, constant factors still play a major 
role in trust computation, and may lead to inaccuracies.  

 
5.5 Attacks Against Trust Systems as a Whole 

 
Although some mechanisms are used to detect 

collusion/Sybil/Eclipse attacks, the attacks can only be 
detected for obvious versions.  The elusive attacks are hard to 
detect since each rating seems legitimate individually.  A 
recent attack, RepHi, has shown to be effective to subvert the 
rating systems [10].  As a result, we expect that these attacks 
will remain active in P2P networks for a long time.  

 
5.6 Computational Overhead 

 
In almost any reputation systems, there was a lack of formal 

analysis on how much computational overhead they may 
involve.  More specifically, we wish to see an asymptotic 
analysis in the form of ܱሺܶݐݏݑݎ௜௝

ሺ௧ሻሻ.  It is understandable that 
such a formal analysis is difficult for any distributed algorithm, 
however even the formal upper bounds on key resources 
(memory, storage, and bandwidth) on a number of factors of 
computation will be helpful.  It should be noted that the 
reputation systems are built on top of existing P2P networks, 
and in many cases, the peer needs a quick decision to choose 
peers to communicate.  It is not desirable when computational 
overhead degrades the performance of overall P2P networks. 

 
5.6 Alternative Approaches/Future Research Directions 

 
The original trust issue in P2P networks can be attributed to 

a pattern recognition problem:  given a local view of each peer 
in a dynamic P2P network, how to develop a robust and 
efficient trust mechanism so that peers can rely upon for future 
transactions?  This is a difficult issue due to the following 
constraints:  lack of centralized monitoring and management; 
limited view of each peer over the entire network; limited 
transactions among peers; convergence; computational 
overhead, among others.  The following research directions 
may be worth future efforts:  1) more detailed analysis on real-
world attacks against trust systems in P2P networks; 2) the use 
of compact digital signatures for validation of peers; 3) the use 
of compact data structure for storage; 4) machine learning 
techniques applied to trust computation; and 5) network 
simulation and performance evaluation of large-scale P2P 
networks.  
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6 Summary and Conclusions 
 
Peer to Peer (P2P) networks have been widely adopted in 

recent years in various of applications such as file sharing, 
content distribution, and e-commerce.  At the same time, there 
were a number of attacks on the reputation mechanisms in 
these P2P networks.  These attacks intend to manipulate or 
misuse the reputation systems so that ratings on certain peers 
are biased or ignored.  Many approaches have been proposed 
in the academia to defend against these attacks.  This paper 
provided a comparative study on three major trust models in 
the research literature: Eigentrust, PeerTrust, and R2Trust.  
Key parameters of each model was shown and discussed in 
detail.  We then proposed a generalized trust model, shown its 
parameters, and presented a detailed analysis how existing 
approaches work.  In addition, we discussed issues related to 
existing models, and shown several potential areas for future 
research.   
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Abstract

Saying that writing systems based on Chinese characters
are perceived as difficult to master is no overstatement. At
the same time, Chinese characters are ubiquitous across a
large part of Asia, being used in several countries such as
China and Japan. Hence, various methodologies supporting
the learner memorization process have been proposed. Given
the huge number of characters involved, memorization is a
herculean, never ending task. At the difference of most
previous methods, we detail in this paper a scientific approach
to Chinese characters. Building on our previous research
results, we conduct ontological discussion regarding Chinese
characters from an information science point of view. Aiming
at maximizing the versatility of such an information model, we
shall consider multi-lingual properties of these characters. We
subsequently review an important application of this foundation
work by introducing the notion of distance between any
two Chinese characters. Being a critical component for the
pedagogical method of character chaining, several distance
metrics are proposed in addition to a character chain construction
algorithm.
Key Words: Linguistics; model; relation; natural; language;

script.

1 Introduction

Due to the huge number of characters involved, memorization
of Chinese characters is an extremely demanding task. ๠is
can be easily assessed by looking at the curriculum of Japanese
elementary schools: a large part of curricula for successive years
is occupied by Chinese characters studies. It is thus a fortiori
very challenging for non-native learners of such a script, like
the ones used by the Japanese and Chinese languages, amongst
a few others such as Vietnam’s chữ nôm.
๠e first objective of the this paper is the description of

an ontology for Chinese characters, and from an information
*An extended abstract of this paper has been published in [3].
†Graduate School of Science. Email: abossard@kanagawa-u.ac.jp.
‡Graduate School of Engineering.

science point of view. We thus aim at proposing an information
model as complete as possible, for that considering Chinese
characters from various point of views (e.g. graphical, phonetic,
morphological, etc.) and various languages (scripts). ๠is
research work should therefore be considered as a foundation
for scientifically approaching Chinese characters. Effectively,
by providing a highly detailed information model, we would
ideally gather all the information available for theoretical
work with respect to Chinese characters, and with applications
including for example automatic character processing, like
assembling a character database. To the knowledge of authors,
this is unprecedented work, although critical for numerous
applications. ๠e second objective is to use the previously
introduced model to define the notion of distance between any
two Chinese characters. A metric has important applications
such as the automatic construction of character chains which
facilitate character memorization.
Several pedagogic methods have been discussed in the

literature aiming at easing the character memorization burden
on the learner. A few examples of such works are recalled here.
Always interesting are the short stories provided by Heisig for
characters in his famous approach he applied to both Chinese
[8, 9] and Japanese [7] scripts. In her classification work,
Castelain has described an innovative method to lookup Chinese
characters [4], thus by extension applicable to memorization as
well. ๠e phonetic approach has been explored amongst others
by Vaccari and Vaccari [16]. In addition, the work by Henshall
[10] provides a good overview of the classical approach to
Chinese characters. Lastly, with our own work introducing the
premises of an algebra of Chinese characters [2] (and related
work by Sproat [15] describing a theoretical approach to writing
systems in general), as well as the seminal works on writing
systems by Sampson [13], Coulmas [5] and De Francis [6], we
have briefly reviewed a rather large spectrum of what can be
expected in the field.
๠e rest of this paper is organized as follows. In Section 2,

the motivations for this research are further discussed. Next,
preliminary results reused in this paper are briefly recalled in
Section 3. ๠e proposed ontology is described in Section 4 and
examples are detailed in Section 5. ๠en, we focus in Section 6

ISCA Copyright© 2016
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on an interesting application of the proposed character ontology:
by using the defined characters properties and relations, the
notion of distance between characters is introduced. Finally, this
paper is concluded in Section 7.

2 Rationale: Informal Discussion

We discuss in this section one important part of the motivation
behind our approach. We start by making the link with
philosophy, which is relevant here as we conduct this work of
ontological discussion.
One does not learn philosophy, but rather learns, better

practices, philosophy, that is to philosophize. Since extremely
close to philosophy (precisely, focusing on say the technicality
of philosophy), it is reasonable to assume that the same can
be said about mathematics. One does not learn mathematics,
but rather practices how to use them. Yet, this fundamental
and essential aspect is lost, at least partially, in most other
disciplines. Why? Possibly amongst other reasons, because
the learner has to comply with various constraints, for instance
material constraints for the physicist, natural ones for the
biologist, and communication-related ones for the linguist. So,
somehow, one “simply” learns biology, a language, etc.
Although unaware at first, it became clear to the authors that

adopting a scientific approach to Chinese characters was a way
to regain freedom lost by such constraints. When considering
Chinese characters from a logical, algebraic point of view, we
free ourselves from the communication barriers and bonds such
as grammar, ruling how to communicate, and in other words
being a kind of establishment in place for this Chinese characters
topic. ๠is is just one example, and it can be generalized to,
say, other scripts and languages, and possibly to other unrelated
subjects.
With such an algebraic approach, thus anchoring back to

mathematics, we recover much freedom and set our minds free
to not only learn characters (conventionally), but to practice
them, considering these characters for instance as elements of
a large set, and with relations between these elements – “for
instance” is purposely emphasized here to show that with such
an approach, it is entirely up to the individual to decide from
where, in other words with what, to start. ๠is aspect usually
hidden to the language learner should be seen as another, novel
and very natural way to approach and become used to Chinese
characters.
Moreover, when considering natural languages, and more

precisely sets including the various objects, like glyphs, defining
such language, it is very common to discover punctual relations
between these objects. Since reflecting natural languages, and
thus empirically assembled, it is improbable that such sets
originally include logical order or structure. But because of the
applications mentioned previously, it is extremely interesting
to try to formalize the possibly existing relations, potentially
defining new ones, and eventually obtaining a logical structure
that is much easier to use: simplified processing by computers
and facilitated acquisition by learners are two examples.

3 Preliminaries

Let us recall that Chinese character decomposition operations
have been introduced in previous works [2, 15]. For the sake
of clarity, we recall in this section the two main operations
introduced in [2].
Introduced initially for the subset J of the Chinese

characters used in Japanese, but nonetheless applicable to
Chinese characters in general, the following two decomposition
operations have been defined, amongst others – it is effectively
important to note that the research conducted in this paper is
applicable no matter the sorts and numbers of decomposition
operations considered.

Definition 1. [2] ୡe operation + realizes the horizontal
combination of the left operand with the right operand.

+ : J×J → J

a + b 7→ a b

Let us illustrate this + operation with the following example.
Consider the three Chinese characters 木,南,楠 ∈ J (“tree”,
“south” and “camphor tree”, respectively); the equality 楠 =
木+南 holds.

Definition 2. [2] ୡe operation × realizes the vertical
combination of the left operand on top of the right operand.

× : J×J → J

a × b 7→ a
b

For example, we consider the three characters山,石,岩 ∈ J
(“mountain”, “stone” and “rock”, respectively). ๠e equality
岩=山×石 holds.
Finally, it is worth mentioning that these two character

decomposition operations + and × have the same evaluation
priorities, and that they are applicable to a large majority of
Chinese characters.

4 Proposal of a Chinese Character Ontology

In this section, we propose a detailed information model of
Chinese characters. As we focus on a natural language, and
especially its writing, it is a difficult task to formalize considered
objects and their relations. ๠e described ontology aims at
addressing this issue. In order to facilitate the model description,
we rely on the UML class diagram standard to represent the
identified objects and their mutual relations. ๠e diagram is
given in Figure 1.
At the center of the diagram is the Character class,

with its associations to multiple other classes. Hence, a
Chinese character is described by the whole diagram, not
only the Character class. In total, we have introduced seven
classes (Character, Radical, Script, Pronunciation, Meaning,
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Figure 1: Class diagram illustrating the proposed Chinese character ontology. (1w stands for one-way association.)

