
A publication of ISCA*:
International Society for Computers

and Their Applications

INTERNATIONAL JOURNAL OF
COMPUTERS AND THEIR

APPLICATIONS

TABLE OF CONTENTS

Page

Editor’s Note: March 2017 . 1
Frederick C. Harris, Jr.

Guest Editorial: Special Issue from ISCA Fall – 2016 SEDE Conference 2
Frederick C. Harris, Jr., Sergiu M. Dascalu, and Yan Shi

Interactive Shape Perturbation . 4
Juan C. Quiroz and Sergiu M. Dascalu

Approximate k-Nearest Neighbor Search with the Area Code Tree 12
Wendy Osborn and Fatema Rahman

Rewind: An Automatic Music Transcription Web Application . 20
Chase D. Carthen, Vinh Le, Richard Kelley, Tomasz J. Kozubowski,

Frederick C. Harris, Jr.

Rijndael Algorithm for Database Encryption on a Course Management
System . 31

Francis Onodueze and Sharad Sharma

Evolution of the Multicore Adaptability of Scientific Software Systems 40
Saleh M. Alnaeli, Melissa M. Sarnowski, Calvin Meier, and Mark Hall

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPEC and
Scopus.”

Volume 24, No. 1, March 2017 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…64 White Oak Court, Winona, MN 55987…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2017 by the International Society for Computers and Their Applications (ISCA)
All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Frederick C. Harris, Jr., Professor
Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA
Phone: 775-784-6571, Fax: 775-784-1877

Email: Fred.Harris@cse.unr.edu, Web: http://www.cse.unr.edu/~fredh

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid
University of Houston-Clear Lake,
USA
hisham@uhcl.edu

Dr. Antoine Bossard
Advanced Institute of Industrial
Technology, Tokyo, Japan
abossard@aiit.ac.jp

Dr. Mark Burgin
University of California,
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University,
Wrexham, UK
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan,
Dearborn, USA
magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science and
Technology, USA
ff@mst.edu

Dr. Muhanna Muhanna
Princess Sumaya University for
Technology, Amman, Jordan
m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York at
Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University, USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California
San Diego, USA
jianwu@sdsc.edu

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University,
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
at Stony Brook, USA

rong.zhao@stonybrook.edu

IJCA, Vol. 24, No. 1, March 2017 1

ISCA Copyright© 2017

Editor’s Note: March 2017

It is my distinct honor, pleasure and privilege to serve as the Editor-in-Chief of the International Journal
of Computers and Their Applications (IJCA). I have a special passion for the International Society for
Computers and their Applications.

I would like to begin this volume by giving a review of this past year. In 2016 we had 30 articles
submitted to the International Journal of Computers and Their Applications. We currently have 11 that
are still under review. As a reminder, the journal will not be accepting articles that are less than 6 pages.
The authors of these papers will be encouraged to submit their papers to ISCA conferences.

We are still working towards getting IJCA online. Hopefully we can end up with a nice repository soon.

I look forward to working with everyone in the coming years to maintain and further improve the quality
of the journal. I would like to invite you to submit your quality work to the journal for consideration of
publication. I also welcome proposals for special issues of the journal. If you have any suggestions to
improve the journal, please feel free to contact me.

Frederick C. Harris, Jr.
Computer Science and Engineering
University of Nevada, Reno
Reno, NV 89557, USA
Phone: 775-784-6571
Email: Fred.Harris@cse.unr.edu

This year we have 4 issues planned (March, June, September, and December). We begin with a special
issue from the best papers at the ISCA Fall Conference cluster (CAINE, and SEDE). We have a proposal
for the best papers from the ISCA Spring Conference cluster (CATA/BICOB) which will appear in the
September or December issue. The other two issues are being filled with submitted papers.

I would also like to announce that I begun a search for a few Associate Editors to add to our team. There
are a few areas that we would like to strengthen our board with, such as Image Processing. If you would
like to be considered, please contact me via email with a cover letter and a copy of your CV.

Frederick C Harris, Jr.
Editor-in-Chief
Email: Fred.Harris@cse.unr.edu

2 IJCA, Vol. 24, No. 1, March 2017

ISCA Copyright© 2017

Guest Editorial:
Special Issue from ISCA Fall--2016 SEDE Conference

This Special Issue of IJCA is a collection of five refereed papers selected from the SEDE 2016: 26th
International Conference on Software Engineering on Data Engineering, held during September 26-28,
2016, in Denver, Colorado, USA.

Each paper submitted to the conference was reviewed by at least two members of the International Program
Committee, as well as by additional reviewers, judging the originality, technical contribution, significance
and quality of presentation. After the conferences, five best papers were recommended by the Program
Committee members to be considered for publication in this Special Issue of IJCA. The authors were
invited to submit a revised version of their papers. After extensive revisions and a second round of review,
the five papers were accepted for publication in this issue of the journal.

The papers in this special issue cover a broad range of research interests in the community of computers
and their applications. The topics and main contributions of the papers are briefly summarized below.

JUAN C. QUIROZ of Sunway University and SERGIU M. DASCALU of University of Nevada Reno,
USA presented a web application for the procedural generation of perturbations of 3D models in their paper
“Interactive Shape Perturbation”. The perturbations are encoded using GP, with an IGA allowing the user
to quickly explore perturbations based on his/her preference. Their Procedural Content Generation (PCG)
was implemented as a web application, allowing users to create perturbations on their web browser, without
having to install libraries or plug-ins.

WENDY OSBORN and FATEMA RAHMAN of University of Lethbridge, Lethbridge, Alberta,
CANADA, proposed and evaluated in their paper “Approximate k-Nearest Neighbour Search with the Area
Code Tree” a strategy for approximate k-nearest neighbour searching using the Area Code tree. They found
that when the Area Code tree is used for locating approximate nearest neighbours, that low constant-time
search is achieved. In addition, in denser POI sets, higher accuracy is achieved for locating one nearest
neighbour. This ultimately makes the Area Code tree a strong candidate for approximate continuous nearest
neighbor processing for location-based services.

CHASE D. CARTHEN, VINH LE, RICHARD KELLEY, TOMASZ J. KOZUBOWSKI and FREDERICK
C. HARRIS JR. of University of Nevada Reno, USA, introduced in their paper “Rewind: An Automatic
Music Transcription Web Application” an Automatic Music Transcription (AMT) system named Rewind
that boasts a new deep learning method for generating transcriptions at the frame level and web application.
Rewind’s new deep learning method utilizes an encoder-decoder network where the decoder consists of a
gated recurrent unit (GRU) or two GRUs in parallel and a linear layer and it allows users to transcribe,
listen to, and see their music.

FRANCIS ONODUEZE and SHARAD SHARMA of Bowie State University, Maryland, USA described
in their paper “Rijndael Algorithm for Database Encryption on a Course Management System” an
implementation of the Rijndael algorithm for database encryption to increase the security of a Course
Management System. The benefits and drawbacks of various database encryptions were studied based on
the amount of data encrypted and modes of access to keep a balance between efficiency and security. The
proposed algorithm was applied on a web interface that accepts users’ login details, secures through a
thorough encryption process, and stores cipher text in the database.

IJCA, Vol. 24, No. 1, March 2017 3

SALEH M. ALNAELI, MELISSA M. SARNOWSKI, CALVIN MEIER and MARK HALL of University
of Wisconsin Colleges, USA presented in their paper "Evolution of the Multicore Adaptability of Scientific
Software Systems" an empirical study on the challenges of scientific software system in utilizing the full
advantage of modern multicore technologies. Twelve open source scientific systems were studied,
comprising over 5.4 million lines of code and containing more than 84.5 thousand for-loop statements.
They found that the greatest inhibitor to parallelizing scientific software systems is the presence of function
calls with side effects, followed closely by data dependency and jumping statements. The study proposes
some software engineering techniques to improve the parallelizability of scientific systems.

As guest editor’s we would like to express our deepest appreciation to the authors and the program
committee members of the conference these papers were selected from.

We hope you will enjoy this special issue of the IJCA and we look forward to seeing you at a future ISCA
conference. More information about ISCA society can be found at http://www.isca-hq.org.

Guest Editors:

Frederick C. Harris, Jr, University of Nevada, Reno, USA, SEDE 2016 Conference Chair
Sergiu M. Dascalu, University of Nevada, Reno, USA, SEDE 2016 Program Chair
Yan Shi, University of Wisconsin-Platteville, USA, SEDE 2016 Program Chair

February 2017

4 IJCA, Vol. 24, No. 1, March 2017

ISCA Copyright© 2017

Interactive Shape Perturbation

Juan C. Quiroz*
Sunway University, Bandar Sunway, MALAYSIA

Sergiu M. Dascalu†

University of Nevada, Reno, Reno, NV, USA

Abstract

We present a web application for the procedural generation
of perturbations of 3D models. We generate the perturbations
by generating vertex shaders that change the positions of
vertices that make up the 3D model. The vertex shaders are
created with an interactive genetic algorithm, which displays
to the user the visual effect caused by each vertex shader,
allows the user to select the visual effect the user likes best, and
produces a new generation of vertex shaders using the user
feedback as the fitness measure of the genetic algorithm. We
use genetic programming to represent each vertex shader as a
computer program. This paper presents details of requirements
specification, software architecture, high and low-level design,
and prototype user interface. We discuss the project’s current
status and development challenges.

Key Words: Vertex shader, interactive genetic algorithm,
genetic programming, procedural content generation.

1 Introduction

Procedural content generation (PCG) is the algorithmic
creation of game content. PCG provides the potential to reduce
the cost and time to create content, while also augmenting the
creativity of designers, artists, and programmers [25]. We
present a PCG web application that enables users to create
perturbations of 3D models. Rather than creating 3D models
from scratch or from a set of polygonal primitives, we start
with a well-formed 3D model and explore variations of the 3D
model. The perturbations are generated with vertex shaders.

A vertex shader allows mathematical operations to be
performed on the individual vertices that make up a 3D model
[2]. The vertex shader performs operations on each vertex, and
thus provides great flexibility to modify the position, color,
texture, and lighting of individual vertices. The challenge is
that making a vertex shader requires programming and
computer graphics experience. In addition, even if a
programmer writes a vertex shader that produces interesting
results, creating a variation of that vertex shader is not

*Computing and Information Systems. Email:
juanq@sunway.edu.my.

†Computer Science and Engineering. Email:
dascalus@cse.unr.edu.

straightforward.
We use an interactive genetic algorithm (IGA) to allow users

to explore perturbations of 3D models. In an IGA, a user
guides a search process by visually evaluating solutions and
providing feedback based on personal preferences [28]. Our
web application displays perturbed 3D models, the user selects
the perturbation he/she likes the best, and the user feedback is
used to generate new perturbations. This process is repeated
until the user is satisfied. The IGA generates the vertex shaders
using genetic programming (GP) [14]. In GP, computer
programs are typically represented as tree structures [5, 14].

This paper makes two contributions. First, we present a web
PCG application for exploring perturbations of 3D models.
Our web application runs on a web browser without having to
install plug-ins or any additional software. Second, we use GP
to evolve vertex shaders which perturb the vertices that make
up the 3D models. In this paper, we use the terms perturbations
and transformations interchangeably.

The remainder of this paper is structured as follows. Section
2 describes background on genetic algorithms and related
work. Section 3 lists the functional and nonfunctional software
requirements for the system. Section 4 presents the use case
diagram and the use cases of the system. Section 5 describes
the system’s architecture. Section 6 reports on the system’s
results. Section 7 presents conclusions and future work.

2 Background

Our web application uses an existing 3D model as the seed
to explore variations of the 3D model with an IGA. The user
thus explores and evaluates vertex shaders by seeing the
rendered result of each vertex shader applied to the 3D model
and guiding the IGA with subjective feedback. Our
implementation relies on genetic algorithms (GAs), interactive
genetic algorithms (IGAs), and genetic programming (GP) to
create the vertex shaders.

2.1 Genetic Algorithms

A GA is a search algorithm based on the principles of
genetics and natural selection [5]. The GA maintains a
population of individuals, where each individual is a potential
solution to the problem being solved. In our case, each
individual consists of a vertex shader program. During

IJCA, Vol. 24, No. 1, March 2017 5

initialization of the GA, the individuals are created randomly.
To generate a new population, parents are selected for
crossover, with parent selection favoring the fittest individuals.
The resulting offspring are mutated. This process repeats until
a terminating condition is met.

Figure 1: Flowchart of interactive genetic algorithm.

In a GA, fitness evaluation assigns a fitness value to each
individual in the population. This is what drives the search
process towards higher fitness solutions. When dealing with
subjective criteria, such as aesthetics and user preferences, it
can be difficult to create an algorithm to determine the fitness
of an individual [28]. An IGA solves this by replacing the
fitness evaluation with user evaluation, as illustrated in Figure
1. Thus, the IGA presents the user with individuals from the
population, the user evaluates the solutions—scores, ranking,
selecting the best—and the IGA proceeds with selection,
crossover, and mutation.

In the canonical GA, individuals in the population are
encoded using a binary string representation. In GP, computer
programs are encoded and evolved by the GA [14]. The
computer programs are typically represented as tree structures.
In our web application, we use GP to create mathematical
equations to change the positions of vertices in the vertex
shader.

2.2 Texture Evolution

Table 1 provides a summary of current literature in texture,
shader, and 3D model evolution. The table indicates whether
the evolutionary algorithm was driven by a user, the
representation used to encode solutions, the algorithm used,
and whether a target image was used to drive the evolutionary
process.

Using GAs and GP for evolving images and textures in
graphics was done in the early 1990s by Karl Sims [26, 27]. In
the work by Sims, an IGA was used for the interactive
exploration of images, textures, volume textures, 3D
parametric surfaces, and animations. Sims used GP with Lisp
symbolic expressions (s-expressions) as the representation.
The advantage of Sims’ work was that users could create a
large variety of complex content without having to understand
the underlying equations.

Another technique for automatically generating textures—
without user interaction—relies on evolutionary computation
to generate textures with characteristics similar to target

Table 1: Summary of texture, shader, and 3D model evolutionary systems in the current literature

Studies User
Interaction Content Generated Representation Algorithm Target

Image

[6] 
Textures, volume textures,
animations S-expr GP 

[7]  Textures, 3D shapes, 2D
dynamical systems S-expr GP 

[8], [9]  Textures Directed acyclic graphs GP 

[10]  Textures Directed acyclic graphs Steady-state GA 

[11], [12]  Textures S-expr GP 

[13]  Textures Tree GP 

[14]  Textures S-expr GP 

[15]  3D textures S-expr GP 

[16]  Textures Tree GP 

[17]  Vertex and pixel shaders Byte array Linear GP 

[18]  Pixel shaders Tree GP 

[19]  Fragment shaders Opcode numbers, numbers,
and bit string Linear GP 

[20], [21]  3D shapes Bit string GA 

[22]  Textures Bit string GA 

[23]  3D Trees Bit string GA 

[24], [25]  Vertex shaders Bit encoded binary trees GA 

6 IJCA, Vol. 24, No. 1, March 2017

images [8-10, 23-24, 30]. The Genshade system evolved
high-level Renderman shaders to generate textures similar
to a target image [8, 9]. Directed acyclic graphs were used
to represent the shaders, with nodes being Renderman
shader primitives. In [10], Ibrahim improved the Genshade
system by incorporating a knowledge base of intermediary
solutions to improve the GA search for textures that shared
characteristics with target images. Ibrahim also
incorporated Monte Carlo tree search to build new
Renderman shaders in parallel to the GA.

In [30], the Gentropy system used GP to generated 2D
textures similar to one or more target images. Gentropy
used low-level texture generation with mathematical
operators, noise, and turbulence effects. In [24], the
evolutionary process of Gentropy was improved by
including Pareto multi-objective optimization of three
features: color, shape, and smoothness. In [23], textures
were procedurally generated with GP and Pareto
optimization of two objectives. The first objective was a
mathematical model of aesthetics derived from fine art. The
second objective compared the color distribution of
generated images to the target image.

Hewgill and Ross used GP to evolve 3D procedural
textures, where the inputs of the procedural function were
the X, Y, and Z values of a vertex, and the output was an
RGB value for that vertex [6]. A user selected surface points
on a model and information was extracted from these
surface points: coordinate, surface normal, interpolated
mesh normal, and surface gradient. The GA then evaluated
each procedural texture by how well its data matched the
data from the surface points.

2.3 Vertex Shader Evolution

We refer to evolving vertex shaders as the process of
using an evolutionary algorithm, such as GAs or GP, to
generate vertex shaders. The outputs of this process are
shaders written in a shading language. In [4], Ebner et al.
used linear GP to evolve vertex and pixel shaders. Their
work was limited to applying texture, color, and lighting
values to pixels and vertices, without changing or displacing
the positions of vertices. In [7], Howlett et al. used GP to
create vertex shaders that applied coloring schemes to
scenes of a 3D city environment. In [15], Meyer-Spradow
et al. used GP to evolve fragment shaders that applied
materials to 3D objects by using bidirectional reflection
distribution functions.

In our prior work, we used an IGA to evolve equations in
vertex shaders to create perturbations of 3D models [20, 21].
Our prior IGA implementation used Python-Ogre, the
python binding for the OGRE graphics rendering engine.
The limitations of our prior implementation were that our
system (1) was a desktop application requiring users to
install a large set of libraries to run the program, (2) used a
bit-encoded, full binary tree representation for the
individuals in the IGA. In particular, the bit-encoded, full
binary tree representation allowed us to encode the

equations in an array and to use a standard GA instead of
using GP. However, this limited the search space of
equations we could generate. The implementation described
in this paper uses GP for the evolution of the vertex shaders,
allowing the evolutionary process to explore a bigger space
of equations.

2.4 Shader Editors

Due to the difficulty of shader programming, content
creation tools, such as Blender and Maya, provide graphical
shader development tools [11]. In these systems, shaders
are created by connecting nodes and building a shade tree.
Jensen et al. developed a shader editor that improved
traditional shader development by automatically handling
transformations between different mathematical spaces and
optimizing code placement and space conversions [11].

WebGL has enabled the creation of web based shader
editors. ShaderToy and GLSL Sandbox are examples of
online pixel shaders editors [1, 12, 19]. In ShaderToy, a
scene consist of a fullscreen quad, with the pixel shader
written using ray marching and ray casting to create
graphics on the quad [12, 19]. Similarly, GLSL Sandbox is
a live pixel shader editor. Both ShaderToy and GLSL
Sandbox provide a platform for users to publish pixel
shaders online, to allow users to edit and bootstrap off public
pixel shaders. A disadvantage of ShaderToy and GLSL
Sandbox is that there is no geometry in different positions
over space and time in the scene. As a result, creating scenes
requires implicit programming and a strong use of
mathematics to [12, 19].

ShaderFrog is a WebGL shader editor for vertex and
fragment shaders applied to 3D objects in a 3D scene [22].
Shaders are created by writing code, by tweaking parameters
of public shaders, or by using a graphical user interface to
compose a shader that combines the effects of two or more
shaders. ShaderFrog also provides a public repository for
browsing scenes and shaders created by users.