Stroke, Graphical Representation) plus two association classes
(Composition, Variant).
First, we discuss the Character class. An instance of

this class, i.e. corresponding to a Chinese character, has one
identifier, which can be conveniently derived from the Unicode
standard or any other similar code (the JIS standard [11] is
another example), and may be decomposed into several other
characters according to a decomposition operation. Reversely,
a character may be included in another character as a “sub-
character”. ๠is explains the Composition self-association.
In addition, the Character class has a second self-association:

it enables the identification of character variants. As illustrated
in Section 5, a same ideogram might be writable with several
different characters, characters which are thus variants of that
same ideogram (i.e. variants of each other). ๠ere exist several
character variant sorts; they are distinguished by their names,
such as “old form”, “simplified form”, etc.
A character has one unique radical, yet such radicals can have

variants. ๠is explains the self-association for the Radical class.
A radical is identified by its name, some may have several,
has at least one meaning and one graphical representation. ๠e
number, shape, etc. of radicals may vary slightly from one script
to another (e.g. depending on the language or country); this
explains the association to the Script class.
A character is part of at least one script, and conversely a script

includes several characters. Script examples include simplified
Chinese, traditional Chinese, Korean, etc. A character obviously

has at least one graphical representation, for instance the one
based on the seal character style; more details are given in
Section 5.
A character has at least one meaning as well as at least

one pronunciation (i.e. phonetic information). ๠ese two
character properties depend on the script considered for a
particular character; this explains the two one-way associations
from the Pronunciation and Meaning classes to the Script
class. Regarding the pronunciation information, the reason
is straightforward: a same character is expressed phonetically
in a different manner considering for instance the Japanese
and Mandarin Chinese languages. Justification is less obvious
regarding the meaning of a character: even though originating
from the same roots, and thus from a samemeaning, the meaning
for one character may have evolved over time, and may thus
today possibly differ from one language to another.
Finally, a character consists of one or several strokes.

๠ere exist 36 different strokes which are combined to
represent Chinese characters; each stroke is usually identified
by a name. In the diagram, several classes include at the
bottom additional information under a dotted line: this is
the Unicode range (i.e. characters, glyphs) applicable to the
corresponding class. For example, the Stroke objects actually
match the glyphs described by the Unicode standard in the
range 31C0–31EF, and whose graphical representation can be:
㇀㇁㇂㇃㇄㇅㇆㇇㇈㇉㇊㇋㇌㇍㇎㇏㇐㇑㇒㇓㇔㇕㇖㇗㇘
㇙㇚㇛㇜㇝㇞㇟㇠㇡㇢㇣ (36 glyphs in total; the last 12
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glyphs of the range remain unused). Similarly, the Composition
association, which is based on the formally introduced
decomposition operations + and × (see Section 3), matches
the glyphs described in the Unicode range 2FF0–2FFF:
⿰⿱⿲⿳⿴⿵⿶⿷⿸⿹⿺⿻ (12 glyphs in total; the last 4
glyphs of the range remain unused).
As a next step, several concrete and non-trivial examples of

object and association instances will be discussed in Section 5
below.

5 Object Instance Examples

We illustrate in this section the information model described
in Section 4 by giving object instance examples of the defined
classes and associations. ๠ese examples will be given in
a classic object-oriented programming writing style (dotted
notation), as in C++ and Java. In addition, it is assumed in
the following notations that members of an object instance are
implicitly instantiated. For example, a Character object has an
instance radical of the Radical class.
First, we give as example a possible way to instantiate a

Character object. ๠e radical name given in this example is the
one used in Japanese.

Character c
c.meaning.definition = {belief, trust}
c.radical.name = ninben
c.graphicalRp.rendering = {信}

๠en, the Composition association between several characters
is illustrated. Asmentioned previously, this is related to previous
work focused on the algebraical approach to Chinese characters
[2, 15].

Character c1(相) // simplified construction
Character c2(木), c3(目), c4(湘)

Composition co(c1)
co.operation = <+> // meaningful for decomposedAs only
co.decomposedAs = {c2, c3}
co.includedIn = {c4}

Next, we present an instance example of the Variant
association. Attention should be paid to the order used to declare
such relation between two characters.

Character c1(学), c2(學)

Variant v(c2)
v.name = old_form
v.variantOf = c1 // c2 is an old-form variant of c1

We continue by illustrating the relation between characters of
different languages and scripts.

Character c1(业), c2(業)
c1.script.name = Simplified_Chinese

c1.script.country = {China, Singapore}
c2.script.name = Japanese
c2.script.country = {Japan}

Variant v(c1)
v.name = simplified_shape
v.variantOf = c2 // c1 is a simplified-form variant of c2

Effectively, in our approach, it is meaningful to consider that
a simplified Chinese character (业 above) is a variant of
the corresponding traditional character (業 above), rather than
just a different graphical representation. Indeed, a graphical
representation is not related to a script or language. Refer to
the additional examples given below with respect to graphical
representations.
Because it is definitely worth paying attention to radicals, a

non-trivial example is given below. Once again, the radical
names given in this example are the ones used in Japanese.

Radical r1, r2
r1.name = mizu
r1.meaning.definition = {water}
r1.graphicalRp.rendering = {水}
r2.name = sanzui
r2.graphicalRp.rendering = {氵}

RadicalVariant rv(r2)
rv.variantOf = r1 // r2 is a radical variant of r1

Character c(洪)
c.radical = r1 // NB: r2 also valid here since variant of r1

Finally, Graphical Representation objects are illustrated. ๠e
character shapes used in this example originate from the Ancient
Chinese characters project [17] and are in the public domain.
For the sake of clarity, this example uses the name: rendering
syntax to denote the instantiation of a Graphical Representation
object, thus directly assigning in practice the name of a rendering
(i.e. here, a graphical style) to the rendering itself (i.e. image
information, such as a bitmap).

Character c;
c.meaning.definition = {horse}
c.graphicalRp = {

oracle bone: ,

bronze: ,

big seal: ,

seal: ,

clerical: ,

regular:
}
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6 Application: Character Distance

In this section, we propose the definition of a distance metric
between any two Chinese characters. ๠is is a direct application
of the character ontology presented previously since we rely
entirely on the identified character properties and relations.
Defining such a distance metric between characters is indeed
meaningful in the pedagogical context. Effectively, it enables
the creation of character chains, which are in practice sequences
of characters with the least possible changes between two
consecutive characters in such a sequence. Here is an example
of such a sequence: 単→單→戦→蝉→虫→蟲; additional
sample sequences can be found in various reference works such
as [14]. As a result, memorization is highly facilitated for the
learner when relying on such character chains for memorization
– refer to [1] in which is addressed the closely related character
layerization and cartography concept. By formally defining such
a character distance metric, we enable the automatic generation
of character chains.
In search of a suitable and coherent distance metric, we

shall propose and discuss hereinafter several such measures.
Each metric (except the last one, d) can be seen as a
morphological and semantic distance between two characters
since we simultaneously rely on morphological information for
a character such as decomposition matters, as well as semantic
information such as variants and radicals for characters.
Informally, the calculated distance is a real number that
gets larger if the two characters have little in common, and
conversely a real number that gets smaller if the two characters
share several attributes.

6.1 ๠e δ Metric

In this section, we describe the distance δ (a,b) between
any two Chinese characters a and b. ๠is distance δ (a,b) is
expressed as a positive real number. To start, let us consider
several specific properties for a character. For instance, we
consider the following two character properties – note that more
or fewer such properties could be similarly treated. First, the
variant property, which is satisfied if and only if the character a
is a variant of the character of b. Second, the radical property,
which is satisfied if and only if the two characters a and b share
the same character radical.
Let p represent the number of satisfied properties between

the two characters a and b. Since we have considered in this
example two such character properties, we have 0 ≤ p ≤ 2.
๠en, as recalled in Section 3, we shall rely on decomposition
operations. Let oa,b (resp. ob,a) be the number of decomposition
operation levels required for a (resp. b) until finding a common
element (i.e. a sub-character) for a and b. ๠us, the value of oa,b
(resp. ob,a) is minimal at any time. In the case the characters a
and b share no common element, define oa,b + ob,a = Ω, with
Ω ∈ R a large positive constant.
As example, for the characters a=峠 and b=雫, we have the

two decompositions a=山+(上×下) and b=雨×下. It takes
two levels of decomposition for a, and one single decomposition

level for b before finding the first common element, here
precisely下. Hence, we have oa,b = 2 and ob,a = 1.
๠is number of decomposition operations is further refined by

excluding the radical as follows. Given two characters a and
b of radicals ra and rb, respectively, in the case both ra = rb,
a ̸= b, a ̸= ra, b ̸= rb hold, let õa,b (resp. õb,a) be the number
of decomposition operation levels required for a (resp. b) until
finding a common element for a and b (i.e. a sub-character) other
than the radical ra (= rb). If the characters a and b share no
common element except their radical, define similarly õa,b +
õb,a = Ω. Otherwise, that is in the case either ra ̸= rb, a = b,
a = ra or b = rb is satisfied, simply define õa,b (resp. õb,a) as oa,b
(resp. ob,a). For example, given the two characters a =沽 and
b =沼 of same radical r =氵, we have a =沽= r+(十×口),
which induces õa,b = 2, and we have b =沼 = r +(刀×口),
which induces õb,a = 2. Also, for any character a, we have
δ (a,a) = 0.

Definition 3. For any two characters a and b, their distance
δ (a,b) ∈ R is defined as

δ (a,b) =
õa,b + õb,a

p+1

One should note that if the distance δ (a,b) depends on Ω, it
will necessarily be of the form Ω/n with n ∈ N∗, thus allowing
for total ordering of distances. Several additional examples
are given in Table 1. ๠e “variant” and “radical” columns are
Boolean values respectively meaning “a is a variant of b” and
“a and b share the same radical”, or their opposites.

Table 1: Examples of character distance calculations with the δ
metric

a b variant radical p õa,b õa,b δ (a,b)
洪 浜 no yes 1 2 2 2
榎 夏 no no 0 1 0 1
桜 櫻 yes yes 2 2 2 4/3

峠 雫 no no 0 2 1 3
湘 眼 no no 0 2 1 3
木 林 no yes 1 0 1 1/2

木 水 no no 0 Ω Ω
沐 浴 no yes 1 Ω Ω/2

Hence, given a set of characters and one starting character, a
character chain can be established rather simply as follows. For
example, consider the character set E = {蟲,戦,蝉,虫,單,単}
used as example at the beginning of this section, and単 ∈ E the
starting current character of the character chain to be obtained.
By iterating the set E repetitively to find the character which
is at a closest distance from the current character, subsequently
updating the current character, we have the following steps:

1. 単 : {(蟲,Ω),(戦,1),(蝉,1),(虫,Ω),(單,2/3)}
2. 單 : {(蟲,Ω),(戦,3),(蝉,3),(虫,Ω)}
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3. 戦 : {(蟲,Ω),(蝉,2),(虫,Ω)}
4. 蝉 : {(蟲,1),(虫,1/2)}
5. 虫 : {(蟲,1/3)}

where a pair (e ∈ E,γ ∈ R) means that the current character c
(on the left of the colon), and the character e are at distance
δ (c,e) = γ . ๠erefore, we obtain the character chain単→單→
戦→蝉→虫→蟲, which indeed matches the chain given as
example previously. For additional details, the pseudo-code of
this chaining algorithm is given in Algorithm 1.

Algorithm 1: CHAINING(E, c)
Input: An unordered set of characters E; a starting

character c ∈ E.
Result: A character chain corresponding to E.
if |E|= 1 then

{e} := E;
return e

else
E ′ := argmine∈E\{c} δ (c,e);
{e′1,e

′
2, . . . ,e

′
|E ′|} := E ′ ; // c equidistant to e′i

return e′1 → CHAINING(E \{c}, e′1)
end

6.2 Property Independence and the δ ′, δ ′′ Metrics

๠e δ metric described previously includes in its definition
p+ 1 as denominator so as to take into account the properties
shared between characters. Yet, this denominator may
legitimately seem unnatural. So here, we refine the δ metric
by handling shared properties differently.
As with the δ metric, let us consider the two radical and

variant properties; more would be handled similarly. Let ε be
the symbolic constant associated with the radical property; 0 <
ε < 1 holds. Similarly, let φ be the symbolic constant associated
with the variant property; 0 < φ < 1 holds. Such constants shall
be subtracted from the calculated character distance in case the
corresponding property is satisfied: a shared property induces a
shorter distance.
Moreover, considered properties may not always be

independent. Hence, for two properties p and q of respective
symbolic constants cp and cq, if p ⇒ q holds, then cp > cq
is induced, and cp only is subtracted (not subtracting both
cp and cq). For instance, in the case of the two constants ε
and φ , respectively corresponding to the radical and variant
properties, when satisfied the variant property induces the
radical property (character variants simply signify appearance
changes, thus retaining the same radical), hence 0 < ε < φ < 1.
So, when calculating the distance between two characters that
are variants, φ is subtracted.
๠erefore, in Definition 4 below, we can assume without

loss of generality that the shared properties p1, p2, . . . , pk of any
two characters are independent, and we introduce the following
definition.

Definition 4. For any two characters a and b sharing
independent properties p1, p2, . . . , pk, their distance δ ′(a,b)∈R
is defined as

δ ′(a,b) = õa,b + õb,a −
k

∑
i=1

ci

and their distance δ ′′(a,b) ∈ R as

δ ′′(a,b) = oa,b +ob,a −
k

∑
i=1

ci

with ci the symbolic constant corresponding to pi.

๠e sample distances calculated in Table 1 are expressed with
the δ ′ and δ ′′ metrics in Table 2: the two dependent properties
p1, p2 corresponding to variant and radical (thus p1 ⇒ p2)
and of symbolic constants c1 = φ , c2 = ε , respectively, are
considered.

Table 2: Examples of character distance calculations with the δ ′

and δ ′′ metrics

a b p1 p2 õa,b õa,b δ ′(a,b) oa,b oa,b δ ′′(a,b)

洪 浜 no yes 2 2 4− ε 1 1 2− ε
榎 夏 no no 1 0 1 1 0 1
桜 櫻 yes yes 2 2 4−φ 1 1 2−φ
峠 雫 no no 2 1 3 2 1 3
湘 眼 no no 2 1 3 2 1 3
木 林 no yes 0 1 1− ε 0 1 1− ε
木 水 no no Ω Ω Ω Ω
沐 浴 no yes Ω Ω− ε 1 1 2− ε

6.3 Discussing the δ , δ ′ and δ ′′ Metrics

First, the original δ metric makes use of the p + 1
denominator, which may seem unnatural. Hence, the
introduction of refined metrics δ ′ and δ ′′.
Second, with the δ ′′ metric, as shown in Table 2 the equality

δ ′′(洪,浜)= δ ′′(沐,浴) holds, which induces some incoherency
given that the two sub-characters 共,兵 are closer (i.e. more
related) than the two sub-characters木,谷.
๠ird, with the δ ′ metric, as shown in Table 2 the equality

δ ′(沐,浴) = Ω− ε holds. In other words, even though the two
characters 沐, 浴 share the same radical (氵), their distance
involves Ω and is thus large. Even though this may seem
disturbing at first glance, coherence is retained. Yet, one
possibly concerning aspect of this δ ′ metric, is that it may not
treat character variants fairly enough, that is, not reducing the
distance value enough in case the two characters are variants
of each other. For instance, we have δ ′(桜,櫻) = 4 − φ
for the two variant characters 桜, 櫻, while for instance we
have δ ′(峠,雫) = 3 for the two, not variants, characters 峠,
雫, with δ ′(桜,櫻) > δ ′(峠,雫) thus holding. Again, even
though this may seem disturbing at first glance given that
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桜,櫻 are variants while 峠,雫 are not, some coherence is
retained. For comparison, the original, δ metric induced
distances δ (桜,櫻) = 4/3 and δ (峠,雫) = 3. ๠is issue is
mitigated with the δ ′′ metric since we have δ ′′(桜,櫻) = 2−φ ,
and δ ′′(峠,雫) = 3.

6.4 ๠e d Metric

๠e previously defined δ , δ ′ and δ ′′ distance metrics are not
distances in the mathematical sense. Effectively, it is easy to
show that they do not satisfy the triangle inequality. In this
section, we propose another distance metric, this time satisfying
the requirements for a mathematical distance, most notably the
symmetry property and the triangle inequality. Each character
is assumed without loss of generality to be either a combination
of sub-characters, or a canonical element [2], the /0 symbol
representing the empty character and thus being canonical.
Distinguishing between canonical characters and others is not
trivial [2]; for the sake of clarity it is simplified in this discussion.
๠e proposed distance d has some relation to the Levenshtein
distance (a.k.a. edit distance) [12]. It is defined as follows.

Definition 5. For any two characters a and b, their distance
d(a,b) ∈ R is defined as

d(a,b) =



0 a,b canonical,a = b
1 a,b canonical
min{d(a,b1)+d( /0,b2),

d( /0,b1)+d(a,b2)} a canonical
min{d(a1, /0)+d(a2,b),

d(a1,b)+d(a2, /0)} b canonical
min{d(a1,b1)+d(a2,b2),

d(a1,b2)+d(a2,b1),

d(a1, /0)+d(a2,b),
d(a1,b)+d(a2, /0),
d(a,b1)+d( /0,b2),

d( /0,b1)+d(a,b2)} otherwise

where a (resp. b) is either canonical or of the form a = a1 • a2
(resp. b = b1 •b2), with • a character decomposition operation
(see Definitions 1 and 2).

Proposition 1. ୡe d metric is a mathematical distance.

Proof. Consider any two characters a and b. Obviously,
d(a,b) ≥ 0. First, we show by recurrence that d(a,b) = 0 ⇔
a = b, which becomes thus our induction hypothesis. We show
that this holds in the case a,b canonical; this is the base case
of the recursion. Assume a = b. Since a canonical, we have
d(a,b) = d(a,a) = 0 directly. Assume d(a,b) = 0. Since a,b
canonical, by definition we directly have a = b.
We show in the general case that d(a′,b′) = 0 ⇔ a′ = b′ holds

with a′ = a • ã, b′ = b • b̃ and ã, b̃ canonical. ๠e case a′ = ã •
a, b′ = b̃ • b is shown similarly. By definition, and as per our

hypothesis, we have d(a′,b′) = d(a,b)+ d(ã, b̃) = d(ã, b̃). So
clearly, d(a′,b′) = 0 ⇔ d(ã, b̃) = 0 and d(ã, b̃) = 0 ⇔ ã = b̃.
Next, the equality d(a,b) = d(b,a) trivially holds since all the

sub-character pair combinations are systematically exhausted by
definition. Hence, a and b can be swapped freely.
Finally, we show that the triangle inequality d(a,c) ≤

d(a,b)+d(b,c) holds for any characters a,b,c. We proceed by
recurrence. We show that this holds in the case a,b,c canonical;
this is the base case of the recursion. If a = b = c, d(a,c) =
d(a,b) = d(b,c) = 0 and the hypothesis d(a,c) ≤ d(a,b) +
d(b,c) is satisfied. If a = b and a ̸= c, d(a,c) = d(b,c) = 1
and d(a,b) = 0, and the hypothesis holds. If a = c and a ̸= b,
d(a,b) = d(b,c) = 1 and d(a,c) = 0, and the hypothesis holds.
If a ̸= b ̸= c, d(a,c) = d(a,b) = d(b,c) = 1 and the hypothesis
holds.
We show in the general case that d(a′,c′)≤ d(a′,b′)+d(b′,c′)

holds with a′ = a • ã, b′ = b • b̃, c′ = c • c̃ and ã, b̃, c̃ canonical.
๠e case a′ = ã•a, b′ = b̃•b, c′ = c̃•c is shown similarly. First,
0 ≤ d(ã, b̃)≤ 1 since ã, b̃ canonical. ๠us, d(a′,b′)≥ d(a,b)+
d(ã, b̃) and d(a′,b′)−d(ã, b̃) ≥ d(a,b) for any a,b. Hence, we
have by induction hypothesis

d(a′,c′)−d(ã, c̃)≤ d(a,c)

≤ d(a,b)+d(b,c)

≤ d(a′,b′)−d(ã, b̃)+d(b′,c′)−d(b̃, c̃)

d(a′,c′)≤ d(a′,b′)+d(b′,c′)