2.5 Interactive Evolution of 3D Models

IGAs have also been used to evolve the parameters of
algorithms that create 3D models. In [17-18], 3D model
shapes were created with the implicit surface method, which
blended primitive shapes into a complex shape. The GA
encoded parameters of operations applied to each primitive,
such as scaling, position, rotation, tapering, shearing,
twisting, etc. The GA also encoded blending parameters for
combining the primitive shapes. In [3], an IGA evolved the
parameters used by a procedural tree generation algorithm
to create 3D trees.

In this paper, we present the design and implementation
of a web application for creating and exploring perturbations
of 3D models. Since our system runs on a web browser,
there is no need to install additional software or plugins on
the client computer. We apply GP to evolve equations that
are used to generate vertex shader code that changes the

IJCA, Vol. 24, No. 1, March 2017 7

positions of vertices of a 3D model. In contrast, prior GP
has been used to perform operations on vertex data other
than position, such as colors, textures, and materials.

3 Requirements Specification

3.1 Functional Requirements

The functional requirements describe the most important
behavior of the software, including user interactions and
rendering processes.

1. The system shall render a 3D model.
2. The system shall divide the screen into a 3x3 grid,

with a viewport for each cell in the grid.
3. The system shall use a camera for each viewport.
4. The system shall display a 3D model within each

viewport.
5. The system shall allow the user to move all of the

cameras simultaneously with a single set of keyboard
controls and the mouse.

6. The system shall allow the user to select with the
mouse the 3D model the user likes the best.

7. The system shall allow the user to step the IGA a
number of generations.

8. The system shall allow the user to save a selected
perturbation of a 3D model.

9. The system shall allow the user to start the IGA.
10. The system shall allow the user to load a 3D model

from the file system.
11. The system shall allow the user to browse

perturbations stored in a public database.
12. The system shall allow the user to use a perturbation

loaded from a public database to seed the IGA.

3.2 Non-Functional Requirements

The non-functional requirements outline the most
important constraints on the system.

1. The system shall render in real-time.
2. The system shall be implemented with HTML,

JavaScript, and Three.js
3. The system shall run on a web browser with HTML5

support and hardware acceleration.
4. The server request handling shall be implemented

with Python.
5. The IGA shall be implemented with the Distributed

Evolutionary Algorithms in Python library.
6. The system shall be implemented using a

representational state transfer (REST) architecture.
7. The system shall use GP to generate the vertex shader

equations.
8. The system shall use 3D models in JSON format.
9. The system shall use time as an input to the vertex

shader.
10. The system shall use addition, subtraction,

multiplication, division, negation, ceiling, floor,
square root, log, sine, and cosine functions in the
equations.

4 Use Case Modeling

To gain further insight into the functionality of the system,
we have divided the behavior of the web application into use
cases. The use case diagram in Figure 2 outlines the controls
that allow the user to interact with the system and the
functionality on the server-side for running the IGA. In
order to further clarify the functionality, detailed
descriptions of each use case are presented.

UC01 Start Evolution: The user selects the parameters of
the IGA. The user then pushes the start button to display the
first set of perturbations.

UC02 Select Model: The user selects the perturbation the
user likes best. The user can select multiple perturbations.

UC03 Step Generation: The user submits the selected
perturbation by clicking the Next button or by using a
keyboard shortcut. This sends a request to the server to
assign fitness values to the individuals in the population and
create a new population.

UC04 Camera Control: The user can move the camera to
zoom in to the 3D model or to view the 3D model from a
different angle. The camera controls will move all of the
viewport cameras at the same time. The keyboard and the
mouse can be used to control the camera.

UC05 Load Model: The user can upload a 3D model in
JSON format using a file browser dialog. After the upload
completes, the 3D model will be displayed within each
viewport. The user can also browse 3D models uploaded by
other users, select one of the models, and load the model to
the scene.

UC06 Save Transformation: The user can save a
transformation by first making a selection and then clicking
the save button.

UC07 Load Transformation: The user can load a
transformation from a file or from a database of
perturbations created collaboratively by users over time.
Loading the transformation/perturbation will also inject the
corresponding vertex shader equation to the IGA
population.

UC08 Render Scene: The GPU on the client device will
render the scene, applying a vertex shader to each of the 3D
models.

UC09 Initialize Population: The server initializes the
population of the IGA in response to receiving a request to
start the evolutionary process.

UC10 Fitness Evaluation: The selections from the user
are received and used to calculate the fitness of the
individuals in the IGA population. The fitness of each
individual is calculated by determining the similarity
between the individual and the user selections.

UC11 New Population: The IGA performs selection,
crossover, and mutation to generate a new population of

8 IJCA, Vol. 24, No. 1, March 2017

individuals.
UC12 Select Subset: Out of the large population size of

the IGA, the server selects a subset of vertex shaders to
return to the client for rendering on the user’s screen.

Figure 2: Use case diagram for web application

5 Architectural and Detailed Design

5.1 Architectural Design

Figure 3 illustrates the architecture of the web application.
The front-end uses WebGL for rendering graphics on the
browser. WebGL is a JavaScript API for rendering 2D and
3D graphics within compatible browsers. Most importantly,
no plug-ins need to be installed for the rendering to work.
We use Three.js, a 3D JavaScript library, which simplifies
the process of writing the WebGL code.

We used the REST architecture for the communication
protocol between client and server. The RESTful web
services were implemented with Flask, a web
microframework for Python. Our RESTful API provides the
interface for initializing the IGA population, receiving the
user selections, generating a new population, saving
perturbations, and loading perturbations and models. The
IGA was implemented using the Distributed Evolutionary
Algorithms in Python (DEAP) library. The database stores
the vertex shaders saved by users and uploaded models.

Figure 3: RESTful architecture for web application

5.2 System Activity Chart

Figure 4 presents an activity chart of the web application,
showing the interaction between the user and the IGA. The
user starts the evolution, which sends a GET request to the
server to retrieve vertex shaders to apply to the models
currently rendered on the user’s web browser. The IGA
maintains a large population size, and from this large
population, a subset is selected to be evaluated by the user
[21]. The user then has the option of selecting a model, and
submitting this as fitness feedback to the IGA, with fitness
evaluation done as in [21]. The user can repeat this process
for as many generations as he/she wants.

Figure 4: Activity chart for user interaction IGA

5.3 Low Level Design

Figure 5 illustrates an example tree structure generated
using GP. The tree structure represents the expression:
x / (x + z), where x and z are the x-coordinate and the
z-coordinate of the current vertex—we used x and z instead
of position.x and position.z for brevity and readability. The
internal nodes include the operators of addition, subtraction,
multiplication, division, negation, ceiling, floor, square root,
log, and the trigonometric functions of sine and cosine [26].
The leaf nodes include constants uniformly distributed over
the half-open interval [-1, 1), a time variable, and the x, y,
or z coordinate of the current vertex. The program, such as
the one in Figure 5, is evaluated and it results on a scalar
value, a delta. This scalar value is added to the x, y, and z
coordinates of the current vertex. That is, each x, y, and z
are changed by the same delta per vertex. For example, the
equation from Figure 5 would be used in the vertex shader

IJCA, Vol. 24, No. 1, March 2017 9

as shown in Equation (1), where “position.xyz” represents a
vector containing the x, y, and z coordinates of the current
vertex.

position.xyz + = position.x / (position.x + position.z)
(1)

Figure 5: Sample tree structure and its evaluation

Our GP uses a large population size (100), from which we
select the best nine perturbations to be evaluated by the user
[21]. When the user selects a perturbation as the best, the
IGA interpolates the fitness of every other individual in the
population based on similarity to the user selected best [21].
The fitness function calculates the fitness of an individual
by taking the least square sum between the user selected best
(an equation) and the individual (another equation). Since
the equations have variables (x, y, z, time), we test 10,000
evenly spaced points in the interval [-10, 10] for the values
of these variables. We leave the exploration of alternative
fitness functions and tree similarity metrics for future work.

6 Results

Figure 6 shows the interface of our web application. The

system loads a default 3D model, consisting of a human
character. Users can also upload their own 3D model, which
inserts the new 3D model into the scene. A button is
provided next to each model to select a model. The scene is
divided into viewports, forming a 3x3 grid. Figure 6 shows
an example of the interface after 8 generations. Some of the
perturbations are quite destructive, such as the perturbations
in the middle column of Figure 6. In some cases, the
equations do not generate noticeable effects, such as the
model in row two – column one.

Figure 6: Main interface after evolution has started

Figure 7 illustrates various perturbations generated with
our web application. Figures 7(a)-(f) illustrate aesthetically
pleasing perturbations, where the shape of the 3D model can
still be appreciated. The use of trigonometric functions
tends to result in curvy models, giving the models a more
finished appearance. The perturbations in Figures 7(g)-(h)

(a) sin(x) (b) sin(x) * sin(y) (c) ceil(y) (a) sin(cos(z-y))

(e) sin(y) (f) sin(y*time) (g) x / (x+z) (h) x / z

Figure 7: Example transformations generated by the corresponding equation in the vertex shader

10 IJCA, Vol. 24, No. 1, March 2017

are quite destructive since the shape of the original model is
lost and portions of the model are missing (due to vertices
being translated far from the camera view space).

Equations without the time variable result in static
perturbations. The disadvantage of static perturbations is that
they tend to have noisy and unfinished appearances. The time
variable has the potential to make perturbations interesting
because of how the model geometry changes each frame. For
example, the equation sin(y * 10.0) results in a model similar
to Figure 7(f). However, Figure 7(f) is a single frame of an
animation generated by the equation sin(y * time). Replacing
the scalar value 10.0 with the time variable makes the noise
oscillate, which results in an interesting perturbation.

The sine and cosine functions as the root node of a GP tree
result in wavy perturbations. Figure 7(e) shows the
perturbation resulting from the equation sin(y). Adding the
time variable to this equation, sin(y + time), makes the model
undulate over time. Adding a multiplier to the time variable—
sin(y + 3.0 * time)—makes the model undulate faster or slower
depending on the value of the multiplier. However, making a
modification such as sin(y * time) results in the animated noisy
model from Figure 7(f).

The trigonometric equations of cosine and sine in the root
node of the GP tree results in the modification to each vertex
being in the range [-1, 1]. Hence, the change to each vertex is
small, while still allowing for interesting results and variety. In
contrast, perturbations that do not use the trigonometric
functions have the potential to be destructive by exploding the
model (moving vertices to positions far from the camera), see
Figure 7(g)-(h). We note that a GP tree having the sine or
cosine functions as child nodes in the GP tree can also result in
destructive perturbations.

7 Conclusions and Future Work

We presented a PCG system for evolving perturbations of
3D models. The perturbations are encoded using GP, with an
IGA allowing the user to quickly explore perturbations based
on his/her preference. Our PCG system was implemented as a
web application, allowing users to create perturbations on their
web browser, without having to install libraries or plug-ins. In
contrast to the online shader editors such as ShaderToy, GLSL
Sandbox, and ShaderFrog, our system enables users to create
vertex shaders without programming experience. All of the
programming nuances are hidden from users. In fact, users do
not even need to know what a vertex shader is.

A limitation of our implementation is the user interaction.
IGAs tend to suffer from user fatigue, user boredom, and user
inconsistency in the input provided to the GA [28]. Further
work is needed to make the user interaction engaging and
intuitive to users from generation to generation. A second
limitation is the type of equations that can be generated with
our GP implementation based on our selection of operators and
terminals. The format of equation (1) also introduces a strong
limitation on how the GP equations can modify the vertex data.
We plan to test changing each of the x, y, and z coordinates of

each vertex with different expressions. Finally, our fitness
evaluation needs to be improved by using tree similarity
instead of sum of least squares.

References

[1] Ricardo Cabello, “GLSL Sandbox Gallery,” [Online],
Available: http://glslsandbox.com. [Accessed: 18-Jan-
2017].

[2] “The Cg Tutorial - Chapter 1. Introduction.” [Online].
Available: http://http.developer.nvidia.com/CgTutorial/
cg_tutorial_chapter01.html, [Accessed: 15-Jun-2016].

[3] C. B. Congdon and R. H. Mazza, “GenTree: An
Interactive Genetic Algorithms System for Designing 3D
Polygonal Tree Models,” Proceedings of the 2003
International Conference on Genetic and Evolutionary
Computation: PartII, Berlin, Heidelberg, pp. 2034-2045,
2003.

[4] M. Ebner, M. Reinhardt, and J. Albert, Evolution of
Vertex and Pixel Shaders, Genetic Programming, M.
Keijzer, A. Tettamanzi, P. Collet, J. van Hemert, and M.
Tomassini, Eds., Springer Berlin Heidelberg, pp. 261-
270, 2005.

[5] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-Wesley
Professional, 1989.

[6] A. Hewgill and B. J. Ross, “Procedural 3D Texture
Synthesis using Genetic Programming,” Comput.
Graph., 28(4):569-584, Aug. 2004.

[7] A. Howlett, S. Colton, and C. Browne, “Evolving Pixel
Shaders for the Prototype Video Game Subversion,” AI
and Games Symposium (AISB’10), 2010.

[8] A. E. M. Ibrahim, Genshade: An Evolutionary Approach
to Automatic and Interactive Procedural Texture
Generation, Texas A&M University, 1998.

[9] A. E. M. Ibrahim, “Evolutionary Techniques for
Procedural Texture Automation,” Advances in Visual
Computing, pp. 623-632, 2013.

[10] A. E. M. Ibrahim, “Multiple-Process Procedural
Texture,” Vis. Comput., pp. 1-18, Aug. 2016.

[11] P. D. E. Jensen, N. Francis, B. D. Larsen, and N. J.
Christensen, “Interactive Shader Development,”
Proceedings of the 2007 ACM SIGGRAPH Symposium
on Video Games, New York, NY, USA, pp. 89-95, 2007.

[12] P. Jeremias and I. Quilez, “Shadertoy: Learn to Create
Everything in a Fragment Shader,” SIGGRAPH Asia
2014 Courses, New York, NY, USA, p. 18:1-18:15,
2014.

[13] T. Kagawa, H. Nishino, and K. Utsumiya, “The
Development of Interactive Texture Designing Method
for 3D Shapes,” 2010 International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, pp. 109-
114, 2010.

[14] J. R. Koza, Genetic Programming: On the Programming
of Computers by Means of Natural Selection, The MIT
Press, 1992.

[15] J. Meyer-Spradow and J. Loviscach, “Evolutionary

IJCA, Vol. 24, No. 1, March 2017 11

Design of BRDFs,” Eurographics 2003 Short Paper
Proceedings, pp. 301-306, 2003.

[16] D. P. Muni, N. R. Pal, and J. Das, “Texture Generation
for Fashion Design Using Genetic Programming,”
Robotics and Vision 2006 9th International Conference
on Control, Automation, pp. 1-5, 2006.

[17] H. Nishino, H. Takagi, S. B. Cho, and K. Utsumiya, “A
3D Modeling System for Creative Design,” 15th
International Conference on Information Networking,
pp. 479-486, 2001.

[18] H. Nishino, H. Takagi, and K. Utsumiya, “A Digital
Prototyping System for Designing Novel 3D
Geometries,” 6th Int. Conf. on Virtual Systems and
MultiMedia (VSMM2000), pp. 473-482, 2000.

[19] I. Quilez and P. Jeremias, “Shadertoy BETA,” 2009,
[Online], Available: https://www.shadertoy.com/,
[Accessed: 21-Dec-2016].

[20] J. C. Quiroz, A. Banerjee, and S. J. Louis, “3-D Modeling
Using Collaborative Evolution,” Proceedings of the
Fourteenth International Conference on Genetic and
Evolutionary Computation Conference Companion, New
York, NY, USA, pp. 653-654, 2012.

[21] . C. Quiroz, A. Banerjee, S. J. Louis, and S. M. Dascalu,
Collaborative Evolution of 3D Models, Design
Computing and Cognition ’14, J. S. Gero and S. Hanna,
Eds., Springer International Publishing, pp. 493-510,
2015.

[22] A. Ray, “ShaderFrog,” ShaderFrog, [Online], Available:
http://shaderfrog.com, [Accessed: 18-Jan-2017].

[23] B. J. Ross, W. Ralph, and H. Zong, “Evolutionary Image
Synthesis Using a Model of Aesthetics,” 2006 IEEE
International Conference on Evolutionary Computation,
pp. 1087-1094, 2006.

[24] B. J. Ross and H. Zhu, “Procedural Texture Evolution
using Multi-Objective Optimization,” New Gener.
Comput., 22(3):271-293, Sep. 2004.

[25] N. Shaker, J. Togelius, and M. J. Nelson, Procedural
Content Generation in Games: A Textbook and an
Overview of Current Research, Springer, 2016.

[26] K. Sims, “Artificial Evolution for Computer Graphics,”
Proceedings of the 18th Annual Conference on Computer
Graphics and Interactive Techniques, New York, NY,
USA, pp. 319-328, 1991.

[27] K. Sims, “Interactive Evolution of Equations for
Procedural Models,” Vis. Comput., 9(8):466-476, Aug.
1993.

[28] H. Takagi, “Interactive Evolutionary Computation:
Fusion of the Capabilities of EC Optimization and
Human Evaluation,” Proc. IEEE, 89(9):1275-1296,
2001.

[29] A. L. Wiens and B. J. Ross, “Gentropy: Evolutionary 2D
Texture Generation,” Late Breaking Papers at the 2000
Genetic and Evolutionary Computation Conference, Las
Vegas, Nevada, USA, pp. 418-424, 2000.

[30] A. L. Wiens and B. J. Ross, “Gentropy: Evolving 2D
textures,” Comput. Graph., 26(1):75-88, Feb. 2002.

Juan C. Quiroz is a Senior Lecturer in the
Department of Computing and Information
Systems at Sunway University, Bandar
Sunway, Malaysia. He received his Ph.D.
in Computer Science and Engineering from
the University of Nevada, Reno, USA in
2010. His research interests are in
evolutionary computation and machine

learning.

Sergiu Dascalu is a Professor in the
Computer Science and Engineering
Department at the University of
Nevada, Reno, USA. He received a
PhD in Computer Science from
Dalhousie University, Halifax, Nova
Scotia, Canada in 2001. His main
research interests are in software

engineering and human-computer interaction, in particular in
software approaches and tools for scientific research,
simulation environments, virtual reality, information
visualization, and interaction design. Sergiu has over 150 peer-
reviewed publications and has been involved in the
organization of many international conferences and
workshops. He has advised 5 PhD and 40 Master students who
graduated so far and has worked on many projects funded by
federal agencies such as NSF, NASA, and ONR as well as
industry organizations.