+d(ã, c̃)−d(ã, b̃)−d(b̃, c̃)

It is recalled that 0 ≤ d(ã, c̃),d(ã, b̃),d(b̃, c̃) ≤ 1 since ã, b̃, c̃
canonical. Hence, d(ã, b̃) = d(b̃, c̃) = 0 holds if and only if ã =
b̃ = c̃, and thus d(ã, b̃) = d(b̃, c̃) = 0 ⇒ d(ã, c̃) = 0. ๠erefore,
d(ã, c̃)−d(ã, b̃)−d(b̃, c̃)≤ 0 holds, and we have

d(a′,c′)≤ d(a′,b′)+d(b′,c′)

One should note that the properties shared between characters
as distinguished previously in this section are ignored by the
metric d so as to satisfy the triangle inequality. ๠e sample
distances calculated in Table 1 are expressed this time with the
d metric in Table 3.
We now discuss the d metric. First, it is important to note that

even though coherence is retained, the meaning of this distance
metric is different from that of the previous ones: mainly,
since the number of decompositions is counted, two unrelated
canonical characters have distance 1, while they would be at
distance Ω with the previous metrics. ๠is is a change of point
of view: the less the number of decomposition operations, the
shorter the distance.
Next, it should be noted that the distance expressed with this

d metric is less “sharp” than when expressed with the previous
metrics. Effectively, in comparison, many more instances of
character pairs will have the same distance value. ๠is is also
symptomatic of the exclusion of character properties such as
radical from the distance calculation.
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Table 3: Examples of character distance calculations with the d
metric

a b d(a,b)

洪 浜 d(氵,氵)+d(共,兵) = d(龷,丘)+d(八,八) = 1

榎 夏 d(木, /0)+d(夏,夏) = 1

桜 櫻 d(木,木) + d( ,嬰) = d(⺍,賏) + d(女,女) =
d(⺍,貝) + d( /0,貝) = d(⺍,目) + d( /0,八) +
d( /0,目)+d( /0,八) = 4

峠 雫 d(山,雨)+d(𠧗,下) = 1+d(上, /0)+d(下,下) = 2

湘 眼 d(氵,艮)+d(相,目) = 1+d(木, /0)+d(目,目) = 2

木 林 d(木,木)+d( /0,木) = 1

木 水 1
沐 浴 d(氵,氵)+d(木,谷) = 1

For example, the equality d(洪,浜)= d(氵,氵)+d(共,兵)=
d(共,兵) is satisfied: rather than counting the first horizontal
combination operation and then subtracting some constant
since these two characters share the same radical, the first
decomposition operation directly results in no impact on the final
distance value since involving two same sub-characters.

7 Conclusions and Future Works

Chinese characters are challenging for various reasons, their
huge number being the most prominent. In this paper, we have
first discussed the motivations behind our scientific approach
to these characters. ๠en, in order to make this approach as
versatile as possible, we have proposed an informationmodel for
Chinese characters, a rather innovative perspective in this field.
Several points of view have been taken into account, including
the phonetic, morphological and graphic ones. Importantly, we
have considered the multi-lingual aspect of Chinese characters
in our work. ๠is information model has then been used to
propose a novel concept: the definition of distance between
any two characters, enabling further important applications
such as character chains. An algorithm for character chain
computation has been given and illustrated with examples.
Nevertheless, defining such a distance metric with respect to
Chinese characters is a complex topic, thus several metrics have
been successively proposed and discussed. As each of these
metrics has its own pros and cons, the choice of a distance metric
would depend on the application considered.
As for future works, it would be meaningful to conduct a

similar ontological discussion in the case of characters of other,
unrelated scripts. For instance, Korea’s Hangul script is one
possible candidate, yet being much simpler to handle since
being a phonic writing system, not using ideograms. Other
script candidates include cuneiform writing as well as Egyptian
hieroglyphs.
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Abstract

Compression is widely used in both scientific research and 
industry. The most common use is that people compress the 
backup data and infrequently used data to save space. 
Compression is significantly meaningful for big data because 
it will save a lot of resources with the help of a good 
compression algorithm. There are two criteria for a good 
compression algorithm—compression ratio and time 
consumption. GFC is one of the fastest compression 
algorithms with a mediocre compression ratio, which is 
designed for real-time compression with the help of Graphics 
Processing Units (GPU). This paper introduces three methods 
to increase the speed of GFC algorithm by using the clzll
function, removing if-else statements, and using multi-GPUs.
The first and third methods improve the original algorithm 
performance. However, the if-else-removal method cannot 
always guarantee better results. The final compression speed 
is more than 1,000 gigabits/s, which is much faster than 75 
gigabits/s—the original GFC algorithm speed.

Key Words: GFC; lossless compression; high-speed; 
floating-point data.

1 Introduction

Big data and its management is a hot topic for both 
businessmen and scientists. The digital era brings us many 
opportunities and also tons of problems. Almost every device 
keeps generating data all the time. For example, the Large 
Synoptic Survey Telescope (LSST) needs to manage over 100 
PB of data [4]. The Facebook warehouse stores upwards of 
300 PB with a daily incoming rate around 600 TB [16]. There 
are 300 hours of video material uploaded to YouTube every 
minute [6]. However, it is hard to manage and analyze big 
data. To uncover the “gold mines” buried in these datasets, 
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researchers hold many conferences to resolve these hard big 
data problems, such as XLDB [15].

Compression is one of the keys to manage big data and it 
helps businessmen and scientists save resources. One of the 
most common rules is that the data management system will 
compress data if the data is not frequently used. If a 
compression algorithm compresses original data 20% smaller 
than before, it means people can save 20% more space, which 
means a lot for petabyte-scale datasets. Therefore, a good 
compression algorithm is significant to a big data project. 
Also, compression is very significant for some big data web-
based application. Dr. Holub and his colleagues introduced a 
method about how to transmit HD, 2K, and 4K videos with
the low-latency network in their paper [7]. The core idea of 
this project is to compress and decompress JPEG efficiently 
with the help of GPUs. Figure 1 displays a simplified network 
diagram of the pilot deployment of their project [7].

There are many mature and good CPU compression 
algorithms. Some of them are designed for image 
compressions, such as JPEG [17], some of them are designed 
for audio and video compression, such as MPEG [10], and 
some of them are for general use, such as LZ4 [3]. Also, some 
scientists tried to take advantage of GPU to increase the speed 
of CPU compression algorithms. For example, [2] tried to 
improve the Huffman compression algorithm using GPU.

GPU is short for Graphics Processing Unit. It is originally 
designed for computer graphics and image processing, and it 
is very popular in high-performance computing today. Also,
there is a trend that scientists use multi-GPUs, instead of a
single GPU to improve performances of different algorithms. 
However, GPU is not suitable for all kinds of algorithms.. If 
an algorithm is not parallelizable or highly divergent, it is 
better not to use GPU.

Here are some reasons that we chose GFC instead of other 
algorithms. First, GFC is one of the fastest existing lossless 
compression algorithms. The original algorithm is 75 
gigabits/s [14]. It is gigabit, instead of gigabyte, because the 
core ideas of GFC algorithm are based on bitwise operations. 
The speed is much faster than most other compression 
algorithms. 

For example, LZ4 is around 14.56 gigabits/s [3], which is 
much slower than wide-band network speed.  If we do not 
choose a fast algorithm for high-speed web-based 
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Figure 1: Transfer HD videos with slow network by compressing each frame in the server 
side and uncompressing the frame in the client side

applications, the algorithm will slow down the throughput of 
these applications. Second, GFC is designed for GPU directly.
To contrast to GFC, most of the GPU algorithms are 
converted from CPU algorithms, which means some 
compromises have have to be made and it will have a negative 
impact on the algorithm performance most of the time.  Third, 
GFC aims to compress large datasets, which is critical for both 
business and scientific uses.  

Some basic concepts about GPU, such as grid, block, warp, 
and thread can be found in the paper [12] and Figure 2 dis-

plays a common GPU structure, which presents the relations 
between threads, blocks, and grids.  Different GPU video card
structures may be different from each other, but they all share 
some common features:  if users want their GPU algorithms to
perform best, they have to use all the threads in a warp; if 
different threads, in the same block need to communicate with 
each other, programmers can use shared memory; if different 
threads, in different blocks need to communicate with each 
other, programmers can use global memory.

The rest of this paper is organized as follows in the remain-

Figure 2: GPU structure.  Threads in different blocks should try to avoid communicating
with each other because it cannot use local memory and performance is not good
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remaining part:  Section 2 introduces the original GFC 
algorithm; Section 3 introduces our three methods to improve 
GFC algorithm; Section 4 introduces the results and our 
opinions about these results; Section 5 concludes the main 
ideas of this paper.

2 Original GFC Algorithm

GFC is a lossless double-precision floating-point data com-
pression algorithm. It is designed for GPU specifically. By 
using [9], GFC algorithm replaces 64-bit floating-point values 
with 64-bit integers. Therefore, GFC needs only integer 
operations, although it compresses floating-point datasets.

Overview of warp, block and chunk assignment of GFC is 
displayed in Figure 3. The uncompressed data is separated 
into r chunks and each chunk contains 32 doubles. Each chunk 
is processed by one warp in the GPU. After all warps finish 
compressing the assigned chunk, GFC combines all the results 
together, which is compressed data. The reason that each 
chunk contains 32 doubles is that there are 32 threads in each 
warp for most of GPU video cards and it is most effective 
when a program uses all the threads in a warp.

Figure 4 presents the details about GFC compression 
algorithm. According to GFC, we need to subtract p, which is 
in the previous chunk, from i, which is in the current chunk, 
and [14]. Dim means 
“dimension” in this equation. If the subtraction is negative, we 
need to use operation—negate to make it positive. The magic 
part of GFC is the rectangle named residual in the bottom part 
of Figure 4. By counting the leading zeros of this part, 

removing these zeros, and adding the leading zeros 
metadata, GFC compresses the original datasets.  The most 
significant theory behind GFC algorithm is that most scientific 
datasets interleave values from multiple dimensions [14]. For 
example, weather temperature will follow a pattern each year 
for most of the time, which means temperature scientific data 
can have many leading zeros by using GFC compression 
algorithm. Users need to find the interleave orders, gets the 
maximum leading zeros and removes them to have the highest 
compression ratio.