12 IJCA, Vol. 24, No. 1, March 2017

Approximate k-Nearest Neighbor Search with the Area Code Tree

Wendy Osborn* and Fatema Rahman∗

University of Lethbridge, Lethbridge, Alberta T1K 3M4, CANADA

Abstract

In this paper, we propose and evaluate a strategy for
approximate k-nearest neighbor searching using the Area Code
tree. The Area Code tree is a trie-type structure that manages
area code representations of each point of interest (POI) in a
data set. It provides a fast method for locating an approximate
nearest neighbor for a query point. We first summarize the area
code generation, insertion (used in overall construction) and
searching approaches. Then, we evaluate the construction via
repeated insertion, k-nearest neighbor searching, and accuracy
of the Area Code tree, with some of the evaluation involving
the comparison versus a basic benchmark brute force approach.
We find that when the Area Code tree is used for locating
approximate nearest neighbors, that low constant-time search is
achieved. Also, in denser POI sets, higher accuracy is achieved
for locating one-nearest neighbor. This ultimately makes the
Area Code tree a strong candidate for approximate continuous
nearest neighbor processing for location-based services.

Key Words: Nearest neighbor queries, spatial access
methods, location-based services.

1 Introduction

A location-based service provides results to a user of a mobile
device (e.g. smartphone, tablet) based on their location, interests
and the type of query being performed [11]. One example
of such a query is a k-nearest neighbor query [10, 12], which
returns the nearest k points of interest (POI) to them. For
example, a user may want to know the location of some of the
nearest restaurants to them. The user may want to know the
exactly closest restaurants to them. However, the user may also
be happy with suggestions that, although not guaranteed to be
the closest, may be close enough to satisfy them. This is an
example of an approximate k-nearest neighbor, where a trade-
off is being made between accuracy and efficiency.

Efficient nearest neighbor processing, exact or approximate,
is important, but is especially important when it is initiated
from a mobile device [11]. Many strategies have been proposed
for nearest k-neighbor processing for location-based services.
Several utilize spatial access methods [1], including [3, 4, 5, 6,

*Email: {wendy.osborn,f.rahman}@uleth.ca. Article is an extension of [9],
presented at SEDE 2016.

7, 13, 14]. Although all of these strategies return exact nearest
neighbors, limitations of these approaches include repeated
searching, the need to cache a significant amount of data on
the mobile device, the requirement to know the query trajectory
in advance, and maintaining a sparse index which leads to
inefficient searches.

Repeated searching is not desirable, but may be the only
option when storage on a mobile device is limited. A recently
proposed data structure, the Area Code tree [8] manages POIs
in a trie-type structure using an area code representation for
each POI. Although it can be used to locate POIs efficiently, it
cannot be used for exact nearest neighbor matching. However,
given a preliminary evaluation on its efficiency, it is an
excellent candidate for approximate k-nearest neighbor search
for situations where a guaranteed exact answer is not required,
for example, in the restaurant scenario given above.

Therefore, in this paper, we extend this approximate nearest
neighbor strategy and propose one for locating k-nearest
neighbors. We also evaluate the Area Code tree for k-nearest
neighbor search accuracy, tree construction time, and also
comparatively evaluate its search time against another strategy.
We find that approximate k-nearest neighbor searching can be
accomplished in very low and constant time, regardless of the
number of POIs being indexed. With respect to accuracy,
up to 60% accuracy is achieved when the Area Code tree is
used for locating one-nearest neighbor in a dense POI set.
This makes the Area Code tree a significant candidate for
continuous approximate nearest neighbor search for location-
based services. The remainder of the paper proceeds as follows.
Section 2 summarizes related work in the area of continuous
nearest neighbor processing for mobile devices. Section 3
summarizes the area code mapping, insertion and 1-nearest
neighbor search algorithm for the Area Code tree. Given this,
we propose a k-nearest neighbor search strategy for the Area
Code tree. Section 4 presents the methodology and results of
our performance evaluation. Finally, Section 5 concludes the
paper and provides some directions of future research.

2 Related Work

In this section, we summarize related work in nearest
neighbor searching for location-based services. Although
nearest neighbor strategies have been proposed in other

ISCA Copyright© 2017

IJCA, Vol. 24, No. 1, March 2017 13

contexts, they are considered outside of the scope of this
work. Many strategies have been proposed in the literature
[3, 4, 5, 6, 7, 13, 14].

A continuous nearest neighbor strategy proposed by Song and
Roussopoulos [13] obtains a superset m of nearest neighbors,
which attempts to keep the result current while the query
point moves around, and a new query call to the server is not
necessary. Their strategy utilizes existing stationery nearest
neighbor strategies. A limitation of their strategy is in choosing
the value of m so that fewer query calls are needed but not too
much data needs to be stored on the mobile device.

Tao et al. [14] utilizes the R-tree [2] to speed up the repeated
searching needed for their continuous query strategy. Lee et al.
[5] improves upon this strategy by fetching both the required
and some additional objects in order to reduce the number of
repeated searches that are needed. Park et al. [7] also improves
upon this strategy by locating all nearest neighbors along a
trajectory by using the R-tree. A limitation exists in that the
trajectory needs to be known in advance.

Hu et al. [3] proposes a proactive caching strategy, which
caches previous results and the R-tree nodes required to obtain
them on the mobile device. The cache is always searched
first for a new query, with additional results fetched from the
server. Limitations include the significant overhead of caching
and local processing on the mobile device.

Jung et al. [4] utilize a grid index for continuous nearest
neighbor searching. The grid index allows for quick elimination
of regions of space from consideration if they do not overlap the
query point. A limitation with this strategy is that the grid index
can be sparse due to wasted space.

In summary, some general limitations of these approaches
include caching a significant amount of data on the mobile
device, repeated searching, using a sparse index which leads
to inefficient searches, and requiring knowledge of the query
path in advance. Repeated searching, however, may be the

only option if storage is limited on a mobile device. The Area
Code tree [8] attempts to provide the ability to perform repeated
searching that is efficient, but at the cost of accuracy. It is
also more compact that existing spatial access methods, given
that only POIs are stored, and not many co-ordinates for many
bounding rectangles. The Area Code tree is summarized in the
next section.

3 Area Code Tree

The Area Code Tree [8] is a trie-type structure for
approximate nearest neighbor searching. It stores points of
interest (POIs) that are represented in an area code format.
In this section, we summarize the mapping, construction and
nearest neighbor search for the Area Code tree.

3.1 Mapping

An area code is a sequence of digits that indicate the relative
location of a POI in space. It is obtained by recursively
partitioning the space containing points into quadrants. For a
particular POI, the space is partitioned until the POI is equal
to the middle of a quadrant. At each level of partitioning, the
quadrants are numbered as follows: SW (1) SE (2) NW (3) and
NE (4). Beginning with the top-most partition, a POI obtains a
digit at each level, depending on which quadrant it resides in.
Figure 1 depicts an example of space partitioning and mapping.
The POI maps to the area code 4132, since the POI resides in
the top-most NE quadrant, followed at the next level by the SW
quadrant, then the NW quadrant, and finally the SE quadrant.

3.2 Tree Construction

Once the area code for a POI is determined, is it inserted into
the Area Code Tree, beginning with the most significant area
code digit. To construct a tree, each area code is inserted one at

Figure 1: Area code mapping (from [8])

14 IJCA, Vol. 24, No. 1, March 2017

a time, using the existing strategy for any trie structure. Figures
2 and 3 depict the construction of a small Area Code Tree,
containing the POIs A,B,C,D and E, and each with area codes
12134, 32321, 12141, 32114, and 21324 respectively. POI A is
inserted first. When POI B is inserted, a new node is created for
it, since the existing node contains area codes that start with 1,
and the area code for B starts with 3. When POI C is inserted,
additional nodes are created for the common prefix strings (12,
121) contained by both A and C. A similar case occurs when
inserting POI D, with common prefix string 32. Finally, when
POI E is inserted, a new path is started since its leading digit, 2,

is not contained by any other existing path.

3.3 K-Nearest Neighbor Searching

Given that every POI is mapped to a string of digits, this
provides a method for quickly identifying approximate k-nearest
neighbors to the query point. We first describe the 1-nearest
neighbor case, and then describe the extensions to k nearest
neighbors.

Any search will begin by first mapping the query point to an
area code using the same strategy that is mentioned above for

(a) After Insertion of POI A (b) After Insertion of POI B (c) During Insertion of POI C

(d) After Insertion of POI C (e) After Insertion of POI D

Figure 2: Index construction - part 1

IJCA, Vol. 24, No. 1, March 2017 15

(a) After Insertion of POI E

Figure 3: Index construction - part 2

mapping POIs. Then, beginning with the most significant digit
of the query point area code, a path is followed down the Area
Code tree while digits in the query match digits in the tree nodes.
If a match does not exist at a particular level, the closest match
is taken. For example, suppose we have the query area code of
12144. Referring back to Figure 3, the closest match is the POI
C with area code 12141, since a path exists that matches the first
4 digits of the query area code, with the closest node to the last
digit in the query area code containing the value of 1.

Using this basis, the 1-nearest neighbor search can be
extended to locate k nearest neighbors. Figure 4 depicts a sketch
of our k-nearest neighbor strategy for the Area Code tree. It
consists of three stages, which we describe below:

1. Finding nearest neighbors. This stage uses a slight
modification of the 1-nearest neighbor approach. A search
is initiated for the area code that is the closest to the query.
However, if k nearest neighbors are sought, then area codes
for other POIs that exist along the immediate search path
are also obtained and added to the result set, until k is

reached, or until the leaf node for the original search is
reached.

2. Finding nearby neighbors. It is possible that the number of
POIs obtained in the first step is not enough to satisfy the
query. Therefore, using the area code for each POI in the
initial result set, a search for other POIs is performed, with
any added to the updated result set. This continues until
either k is reached, or all POIs in the initial result set have
been exhausted.

3. Finding further neighbors. This step is similar to the
second step, except that the POIs obtained in the second
step are the basis for locating additional nearby POIs.

Referring back to our original example, suppose we have the
query area code of 12144. In Figure 3, the closest match is
the POI with area code C (12141). However, in the first step
of our k-nearest neighbor strategy, the POI A is also retrieved
for our result. If k=2, then the search is completed. Otherwise,
the result set containing (C,A) is processed using the second
step of our strategy to obtain any more required points from the

16 IJCA, Vol. 24, No. 1, March 2017

knn = n; //provided by User
query = xxxxx; //converted from (x,y)

//provided by User
result = list();

tree_ptr = AC_root;

//first, find "matching" area code for query,
//and all others along same path
result

= find_nearest_neighbors(tree_ptr,
query,knn);

//if we need more POIs to make inn
if(size(result) < knn)

result
= find_nearby_neighbors(tree_ptr,

query, knn, result)

//if we still need more POIs,
//we look even further from query
if(size(result) < knn)

result
= find_further_neighbors(tree_ptr,

query, knn, result)

return result;

Figure 4: k-nearest neighbor searching sketch

remaining part of the tree.

4 Evaluation

In this section, we present the methodology and results
of our performance evaluation of the Area Code tree. We
compare its search performance with the Brute Force method,
which consists of searching the entire set of POIs to find
the k-nearest neighbors. We chose this comparison for our
preliminary evaluation due to the Brute Force method being a
basic benchmark for processing nearest neighbor queries. In
addition, we evaluate the construction time and the accuracy of
our proposed structure. Construction is performed by inserting
one POI area code at a time, while accuracy is measured by
determining the percentage of times overall that accurate k-
nearest neighbors are found when the Area Code tree is used
to locate them.

4.1 Methodology

For our evaluation, we use twenty-one synthetically
generated data sets that represent collections of different POIs
across New Zealand. Ten data sets consist of POIs drawn

from across the North Island of New Zealand, with each set
containing 1000, 2000, 3000,..., up to 10,000 POIs respectively.
An additional ten data sets contain POIs from across the
Waikato Region of New Zealand (part of the North Island),
again with each file containing 1000, 2000, 3000,..., up to
10,000 POIs respectively. The Waikato data sets are denser,
which allows us to evaluate the Area Code Tree in denser
POI data. The remaining data set contains 10 User locations
along their trajectory, which will serve as the k-nearest neighbor
queries for our evaluation.

First, for each POI set mentioned above, an Area Code Tree
is created, to give a total of 20 area code trees. Then, using
these trees and the User location set, the following tests are
performed:

• For all 20 area code trees, we perform a 1-nearest neighbor
search for each of the 10 points in the User location set.

• For the North Island 10,000 and Waikato 10,000 POI sets
only, we also perform a k-nearest neighbor search for each
point in the User location set. We perform the search for
k=2,3,4,...10.

Every search is also performed on the same data sets using
the Brute Force method. Therefore, a total of 400 k-nearest
neighbor comparisons are performed.

The performance criteria that are measured are as follows:

• For each tree construction, the overall construction time
(in seconds), where the construction time includes the time
required to calculate the area codes and to insert each area
code into the tree.

• For every k-nearest neighbor search, the average search
time (in milliseconds).

• The accuracy of the Area Code tree, which is measured by
recording for each search, the percentage of POIs found
by Area Code Tree that matched those found by the Brute
Force search.

4.2 Results

We first present the results of the search and accuracy
experiments, followed by the tree construction results. First,
Figures 5 and 6 depict the results of the 1-nearest neighbor
comparison using all of the the Waikato and North Island POI
sets, respectively. For both figures, the x-axis contains values
that represent 1000s of POIs (i.e. 1 is 1000 POIs, up to 10 for
10,000 POIs), while the y-axis contains the average search time
in seconds.

We find that for both the Waikato and North Island POI sets,
searching using the Area Code Tree achieves significantly better
search times over the Brute Force method. The average search
time for the Area Code tree is less than 0.005 seconds (i.e.
5ms), and is regardless of both the density of the dataset and
the number of POI area codes in the area code tree. For the
Brute Force method, the average search time increases linearly,

IJCA, Vol. 24, No. 1, March 2017 17

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ti
m
e	
(s
ec
on

ds
)	

Number	of	Points	(x	1000)	

Area	

Brute	

Figure 5: 1-nearest neighbor - Waikato POIs

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ti
m
e	
(s
ec
on

ds
)	

Number	of	Points	(x	1000)	

Area	

Brute	

Figure 6: 1-nearest neighbor - North Island POIs

0	

10	

20	

30	

40	

50	

60	

70	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	A
cc
ur
ac
y	

Number	of	Points	(x	1000)	

North	

Waikato	

Figure 7: 1-nearest neighbor - accuracy

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ti
m
e	
(s
ec
on

ds
)	

Number	of	Nearest	Neighbours	

Area	

Brute	

Figure 8: k-nearest neighbor - Waikato POIs

0	

0.005	

0.01	

0.015	

0.02	

0.025	

0.03	

0.035	

0.04	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ti
m
e	
(s
ec
on

ds
)	

Number	of	Nearest	Neighbours	

Area	

Brute	

Figure 9: k-nearest neighbor - North Island POIs

0	

10	

20	

30	

40	

50	

60	

70	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

%
	A
cc
ur
ac
y	

Number	of	Nearest	Neighbours	

North	

Waikato	

Figure 10: k-nearest neighbor - accuracy

18 IJCA, Vol. 24, No. 1, March 2017

between approximately 0.007 seconds (i.e. 7ms) up to almost
0.035 seconds (i.e. 35ms) for searching in 10,000 area codes.

Figures 8 and 9 depict the results of the k-nearest neighbor
comparison for the 10,000 Waikato and 10,000 North Island
POI sets, respectively. For both figures, that x-axis contains
the k values used, while the y-axis contains the average search
time in seconds. We again find in both cases a significant
improvement in running time when the Area Code tree is
used for k-nearest neighbor searching. We also find that for
both Area Code tree searching and the Brute Force approach,
similar results are achieved, regardless of the number of nearest
neighbors being sought or the density of the POI set. The
average search time using the Area Code tree is under 0.005
seconds (i.e. 5ms), while for the Brute Force approach it is
between 0.03 and 0.04 seconds (i.e. 30 and 40ms).

Figures 7 and 10 depict the accuracy of the Area Code
tree in locating 1-nearest neighbor and k-nearest neighbors,
respectively. Here, we can see that the North Island and Waikato
POI sets differ significantly in their performance.

For 1-nearest neighbor search, we find that for the dense POI
sets (i.e Waikato), the Area Code tree can achieve between
40% and 60% accuracy . For the less dense POI sets (i.e.
North Island) however, the accuracy was lower, around 30%
in most cases. Therefore, for the 1-nearest neighbor case we
conclude that the Area Code Tree provides fast nearest neighbor
searching, that is expected to improve in accuracy as the data set
size increases in density.

However, we find the opposite scenario when the search is
increased to k-nearest neighbors. For the less dense POI sets,
although some modest improvements are found in accuracy, for
most cases, and in particular for higher values of k, we find that
just over 30% accuracy is still being achieved. For the denser
POI sets, we observe a steady decline in the accuracy of the
search results, from 60% for 1-nearest neighbor to just over
20% accuracy for 10-nearest neighbors. In addition, it should
be noted that, although not presented here, the only situations
where 100% accuracy is achieved are for the 1- and 2-nearest
neighbor searches. Therefore, we conclude that in less dense
POI sets, searching in the Area Code tree seems to achieve
consistent accuracy, regardless of the k value, while for the
dense point sets, the best results are for lower values of k only,
with a decline in accuracy as the value of k increases.

Finally, Table 1 depicts the overall construction times (in
seconds) of the Area Code Tree for the various sets of POIs.
We observe that the time it takes to construct an Area code
tree via repeated insertion increases significantly with the size
of the POI set. However, the absolute worst case is still under 3
minutes. For the North Island datasets, the time ranges from just
a few seconds for 1000 POIs, up to 2.5 minutes for 10,000 POIs.
For the Waikato Region datasets, the times range from a few
seconds to over 3 minutes. Although these overall construction
times are high when compared to the search times, two things
must be noted. First, for static data sets, the Area Code tree only
needs to be constructed once in order to be searched many times.
Second, the occasional insertion can still be performed without

Table 1: Tree construction times (in seconds)

Data Sets #POIs O/A Time

North Island

1000 4.04
2000 10.98
3000 19.60
4000 31.46
5000 44.31
6000 61.20
7000 81.80
8000 103.61
9000 127.37

10000 158.24

Waikato

1000 5.02
2000 12.63
3000 23.38
4000 37.45
5000 55.19
6000 75.97
7000 99.50
8000 127.75
9000 159.02

10000 192.71

having to re-construct the entire Area Code tree. Therefore,
given the search performance results above, the construction
time is a small price that must be paid.

5 Conclusion

In this paper, we present a k-nearest neighbor search strategy
for the Area Code tree. We also evaluate the accuracy, tree
construction time, and also comparatively evaluate the search
time against a Brute Force strategy. We find that approximate k-
nearest neighbor searching can be accomplished in very low and
constant time, regardless of the number of POIs being indexed.
With respect to accuracy, up to 60% accuracy is achieved when
the Area Code tree is used for locating 1-nearest neighbor in
dense POI sets. This makes the Area Code tree a significant
candidate for continuous approximate nearest neighbor search
for location-based services. The only significant factor is in
the tree construction time. However, for fairly static data sets,
this is a small price to pay for the savings in search time and
increased accuracy (in some cases) that are achieved. Some
future research directions include the following. First, the Area
Code tree must have its k-nearest neighbor search performance
evaluated further by comparing it with other spatial access
methods. Second, further examination of the Area Code tree for
continuous k-nearest neighbor searching must also take place.
Finally, the Area Code tree needs to be expanded to utilize
other types of “area codes”, such as telephone area codes, and
postal/zip codes. However, the results presented here show that
the Area Code tree has promise for different applications in
continuous query processing.