It is possible that the compressed data is larger than the 
original data using GFC compression algorithm if we choose a 
bad interleave dimensionality. For example, all the eight 
bytes of residuals are non-zeros and it results in the output 
sub-chunk being 16 bytes larger than the original chunk, 
which is 6% larger than the original part [14]. Before users 
use GFC compression with their data, it is better to preprocess 
their data and find out the suitable data interleave 
dimensionality to obtain the best performance.

O'Neil and Burtscher created GFC and published this 
algorithm in [14]. They avoided using long if-else statements 
and assigned datasets reasonably according to the structure of
GPU to improve the performance of their algorithm. If-else 
statements can slow down a program, especially a GPU 
program. This is because of the structure of video cards. Each
warp has 32 threads (for most video cards) and all these 
threads (in the same wrap) must execute the same instruction 
in one cycle [12]. When these threads execute If-else 
statements, some threads may fulfill the if statement and 
execute that part of the code, and the remaining threads will.

Figure 3: Overview of GFC algorithm warp, block, and chunk assignment.
Each warp is assigned 32 doubles because there are usually 32 threads in each warp
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Figure 4: GFC compression algorithm
The original file is shrunk by removing the leading zeros.

stay idle, which means threads are not fully used. Therefore, 
GFC avoids using long if-else statements

The line chart is not always above zero.  This means “if-
else-removal” method cannot always improve the 
performance.

3 Improved GFC Algorithm

We tried to improve the performance of GFC algorithm with 
three methods: 1) using clzll to count the leading zeros; 2) 
removing if-else statements in the program; 3) using multi-
GPUs. 

3.1 Clzll

In the summary and conclusions part of [14], the authors 
mentioned that they wrote their own function to count the 
leading zeros, because their video card was GTX-285 and it 
does not support clzll, which is used to count the number of 
consecutive leading zeros bits, starting at the most significant 
bit (bit 63) of x [13]. They believe GFC could be improved by 
using clzll to count the leading zeros to replace their code. We 
agree with their idea because professional programmers in 
Nvidia know secrets of their video cards. Therefore, it is not 
strange that their GPU functions are more suitable to the 
structure of video cards and more effective than our codes. 
The results in Section 5 also prove this idea is right.

3.2 If-Else-Removals

In our opinion, if-else statements can slow down programs, 
especially for GPU programs. Because if-else statements will 
make some of the threads in a warp idle, when these threads
cannot fulfil the if-else statement. Here is an example
presented in Figure 5:

Figure 5: If-else Statement Example

Each warp has 32 threads (for most current video cards). 
Only the threads that fulfil the condition, a > 3, they will 
execute a =7. Other threads will be idle till the whole warp 
goes through this if-statement.

There are some materials, such as [11], proving long if-else 
statements will also have a negative impact on the performance 
of normal programs. Therefore, we tried to remove if-else 
statements in GFC algorithm by using bitwise operations.
Here is an example, as Figure 6 displays:
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Figure 6: If else-removal example, less lines but more 
complex

“>>31” means a right shift for 31 bits. For most cases, signed 
integers have 32 bits and the left most bit is used for a sign
(positive or negative). (b – 2)>>31 is -1 when b – 2 is negative 
and it is 0 when (b – 2)>>31 is positive. Therefore, the two 
statements are the same in Figure 6.

However, we found when if-else statement is short (for 
example, there is just one line of statement under “if”), the 
replacement of if-else statements with bitwise operations will 
slow down the program. We think it may be because 
something undisclosed in the compiler to optimize the program. 
The authors of [14] also tried to avoid long if-else statements in 
their program, except one part in the decompress kernel. 
Therefore, we replaced that part with bitwise operations as 
Figure 7 shows.

Figure 7:  If-else-removal in GFC decompress

But, the method cannot guarantee better results all the time.  
Figure 8 displays the delta time between the original algorithm 
and the improved algorithm for a dataset named obs_info.  
When the line is above zero, it means the improved algorithm is 
faster.  Even if the improved algorithm is better, the 
improvement is not really obvious.  Therefore, we don’t apply 
this method in the final improved algorithm.  In our opinion, the 
reasons that this method does not improve the performance are 
that each thread needs to spend more time than before because 
the code is more complex and the total time consumption is 
worse, even if there are no idle threads in the wrap.

3.3 Multi-GPUs

After reading some GPU technique papers, we found that

Figure 8: If-else-removal time delta

some authors try to improve the performance of an algorithm 
by parallelizing the algorithm and others try to enhance an 
algorithm by parallelizing tasks. For example, in [8], the author 
proposed to separate strings and assign a thread for each 
segment to increase the speed of Boyer-Moore algorithm. We
also found there was a trend that scientists used multi-GPUs 
instead of a single GPU to improve their algorithms.

We found the task—compression is parallelizable. “Paral-
lelizable” means that we can separate the task into several parts 
and each part can be processed independently. GFC is a GPU 
algorithm and it uses both blocks and threads. Therefore, we 
need to assign a GPU for every segment to enhance the 
performance. So we tried to use multi-GPUs instead of single 
GPU and the basic idea is displayed in Figure 9. The 
uncompressed dataset is separated into N chunks, each chunk is 
pro-cessed by a GPU, and each GPU processes the assigned 
data with GFC algorithm. After all the GPUs finish their jobs,
a CPU will combine the results together, which is the 
compressed data.

Figure 9:  Multi-GPUs method

4 Results

We did experiments with a Cubix machine, which has eight 
GeForce GTX 780 video cards, Intel(R) Xeon(R) CPU E5-2620 
@ 2.00GHz, and PCI 3.0.

All the flowing experiment datasets are offered by Martin 
Burtscher, who is one of the authors of [14].  The datasets can 
be downloaded in [1].  From our experiences about GPU 
programming, the best results of different problems need 
different numbers of blocks and threads.  After experiments 
with four of these datasets, we found that we need to use all the 
threads in the chosen number of blocks to get the best results 
(throughputs).  Therefore, we only did experiments to find the 
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best number of blocks for each dataset and used all the threads.  
All the experiments were ran 11 times and we chose the median 
value of these 11 results to be theJ final result.  For example, in 
multi-GPUs part, we tested different numbers of blocks for a 
dataset named obs_info.  We did the same experiment 11 times 
and finally found we should use 51 blocks and all the threads in 
these blocks to get the maximum throughput 1073.376 
gigabits/s. 

Because [14] mentioned that PCIe bus is too slow for GFC 
(compression speed is limited to 8GB/s [5]), O'Neil and
Burtscher did not record the time of transferring data from CPU 
to GPU.  Therefore, we did not do that for all the following 
experiments.  We also compared decompressed files with 
original files to make sure that our methods do not change files.

4.1 Clzll

The first improvement is to use __clzll(), which is used to 
count the number of consecutive leading zeros bits, starting at 
the most significant bit (bit 63) of x [13]. The results are 
presented in Figure 10.

In Figure 10, we subtracted original GFC’s throughput from 
improved GFC’s throughput. And we found most of the time, 
the deltas are above zero, which means the improved 
algorithms’ throughput are better. This proves the idea that is 
introduced in Section 3.1.

4.2 Multi-GPUs

We did the experiments with one, two, four, and eight GPUs to 
study the relation between the number of GPUs and the 
speedup. We recorded time consumptions of each GPU and 
used the maximum time to be the final time consumption. For 
example, we used 8 GPUs and GPU1 spent T1, … GPU2 spent 

T2 … GPU8 spent T8. The final time consumption was 
Max(T1, T2, … T8). We used the maximum time for the final 
time because we set up a synchronizing point, which resulted 
in GPUs waiting for others until all the GPUs finish their jobs. 
Table 1 displays the throughputs (gigabits/s) of a dataset 
named num_plasma. To save time, we did not do the 
experiment with block number from 1 to 1024. The step of 
BlockNum in Table 1 is int(sqrt(2)).

Table 1: Num_plasma throughputs
BlockNum 8-GPU 4-GPU 2-GPU 1-GPU

1 159.26 81.40 41.18 21.25
2 304.68 158.78 81.51 42.00
3 436.46 233.39 120.21 62.06
5 668.01 376.61 196.12 102.86
8 987.06 572.33 304.24 159.44
12 1,233.31 804.09 438.55 233.19
17 1,214.70 768.86 420.02 219.24
25 1,219.77 715.74 386.17 202.43
36 1,212.85 803.42 438.75 233.02
51 1,268.61 815.37 465.57 250.08
73 1,365.97 955.67 541.73 261.71

104 1,381.89 876.36 481.61 258.48
148 1,312.64 871.23 523.82 264.98
210 1,266.23 860.80 500.14 274.39
297 1,214.87 838.03 496.44 274.89
421 1,170.78 818.49 480.72 266.15
596 1,140.80 743.96 457.01 264.19
843 1,079.34 715.57 439.54 253.56

Table 2 presents the maximum throughputs of different 
number of GPUs.  From this table, we can tell that the speedup 
is better with more GPUs.  However, the relationship between 
the speedup and the GPU number is not linear.  For example, 8-
GPU speedup does not equal eight times 1-GPU speedup.  In 

Figure 10:  Clzll throughput delta.
Most cases on the line charts are above zero. This means “Clzll” function can improve the performaces.
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our opinions, this is because of the more GPUs we have, the 
more segment file will be generated (our program will separate
the original file into N parts and each GPU is in charge of a 
segment).  Our program needs to combine all the segment files 
together to be the fiinal compressed file in the last compression 
step, which is done by a CPU sequentially.  This step will use 
more time if we have more segment files.

Table 2: Maximum throughput

Name Max Throughput
(gigabits/s) BlockNum Speedup

8-GPU 1,381.89 104 5.03
4-GPU 955.67 73 3.48
2-GPU 541.73 73 1.97
1-GPU 274.89 297 1.00

Figure 11 visualizes the relation between the throughputs of 
each number of GPUs with a line chart. For each line in Figure 
11, we found they went up first and then went down, which 
means that too many blocks will reduce the throughputs 
(gigabit/s) after a certain threshold. When the blocks number is 
small, N GPUs will increase the throughput almost N times. 
However, when the blocks number is increased, the speedup is 
less than N times. We think it may be because of the impact of 
blocks, as we just discussed. This negative impact will reduce 
the gap between each of the multi-GPUs results. Therefore, the 
final results are less than N times, when the blocks number is 
large.