IJCA, Vol. 24, No. 1, March 2017 19

Acknowledgments

The authors would like to thank the reviewers of this
manuscript and the previous conference paper for their
thoughtful and constructive comments.

References

[1] V. Gaede and O. Günther, “Multidimensional Access
Methods,” ACM Computing Surveys, 30:170–231, 1998.

[2] A. Guttman, “R-trees: A Dynamic Index Structure for
Spatial Searching,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 47–57, 1984.

[3] H. Hu, J. Xu, W.S. Wong, B. Zheng, D.L. Lee and W.-
C. Lee, “Proactive Caching for Spatial Queries in Mobile
Environments,” Proc. 21st Int’l Conf. Data Engineering,
pp. 403–414, 2005.

[4] H.R. Jung, S.-W. Kang, M.B. Song, S.J. Im, J. Kim and C.-
S. Hwang, “Towards Real-Time Processing of Monitoring
Continuous k-Nearest Neighbor Queries,” Proc. 2006 Int’l
Conf. Frontiers of High Performance Computing, pp. 11-
20, 2006.

[5] K.C.K. Lee, W.-C. Lee, H.V. Leong, B. Unger
and B. Zhang,“Efficient Valid Scope Computation for
Location-Dependent Spatial Queries in Mobile and
Wireless Environments,” Proc. 3rd Int’l Conf. Ubiquitous
Information Management and Communication, pp. 131-
140, 2009.

[6] W. Osborn and A. Hinze, “TIP-tree: A Spatial Index for
Traversing Locations in Context-Aware Mobile Access
to Digital Libraries,” Pervasive and Mobile Computing,
15:26–47, December 2014.

[7] Y. Park, K. Bok and J. Yoo, “An Efficient Path Nearest
Neighbor Query Processing Scheme for Location-Based
Services,” Proc. 17th Int’l Conf. Database Systems for
Advanced Applcations, pp. 123–129, 2012.

[8] F. Rahman and W. Osborn, “The Area Code Tree
for Nearest Neighbor Searching,” Proc. 2015 IEEE
Pacific Rim Conf. Communications, Computers and Signal
Processing, pp. 153–158, 2015.

[9] F. Rahman and W. Osborn, “The Area Code Tree for
Approximate Nearest Neighbor Searching in Dense Point
Sets,” ISCA 25th Int’l Conf. Software Engineering and
Data Engineering, pp. 103–108, 2016.

[10] N. Roussopoulos, S. Kelley and F. Vincent, “Nearest
Neighbor Queries,”, SIGMOD Rec., 24(2):71–79, May
1995.

[11] J.H. Schiller and A. Voisard, Editors, Location-Based
Services, Morgan Kauffman, 2004.

[12] S. Shekhar and S. Chawla, Spatial Databases: A Tour,
Prentice Hall, 2003.

[13] Z. Song and N. Roussopoulos, “K-Nearest Neighbor
Search for Moving Query Point,” Proc. 7th Int’l Symp.
Advances in Spatial and Temporal Databases, pp. 79–96,
2001.

[14] Y. Tao, D. Papadias, and Q. Shen, “Continuous Nearest
Neighbor Search,” Proc. 28th Int’l Conf. Very Large Data
Bases, pp. 287–292, 2002.

Wendy Osborn is an Associate
Professsor of Computer Science at
the University of Lethbridge. She
obtained her B.C.S. (Hons) and
M.Sc. degrees at the University
of Windsor (Ontairo, Canada) in
1996 and 1998 respectively, and her
Ph.D. at the University of Calgary
(Alberta, Canada) in 2005. Her
research interests include location-

based services, spatial access methods, and distributed query
processing for standard and non-standard data.

Fatema Rahman obtained her
B.Sc. degree in Computer Science
and Engineering at Jahangirnagar
University (Dhaka, Bangladesh) in
2009. Currently, she is a Master
of Science (Computer Science)
candidate at the University of
Lethbridge, and expects to complete
her degree in the Summer of 2017.
Her fields of interest include data

management, mining and warehousing, pattern recognition and
image processing.

20 IJCA, Vol. 24, No. 1, March 2017

Rewind: An Automatic Music Transcription Web Application

Chase D. Carthen*, Vinh Le*, Richard Kelley*, Tomasz J. Kozubowski*, Frederick C. Harris Jr.*
University of Nevada

Reno, Nevada, 89557, USA

Abstract

Simple digital audio formats such as mp3s and various
others lack the symbolic information that musicians and other
organizations need to retrieve the important details of a given
piece. However, there have been recent advances for converting
from a digital audio format to a symbolic format a problem
called Music Transcription. Rewind is an Automatic Music
Transcription (AMT) system that boasts a new deep learning
method for generating transcriptions at the frame level and web
application. The web app was built as a front end interface to
visualize and hear generated transcriptions. Rewind’s new deep
learning method utilizes an encoder-decoder network where the
decoder consists of a gated recurrent unit (GRU) or two GRUs
in parallel and a linear layer. The encoder layer is a single
layer autoencoder that captures the temporal dependencies of
a song and consists of a GRU followed by a linear layer. It
was found that Rewind’s deep learning method is comparable
to other existing deep learning methods using existing AMT
datasets and a custom dataset. In other words, Rewind is a web
application that utilizes a deep learning method that allows users
to transcribe, listen to, and see their music.

Key Words: Deep learning, Automatic Music Transcription,
Music Information Retrieval, and Machine Learning.

1 Introduction

Many musicians, bands, and other artists make use of MIDI, a
symbolic music instruction set, in popular software to compose
music for live performances, portability across other formats,
and recording. However, most music is often recorded into
raw formats such as Wav, MP3, OGG, and other digital
audio formats. These formats do not often contain symbolic
information, but may contain some form of metadata that
does not typically include symbolic information. Symbolic
formats, such as sheet music have been used by bands, choirs,

*chase@nevada.unr.edu, vle@nevada.unr.edu
*rkelley@unr.edu, tkozubow@unr.edu
*Fred.Harris@cse.unr.edu

and artists to recreate or perform songs. These symbolic
formats are effectively the spoken language of music that can
be re-translated back into sound. Communities such as Mirex
are actively working many different problems on retrieving
information from music so that creating, categorizing, and
extracting information is easier. The Symbolic format is not
only portable, but can be leveraged for doing different types of
analysis such as genre classification, artist classification, mood
detection.

Automatic Music Transcription (AMT) is the process of
converting an acoustic musical signal into a symbolic format
[14]. There are a few music transcription applications having
varying degrees of accuracy that have been built mostly for
Windows, Linux, Mac and the web browser [19]. Only a few
of these applications have the ability to visualize the results
of the transcription. A piano roll is an intuitive visualization
of music that does not require a user to learn a more complex
symbolic available for music such as sheet music. These
applications allow a user to get a symbolic format of their music
that can be used for many different reasons such as changing
a song, portability to other applications, live performances,
and for generating sheet music. However, most of these
applications do not use state of the art algorithms from advances
in Deep Learning that have contributed to the Music Information
Retrieval (MIR) field.

There has been recent work in the AMT field with [5, 6, 25]
that have produced higher transcription accuracies than previous
methods. These advances along with the creation of web
audio frameworks such as WebAudio or WebMidi have made
it possible to playback many different types of audio formats
such as mp3, wav, and MIDI. Web frameworks such as Django
and Flask make it possible to create a web application that does
automatic music transcription and allows users to visualize the
transcription and hear the results. Rewind [8, 9] is a tool and
method that will make use of a new Deep Learning method
based on previous work, visualize the results of the transcribed
file, and allow the user to edit the transcribed results.

The following paper is structured as follows: Section 2
covers background related to the MIR and Deep Learning field.

ISCA Copyright© 2017

IJCA, Vol. 24, No. 1, March 2017 21

Figure 1: An example of a raw audio file

Figure 2: An example of a spectrogram

Section 3 discusses the implementation and design of Rewind
tool. Section 4 gives the results of the Rewind method. Finally
Section 5 concludes and details future direction that Rewind can
take.

2 Background

AMT systems are designed to make transcriptions at the three
levels of detail in music, those being the stream, note, and frame
level [14]. The stream level is simply a raw acoustic signal
which is contained in an audio digital file, an example of which

can be seen in Figure 1. The goal of the frame level is to capture
all pitches within each frame provided by a spectrogram. An
example of a spectrogram is demonstrated in Figure 2. At the
note level, a set of pre-existing notes are used to generate a brand
new set of notes or create a record of the notes. The note level
can be represented as a piano roll or as sheet music. An example
of sheet music and piano roll is demonstrated in Figures 3 and
4. Most AMT systems evaluate their effectiveness by means
of various metrics, including recall, accuracy, precision, and f-
measure [3]. Precision determines how relevant a transcription
is given irrelevant entries in a frame. It is defined as follows:

Precision =
∑

T
t=1 T P(t)

∑
T
t=1 T P(t)+FP(t)

(1)

Recall is the percentage of relevant music transcribed, and is
given by Equation 2.

Recall =
∑

T
t=1 T P(t)

∑
T
t=1 T P(t)+FN(t)

(2)

The accuracy determines the correctness of a transcription, and
is given by Equation 3.

Accuracy =
∑

T
t=1 T P(t)

∑
T
t=1 T P(t)+FP(t)+FN(t)

(3)

While the F-measure determines the overall quality between the
precision and recall.

F-measure =
2∗ precision∗ recall

precision+ recall
(4)

These metrics in turn are calculated with true positives, false
positives, and false negatives

There has been some work using LSTMs and semitone filter
banks to transcribe music [5]. In Sigtia’s work [25], the idea of
an acoustic model converting an audio signal to a transcription
is introduced. Additionally this paper introduces using a music
language model to improve the accuracy of a transcription of a
acoustic model like Boeck [5] and others as well. Boulanger-
Lewandowski [6] uses a deep belief network to extract features

Figure 3: An example of sheet music

22 IJCA, Vol. 24, No. 1, March 2017

Figure 4: An example of a piano roll

from a spectrogram and utilizes a rnn to create a transcription
along with a innovative beam search to transcribe music.
Boulanger-Lewandowski’s beam search is possible thanks to the
generative properties of the deep belief network that is merely
a collection of restricted Boltzman machines or RBMs that
are stacked. This beam search is also utilized in combination
with recurrent neural network with an neural autoregressive
distribution estimator (rnn-nade) as a music language model and
an acoustic model that uses a deep neural network. A follow-up
paper produces a hash beam search that finds a more probable
transcription in fewer epochs [24]. Both the beam search and
hash beam search produce the most accurate transcriptions.

Recently, encoder-decoder networks have been used for
unsupervised learning in terms of autoencoders [26], translation
[12], caption generation for images, video clip description,
speech recognition [11, 13] or video generation. Autoencoders,
like an encoder-decoder network, are commonly used for
unsupervised learning to learn features contained inside the
data, by using the identity of the data. An autoencoder
is powerful for learning features contained within a dataset.
However, there are more complex encoder-decoder networks
[12, 11, 13], where they learn a context and then map English to
French. They are less concerned with learning the identity and
more for learning the context of the data presented. Rewind
utilizes these types of encoder-decoder networks to learn an
encoding for a spectrogram presented to it. An example layout
of this network is demonstrated in Figure 5. These networks
have proven to be beneficial, and are state of the art.

Figure 5: A picture of a encoder-decoder network with a
context C demonstrated between the encoder-decoder
network [11]

3 Rewind

Rewind is very much like other AMT systems in that it
determines the fundamental frequencies of the notes and what
notes are active at the frame level. Like most other frame
based systems, Rewind utilizes a spectrogram as its main input
and a ground truth midi as the target. All audio samples are
constructed at a 22 kHz sample rate and turned into a normalized
spectrogram with a 116 ms window size, which can be either
a 10 ms or a 50 ms stride. It has been found that a window
size larger than 100ms produces the most accurate results with
a rnn-lstm [5]. A multitude of existing datasets were utilized
for training Rewind’s models: Nottingham [1], JSB Chorales
[2], Poliner and Ellis [20], Maps [15], MuseData [10], and
Piano.midi.de [16]. All of these datasets were split into 70%
for training, 20% for testing, and 10% for validation. These
datasets consisted of midi only or midi with aligned audio and
made into datasets with timidity, Torch’s audio library, and a
midi library [4]. Rewind’s models were implemented with rnn
[18] and optim. A simple auto-correlation method was also
constructed as a way to implement Rewind’s web service and
website for quick testing. The auto-correlation is also compared
against the encoder-decoder network. Rewind has two types
of models: the encoder and the decoder model. The encoder
and decoder is very similar to the encoder-decoder network in
Figure 5 [11, 12, 13]. The encoder model of Rewind utilizes an
autoencoder, which utilizes a single GRU for its encoder, whose

IJCA, Vol. 24, No. 1, March 2017 23

Figure 6: A screenshot of piano roll notes lighting up

output is squashed by a rectified linear unit and a linear layer
for its decoding layer. While the decoder model has an identical
layout, but its outputs are squashed with a sigmoid activation
function and may have a second GRU in parallel.

The encoder network utilizes an autoencoder to create an
encoding for a spectrogram. An autoencoder was chosen
because a deep neural network (stacked auto encoders) has been
used for extracting features from a spectrogram in the case of
speech recognition [7] and other similar works that utilize deep
belief networks (stacked restricted Boltzman machines) have
been used to extract features [17]. A deep belief network, along
with an autoencoder, are used to produce a generative model
for a spectrogram [13]. The generic representations generated
by autoencoders can be further improved with recurrences [26],
where the encoder and decoder of the autoencoder are both
LSTMs for learning over video sequences and generating video
sequences. Rewind’s encoder model utilizes a linear neural
network for the decoder and a GRU for the encoder with a
rectified linear unit (ReLU) for it’s activation function [26]. The
encoder network is trained with a mean squared error function.

The decoder network consists of two types of networks being
a GRU with a linear layer and two GRUs stacked onto each
other in parallel with a linear layer. Both types of networks are
squashed with a sigmoid function. The GRU in both networks
was chosen because it produced the lowest error rate. This
network’s objective function is binary cross entropy, so that
this decoder network will learn a distribution of notes where
a probability of one indicates a note on and a probability of
zero indicates a note off. Binary cross entropy is used for
minimizing the log probability [6, 25], which also utilizes a
sigmoid function to create binary probabilities[23]. The binary
cross entropy function is demonstrated in Equation 5, where the

sum is taken over all distributions [25]:

∑
i

ti log pi +(1− ti) log(1− pi) (5)

The probabilities constructed from the sigmoid function can
be used to construct a MIDI, and are utilized in previously
mentioned papers. The decoder network’s job is to generate
these probabilities for each encoding passed by the encoder
network.

The auto-correlation method is a very noisy method. The
process creates a spectrogram of the required audio file and then
each bin of the spectrogram is normalized with the standard
deviation and mean. After these transformations have been
made, a threshold is applied, where anything greater than the
threshold is a 1 and anything less is a 0. Subsequently, one
simply only needs to go to each frequency bin that matches a
midi note and extract the frequencies that have a value of 1.
This auto correlation method is only meant as a test model for a
web service. However, in Section 4, results are reported for its
accuracy in comparison to Rewind’s Network.

3.1 Architecture

Rewind’s architecture consists of multiple parts that consist
of: the client, models and web service, and the server. Each
part is unique and has been designed to handle different parts
of Rewind’s functionality. The models are used for producing
transcription, and the web service is used to interface with the
model and send outputs to the client through the server. All
visualization, downloads, and uploads are handled by the client.
The server pushes all content needed to run the website to the
client. An overall diagram of the architecture is demonstrated in
Figure 7.

The models and web service component of the architecture
are used to process data for training a model, generating

24 IJCA, Vol. 24, No. 1, March 2017

Figure 7: The Architecture of Rewind

transcriptions with a preexisting model to be sent through the
web service, and training models. This component contains
Rewind’s method, or AMT algorithm, for creating transcriptions
of digital audio formats. The web service was created as a way
for Rewind’s models to send transcriptions to the client. The
web service for Rewind was written in Flask [22], as it requires
a small amount of code to get a web service written.

Rewind’s server was created with Django’s web framework
[21]. The rewind server serves up the website to the client,
which includes all of the HTML, Javascript, and CSS files. It
also handles sending uploaded audio files to the web service
and forwarding the content back to the client.

The client is a web browser, such as Google Chrome or
Mozilla Firefox, that is to be utilized by the user. The client
handles creating a piano roll for visualization, uploading audio
files to the web service, and giving the ability to download a
transcription. All sound playback is handled by the client and
allows the user to pause and play sounds. The client’s job is to
light up the notes in the piano roll as the note on hits.

3.2 Use Case Modeling

This section describes the use cases of Rewind and covers
the different scenarios of Rewind. The use cases were created
to understand what the user needs are for Rewind. Both the
back end of Rewind, being the models and web service, and the
front end of Rewind, being the Graphical User Interface (GUI)
of Rewind or the client, are covered by these use cases.

In the full use case diagram shown in Figure 8, there are

four actors being the: User, Developer, Web Service, and the
Rewind Server. The User are those who are interested in
creating a transcription of a digital audio song. The Developer
is one whom that is expanding and/or improving the accuracy of
Rewind. The Web Service is a service that allows the Rewind
client to convert a digital audio format into transcription. The
Rewind Server serves a website to the Rewind client. The rest
of the section explains each use case of Figure 8.

Play/Pause Playback
The user has the option to pause or playback a given
transcription in the Rewind client.

Download Transcription
When a transcription has been received from the server, the
user may download a transcription that one had requested.

Inspect Piano Roll
The user may look around the piano roll within the Rewind
client.

Get Information About Project
The Rewind client will provide the user the option to get
information about the Rewind project and how the project
works.

Upload Audio File
The user in this use case will upload a file that they wish to
transcribe.

Receive Transcription
When the server has received a transcription from the web
service, the Rewind client will receive the transcription for
playback and visualization.

IJCA, Vol. 24, No. 1, March 2017 25

Figure 8: A Use Case Diagram of Rewind

Create Piano Roll
After receiving the transcription the rewind client will build
a piano roll transcription for the user to see.

Playback Available
After the piano roll has been inside of the Rewind
client, then the client will allow the user to playback the
transcription and will let the user know that playback is
available.

Receive Audio File
In this use case, the web service receives an audio from
the server and is now ready to preprocess the audio file for
transcription by the models.

Create Transcription
The create transcription use case can occur in two different
ways: one is when the web service sends an audio file to the
models for transcription or a developer invokes the service.

Send Transcription
When the models have finished transcribing, then the
transcription will be sent to the web service where the
Rewind server will then send the data to client.