4.3 Final Improved GFC Algorithm

Finally, we combined two methods—clzll and multi-GPUs 
together to improve GFC.  We did experiments to datasets from 
[1] and obtained speedup results (the improved GFC algorithm 
over the original GFC algorithm) as Figure 12 presents.

The maximum speedup of the improved GFC algorithm is 
8.705 and the maximum throughput of the improved GFC 
algorithm is  2454.603 gigabits/s, which is much faster than 
original GFC throughputs in [10]. Of course, the good result is 
partially because we used better hardware than the original 
GFC paper.

5 Conclusion and Future Work

In this paper, we introduced three methods to increase the 
speed of a lossless compression algorithm named GFC. These 
three methods are: 1) using clzll to count the leading zeros; 2) 
replacing if-else statements with bitwise operations in the 
program; 3) using multi-GPUs instead of a single GPU.

After some experiments with datasets downloaded from [15], 
we found 1) and 3) were effective and the maximum speedup is 
8.705 and the maximum throughput of the improved GFC 
algorithm is 2,454.60 gigabits/s, by using 1) and 3) together.  
However, 2) cannot guarantee good results all the time.

In the future, we want to do more experiments to find out the 
rules between the performance and number of blocks and 
GPUs.  For example, an equation can obtain the number of 
blocks and GPUs for a specific problem to get the best results 
done sequentially using a CPU core.  We have designed a new 

Figure 11: Multi-GPUs throughput of num_plasma
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(throughputs).  The last step of our method is to combine all the 
compressed file segments into the final compressed file.  This is 
method to do it parallel using multiple CPU cores. Figure 13
presents the details of this method.  The basic idea is to use one 
CPU core to combine two compressed file segments.  

Therefore, we can use N CPU cores to combine 2N file 
segments in one step. We also want to extend our previous 
work introduced in [18, 19, 20] with the improved data 
compression algorithm.

Figure 13: Segment files combination in parallel

Figure 12: Speedup of improved GFC algorithm
The speedups of most cases are above 4 for all the datasets



240 IJCA, Vol. 23, No. 4, Dec. 2016

Acknowledgements

The authors of this paper acknowledge the help from O'Neil 
and Burtscher.  They kindly answered some hard questions 
about GFC by email and offered us test datasets. 

This material is based upon work supported in part by The 
National Science Foundation under grant numbers IIA-
1301726 and IIA-1329469, and by Cubix Corporation through 
use of their PCIe slot expansion hardware solutions and 
HostEngine. 

Any opinions, finds, and conclusions or recommendations 
expressed in this material are those of the authors and do not 
necessarily reflect the views of the National Science 
Foundation or Cubix Corporation.

Reference

[1] M. Burscher, “Martin Burscher/FPdouble,”
http://cs.txstate.edu/~burtscher/research/datasets/FPdoubl
e/, (accessed 5/5/2015).

[2] R. L. Cloud, M. L. Curry, H. L. Ward, A. Skjellum, and
P. Bangalore, “Accelerating Lossless Data Compression 
with GPUs,” arXiv, 3:26-29, 2009.

[3] Y. Collet, “LZ4-Extremely Fast Compression 
Algorithm,” https://code.google.com/p/lz4/ , (accessed 
5/4/2015).

[4] P. Cudré-Mauroux, H. Kimura, K. T. Lim, J. Rogers, R. 
Simakov, E. Soroush, P. Velikhov, D. L. Wang, M. 
Balazinska, J. Becla, D. DeWitt, B. Heath, D. Maier, S. 
Madden, J. Patel, M. Stonebraker and S. Zdonik, “A 
Demonstration of SciDB: A Science-Oriented DBMS” 
Proceedings of the VLDB Endowment, 2(2):1534-1537, 
2009.

[5] A. Eirola, Lossless Data Compression on GPGPU 
Architectures,” arXiv preprint arXiv: 1109.2348, 2011.

[6] Google Inc., “Statistics—YouTube,” https://www.you 
tube.com/yt/press/statistics.html, (accessed 5/4/2015).

[7] P. Holub, M. Šrom, M. Pulec, J. Matela, and M. Jirman, 
“GPU-Accelerated DXT and JPEG Compression 
Schemes for Low-Latency Network Transmissions of 
HD, 2K, and 4K Video,” Future Generation Computer 
Systems, 29(8):1991-2006, 2013.

[8] M. Jaiswal, “Accelerating Enhanced Boyer-Moore String 
Matching Algorithm on Multicore GPU for Network 
Security,” International Journal of Computer 
Applications, 97(1):30-35, 2014.

[9] W. Kahan, Lecture Notes on the Status of IEEE Standard 
754 for Binary Floating-Point Arithmetic.” Manuscript, 
30 pp., May 1996.

[10] D. Le Gall, “MPEG:  A Video Compression Standard for 
Multimedia Applications,” Communications of the ACM, 
34(4), 46-58, 1991.

[11] S. Loinel, “Does a Lot of “if … else” Statements Slow 
Down the Code?” https://software.intel.com/en-
us/forums/topic/283268, (accessed 5/5/2015).

[12] J. Luitjens and S. Rennich, “CUDA Warps and 
Occupancy,” GPU Computing Webinar, 11:2-19, 2011.

[13] NuDoq. “NuDoq – CUDAfy.NET,” http://www.nudoq. 
org/#!/Packages/CUDAfy.NET/Cudafy.NET/IntegerIntri
nsicsFunctions/M/clzll, (accessed 5/5/2015).

[14] M. A. O'Neil and M. Burtscher, “Floating-Point Data 
Compression at 75 Gb/s on a GPU,” Proceedings of the 
Fourth Workshop on General Purpose Processing on 
Graphics Processing Units, ACM, p. 7, 2011.

[15] M. Stonebraker, J. Becla, D. J. DeWitt, K. T. Lim, D. 
Maier, O. Ratzesberger, and S. B. Zdonik, 
“Requirements for Science Data Bases and SciDB,” 
Proceedings of the Fourth Biennial Conference on 
Innovative Data System, 7:173-184, January 2009.

[16] P. Vagata. and K. Wilfong, “Scaling the Facebook Data 
Warehouse to 300 PB,” https://code.facebook.com/posts/ 
229861827208629/scaling-the-facebook-data-warehouse-
to-300-pb/, (accessed 5/4/2015).

[17] G. K. Wallace, “The JPEG Still Picture Compression 
Standard,” Communications of the ACM, 34(4):30-44, 
1991.

[18] M. Zhang, T. Yang, and R. Wu, “Space-Efficient 
Multiple String Matching Automata. International 
Journal of Wireless and Mobile Computing, 5(3):308-
313, 2012.

[19]  R. Wu., S. Dascalu, and F. Harris, (2015) Environment 
for Datasets Processing and Visualization Using SciDB. 
Proceedings of the 24th International Conference on 
Software Engineering and Data Engineering (SEDE
2015), San Diego, CA, pp. 223-229, October 12-14, 
2015.

[20]  R. Wu, C. Chen, S. Ahmad, J. Volk, C. Luca, F. Harris, 
and S. Dascalu, “A Real-time Web-Based Wildfire 
Simulation System, Proceedings of the 2016 IEEE 
Industrial Electronics Conference (IECON 2016), 
Florence, Italy, Oct 24-27, 2016.

Rui Wu is a Ph.D. student in the 
Department of Computer Science and 
Engineering at the University of 
Nevada, Reno, USA.  He started the 
Ph.D. program in Spring 2014 after 
obtaining in 2013 a Bachelor's degree in 

Computer Science and Technology from Jilin University, 
China.  His main research interests are in data analysis, data 
visualization, and software engineering.



IJCA, Vol. 23, No. 4, Dec. 2016 241

Muhanna Muhanna is an Assistant 
Professor in the Department of 
Computer Graphics at Princess Sumaya 
University for Technology, Jordan, 
which he joined in 2011 after receiving 
his Ph.D. in Computer Science and 
Engineering from the University of 
Nevada, Reno earlier that year. In 
2007, he received his M.S. in 
Computer Science from the University 
of Nevada, Reno as well. His main 

research interests are in human-computer interaction, user 
experience, and software engineering. Moreover, he has been 
the Assistant President for Accreditation and Quality 
Assurance at Princess Sumaya University for Technology 
since 2013.

Sergiu Dascalu is a Professor in the 
Department of Computer Science and 
Engineering at the University of 
Nevada, Reno, USA, which he joined 
in 2002. In 1982 he received a 
Master’s degree in Automatic Control 
and Computers from the Polytechnic 
University of Bucharest, Romania and 
in 2001 a Ph.D. in Computer Science 
from Dalhousie University, Halifax, 

NS, Canada. His main research interests are in the areas of 
software engineering and human–computer interaction. He 
has published over 140 peer-reviewed papers and has been 
involved in numerous projects funded by industrial companies 
as well as federal agencies such as NSF, NASA, and ONR.

Lee Barford is a Fellow at Keysight 
Laboratories and Professor of Computer 
Science and Engineering (adjunct) at the 
University of Nevada, Reno, Nevada. 
He leads research to identify and apply 
emerging technologies in software, 
applied mathematics, and statistics to 
enable new kinds of measurements and 

increase measurement accuracy and speed. Lee’s work has 
been used to improve R&D productivity and reduce 
manufacturing cost in the leading companies in the technology 
and transportation industries, including Apple, Boeing, Cisco, 
Ford, HP, Microsoft, and NASA. Dr. Barford has given 
invited talks at universities worldwide, including MIT, 
Cambridge, Stanford, and Tsinghua. Previously, he managed 
a number of research projects at Agilent Laboratories and 
Hewlett-Packard Laboratories, for example in visible light and 
X-ray imaging systems, calibration methods for non-linear and 
dynamical disturbances, and fault isolation from automatic test 
equipment results. He is the author of over 50 peer-reviewed 
publications and inventor of approximately 60 patents.

Frederick C. Harris, Jr. is a 
Professor in the Department of 
Computer Science and Engineering 
and the Director of the High 
Performance Computation and 
Visualization Lab and the Brain 
Computation Lab at the University of 
Nevada, Reno, USA. He received his 
B.S. and M.S. degrees in 
Mathematics and Educational 

Administration from Bob Jones University in 1986 and 1988 
respectively, and his M.S. and Ph.D. degrees in Computer 
Science from Clemson University in 1991 and 1994 
respectively. He is a SeniorMember of ACM and ISCA, and a 
member of IEEE. His research interests are in parallel 
computation, computational neuroscience, computer graphics 
and virtual reality.