Preprocess Audio
The models before they can transcribe any audio have to
make sure that the files themselves are the proper format.
If they are not proper, then by default the models will
transform the music into the proper format.

Generate Dataset
The developer may wish to generate a new dataset for
training the models, which is possible. This is so
the developer may tweak Rewind and make its overall
transcription accuracy better.

Create Model
The developer is also able to create new models that can be

26 IJCA, Vol. 24, No. 1, March 2017

Figure 9: A diagram of Rewind’s web service

utilized for transcription or research.
Combine Models

The developer may wish to combine multiple models
together in order to improve transcription.

Train Models
The developer has the option of training the models in
order to determine if the new model is better than the
current model utilized by the web service.

3.3 Website and Web Service

Rewind’s web service was implemented in Flask as a
small web service that could be utilized by Rewind’s server
for making transcriptions of uploaded audio files. A small
web service was implemented for transcribing audio files so
that Rewind would remain scalable. All audio files and
transcriptions are handled through post requests. Figure 9
demonstrates a diagram of the communication of audio files and
transcriptions going in and out of the web service. This web
service communicates with the models of Rewind and creates
a midi file from the passed in audio file. All transcriptions
generated by the web service are piano only. Rewind’s website
was implemented in the Django web framework and utilized
the following javascript libraries: remodal, jQuery, jQuery UI,
and midi.js. Django was chosen for Rewind because it allows
Rewind to be scalable for future development, stable database
integration, and future incorporation of security. Midi.js is
utilized for its ability to parse MIDI files and generate sounds for
those MIDI files. The jQuery and jQuery UI libraries has many
useful features for designing interfaces, such as animations,
element manipulation, and 3D effects. The remodal library
allows for seamless modal windows to be displayed on the
website. A small web service was implemented in Flask to
wrap Rewind’s models in order to be utilized by Rewind to
generate transcriptions through http requests. This service was

implemented so that the small web service could be independent
and be used in other applications if needed. These libraries have
made it possible to make a website for Rewind. An example
of Rewind’s website is demonstrated in Figure 6. This figure
also demonstrates Rewind’s ability to visualize the playback of
a midi file in the form of a piano roll where the colors denote the
note level. The user has the ability to scroll through the piano
roll using the time bar and inspect the piano roll validity.

Rewind has a built in web synthesizer, which is used to
playback transcriptions generated by Rewind’s models. Midi.js
has several dependencies, which are used to playback sounds
and can handle different platform setups. It can parse midi
events and make it possible to extract time delta for constructing
piano rolls and note information. Midi.js can load many
different sound fonts to load different sounds such as piano,
flute, drums, and other sounds. The piano roll constructed
for visualization in Rewind is based on the time duration and
time position information collected from midi.js. The user has
the ability to scroll through the piano roll using the time bar
and inspect the piano roll validity. As a song plays the piano
roll will light up each note with different colrs based on the
note number as demonstrated in Figure 6, and the screen will
transition to another part of the piano every second. There is
some future work to be developed regarding the ability of adding
or removing certain notes from the transcription using the piano
roll. In conclusion, these libraries allow Rewind to be scalable
for more complex models in the future.

4 Results

In this section we present the precision, recall, f-measure, and
accuracy of Rewind’s transcriptions on the following datasets:
Nottingham consisting of 1000 or more songs, JSB Chorales
consisting of 200 or more songs, Poliner-Ellis consisting of 30

IJCA, Vol. 24, No. 1, March 2017 27

songs, MuseData consisting of 700 songs, the Maps dataset
consisting of 169 songs, and a custom dataset that consists of
160 songs split evenly from country, rock, jazz and classical.
The custom dataset was added since all of the benchmark
datasets currently used in the AMT are currently only classical
piano music and orchestral music. All datasets are primarily
midi and a synthesizer is used to generate wav except for the
Poliner-Ellis and Maps dataset that have a aligned wav file and
midi file. Rewind’s model ran with two different models and
both compared at a 10 ms and 50 ms stride. In Tables 1 and
2, the overall results of Rewind at a 10 ms stride, a standard
for AMT systems, at the frame level are demonstrated and
compared to Boulanger-Lewandowski’s work [6, 24]. The 50
ms results are demonstrated in Table 3, but the results are not
reported for the maps dataset. The 10 ms stride results were
trained with two parallel GRUs with a linear layer and the 50
ms results were trained with a single GRU and linear layer. The
results demonstrated in Table 2 are compared against ConvNet
acoustic model at the frame level [24].

Upon examining the table, the Convnet is better overall in
accuracy, recall, and f-measure, but Rewind has the higher
precision. The ConvNet [24] utilizes a hash beam search to find
the most probable sequence. If Rewind was to utilize the same
hash beam search, it may have been able to achieve an even
better accuracy, recall, and f-measure.

5 Conclusions and Future Work

Rewind demonstrated a encoder-decoder network that is
comparable to the results of Boulanger-Lewandowski rnn-
rbm [6] in terms of the Nottingham and JSB dataset. It also
achieved a higher precision than the rnn-nade [24] on the Maps
dataset. However, it suffered from issues in connection with
choosing a threshold to generate an on value in the transcription
on datasets such as MuseData and the custom dataset built
by Rewind. The custom dataset demonstrated that AMT
systems can work with multiple genres, but there may be other
factors that cause transcription metrics to go down, such as
multiple instruments being existent in the song or an improper
threshold. Despite these issues, Rewind does manage to follow
the underlying frame distribution in the lower classified datasets.
Rewind’s encoder-decoder has demonstrated a model that has
a high precision and comparable results coupled with a web
app that can generate transcriptions. Rewind’s website provides
users with a way to hear and see their transcriptions.

Rewind has demonstrated a model that works at the frame
level. Previous work, such as [24], have used a frame level
model in conjunction with a note level model to get a note
level transcription. One key thing for the encoder-decoder
network would be to add another layer, which can do note level
transcription and utilize other algorithms from [6] to produce

Table 1: Rewind’s results at 10 ms stride for the spectrogram (1 is the proposed model and 2 is the rnn-nade [6])

Accuracy Precision Recall F-Measure
Models 1 2 1 2 1 2 1 2
Nottingham 95.1% 97.4% 98.0% 96.9% 97.5%
JSB 82.8% 91.7% 92.4% 88.8% 90.6%
Poliner-Ellis 34.4% 79.1% 66.9% 41.5% 34%
MuseData 34% 66.6% 56.8% 45.9% 50.8%
Custom 16.2% 51.1% 19.2% 27.9%

Table 2: Rewind’s performance on the Maps dataset compared to [24] at 10 ms.

Proposed Simple Auto-Correlation ConvNet[24]
Accuracy 51.6% 6.4% 58.87%
Precision 76.5% 21.8% 72.40%
Recall 61.4% 8.2% 76.50%
F-Measure 68.1% 11.2% 74.45%

Table 3: Rewinds results at a 50 millisecond stride for the spectrogram where 2 is the proposed model and 1 is the Simple Auto-
Correlation model

Accuracy Precision Recall F-Measure
Models 1 2 1 2 1 2 1 2
Nottingham 21.5% 94.0% 29.2% 97.9% 44.7% 95.9% 35.3% 96.9%
JSB 20.8% 81.6% 32.9% 92.1% 36.2% 87.7% 34.5% 89.9%
MuseData 11.8% 23.0% 15.8% 60.2% 31.9% 27.2% 21.1% 37.4%
Poliner-Ellis 6.6% 42.6% 17.7% 70.5% 9.7% 51.8% 12.5% 55.8%
Custom 8.5% 20.4% 12.2% 44.5% 21.8% 27.3% 15.6% 33.9%

28 REFERENCES

a more probable transcription. This is possible due to the
separation of the encoder and decoder in the encoder-decoder
network. Another encoder for Rewind could be designed for
other problems such as genre classification, audio generation
like [26], or audio transformation where a sound is transform
into another sound. A deeper architecture could be considered
for experimentation for the encoder network, using possibly
more GRUs or LSTMs for larger datasets. One other issue
that Rewind would like to solve is being able to produce a
transcription for each instrument in a song and be able to
determine what instrument is being played. Rewind’s web has
the potential for new features and interfaces for new problems.
Rewind could be expanded into an application that allows a
user to edit existing music that has been transcribed. Another
addition would be to allow Rewind to recognize the lyrics of the
music being played. One more thing that Rewind could provide
is a way for users to collaborate and learn about music.

Acknowledgement

This material is based in part upon work supported by:
The National Science Foundation under grant number(s)
IIA-1329469. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National
Science Foundation.

References

[1] James Allwright, ABC Version of the Nottingham Music
Database, URL: http : / / abc . sourceforge . net /
NMD/ (visited on 04/10/2016), 2003.

[2] James Allwright, Bach Choral Harmony Data Set, URL:
http://archive.ics.uci.edu/ml/datasets/

Bach+Choral+Harmony (visited on 04/10/2016), 2010.

[3] Mert Bay, Andreas F. Ehmann, and J. Stephen Downie,
“Evaluation of Multiple-F0 Estimation and Tracking
Systems,” Proceedings of the 10th International Society
for Music Information Retrieval Conference, http://
ismir2009.ismir.net/proceedings/PS2-21.pdf,
Kobe, Japan, pp. 315–320, 2009.

[4] Peter J Billam, MIDI.lua, URL: http://www.pjb.com.
au/comp/lua/MIDI.html (visited on 04/10/2016), .

[5] Sebastian Böck and Markus Schedl, “Polyphonic Piano
Note Transcription With Recurrent Neural Networks,”
Acoustics, Speech and Signal Processing (ICASSP), 2012
IEEE International Conference on, pp. 121–124, DOI:
10.1109/ICASSP.2012.6287832, 2012.

[6] Nicolas Boulanger-Lewandowski, Yoshua Bengio,
and Pascal Vincent, “High-dimensional Sequence
Transduction,” 2013 IEEE International Conference
on Acoustics, Speech and Signal Processing(ICASSP),
pp. 3178–3182, DOI: 10 . 1109 / ICASSP . 2013 .

6638244, 2013.

[7] Nicolas Boulanger-Lewandowski, Jasha Droppo, Mike
Seltzer, and Dong Yu, “Phone Sequence Modeling With
Recurrent Neural Networks,” ICASSP, IEEE SPS, URL:
http://research.microsoft.com/apps/pubs/

default.aspx?id=217321, 2014.

[8] Chase D. Carthen, “Rewind: A Music Transcription
Method,” MA thesis, University of Nevada, Reno, 2016.

[9] Chase Carthen, Vinh Le, Richard Kelley, Tomasz
Kozubowski, and Frederick C. Harris Jr., “Rewind: A
Transcription Method and Website,” Proceedings of the
25th International Conference on Software Engineering
and Data Engineering (SEDE 2016), Denver, Colorado,
USA, pp. 73–78, 2016.

[10] Center for Computer Assisted Research in the
Humanities, MuseData, URL: http : / / musedata .

stanford.edu/ (visited on 04/10/2016), 2016.

[11] Kyunghyun Cho, Aaron Courville, and Yoshua Bengio,
Describing Multimedia Content using Attention-based
Encoder-Decoder Networks, eprint: arXiv : 1507 .

01053, 2015.

[12] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio,
“Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,” CoRR
abs/1406.1078 (), URL: http : / / arxiv . org / abs /
1406.1078, 2014.

[13] Li Deng, Mike Seltzer, Dong Yu, Alex Acero, Abdel-
rahman Mohamed, and Geoff Hinton, “Binary Coding
of Speech Spectrograms Using a Deep Auto-encoder,”
Interspeech 2010, International Speech Communication
Association, URL: http : / / research . microsoft .
com/apps/pubs/default.aspx?id=135405, 2010.

[14] Zhiyao Duan and Emmanouil Benetos, “Automatic
Music Transcription,” ISMIR, URL: http : / / c4dm .

eecs.qmul.ac.uk/ismir15-amt-tutorial/, 2015.

[15] Valentin Emiya, MAPS Database - A Piano Database
For Multipitch Estimation And Automatic Transcription
of Music, URL: http : / / www . tsi . telecom -

paristech . fr / aao / en / 2010 / 07 / 08 / maps -

database-a-piano-database-for-multipitch-

estimation-and-automatic-transcription-of-

music/ (visited on 04/10/2016), 2008.

[16] Bernd Krueger, Classical Piano MIDI Page, URL: http:
//www.piano-midi.de/ (visited on 04/10/2016), 2007.

[17] Honglak Lee, Peter Pham, Yan Largman, and Andrew
Y. Ng, “Unsupervised Feature Learning For Audio
Classification Using Convolutional Deep Belief
Networks,” Advances in Neural Information Processing
Systems 22, ed. by Y. Bengio, D. Schuurmans, J.
Lafferty, C. Williams, and A. Culotta, pp. 1096–1104,
URL: http : / / books . nips . cc / papers / files /
nips22/NIPS2009_1171.pdf, 2009.

REFERENCES 29

[18] Nicholas Leonard, Sagar Waghmare, Yang Wang, and
Jin-Hwa Kim, rnn : Recurrent Library for Torch, eprint:
arXiv:1511.07889, 2015.

[19] ofoct.com, Convert WAV (or MP3, OGG, AAC, WMA)
to MIDI, URL: http : / / www . ofoct . com / audio -
converter/convert-wav-or-mp3-ogg-aac-wma-

to-midi.html (visited on 04/10/2016), 2016.

[20] Graham Poliner, Automatic Piano Transcription, URL:
http://labrosa.ee.columbia.edu/projects/

piano/ (visited on 04/10/2016), 2008.

[21] Armin Ronacher, Django The Web Framework For
Perfectionists With Deadlines. URL: https : / / www .

djangoproject.com/ (visited on 04/10/2016), 2016.

[22] Armin Ronacher, Flask Web Development, One Drop At
a Time, URL: http://flask.pocoo.org/ (visited on
04/10/2016), 2016.

[23] Nicol N. Schraudolph and Terrence J. Sejnowski,
“Unsupervised Discrimination of Clustered Data via
Optimization of Binary Information Gain,” Advances
in Neural Information Processing Systems, Morgan
Kaufmann, pp. 499–506, 1993.

[24] S. Sigtia, E. Benetos, and S. Dixon, “An End-to-
End Neural Network for Polyphonic Piano Music
Transcription,” ArXiv e-prints (), arXiv: 1508 . 01774
[stat.ML], 2015.

[25] Siddharth Sigtia, Emmanouil Benetos, Srikanth Cherla,
Tillman Weyde, Artur S. D’Avila Garcez, and Simon
Dixon, “An RNN-Based Music Language Model
for Improving Automatic Music Transcription,” 15th
International Society for Music Information Retrieval
Conference (ISMIR 2014), 2014.

[26] Nitish Srivastava, Elman Mansimov, and Ruslan
Salakhutdinov, Unsupervised Learning of Video
Representations using LSTMs, eprint: arXiv : 1502 .

04681, 2015.

Chase D. Carthen graduated
from the University of Nevada,
Reno with both a B.S. and a
M.S. in Computer Science and
Engineering in 2014 and 2016,
respectively. He is currently working
in industry as a software engineer.
His research interests include human-
computer interaction, graphics
and simulations, and artificial
intelligence.

Vinh Le graduated from the
University, Reno with a B.S in
Computer Science and Engineering
in 2015. Vinh is a Graduate Research
Assistant affiliated with the Cyber
Infrastructure Lab at the University of
Nevada, Reno. He currently aims to
earn a Master of Science in Computer
Science and Engineering by early
2017 and his research interests consist
primarily of Software Engineering,
Internet Architecture, and Human-

Computer Interaction.

Richard Kelley is currently the chief
engineer for the Nevada Advanced
Autonomous Systems Innovation
Center. He received his BS in
Mathematics from the University
of Washington in Seattle in 2006,
and his MS and PhD in Computer
Science and Engineering in 2009
and 2013 respectively. His research
interests include robotics, human-
robot interaction, machine learning,
and unmanned aircraft systems.

.
Tomasz J. Kozubowski is a Professor
in the Department of Mathematics
& Statistics at the University of
Nevada, Reno. He received his MS
in Statistics from the University of
Texas, El Paso in 1988 and PhD
in Statistics and Applied Probability
from University of California, Santa
Barbara in 1992. He is a member of
the American Statistical Association
and the Institute of Mathematical

Statistics, and works in the general area of probability and
statistics. His research interests include theory of distributions,
limit theory for random sums, heavy tailed distributions,
extremes, mathematical statistics, financial and insurance
mathematics, computational statistics, stochastic models for
hydro-climatic phenomena, and fractal scaling processes.

30 REFERENCES

Frederick C. Harris Jr. is currently
a Professor in the Department of
Computer Science and Engineering
and the Director of the High
Performance Computation and
Visualization Lab and the Brain
Computation Lab at the University
of Nevada, Reno, USA. He received
his BS and MS in Mathematics and
Educational Administration from

Bob Jones University in 1986 and 1988 respectively, his MS
and Ph.D. in Computer Science from Clemson University
in 1991 and 1994, respectively. He is a member of ACM
(Senior Member), IEEE, and ISCA (Senior Member). His
research interests are in parallel computation, computational
neuroscience, computer graphics and virtual reality.

IJCA, Vol. 24, No. 1, March 2017 31

ISCA Copyright© 2017

Francis Onodueze† and Sharad Sharma†

Bowie State University, Bowie, Maryland 20715, USA

Abstract

Effectiveness of any software system depends on techniques
employed during access, storage, and retrieval. Securing a
course management system with the latest security approaches
is vital since it can contain information about students and
faculty. Encryption is the most efficient way of securing data
stored as it ensures that integrity of data is maintained even if an
attacker should gain access to the physical data in the database.
Encryption can occur at different levels starting from data, disk
to the entire device. This paper presents the implementation of
Rijndael Algorithm for a database encryption on a Course
Management System, to provide an additional level of security
to the information of students, faculty and overall data of the
software. We have also provided benefits and drawbacks of
various database encryptions based on the amount of data
encrypted and te modes of access to keep a balance between
efficiency and security. Furthermore, we apply these techniques
on a web interface which uses Microsoft technologies to accept
users’ login details, goes though encryption process, and stores
cipher text in the database.

Key Words: Encryption, cipher, database, cryptography,
Microsoft dot net.

1 Introduction

Ability of the computer to perform more functions creates the
need for more data to be stored. When a computer had less
power, it did not store much information because it could be
compromised. Only passwords were considered secure data and
the computer took as much time to encrypt and decrypt it.
However, we have seen the computer’s ability increase with
proven strength that it can secure more than just passwords.
Today, data retrieved from users range from login details to
personal data of individuals which they would not share with any
human. The confidence users have come from the fact that once
their information is encrypted and stored, not even the system
admin can retrieve its plan text data. Encryption is a very
efficient way of securing data, it helps ensure data

*Extended paper from proceedings of ISCA 25th International
Conference on Software Engineering and Data Engineering (SEDE-
2016), Marriott Tech Center, Denver, USA, September 26-28, 2016.

†Department of Computer Science. Email: onoduezef0108
@students.bowiestate.edu, ssharma@bowiestate.edu.

confidentiality and integrity in different communication
systems, data storage and networks [11]. As defined in [3],
encryption algorithms consist of complex mathematical
formulas that define the rules of conversion process from plain
text to cipher text and vice versa combined with a key.
Encryption is achieved using the technique of Cryptography,
which is a science that learns the mathematical techniques of
keeping information secured [25]. Cryptography converts the
original message into unreadable codes and makes sure the
original message cannot be retrieved except by reverse process
using an appropriate key [7].

Encryption algorithms can come in two forms, public or
private Encryption keys, depending on the specifics of each
service, application and volume of data to be secured. Public
key encryption is a cryptographic system that makes use of pairs
of keys. While one key if disseminated publicly, the other is
known only to the party that decrypts the message. Amongst the
widely known public encryption algorithms is RSA which is a
short form for Rivest-Shamir-Adleman who were the developers
of the algorithm [18]. Private key encryption is a cryptographic
system that uses the same key for encryption and decryption.
The cryptographic key used in a symmetric algorithm is often
transferred over a secured channel and kept secret by both
parties. Some of the private encryption algorithms, also called
symmetric algorithms include Data Encryption Standard (DES).
Triple DES (TDES), which was derived from encrypting DES
three times and Advanced Encryption Standard (AES) which is
a standard specification for electronic data. Encryption
algorithms can also be classified based on the size of data
encrypted in each encryption cycle and size of key. Encryption
algorithms are designed to use different length of keys, from 56-
bits up to 256-bits, the more the key length, the more secured
would be the algorithm and the more resistant it would be for
brute force attack [6].

Encryption keys must have two basic attributes to be
determined secured; key space and random selection. The key
space is determined by the key length and composed of all
possible permutations of the keys. Key spaces are designed to
make almost impossible for an attacker to search through the set
of all possible keys. Random selection determines keys are
chosen randomly from all possible keys. Otherwise, an attacker
can derive some similar factor that may determine how the key
selection was done. Brute force takes the encrypted file and
checks all possible combinations of generated keys until a match
is found [17]. Most attackers first try dictionary attack before

Rijndael Algorithm for Database Encryption on a
Course Management System*

32 IJCA, Vol. 24, No. 1, March 2017

brute force because it often produces correct answers in less time
than a systematic brute force attack. A dictionary attack tries all
possible string in pre-arranged manner, to determine the
decryption key or passphrase. Whereas, brute force searches all
possible character combination systematically in no given order.
Brute force attack is often used to measure the strength of
encryption algorithms because it is the highest known form of
successful attack. Other types of attack include: mathematical
analysis which falls in the same category of classical attacks as
brute force; and social engineering which occurs when someone
uses his closeness to an actual user to gain unauthorized access.

There are many other forms of attack but since brute force is
an algorithm based on chance, it is difficult to determine the
probability of its success. However, the probability of success
can be significantly reduced by increasing possible
combinations in the search space. This could be done by
increasing the key length and possibly the encryption rounds.
The longer the encryption key, the more the robustness of the
algorithms against brute force attack [1]. Some of the present
day’s algorithms were developed when no one thought
computers would possess the power they have today. Therefore,
already known algorithms with proven strength can be made to
go through several re-encryptions to increase their strength. For
instance, the DES(x) algorithm was re-encrypted in the form of
DES(DES(DES(x))) to make the algorithm stronger and more
resistant to attacks. Triple DES takes 3 times the processing time
of DES and implements DES algorithm with an extended key
length [24]. Figure 1 shows a typical cryptology structure with
categories and algorithms. We have followed this principle in
designing our application and have made possible for the
administrator to be able to extend the key length used for
encrypting data in this application.

Figure 1: Cryptology structure

1.1 Encryption Technique

Encryption techniques are a way of transforming physical
form of data, so its confidentiality, integrity, authentication and
validity is maintained. These techniques are applied in such a

way that even though a hacker gains access to the data, he would
not be able to read the information contained. The goal of
encryption is to make data difficult to use or access by
unauthorized persons, however, the science behind can basically
be understood as manipulating individual characters of the string
to be encrypted. This is usually not done manually or by easily
substituting individual characters. Although, when encryption
first started, obfuscating data only meant substituting individual
characters of the plain text string with characters that would
make the entire text un-meaningful. However, technology
increases and approaches continue to differ. Once strong
algorithms became easy to break and thus caused the need for a
more secured approach. This has been the story since
conception of the first known algorithm. Today, encryption
involves several complex computations and substitution based
on giving algorithms. Modern cryptography requires a
mathematical approach to help understand and teach the subject
and also to improve on existing algorithms. Encryption
algorithms can be classified into two:

 Public-key or asymmetric algorithms (e.g. RSA)
 Private-key or symmetric algorithms (DES, TDES, AES).

Private-key cryptosystem deals with a mechanism which
requires that the key be made private and shared securely. They
are more efficient and work with special protocols and shared
keys for key exchange and management.

No one algorithm claims to be 100% efficient in securing data
and information from hacking attempts but a strong encryption
could be a good way to increased security.

Our proposed course management system incorporates
encryption for the purpose of increased security on the
information of students, faculty and the entire university system.
Information contained in the university academic database could
include student and faculty personal information, social security
numbers, student grades, faculty study materials and personal
research contents. However, the major gateway to accessing this
information is through access control mechanisms such as user
authentication using username, email, and password or phone
number. This is the information which can be encrypted. Other
information is not included because the intruder needs this
authentication information in other to gain access to every other
data.

To encrypt input data, we run each plain text password
through a software program, to convert it into an unreadable
format. This process could take a lot of processor time and
memory if used to encrypt every information in the database.
Several approaches were discussed which can reduce the issue
of time and speed on database encryption.

This paper applies encryption to the data that controls login
access to the user account. The course management application
was designed to handle academic interaction between
professors, researchers, teaching assistants and students in a
social environment. It can be used by professors to send and
receive assignments from students, post students’ grade and

Cryptography Cryptanalysis

Cryptology

Symmetric ProtocolAsymmetric

Stream CipherBlock Cipher

AES, TDES, RC6, IDEA, Blowfish RC4, SNOW

RSA

IJCA, Vol. 24, No. 1, March 2017 33

manage students’ record. Even though the application was built
to increase study and improve lecturer-student communication,
we have built in social media features. We included a social feel
to the application because almost every student interacts
perfectly with social media and would not have trouble
navigating through the functionalities of the application. The
application provides academic features to include: upload and
download of assignments and class materials, maintain a
personalized e-book shelve for users, classroom forum,
discussion board and messaging among registered users. It also
includes social features such as posting comments to wall,
update your status, reply to posts, invite friends, create circles
and Like what-you-see. As the user’s would have to provide
personal information to use the software, it became imperative
we ensured an efficient encryption algorithm was used to secure
data of this software. This paper focuses on how the data of the
course management system is encrypted and does not go into
details on other functionalities provided by the course
management system.

2 Related Work

2.1 Block Cipher

Block cipher is a terminology used to define the pattern of
input fed into the encryption cycle in a given time. It is the
contrast of stream cipher. Stream ciphers encrypt input bits
individually by adding a bit from a key stream to a plaintext bit
thereby changing the original value. Each bit is encrypted by
XOR’ing the plaintext with the state [27] to ensure every bit is
changed when one bit is changed. Stream cipher is small and
fast. It is used on cell phones, embedded devices and on
applications that have little computational resources. Block
cipher encrypts an entire block of plaintext bit. Each block is
encrypted with the same key at a time to ensure the influence
of each bit is spread across all bits. Block ciphers are used
widely both in software and in hardware implementations.
They are used in electronic payments and for wireless security.
For different demands, different algorithms are designed [13].
Apart from this main functionality, block ciphers are also used
as underlying primitives in the design of hash functions or
pseudo-random number generators [22]. In software
implementation, it cannot be physically seen whether a given
algorithm is block or stream cipher. This is because the
algorithm is written as a class which is called by the program
or written as part of the program. What determines a given
implementation is the underlying data structure, data
manipulations, computation and resource usage such as
memory and CPU. In our program, we encapsulate the
encryption codes and make them accessible via method calls.
While this approach makes for a neater code, it also adds
additional level of security to the application.

Our proposed course management system uses Rijndael
encryption algorithm for password encryption. Rijdndael
algorithm is a block cipher designed by Daemen and Rijmen [9].
In Rijndael, both the block length and key length can be any

multiple of 32 bits, with a minimum of 128 bits and a maximum
of 256 bits; independent of each other with key size greater than
or equal to the block size. Since the algorithm can accept
varying key and block lengths, the 128-bit block variant of
Rijndael has been chosen as the standard for Advanced
Encryption Standard (AES) [6].

2.2 Rijndael Algorithm

Rijndael algorithm was chosen by the National Institute of
Standards and Technology (NIST), USA in 1998 as the best
algorithm for the Advanced Encryption Standard (AES). The
algorithm was selected in a process that involved five finalists
that were selected from an original 21 submissions. Since after
this selection process, it has been widely accepted and used in
many cryptography applications, and although the length used
by the algorithm was too small, it was embraced and has been
used by different government agencies, companies and
organizations.

Rijndael supports key sizes of 128, 192 and 256 bits [12, 14,
21], with data handled in blocks of 128 bits. It has two major
parts of transformation; key schedule and cipher rounds. Key
schedule is an iterative component used to make the cipher
resistant to attacks. The cipher rounds ensure that each bit in the
block depends on all other bits of the state. It has become the
most widelyused symmetricencryption and industry standard for
many commercial systems. Among companies that have
adopted this cipher method are: IPsec, TLS, IEEE 802.11i, SSH
(Secure Shell), Skype and many other companies where security
is of utmost importance. The internal structure of AES consists
of the following stages:

 byte substitution layer
 diffusion layer
 key addition layer
 key schedule

Encryption: A 16-byte input data is fed byte-wise into the S-Box
(A0, ..., A15), the S-box transformation also is called the byte
replace (SubBytes) [6]. The Byte Substitution Layer consists of
16 parallel S-Boxes which forms a one-to-one objective
mapping with the input elements.

Diffusion ensures that the influence of individual bits is spread
over the entire state. Diffusion consists of the ShiftRows
transformation and the MixColumn transformation. ShiftRow
transformation is a cyclical shift in the state matrix. The rows
are shifted to the right according to the row positions. The
second row is shifted by three bits, the third row by two bits, the
fourth row by one byte and the first remains unshifted. The row
shifting in AES is used to increase diffusion. MixColumn
transformation is a linear mix of the columns in the state matrix.

AES ensures that after the diffusion process of three rounds,
every byte of the state matrix depends on the entire 16 plaintext
bytes. The Key Addition Layer takes two 16-byte (128 bits)
inputs, which are the state matrix and a subkey. The two inputs
are XORed together [26]. Key Schedule is a transformation

34 IJCA, Vol. 24, No. 1, March 2017

technique used to derive the subkeys used in AES. Choosing an
appropriate key schedule has been found to successfully improve
the time complexity of differential attacks on AES 128-bit [20].
It uses the master (secret) key as an input to generate round keys
(subkeys). The master (input) key length in bits can be 128, 192
or 156 [6]. In [14], it states that the minimum input block for
AES is 128-bit. AES key schedule is word-oriented, where 1
word = 32 bits.

AES is one of the most well-studied block ciphers. It forms
the basis for a well-accepted crypto-system which can be used
to demonstrate the internal structure of a well secured algorithm.
It has undergone several analyses and most importantly
withstood the efforts of brute force attacks. Some other forms
of attack used to prove its strength include: boomerang attacks,
square attacks, impossible differential attacks, rectangle attacks
and man-in-the-middle attacks in both the single-key and
related-key settings [15, 23]. Rijndael decryption is the reverse
process of its encryption, following the exact same order.

2.3 Implementation Overview

The course management software helps professors manage
students’ course work and grades. It has features that allows
users (students, professors and researchers) to communicate. It
is a social application that has functionalities that can be used in
the education sector. The application was built to accommodate
different institutions while ensuring that personal or universities’
specific data does not get intermixed. Upon first usage, users are
required to sign up using the name of their institution, create a
user name and password, and select if he/she is a student,
research/teaching assistant or professor. In subsequent sign-in,
users will be asked to provide their registered email and
password to be launched into their personal university profiles.
Encryption is done at both registration and login process using
database column encryption as discussed in section 2.4. During
registration, while user details are captured, the password is
encrypted and saved along with other data. During every login,
user provided login password is encrypted and matched against
saved encrypted passwords to determine if the user should be
granted access or not.

The software provides the following services to the users:

1. All users should be able to sign into his/her account using
the correct user name and password.

2. All users should be able to upload and download
files/assignments.

3. All users should be able to send messages to other users.
4. All users should be able to search for and find other users

and participating institutions.
5. All users should be able to update his/her status.
6. All users should be able to reply to other users’ posts.
7. All users should be able to create circles and add other

users to the circles.
8. Professors should be able to add materials to their shelves.
9. All users should be able to invite other people to use the

software. Invite is sent using either email address or phone
number.

2.4 Database Encryption

As mentioned in Section 2.3, not every data in the database is
encrypted. Encryption can be very expensive on devices with
less capability. In this application, we encrypt the password field
while leaving the other fields in plain text. Although this is less
costly, it is a valid database encryption technique. This section
shows various database encryption techniques and its impact on
overall system performance.

On database encryption, what comes to mind is column
encryption. Many times there are no specifics as to what exactly
is encrypted. However, database encryption can occur in three
levels as shown in Figure 2.

Figure 2: Level of database encryption

2.4.1 Column Level. In column level encryption, one or more
columns are encrypted in the database as shown in Figure 3.
Encryption and authentication are done at application level
where inputs are received from the user. This method of
encryption is targeted at securing the most important items in the
database, such as usernames, passwords, social security
numbers, credit card details and any sensitive data. It is less time
consuming and device efficient since not all data is encrypted.
The fewer the sensitive data, the less work of encryption during
storing and retrieval of records.

id username password department ssn
123 John xxxxxxx HR xxxxxxx
456 Philip xxxxxxx ACCT xxxxxxx
789 Joan xxxxxxx HR xxxxxxx

Figure 3: Column level database encryption

2.4.2 Row Level. This is used when the database is small and
contains mostly sensitive information. It ensures that all data in
the database is encrypted. This can cause a major challenge on
a large database if encryption and decryption is done at the
application level. Some database management systems provide
this service and thus ease the workload on the application during
information retrieval. Figure 4 shows row level encryption.

2.4.3 Extreme Column Level. Extreme column level (XCL)
is a technique whereby different columns in the database is
encrypted using different encryption keys, as shown in Figure 5.

Database Encryption

Column
level

X column
layer

Database
layerRow level

IJCA, Vol. 24, No. 1, March 2017 35

id username password department ssn
123 xxxxxxx xxxxxxx xxxxxxx xxxxxxx
456 xxxxxxx xxxxxxx xxxxxxx xxxxxxx
789 xxxxxxx xxxxxxx xxxxxxx xxxxxxx

Figure 4: Row level database encryption

XCL is efficient because it makes life tougher for a hacker.
Although this method is more efficient than column and row
level encryption, it comes with a lot of performance overhead.
It needs adequate key maintenance since a lot of keys might be
involved in encrypting a simple database. Encryption and
decryption is resource and time consuming because each item in
the database goes through a different routine before it can be
deciphered into readable text.

username password department ssn

key xyx Pqy ngk kjd
data xxxxxxx xxxxxxx xxxxxxx xxxxxxx

Figure 5: Extreme Column Encryption on single row

2.4.4 Database Level. The below three levels of encryption
can be described as application level encryption because
encryption and decryption is done on application level. The
database holds the cipher texts. Database Level Encryption
(DLE) occurs when the entire database framework is encrypted.
Most organizations rely on this level of database encryption as it
does not require extra application level encryption. It can be
risky not to have an additional level of encryption because the
records in the database are stored as plain text, which means
bypassing this level of encryption exposes the records in the
database. However, accessing is fast as applications do not need
to do any encryption or decryption work.

DLE usually serves as additional security with an existing
application level encryption. DLE is more than passing a string
in a method call for encryption as done in application level
encryption. Therefore, it is provided as a service to
organizations by database service providers [4] or sold as a
software to users. The concept is similar to encrypting a
document, CD or drive, which are services provided by several
companies or computer system manufacturers such as Microsoft
and Apple. Companies such as Oracle and NetLib provide
database encryption services and software. In SQL server, a
database needs to be attached to an instance of an active server
in order to be accessed. Therefore, databases can exist outside
of a server. Databases are detachable and pluggable, hence the
term pluggable database (PDB). When encrypted and detached,
it can exist alone and safely carried along.

When a database is detached from its origin, it can be
vulnerable if access was restricted only at the server level. When
DLE is used, it prevents the database from being attached to
unauthorized instances of other servers. Attempts from
attackers, through the operating system, to read data from the
tablespace or backup is denied. This protects databases on

backup media from unauthorized network, domain and windows
administrators. It secures databases from SQL sysadmin and
provides authorized users a dedicated SQL instance for the
database. Intellectual properties of the database such as, schema,
views, stored procedures, tools and other business processes are
also secured using this database wide encryption.

However, there are lots of overheads in using this encryption
technique, such as Single Key Entry (SKE), which is a risk when
there is no other level of encryption on the database. SKE
means, when an intruder gets a hold of this key, he would have
unlimited access to every item contained therein. Another
drawback of this method is that it does not protect data travelling
over the network. As the name goes, it does not mean the time
spent on encrypting a database is comparable in quantity to
encrypting the entire text data, on the application level.
Database encryption makes use of high speed cryptographic
techniques designed to overcome performance overhead. DLE
uses the same concept as Transparent Data Encryption. Access
to the data is transparent which means authenticated users and
application are not blocked away from the encrypted database.
Providing encryption to database using DLE does not require
any change to the database configuration or application code.

3 Course Management Architecture

The application was designed on Microsoft Dot Net platform,
and uses combined languages such as VB and C# for its coding.
In Microsoft.net, dynamic program coding is handled using
code-behind model. This is a model that allows the developer to
place his codes in separate file or a specifically designed script
tag. Code-behind files use the same name as the page and has
vb. extension. It was introduced to give developers the ability to
separate presentation from business tier and eliminate classic
ASP (Active server pages) which strictly ties codes to their
pages.

The course management application was built on a three-tier
architecture namely: Presentation tier, Business tier and Data
Access tier. The presentation tier consists of html and ASP
tagged contents rendered as .aspx and .ascx (user control pages)
on the browser. These pages interact with the user and provide
interfaces for collecting login details and display of texts and
graphic content. The presentation layer does not do any form of
processing nor connect to the database. Its values are extracted
to the code-behind files in the business layer and processed.
Other elements in the presentation layer include Ajax, JQuery,
CSS and Inline JavaScripts.