242 IJCA, Vol. 23, No. 4, Dec. 2016

Index

Authors

A

Akour, Mohammed, see Banitaan, 
Shadi; IJCA v23 n1 March 2016 29-
34

Anderson, John W., see Carthen, 
Chase; IJCA v23 n3 Sept 2016 195-
207

Arad, Behnam S., see Durai, 
Maththaiya; IJCA v23 n2 June 2016 
87-95

Assefi, Mehdi, Guangchi Liu, Mike P. 
Wittie, and Clemente Izurieta; 
Measuring the Impact of Network 
Performance on Cloud-Based Speech 
Recognition; IJCA v23 n1 March 
2016 19-28

B

Badri, Linda, see Flageol, William; 
IJCA v23 n1 March 2016 69-76

Badri, Mourad, see Flageol, William; 
IJCA v23 n1 March 2016 69-76

Banitaan, Shadi, Kevin Daimi, 
Mohammed Akour, and Yujun Wang; 
Test Suite Selection in Junit Testing 
Environment Based on Software 
Metrics; IJCA v23 n1 March 2016 29-
34

Barford, Lee, see Wu, Rui; IJCA v23 
n4 Dec 2016 232-241

Bossard, Antoine and Keiichi Kaneko; 
Chinese Characters Ontology and 
Induced Distance Metrics; IJCA v23 
n4 Dec 2016 223-231

Bossard, Antoine and Les Miller; 
Guest Editor’s Note; IJCA v23 n2 
June 2016 77

Burfield, Nolan P., see Carthen, Chase; 
IJCA v23 n3 Sept 2016 195-207

C

Carthen, Chase, Thomas J. Rushton, 
Nolan P. Burfield, Donna Delparte, 
Tucker Chapman, W. Joel Johansen, 
Roger Lew, Nicholas R. Wood, 
Mathew Ziegler, John W. Anderson, 
Sergiu M. Dascalu, and Frederick C. 
Harris, Jr.; Virtual Watershed 
Visualization for the WC-WAVE 

Project; IJCA v23 n3 Sept 2016 195-
207

Chapman, Tucker, see Carthen, Chase; 
IJCA v23 n3 Sept 2016 195-207

Codabux, Zadia, see Deo, Ajay K.; 
IJCA v23 n1 March 2016 35-56

D-G

Daimi, Kevin, see Banitaan, Shadi; 
IJCA v23 n1 March 2016 29-34

Dascalu, Sergin M., see Carthen, 
Chase; IJCA v23 n3 Sept 2016 195-
207

….see Wu, Rui; IJCA v23 n4 Dec 2016 
232-241

Delparte, Donna, see Carthen, Chase; 
IJCA v23 n3 Sept 2016 195-207

Deo, Ajay K., Zadia Codabux, Kazi 
Zakia Sultana, and Byron J. Williams;
Assessing Software Defects Using 
Nano-Patterns Detection; IJCA v23 n1
March 2016 35-56

Ding, Tao, see Xu, Weifeng; IJCA v23 
n3 Sept 2016 141-159

Duri, Maththaiya, Behnam S. Arad; A 
Pipelined Implementation of Hash 
Stream1-Synthetic Initialization 
Vector Encryption Algorithm; IJCA 
v23 n2 June 2016 87-95

El Ariss, Omar, see Xu, Weifeng; IJCA 
v23 n3 Sept 2016 141-159

El-Kadi, Amr, see Sobh, Karim; IJCA 
v23 n2 June 2016 124-139

Etschmaier, Maximilian M. and 
Gordon Lee; Defining the Paradigm 
of a Highly Automated System that 
Protects Against Human Failures and 
Terrorist Acts and Application to 
Aircraft Systems; IJCA v23 n1 March 
2016 4-11

Fekete, Andras and Elizabeth Varki; 
Evaluating an Array of 
Heterogeneous Disks; IJCA v23 n4 
Dec 2016 208-215

Feng, Wenying see Hu, Gongzhu; IJCA 
v23 n1 March 2016 2-3

Flageol, William, Mourad Badri, and 
Linda Badri; Investigating the 
Relationships between Use Cases 
Attributes and Source Code Size; 
IJCA v23 n1 March 2016 69-76

Goto, Takaaki, See Hu, Gongzhu; 
IJCA v23 n1 March 2016 2-3

see Hu, Gongzhu; IJCA v23 n4 Dec 
2016 207

Gray, Jeff, see Yue, Songqing; IJCA 
v23 n1 March 2016 57-68

H-J

Hanaki, Hidenobu, see Yokoyama, 
Michio; IJCA v23 n1 March 2016 12-
18

Harris, Jr., Frederick C.; Editor’s 
Note:  March 2016; IJCA v23 n1
March 2016 1

see Hu, Gongzhu; IJCA v23 n1
March 2016 2-3
see Carthen Chase; IJCA v23 n3
Sept 2016 195-207

....see Wu, Rui; IJCA v23 n4 Dec 
2016 232-241

Hasegawa, Kazuki and Kiyofumi 
Tanaka; Server Mechanisms for 
Guaranteeing Schedulability with 
RTOS Processing and Improving 
Application Responsiveness by Slack 
Reclaiming; IJCA v23 n2 June 2016 
116-123

Hesson, Aaron, see Carthen, Chase; 
IJCA v23 n3 Sept 2016 195-207

Hu, Gongzhu and Takaaki Goto, 
Frederick C. Harris, Jr., Yan Shi, and 
Wenying Feng; Guest Editorial:  
Special Issue from ISCA Fall-2015 
Conference; IJCA v23 n1 March 2016
2-3
and Takaaki Goto; Guest Editorial:  

Special Issue from ISCA Fall--2016 
Conference, IJCA v23 n4 Dec 2016 
207

Izurieta, Clemente, see Assefi, Mehdi; 
IJCA v23 n1 March 2016 19-28

Johansen, W. Joel, see Carthen, Chase; 
IJCA v23 n3 Sept 2016 195-207

Johnson, Christine M., see Carthen, 
Chase; IJCA v23 n3 Sept 2016 195-
207

K-L

Kaneko, Keiichi, see Bossard, Antoine; 
IJCA v23 n4 Dec 2016 223-231

Katsumata, Kaori, see Kinoshita, 
Toshiyuki; IJCA v23 n2 June 2016 
78-86

Kinoshita, Toshiyuki, Matrazali 



IJCA, Vol. 23, No. 4, Dec. 2016 243

Noorafiza, and Kaori Katsumata; 
IJCA v23 n2 June 2016 78-86

Lee, Gordon see Etschmaier, 
Maximilian M.; IJCA v23 n1 March 
2016 4-11

Lew, Roger, see Carthen, Chase; IJCA 
v23 n3 Sept 2016 195-207

Li, Wei; Evaluation and Generalization 
of Trust Models in P2P Networks; 
IJCA v23 n4 Dec 2016 216-222

Liu, Guangchi, see Assefi, Mehdi; 
IJCA v23 n1 March 2016 19-28

M-O

Miller, Les, Bossard, Antoine; IJCA 
v23 n2 June 2016 77

Mizunuma, Mitsuru, see Yokoyama, 
Michio; IJCA v23 n1 March 2016 12-
18

Muhanna, Muhanna, see Wu, Rui; 
IJCA v23 n4 Dec 2016 232-241

Negishi, Takumi, see Yokoyama, 
Michio; IJCA v23 n1 March 2016 12-
18

Nielson, Daniel, see Carthen, Chase; 
IJCA v23 n3 Sept 2016 195-207

Nishimura, Kozo, see Yokoyama, 
Michio; IJCA v23 n1 March 2016 12-
18

Noorafiza, Matrazali, see Kinoshita, 
Toshiyuki; IJCA v23 n2 June 2016 
78-86

Oladunni, Timothy and Sharad 
Sharma; Predicting Fair Housing 
Market Value:  A Machine Learning 
Investigation; IJCA v23 n3 Sept 2016 
160-175

Otani, Kazuya, see Yokoyama, Michio; 
IJCA v23 n1 March 2016 12-18

P-Q

Periyasamy, Kasi and Karamveer 
Yadav; Consolidation of Data in 
Multiple Databases; IJCA v23 n2 June 
2016 96-104

R-S

Rushton, Thomas J., see Carthen, 
Chase; IJCA v23 n3 Sept 2016 195-
207

Sharma, Sharad, see Oladunni, 
Timothy; IJCA v23 n3 Sept 2016 160-
175

Shi, Yan, see Hu, Gongzhu; IJCA v23 
n1 March 2016 2-3

Sobh, Karim and Amr El-Kadi; A 
Unified Cloud Metering Framework; 
IJCA v23 n2 June 2016 124-139

Stanchev, Lubomir; Creating a 
Probabilistic Model for WordNet; 
IJCA v23 n3 Sept 2016 176-194

Sultana, Kazi Zakia, see Deo, Ajay K.; 
IJCA v23 n1 March 2016 35-56

T-V

Tanaka, Kiyofumi, see Hasegawa, 
Kazuki; IJCA v23 n2 June 2016 116-
123

Varki, Elizabeth, see Felete. Andras; 
IJCA v23 n4 Dec 2016 208-215

W

Wang, Yujun, see Banitaan, Shadi; 
IJCA v23 n1 March 2016 29-34

Williams, Byron J., see Deo, Ajay K.; 
IJCA v23 n1 March 2016 35-56

Wittie, Mike P., see Assefi, Mehdi; 
IJCA v23 n1 March 2016 19-28

Wood, Nicholas R., see Carthen, 
Chase; IJCA v23 n3 Sept 2016 195-
207

Worrell, Bryan, see Carthen, Chase; 
IJCA v23 n3 Sept 2016 195-207

Wu, Rui, Muhanna Muhanna, Sergiu 
M. Dascalu, Lee Barford, Frederick 
C. Harris, Jr.; Data Lossless 
Compression Using Improved GFC 
Algorithm with Multiple GPUs; IJCA 
v23 n4 Dec 2016 232-241

X-Z

Xu, Dianxiang, see Xu, Weifeng; IJCA 
v23 n3 Sept 2016 141-159

Xu, Weifeng, Tao Ding, Dianxiang Xu, 
and Omar El Ariss; Mining Decision 
Trees as Test Oracles for Java 
Bytecode; IJCA v23 n3 Sept 2016 
141-159