As shown in Figure 6, the code-behind model is the second
layer in the presentation tier. It consists of files which have
direct access to the presentation layer. These files are
responsible for receiving authentication details entered by the
user such as username, email and password. Each time a user
attempts to login, this file takes care of validating user inputs to
make sure they don’t violate set criteria. The retrieved login
credentials are passed to the encryption business logic for
encryption and decryption.

The Business tier consist of class files, Web services (JSON),

36 IJCA, Vol. 24, No. 1, March 2017

ADO.Net system packages, Dot Net Objects and COM objects
that perform actual operations on the page. When data is passed
from the presentation, it is given to the business for encryption,
key generation, calls to the Dynamic Link Library (.dll) and
connection to the Data access tier. Unlike the presentation layer
which is client-side, the business is server-side, its codes are not
loaded directly on the user’s end.

Figure 6: Dot net design architecture using code behind model
on a three-tier architecture

This model helps ensure that direct access to the encryption
codes is not possible. The code-behind files do not have direct
access to the database because they can give a hacker access to
the database by SQLInjection; especially if calls to the database
are inline SQL statements. Best practices suggest that if
database calls must be made in the presentation, they should be
via stored procedures. It is highly discouraged to have any
database code in the presentation layer. Every information
storage and retrieval has to be by invoking the data access
classes.

The Data access tier consist of codes that make direct
connection to the database for creation of database schemas,
insert, update and delete of tables and other manipulation using
queries and stored procedures. These help to pull user details
whenever the user tries to login in. The course management
application uses SQL Server for data storage and implements
column level database encryption. It uses Internet Information
Server (IIS) as its application host. Figure 7 shows a class
diagram for the login, registration and their relationship to other
classes in the application. The application host is Internet
Information Server (IIS).

Figure 7: Class Diagram

4 Implementation of Rijndael Algorithm on Course
Management System

Our proposed Course Management System was built on the
Dot Net platform using Microsoft Dot Net controls and objects.
The pages which serve as views render as ASPX pages. Each
page contains a code-behind file which serves as the controller
and contains codes that interface between the data classes and
views/presentation. Codes which do not have a direct link to the
views are stored on class files to make sure the code is not
compromised in case an intruder gets access to the website files.
This technique is used to increase security as these class files
would be pre-compiled in object codes and stores in .dll formats
which would be unreadable should the software be hacked.
Encryption and decryption codes are stored in class files
amongst code files that perform different functions such as
SendEmail, DataBaseConnection, KeyGenerator
CheckInternetConnectivity etc.

Our encryption and decryption codes are stored in
Encryption.cs. This is a C# dot net class file which contains the
encryption functions which later is called to perform the actual
encryption. This class is bundled as part of the project
namespace to ensure the functions would be available on all
pages. When the encrypt function is called, an unreadable value
(cipher text) is returned and that would be the data stored in the
database, as Figure 3 shows. This encrypted string can also be
exposed in the URL as query strings without fear of exposing the
data contained. Such techniques can ensure that the database
administrator may have access to the database data and still not
be able to see the plaintext data of the encrypted texts, in this
case the login details of the registered users.

IJCA, Vol. 24, No. 1, March 2017 37

Figure 8, shows what happens during a typical authentication
process. The presentation layer is where login details are
collected, the encryption stage, the flow of events and the storage
of the cipher text in the database. The user enters his username
or email and password and clicks on the register button to
commence registration.

For the purpose of demonstration not all data in the database
is encrypted. And in real-life application, not all data in the
database is encrypted. Encryption is costly in terms of the
process involved in actual encryption and decryption of stored
data. During the process of encryption or decryption, a large
amount of memory and CPU is used due to complex repetitive
functions and computation performed. That can make the
computer slow and unresponsive if we were to encrypt all data
in the database. When data is encrypted, the resulting data would
be alphanumeric character string. The sequence of character
representation in the encrypted data is strictly determined by the
algorithm.

During registration, the user password is passed to the Encrypt
function of the Encryption class as strings, and the returned
value is stored in the database.

At login, when the user enters his login details, the Encrypt
function is called as shown in Figure 3. It is used to wrap the
password, thus passing the string to the Encrypt function of the
Encryption class. A string is returned which is used as part of
the WHERE condition of the SQL statement. This statement is
then executed against the SQL server engine via a method call
to the DBConnection class. If the returned encrypted strings
match any value in the database, the Boolean value receives a
true value. Otherwise a false value is returned and the user sees
an invalid login attempt message on the screen and prompted to
retry.

Figure 8 shows database security access layers [2] for which
every access to the database must belong. For each of these

Figure 8: Database security access layers

layers, a rule is defined in the database and in the application.
These rules help enforce strict security regulations and check for
policy compliance. These rules are enforced to ensure users
comply to measures that help secure their data. When a user is
authenticated, a session is saved to the database to monitor an
active browsing session of the user. The login details are
persisted on browser cookies and used for validation throughout
this session.

This is done to ensure the user is validated on every page he
accesses and no page is opened by unauthorized persons. The
encrypted information is stored on varchar (225) datatype in the
Microsoft (MS) SQL database. User login details saved on the
browser are passed as strings into the application for user
validation to recognize the user anytime he accesses any page.
These cookies are set to expire with the session. When the user
session expires, the cookies will no longer be available in the
browser and in the database. The user is then redirected to the
login page

5 Result and Testing

The Encryption.cs class is implemented using C#.Net code,
while the actual call from the web page is in VB.Net. This is
made possible by the ability of the Dot Net platform to compile
several languages into object code. However, for this to work,
the separate class files have to be placed in different folders. We
have placed our Encryption.cs class file in a folder called
App_code, our web page will still remain in the project’s folder.
To use the Encryption.cs class, we instantiate it into a rijndael
object. This object is then used to call Encrypt and Decrypt
functions for the login page processing.

We have showed how Microsoft applications can be secured
using Rijdael encryption algorithm to encrypt login
authentication details and how cipher data can be stored in the
database more efficiently.

5.1 Encrypting the Login details

The login details are passed to the Encrypt function as strings
to the Encrypt function. This function takes a plain string named
clearText and passes it to the function body for processing. The
function is made up of the following as shown in Figure 9:

1. EncryptionKey variable where the key is declared
2. clearBytes array which stores individual data bytes as

they are encrypted
3. using statement which references the Cryptography

library of the Microsoft.Net framework
4. return statement which returns the cipher text back to the

calling statement.

The calling program is an SQL Insert statement which formats
its input into an appropriate insert statement. It makes a call to
the DatabaseConnection.cs class and executes the statement
against the database.

DB

INTERNET

Security
Officer

System Admin

DBA
Employer

Developer

Access line
via secured
channel

User Intruder

38 IJCA, Vol. 24, No. 1, March 2017

Since the Encrypt function is called in an insert statement, we
do not expect any error to be thrown once the format of the
statement is verified. Once the insert is successful, the user is
navigated to the next screen to complete his registration process.

public encrypt(plain text)
{
string encryption key
convert plain text to byte
using (create AES encryptor
{

pass the key to the encryptor
pass plain text data byte to encryptor
using (create memory stream

{
using (encrypt plain text)
{

write cipher text to memory stream
close memory stream

}
return cipher text

} }
}

Figure 9: The Encrypt function

5.2 Decrypting the Login details

On the user login page, information entered in the textboxes is
captured as strings and passed to the rijndael object of the
Encryption.cs C# class. The Decrypt function contains a key
string which must be the same as that of the Encrypt function.
Otherwise, decryption will not be successful. The process of
decryption is similar as the codes show above but the difference
is that, this time, the string passed is a cipherText not a plain text.

Figure 10 shows a database view of the session id, user email
and password. The session ids with null values show that the
user is no longer on active browser session. The password
shown is cipher text generated by the Encrypt function of our
Encryption.vb class. Column level encryption has been used on
this project.

Figure 10: SQL Server database view shows the encrypted data

6 Conclusion and Future Work

We have implemented Rijndael private key algorithm to show
how security can be increased in a course management system
using encryption. There is no doubt that adding encryption to

the existing course management system has improved
dramatically the confidentiality and integrity of information of
students and faculty.

The encryption was implemented using a static code as the
encryption key. The algorithm will generate the same cipher text
each time for the same input value. This means a hacker who
gets this key can decrypt the values stored in the database. This
method could be safer if the encryption key is a securely kept
secret. However, this is not the safest way. To increase the
protection level of this algorithm, the encryption algorithm could
be connected to a random number generator to generate
password salts. This would make it possible for the algorithm to
generate different cipher values for the same plain text during
encryption and decryption.

Acknowledgements

This work is funded in part by the National Science
Foundation grant number HRD-1238784.

References

[1] A Study of Methods used to Improve Encryption
Algorithms Robustness, Luminita Scripcariu, Faculty of
Electronics, Telecommunications and Information
Technology, Technical University “Gheorghe Asachi” of
Iasi, ROMANIA. pp. 1-5, 2015.

[2] Khaleel Ahmad, Jayant Shekhar, Nitesh Kumar, and K. P.
Yadav, “Policy Levels Concerning Database Security,”
International Journal of Computer Science & Emerging
Technologies (E-ISSN: 2044-6004) 368, 2(3):368-372,
June 2011.

[3] O. M. A. Al-Hazaimeh, “A New Approach for Complex
Encrypting and Decrypting Data, International Journal of
Computer Networks and Communication (IJCNC),
5(2):95-103, March 2013.

[4] I. Bashrat, F. Azam, A. W. Muzaffar; “Database Security
and Ecryption: A Survey Study,” International Journal of
Computer Applications (0975-888), 47(12):28-34, June
2012.

[5] J. Daemen, L. R. Knudsen, V. Rijmen, ‘The Block Cipher
Square’, FSE, (LNCS 1267), pp. 149-165, 1997.

[6] J. Daemen and V. Rijmen, The Design of Rijndael: AES –
The Advanced Encryption Standard, Springer, 2002.

[7] D. Darin and E. Harley, “Selling E-Learning,” American
Society for Training and Development, pp. 1-10, 2001.

[8] D. S. Elminaam, H. M. Abdual Kader, and M. M.
Hadhoud, “Evaluating the Performance of Symmetric
Encryption Algorithms,” International Journal of Network
Security, 10(3):213-219, May 2010.

[9] FIPS, 197: Advanced Encryption Standard, Federal
Information Processing Standards Publication 197, U.S
Department of Commerce/N.I.S. T, 2001.

[10] Anwar Pasha Abdul GafoorDeshmukh; “Transparent Data
Encryption-Solution for Security of Database Contents,”
(IJACSA) International Journal of Advanced Computer

IJCA, Vol. 24, No. 1, March 2017 39

Science and Applications, 2(3):25-28, March 2011.
[11] J. Katz and Y. Lindell, Introduction to Modern

Cryptography, Second Edition, CRC Press, 2015.
[12] Publication 800-21, Guideline for Implementing

Cryptography in the Federal Government, National
Institute of Standards and Technology, November 1999.

[13] National Bureau of Standards: Data Encryption Standard,
FIPS-Pub.46. National Bureau of Standards, U.S.
Department of Commerce, Washington DC, January1977.

[14] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M.
Dworkin, J. Foti, and E. Roback, Report on the
Development of the Advanced Encryption Standard (AES),
Technical Report, NIST, 2000.

[15] Christof Paar and Jan Pelzi, Understanding Cryptography,
Springer-Verlag, Berlin, Heidelberg, ISBN: 978-3-642-
04100-6, pp 115-121, 2010.

[16] R. C.-W. Phan, “Impossible Differential Cryptanalysis of
7-Round Advanced Encryption Standard (AES),”
Information Processing Letters, 91:33-38, 2004.

[17] B. D. Reddy, V. V. Kumari, and KVSVN Raju, “A New
Symmetric Probabilistic Encryption Scheme Based on
Random Numbers,” 2014 First International Conference
on Networks & Soft Computing (ICNSC2014), Guntur,
pp. 267-272, 2014.

[18] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key
Cryptosystems,” ACM, 21(2):120-126, 1978.

[19] P. Srinivasarao, P. V. Lakshmipriya, P. C. S. Azad, T.
Alekhya, K. Raghavendrarao, and K. Kishore, “A
Technique for Data Encryption and Decryption,”
International Journal of Future Generation
Communication and Networking, 7(2):117-126, 2014.

[20] S. Sulaiman, Z. Muda, and J. Juremi, “The New Approach
of Rijndael Key Schedule,” Proceedings of the 2012
International Conference on Cyber Security, Cyber
Warfare and Digital Forensic (Cyber Sec), Kuala Lumpur,
pp 23-25, 2012.

[21] M. Wali and M. Rehan, “Effective Coding and
Performance Evaluation of the Rijndael Algorithm
(AES)”, Proceedings of the Engineering Sciences and
Technology Conference, Karachi, 7:1-7, 2005.

[22] Qingju Wang, Zhinqiang Liu, Deniz Toz, Kerem Varem
Varici, and Dawu Gu, “Related-key Rectangle
Cryptanalysis of Rijndael-160 and Rijndael-192,” IET
Information Security, 9(5):266-276, August 2015.

[23] Z. Wentao, W. Wu, and F. Dengguo, New results on
Impossible Differential Cryptanalysis of Reduced AES in
Information Security and Cryptology, ICISC 2007, Lecture
Notes in Computer Science, Springer Berlin / Heidelberg,
4817:239-250, 2007.

[24] Zhou Yingbing and LI Yongzhen, “The Design and
Implementation of a Symmetric Encryption Algorithm
Based on DES,” IEEE 5th International Conference on
Software Engineering and Service Science, Beijing, pp
517-520, 2014.

[25] Zahir Zainuddin and Evanita V. Manullang, “E-Learning
Concept Design of Rijndael Encryption Process,”

Proceedigs of IEEE International Conference on Teaching,
Assessment and Learning for Engineering (TALE), Bali,
pp. 737-740, 2013.

[26] F. Zhang and Y. Niu, “Rijndael Arithmetic Analyze and
Optimize,” 4th International Conference on Wireless
Communications, Networking and Moile Computing,
Dalian, pp. 1-4, 2008.

[27] Y. Zhang, J. Sun and X. Zhang, “A Stream Cipher
Algorithm Based on Conventional Encryption
Techniques,” Canadian Conference on Electrical and
Computer Engineering 2001 (IEEE Cat. No. 04CH37513),
pp. 649-652, 2004.

Francis Onodueze was born in
Nigeria. He received the N.D
degree in computer science from
Federal Polytechnic Nekede, Imo
State, Nigeria, in 2004, B.Sc.
degrees in computer science from
the Imo State University, Imo

State, Nigeria, in 2009, and the M.Sc. degrees in computer
science from the Bowie State University (BSU), Maryland,
USA, in 2016.

Francis is a Ph.D. student at Bowie State University and serves
as a teaching/research assistant. His current research interests
include artificial intelligence, software security and software
engineering.

Sharad Sharma is an Associate
Professor in the Department of
Computer Science at the Bowie State
University. He received a Ph.D in
Computer Engineering from Wayne
State University, Detroit, MI in 2006
and M.S. from the University of
Michigan, Ann Arbor, MI in 2003. He
has won the “Outstanding Researcher

Award” in year 2013 and 2011, “Outstanding Faculty Award” in
year 2012, “Outstanding Publication Award” in year 2010, and
“Outstanding Young Faculty Award” in year 2009 at College of
Arts and Science in the Bowie State University. Dr. Sharma is
the Director of the Virtual Reality Laboratory at the Bowie State
University. The laboratory applies virtual reality and augmented
reality as a tool for learning, training, and education. Dr.
Sharma’s research focus is on modeling and simulation of multi-
agent systems for emergency response and decision making
strategies. His work is motivated by the need of research in real-
time agent navigation for reaching a goal in emergency
situations like evacuation.

IJCA, Vol. 24, No. 1, March 2017 40

ISCA Copyright© 2017

Evolution of the Multicore Adaptability of Scientific Software Systems

Saleh M. Alnaeli*, Melissa M. Sarnowski*,
Calvin Meier*, and Mark Hall*

University of Wisconsin, Fox Valley, Wisconsin USA

Abstract

An empirical study that examines the challenges that
scientific software systems developed in C/C++ have that
prevent them from efficiently exploiting the full potential of the
new multicore technology is presented. The study is conducted
on 12 open source scientific systems comprising more than 5.4
million lines of code and containing over 84.5 thousand for-
loop statements. Static analysis methods are applied to each
system to determine the number of for-loops and free-loops
(i.e., loops that can be parallelized). Additionally, each system
is analyzed and the challenges and inhibitors to parallelization
from a software engineering perspective are detected and
presented. Some challenges towards adapting and re-
engineering scientific software systems to better utilize modern
multi-core architectures are determined including function side
effects, data dependency and jumping statements. The results
show that the most prevalent inhibitors are functions called
within for-loops that have side effects, followed by data
dependency as the second most prevalent inhibitor. These
inhibitors pose the greatest roadblock to re-engineer and
transform systems to better utilize parallelization. Results also
show that data dependency has a more significant impact on
scientific systems compared to general purpose systems that
have been studied in previous studies. Historical data over a 5-
year period of inhibitor counts for the set of systems studied is
also presented. It shows that there is an insignificant change in
the potential for parallelization of for-loops over time in
general. The study suggests some software engineering
techniques that have the potential to improve the
parallelizability of scientific systems.

Key Words: Scientific, software engineering, multicore
architecture, parallelization inhibitors, challenges.

1 Introduction

Scientific software systems have always been valuable assets
and are used by scientists in both academia and industry in their
research for many purposes (e.g., analyze and solve research
and scientific problems, or to interpret, visualize, or simulate
processes and data). A great deal of those systems are available

*Email: saleh.alnaeli@uwc.edu, sarnm6825@students.uwc.edu.
meiec3837@students.uwc.edu, mark.hall@uwc.edu.

as open source for research communities from various scientific
and engineering disciplines.

With new high performance computing architectures (e.g.,
multicore technology) becoming increasingly available in
almost all of today’s computers, laptops, and mobile devices,
there is a continuous need for the existing scientific application
code to adapt in order to exploit and take advantage of the full
potential of the new underlying hardware. In contrast to the
general-purpose software systems, where programmers and
software engineers do not usually possess expertise in the
problem domains of the software they develop, people who
have reasonable knowledge of the system domain (e.g., physics,
mathematics, geology, engineering, astronomy) usually develop
scientific software systems or assist with the development.
Those scientific programmers are more likely to have a
background lacking some of the most important software
engineering methods and concepts that allow programmers to
design and write programs that can be easily adapted to outside
changes, such as hardware improvement.

For instance, scientific programmers typically make
inefficient use of the shared memory multicore technology
versus applications focused on distributed memory
architectures. The problem gets worse as the number of cores
increases in shared memory models, which may reduce
individual core speed and cause drastic slowing in sequential
software speed. As a result, many end users, some of which are
scientific developers, are starting to feel that they need to
ensure that the scientific application they use has an acceptable
performance when run on various devices (e.g., tablets, laptops,
or mobile devices with multi-core architecture). The
expectation that various devices are used has motivated
scientific developers to refactor their products to enable parallel
execution and take advantage of underlying hardware [2].