Yadav, Karamveer, see Periyasamy, 
Kasi; IJCA v23 n2 June 2016 96-104

Yokoyama, Michio, Takumi Negishi, 
Mitsuru Mizunuma,Kazuya Otani, 
Hidenobu Hanaki, and Kozo 
Nishimura; Multiple Regression 
Analysis and Learning System for 
Estimation of Blood Pressure 

Variation Using Photo-
Plethysmograph Signals; IJCA v23 n1
March 2016 12-18

Yue, Songqing and Jeff Gray; 
Transforming C Applications with 
Meta-Programming; IJCA v23 n1
March 2016 57-68

Ziegler, Mathew, see Carthen, Chase; 
IJCA v23 n3 Sept 2016 195-207



244 IJCA, Vol. 23, No. 4, Dec. 2016

Key Words

A

Abstraction
IJCA v23 n1 March 2016 57-68

Aircraft safety and security
IJCA v23 n1 March 2016 4-11

Attack
IJCA v23 n4 Dec 2016 216-222

Autonomous cloud metering objects
IJCA v23 n2 June 2016 124-139

B-C

Biological sound processing
IJCA v8 n1 March 2001 7-12

Blood pressure
IJCA v23 n1 March 2016 12-18

Blood pressure estimation
IJCA v23 n1 March 2016 12-18

Causality
IJCA v8 n1 March 2001 23-32

Central server model
IJCA v23 n2 June 2016 78-86

Cloud computing
IJCA v23 n2 June 2016 124-139

Cloud metering
IJCA v23 n2 June 2016 124-139

Cloud metering markup language
IJCA v23 n2 June 2016 124-139

Cloud speech recognition
IJCA v23 n1 March 2016 19-28

Computational reflection
IJCA v23 n1 March 2016 57-68

Computer security
IJCA v23 n2 June 2016 105-115

Computer system performance
IJCA v23 n2 June 2016 78-86

Constraint matching
IJCA v23 n2 June 2016 96-104

Content matching
IJCA v23 n2 June 2016 96-104

Correlation
IJCA v23 n1 March 2016 12-18

D

Decision tree
IJCA v23 n3 Sept 2016 141-159

Defect detection
IJCA v23 n1 March 2016 35-56

Deferrable sever
IJCA v23 n2 June 2016 116-123

Domain-specific language
IJCA v23 n1 March 2016 57-68

E-F

Encryption
IJCA v23 n2 June 2016 87-95

Finite input source
IJCA v23 n2 June 2016 78-86

Floating-point data
IJCA v23 n4 Dec 2016 232-241

G-H

Geospatial
IJCA v23 n3 Sept 2016 195-207

GFC
IJCA v23 n4 Dec 2016 232-241

Hardware accelerator
IJCA v23 n2 June 2016 87-95

Heterogeneous disks
IJCA v23 n4 Dec 2016 208-215

High-speed
IJCA v23 n4 Dec 2016 232-241

Housing prices prediction
IJCA v23 n3 Sept 2016 160-175

Human factors
IJCA v23 n1 March 2016 4-11

Human failures
IJCA v23 n1 March 2016 4-11

Human-machine symbiosis
IJCA v23 n1 March 2016 4-11

Hydrology
IJCA v23 n3 Sept 2016 195-207

I-J

Infrared LED sensor
IJCA v23 n1 March 2016 12-18

Jimple
IJCA v23 n3 Sept 2016 141-159

K-L

Kernel level transport layer
IJCA v23 n2 June 2016 124-139

K-NN
IJCA v23 n3 Sept 2016 160-175

Linear regression
IJCA v23 n3 Sept 2016 160-175

Language
IJCA v23 n4 Dec 2016 223-231

Learning system
IJCA v23 n1 March 2016 12-18

Linguistics
IJCA v23 n4 Dec 2016 223-231

Lossless compression
IJCA v23 n4 Dec 2016 232-241

M

Machine learning
IJCA v23 n3 Sept 2016 160-175

Markov logic network for represent-
ing WordNet data
IJCA v23 n3 Sept 2016 176-194

Meta-object protocol
IJCA v23 n1 March 2016 57-68

Metering framework
IJCA v23 n2 June 2016 124-139

Metrics
IJCA v23 n1 March 2016 69-76

Mining
IJCA v23 n3 Sept 2016 141-159

Model
IJCA v23 n4 Dec 2016 223-231

Model data
IJCA v23 n3 Sept 2016 195-207

Multicollinearity
IJCA v23 n1 March 2016 12-18

Multiple regression analysis
IJCA v23 n1 March 2016 12-18

MVC
IJCA v23 n3 Sept 2016 160-175

N-O

Nano-patterns
IJCA v23 n1 March 2016 35-56

Natural
IJCA v23 n4 Dec 2016 223-231

Netfilter hooks
IJCA v23 n2 June 2016 124-139

Network security
IJCA v23 n4 Dec 2016 216-222

Neural network
IJCA v23 n3 Sept 2016 160-175

P-Q

Peer to peer (P2P) network
IJCA v23 n4 Dec 2016 216-222

Performance evaluation
IJCA v23 n2 June 2016 78-86

Photo-plethysmography
IJCA v23 n1 March 2016 12-18

Pipelining
IJCA v23 n2 June 2016 87-95

Polling Server
IJCA v23 n2 June 2016 116-123

Polynomial regression
IJCA v23 n3 Sept 2016 160-175

Probability-based semantic similarity 
and distances
IJCA v23 n3 Sept 2016 176-194



IJCA, Vol. 23, No. 4, Dec. 2016 245

Proc filesystem
IJCA v23 n2 June 2016 124-139

Program transformation 
IJCA v23 n1 March 2016 57-68

Purposeful systems
IJCA v23 n1 March 2016 4-11
IJCA v23 n2 June 2016 105-115

Quality of experience
IJCA v23 n1 March 2016 19-28

Queuing network
IJCA v23 n2 June 2016 78-86

Queuing theory
IJCA v23 n2 June 2016 78-86

R

RAID
IJCA v23 n4 Dec 2016 208-215

Real Estate
IJCA v23 n3 Sept 2016 160-175

Real-time scheduling
IJCA v23 n2 June 2016 116-123

Real-time systems
IJCA v23 n1 March 2016 19-28

Relation
IJCA v23 n4 Dec 2016 223-231

Relationships
IJCA v23 n1 March 2016 69-76

Reputation system
IJCA v23 n4 Dec 2016 216-222

RTOS
IJCA v23 n2 June 2016 116-123

S

Schema matching
IJCA v23 n2 June 2016 96-104

Script
IJCA v23 n4 Dec 2016 223-231

Semantic similarity benchmarks for 
WordNet
IJCA v23 n3 Sept 2016 176-194

Semantic similarity
IJCA v23 n3 Sept 2016 176-194

Simulation
IJCA v23 n2 June 2016 87-95

Slack
IJCA v23 n2 June 2016 116-123

Software development effort
IJCA v23 n1 March 2016 69-76

Software measurement
IJCA v23 n1 March 2016 19-28

Software metrics
IJCA v23 n1 March 2016 29-34

Software patterns
IJCA v23 n1 March 2016 35-56

Software quality
IJCA v23 n1 March 2016 35-56

Software testing
IJCA v23 n1 March 2016 29-34
IJCA v23 n3 Sept 2016 141-159

Source code size
IJCA v23 n1 March 2016 69-76

Storage
IJCA v23 n4 Dec 2016 208-215

Streaming Media
IJCA v23 n1 March 2016 19-28

Synthesis
IJCA v23 n2 June 2016 87-95

System security
IJCA v23 n1 March 2016 4-11

System Verilog
IJCA v23 n2 June 2016 87-95

Systolic/diastolic blood pressure
IJCA v23 n1 March 2016 12-18

T

Terrain
IJCA v23 n3 Sept 2016 195-207

Test case selection
IJCA v23 n1 March 2016 29-34

Test Oracle
IJCA v23 n3 Sept 2016 141-159

Traceable patterns
IJCA v23 n1 March 2016 35-56

Trust
IJCA v23 n4 Dec 2016 216-222

U-Z

UML
IJCA v23 n3 Sept 2016 160-175

Unit testing
IJCA v23 n1 March 2016 29-34

Use cases
IJCA v23 n1 March 2016 69-76

Use case points
IJCA v23 n1 March 2016 69-76

Virtual watershed client
IJCA v23 n3 Sept 2016 195-207

Virtual watershed platform
IJCA v23 n3 Sept 2016 195-207

Visualization
IJCA v23 n3 Sept 2016 195-207



Instructions for Authors 
 

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of 
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as 
current innovative activities in the applications of computers.  In contrast to other journals, this journal focuses on 
emerging computer technologies with emphasis on the applicability to real world problems.  Current areas of particular 
interest include, but are not limited to:  architecture, networks, intelligent systems, parallel and distributed computing, 
software and information engineering, and computer applications (e.g., engineering, medicine, business, education, 
etc.).  All papers are subject to peer review before selection. 

 

A. Procedure for Submission of a Technical Paper for Consideration  

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr.,  Fred.Harris@cse.unr.edu.  

2. Illustrations should be high quality (originals unnecessary). 

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence. 
Also, please include email, telephone, and fax information should further contact be needed. 

 

B. Manuscript Style:  

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11 

inch pages. 
2. An informative abstract of 100-250 words should be provided. 
3. At least 5 keywords following the abstract describing the paper topics. 
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first 

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and 
year.  

5. Figures should be captioned and referenced.  

C. Submission of Accepted Manuscripts  

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word 
format should be submitted to the Editor-in-Chief. 

2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should 
be included:  

 Paper text (required).  
 Bios (required for each author).  Integrate at the end of the paper. 
 Author Photos (jpeg files are required by the printer, these also can be integrated into your paper).  
 Figures, Tables, Illustrations.  These may be integrated into the paper text file or provided separately 

(jpeg, MS Word, PowerPoint, eps).  

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper. 

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are 
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain.  Also, 
letters of permission for inclusion of non-original materials are required.  

Publication Charges  

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of 
$50.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication.  For ISCA 
members, $100 of publication charges will be waived if requested.   

January 2014 



ISCA
 IN

TERN
A

TIO
N

A
L JO

U
RN

A
L O

F CO
M

PU
TERS A

N
D

 TH
EIR A

PPLICA
TIO

N
S

V
ol. 23, N

o. 4, D
ec.2016