The process of parallelizing a software system usually
involves the use of standard APIs such as OpenMP. These APIs
provide the developer with a set of tools to parallelize loops and
take advantage of multiple cores and shared memory [2].
Current C/C++ compilers can do a limited amount of automatic
parallelization. That is, the compiler directly parallelizes loops
with fixed iteration bounds (i.e., for-loops) in certain situations.
Loops without fixed iteration bounds cannot, in general, be
parallelized. The auto-parallelization can also be done via a
tool prior to compiling. These tools look for four-loops that do
not contain any parallelization inhibitors [5, 11].

IJCA, Vol. 24, No. 1, March 2017 41

For scientific software systems, many obstacles can pose
challenges for parallelization. Those challenges vary in their
significance and severity. Some difficulties are caused by the
way developers write their source code [9]. However, in the
end, the full potential of multicore processor architectures will
require a deeper assessment of the scientific application to
adapt the source code for scalable concurrency and better
parallelizability.

As both scientists and researchers, we share the same
concerns and opinion that these older scientific systems need to
be refactored to take advantage of parallelization. Software
designers need to understand these concerns so that scientific
software systems can exploit the full potential of the new high
performance computing systems (e.g., multicore architectures)
that are available in almost every computer and device today
[11].

This study takes an empirical approach to understand the
complexities for these scientific open source software systems.
This approach allows software developers to better understand
the challenges and roadblocks inhibiting parallelization of these
systems. We are particularly interested in determining the most
prevalent inhibitors that occur in these scientific applications
and any general trends. This work serves as a foundation for
understanding the problem requirements in the context of a
broad set of scientific applications. Moreover, the focus of this
research is on potential challenges and the most common
situations occurring within typical scientific software systems.
The types of software challenges are counted and tabulated for
a comparison across these types of systems. The data in the
table allows a comparison of these systems, which helped
uncover software trends and to make other general
observations. This research is necessary to understand the
challenges that these systems face and the impact and
significance of overcoming these challenges in order to have
practical and effective solutions that can lead to overall system
parallelizability. Finally, a historical analysis is conducted to
see if the numbers or distributions of inhibitors change over the
history of a software system. Trends are shown in a later
section.

This work contributes in several ways. First, it is one of the
only large studies on the potential to parallelize scientific
software systems. Our findings show that function calls with
side effects and data dependency represent the vast majority of
inhibitors occurring in these systems. That is somewhat
contradictory to the case with general-purpose software systems
[2], where function calls with side effects represent the vast
majority of inhibitors and thus pose the greatest roadblock to
adapt and re-engineer general-purpose systems to better utilize
parallelization. This knowledge and fact will assist researchers
in formulating and directing their work to address those
problems for better multicore-capable scientific systems in a
different way than how general-purpose systems are treated.

The rest of the paper is broken into sections. Section 2
presents related work on the topic of scientific systems
performance and parallelization. Sections 3 and 4 describe the
methodology we used in the study along with how we
performed the analysis to identify each inhibitor and side effect.

Section 5 presents the data collection processes. Section 6
presents the findings of our study of 12 open source scientific
systems, followed by Sections 7 and 8 which discusses
historical analysis.

2 Background

The bulk of previous research on this topic has focused on
the importance of scientific systems and their quality from
different perspectives [9], and detecting and dealing with data
dependencies, particularly in the context of array indices [2],
even though there are many other inhibitors that appear to be
more frequent as we are going to show [8]. However, no study
has been conducted to show the actual challenges in scientific
systems to be able to utilize the advantages of multicore
architectures on the source code level, nor from a software
engineering perspective.

In our study, implicit parallelism is considered with the
shared memory parallel model [4, 5]. There are multiple APIs
used for parallel programming (e.g., MPI, PThread, OpenMP).
Our concern in this study is to support the parallelization of
existing sequential code. OpenMP is the most common API
and our discussions are within the context of using this API. It
is a widely accepted standard and most of the compilers support
it [12, 13]. OpenMP is a set of standards and interfaces for
parallelizing programs in a shared memory environment. It
provides a set of pragmas (C/C++) that can be used in a
program to instruct compilers to parallelize pieces of code. The
sequential code is incrementally parallelized and the program
can have both serial and parallel code.

There is a large body of work on parallelization. In the
1960s, parallel computers and research on parallel languages,
compilers, first began. The focus was instruction-level
parallelism [10] and mainly involved detecting instructions in a
program that could be executed in concurrent to reduce the
computation time.

Parallelizing compilers, such as Intel’s [11] and gcc [7], have
the ability to analyze loops to determine if they can be safely
executed in parallel on multicore systems, multi-processor
computers, clusters, MPPs, and grids. The main limitation is
effectively analyzing the loops. For example, compilers still
cannot determine the thread-safety of a loop containing external
function calls because it does not know whether the function
call has side effects that would introduce dependences.

S. Alnaeli, J. Maletic et al [2] conducted an empirical study
that examines the potential to parallelize large-scale general-
purpose software systems. They found that the greatest
inhibitor to automated parallelization of for-loops is the
presence of function calls with side effects and they empirically
proved that this is a common trend. They recommended that
more attention needs to be placed on dealing with function call
inhibitors, caused by function side effects, if a large amount of
parallelization is to occur in general purpose software systems
so they can take better advantage of modern multicore
hardware.

The work presented here differs from previous work on
scientific software parallelization in that we conduct an

42 IJCA, Vol. 24, No. 1, March 2017

empirical study of actual inhibitors to parallelization in the
source code level. We empirically examine a number of
systems to determine what roadblocks exist to developing better
parallelizable scientific software systems that can better work
on multicore architecture.

3 Inhibitors to Parallelization

We now discuss the potential challenges programmers need
to address when writing or refactoring scientific software
systems for parallelization in the source level code. Inhibitors
to parallelization are discussed along with the kinds that are
known to be solvable by OpenMP.

In this study, a for-loop is considered a free-loop if it does not
contain any parallelization inhibitors that are not already
solvable with OpenMP. That is, a free-loop does not contain
any of the following inhibitors: data dependency, function calls
with side effects, or jumps outside of the loop.

This section mainly describes the different inhibitors to the
software parallelization process and the challenges that prevent
scientific systems from running in parallel for better multicore
exploitation. Particularly, we are interested in for-loop
parallelization inhibitors because, in most applications, the
extensive computation is carried out in loops and parallelization
APIs, like OpenMP, can parallelize only for-loops. However,
not all for-loops are parallelizable. For example, for-loops
whose results are used by other iterations of the same loop will
not work properly, and can lead to unexpected and incorrect
results. Inhibitors can prevent for-loop parallelization. While
some of these are solvable, others are not.

Some inhibitors have a direct solution in Application
Programming Interfaces such as OpenMP, and others cannot be
solved and demand more complex (conservative) approaches.
In this study, a for-loop is considered a free-loop if it does not
contain any parallelization inhibitors that are not already
solvable with OpenMP.

The data dependency is discussed first, followed by function
calls with side effects, and then jump statements (e.g., break,
goto).

3.1 Data Dependency

Data Dependency is a well-studied problem in many different
contexts, including software slicing and static analysis, that
inhibits software systems from parallelization. In many
situations, the order of statement execution within the body of
the for-loop must be preserved to gain the same expected
results from a software system, as when executed in sequential
order. That is, all loop iterations must be independent from
each other.

Literature is rich when it comes to data dependency tests.
Most of those tests have been developed based on
approximation. All methods are conservative in case of
dependency suspension, or when it is difficult to prove the
opposite, so that no unsafe parallel implementation is done.

The main purpose of data dependency analysis is to detect if
the same memory position is used in more than one loop

iteration. The majority of dependency analysis algorithms are
focused on array references. There are three types of
dependency based on the way and the sequence of accessing a
memory location. They are 1) flow dependence (aka true
dependence), 2) anti-dependence, and 3) output dependence.
This topic is well covered in [3].

Figure 1, presents a simple example that shows the data
dependency in a loop construct. In the example, if the loop is
parallelized evenly on 2 cores with 2 threads (500 iterations
each), when the element 501 is calculated it would result in a
wrong answer because the items 499 and 500 have not been
calculated yet if the second thread acquires the CPU before the
first thread. That is, items that come before the current item
need to be calculated first.

Example 1: Fibonacci sequence:
// 0, 1, 1, 2, 3, 5, 8, 13, 21,34, …
1: array[1]=0;
2: array[2]=1;
3: for(int idx=3; idx<=10000; ++idx)
4: array[idx] =array[idx-1] + array[idx-2];

Figure 1: Example of data dependency detected by the tool
ParaStat tool

In this work, we take a conservative approach to detecting
data dependency and detect all potential dependencies. That is,
if we cannot prove that a loop is free of dependency, we
consider it a potential data dependency holder.

We feel this is a reasonable tradeoff since only simple static
analysis is required. Also, there are always situations where
determining if an actual data dependency exists is
computationally impractical.

3.2 Function Calls with Side Effects

Another challenge scientific software systems in particular,
and general-purpose software systems in general, can have in
the parallelization context is calling functions or methods that
have side effects within a for-loop. Today’s compilers cannot
parallelize any loop containing a call to a function, or a routine,
that has side effects. A side effect can be produced by a
function call in several ways, all related to any modification of
the nonlocal environment, such as modification of a global
variable, or passing arguments by reference [8]. Moreover, a
function call in a for-loop or in a call from that function can
introduce data dependency that might be hidden [14]. The
static analysis of the body of the function increases compilation
time; hence this is to be avoided.

As such, it is usually left to the programmer to ensure that no
function calls with side effects are used and the loop is parallel-
ized by explicit markup using an API. Generally, a function has
a side effect due to one or more of the following: the function

IJCA, Vol. 24, No. 1, March 2017 43

modifies a global variable; modifies a static variable; modifies
a parameter passed by reference; performs I/O; or calls another
function that has side effects. Our approach for calls using
function pointers and virtual methods is to assume they all carry
side effects. At the onset, this may appear to be a problematic,
however conservative, limitation. However, this assumption is
supported by empirical analysis we undertook in a previous
study [1].

3.3 Jumps: Break, Goto

Breaks and goto statements are inhibitors to the
parallelization of for-loops. That is, the loop must be a basic
block, meaning no jumps outside the loop are permitted. As
such, the occurrence of one of these statements prevents
parallelization of the loop. It is very simple to detect all
occurrences of break and goto statements in source code so
counting them is accurate. A call to exit() can be handled by
OpenMP, so we do not consider these as loop inhibitors. Also,
the same applies to exception handling. Exceptions thrown in a
parallel region and caught within the same region are safe for
parallelization. Catches can be inserted into those regions
automatically if they do not exist. Since there is a known
solution for exceptions, we do not consider them as inhibitors.

3.4 Shared and Private Data

There are some other inhibitors that can prevent the for-loop
from parallelization. Shared data and private data are both
inhibitors that must be taken care of. In this study, we do not
consider them since we are assuming that the OpenMP API is
used for loop parallelization. OpenMP offers particular
directives that can solve these problems. Variables that are
shared among all threads can be problematic because if one
thread is reading it, another thread may be writing to it [2].
OpenMP can solve this problem using a special directive for
that:

#pragma omp parallel for private (sharedVar);

Reduction variables can also be inhibitors. However,
OpenMP has a special directive that solves this problem:

#pragma omp parallel for reduction (SharedVar);

This clause makes the reduction variable shared to generate
the correct results, but private to avoid race conditions from
parallel execution. Since those types of inhibitors are solvable
by OpenMP, they are not considered in our study and we
consider the loops containing these inhibitors to be free-loops.

4 Methodology of Inhibitors’ Detection

A for-loop is considered a free-loop if it does not contain any
parallelization inhibitors that are not already solvable with
OpenMP. We used a tool, ParaStat, developed by one of the
main authors and used in [2], to analyze loops and determine if

they contain any inhibitors as defined in this section. First, we
collected all files with C/C++ source code extensions (i.e., c,
cc, cpp, cxx, h, and hpp). Then we used the srcML
(www.srcML.org) toolkit [6] to parse and analyze each file.
The srcML format wraps the statements and structures of the
source code syntax with XML elements, allowing tools, such as
ParaStat, to use XML APIs to locate such things as for-loops
and to analyze expressions. Once in the srcML format,
ParaStat iteratively found each for-loop and then analyzed the
expressions in the for-loop to find the different inhibitors. A
count of each inhibitor per loop was recorded. It also recorded
the number of free-loops found. The final output is a report of
the number of free-loops and for-loops with one or more types
of inhibitors. Findings are discussed later in this paper along
with limitations of our approach.

5 Data Collection

Software tools were used, which automatically analyze loops
to determine if they contain any inhibitors. The srcML toolkit
produces an XML representation of the parse tree for the
C/C++ systems we examined. ParaStat analyzes the produced
srcML produced using XML tools to search the parse tree
information using system.xml from the .NET framework. The
body of each loop and function is then extracted and examined
for each type of inhibitor in loops or side effects in functions.

For the loops, if no inhibitors exist in a for-loop, it is counted
as a free-loop; otherwise, the existence of each inhibitor is
recorded. The systems that were chosen in this study were
carefully selected to represent a variety of scientific systems
developed in C/C++. These are well known scientific systems
used by large-scale research and governmental institutions e.g.,
NASA, and many other systems that are known to communities
from both academia and industry.

6 Discussion

We now study the challenges in parallelizability of twelve
open-source scientific systems, including inhibitors to
parallelization and function side effects. Table 1 presents the
list of scientific systems examined along with number of files,
and LOCs for each system. Table 1 shows a count of how
many for-loops were found in each system and for comparison
the number of while-loops and number of functions in each
scientific system. One item of interest is that all of the
scientific software systems show a much larger use of for-loops
than while-loops. This is promising for potential parallelization
through the use of APIs such as OpenMP.

6.1 Design of the Empirical Study

Our study focuses on four aspects regarding for-loops in
scientific software systems. First, the percentage of for-loops
containing one or more inhibitors gives an indication of how
much the system could be readily parallelized by a compiler or
other automated tool. Second, we examine which inhibitors are
the most prevalent. Third, we seek to understand when

44 IJCA, Vol. 24, No. 1, March 2017

Table 1: The 12 open source scientific systems in the study, and functions, loops found in the 12
systems. All systems were updated to last revision in 2016

inhibitors are the sole cause in preventing parallelization. That
is, loops can have multiple inhibitors preventing parallelization
and therefore, would require a large amount of effort to remove
all the inhibitors. Because of this, we are interested in
understanding how often only one type of inhibitor occurs in a
loop. These types of loops would hopefully be easier to
refactor into something that is parallelizable. We propose the
following research questions as a more formal definition of the
study:

RQ1: What is a typical percentage of for-loops that are free-
loops (have no inhibitors)?

RQ2: Which types of inhibitors are the most prevalent?
RQ3: Is there a higher percentage of for-loops that are

considered free-loops as a scientific system evolves over time?

and RQ4: Have the most prevalent inhibitors of a system
changed over time?

We now examine our findings within the context of these
research questions.

6.2 Percentage of Free for-loops

Tables 1 and 2 present the results collected for the 12
scientific systems. We give the total number of free for-loops
along with the total number of all for-loops we detected.

Table 1 shows the percentage of free-loops computed over
the total number of for-loops. As can be seen, free-loops
account for between 48% and 81% of all for-loops in these
systems, with an overall average of 66%.

Table 2: Parallelization inhibitors of the 12 scientific software systems used in the study
(last revision in 2016)

System
Function
Calls with
Side Effect

Jumps
(goto and
breaks)

Data
Dependency Free for-loops

3DSlicer 5.70% 5.39% 8.57% 81.68%
Growler 9.46% 10.74% 12.53% 69.05%
Gwyddion 27.65% 8.51% 13.47% 56.56%
Madagascar 24.70% 2.21% 40.45% 48.05%
NightShade 14.92% 14.92% 8.24% 68.15%
PSI4 20.56% 1.63% 29.89% 53.77%
RtRetrieval 18.50% 11.62% 0.17% 72.70%
Waffles 22.19% 7.30% 13.45% 62.64%
Cantor 14.82% 13.58% 0% 74.07%
Fityk 15.28% 7.26% 13.31% 68.53%
Step 15.00% 6.88% 7.50% 73.75%
Marble 24.20% 10.72% 4.40% 63.34%
TOTAL 18% 8% 13% 66%

System KLOC Funs For While Files
3DSlicer 4,029 11,366 2,577 377 2,008
Growler 1,591 4,307 391 324 274
Gwyddion 1,185 8924 4,476 506 631
Madagascar 922 11,623 37,859 531 3,544
NightShade 888 4,247 449 185 239
PSI4 736 10,422 24,777 405 1,992
RtRetrieval 695 84,380 8,143 5,624 1,128
Waffles 565 8,164 3916 800 568
Cantor 503 1,491 81 56 522
Fityk 449 1,843 661 101 379
Step 391 1,190 160 9 245
Marble 2,356 9,294 1,091 333 4,936
TOTAL 5,417,408 157,251 84,581 9,251 16,466

IJCA, Vol. 24, No. 1, March 2017 45

However, in general, the percentage is high for most of the
scientific systems compared to the situation in general-purpose
systems and other domains (e.g., middleware) that were studied
in our previous study e.g., [2].

That is, on average, a big portion of the detected for-loops in
these scientific systems could potentially be parallelized. This
addresses RQ1.

6.3 Parallelization Inhibitors

We now use our finding to address RQ. Table 2 presents the
details of our findings on the distribution of inhibitors in
studied scientific systems.

It clearly counts each of the inhibitors that occur within for-
loops. Many of the for-loops have multiple inhibitors (e.g., a
data dependency and a jump). As can be seen, function-call
inhibitors are the most prevalent across most of the systems.
However, in two systems data dependency was the primary
issue. For most of the systems, this is followed by data
dependency, and then jumps, thus addressing RQ2. All jump,
goto and break, code were grouped together. This is similar to
our findings with general purpose systems, though scientific
systems show better results by a noticeable margin [2]. The
findings show that 3DSlicer has great potential to be
parallelized and take advantage of multicore challenges than the
others when it comes to the parallelization context.

Figure 2, presents the average percentage, over all 12
scientific systems, of for-loops that are not free and contain at
least a single inhibitor. This gives a clear view of which
inhibitor occurs most frequently. We see that the trend is
likewise similar via this perspective. Function-call inhibitors
are the most prevalent with about 5% higher than data
dependency, which is not the case with general-purpose

software systems previously studied. On average, we see the
next most prevalent inhibitor is data dependency, followed by
jumps.

7 Historical Analysis

A set of 8 systems from the original 12 were chosen, all of
which have been under development and maintenance for at
least 5 years in order to address questions RQ3 and RQ4. The
other systems were either relatively new and thus have a short
history, or their history was not accessible. Therefore, they
were excluded from this historical analysis. The goal is to
uncover how each system evolves in the context of multicore
adaptability.

7.1 Evolution of Free For-Loops

Figure 3 shows the percentage of free-loops for each year’s
version of each of the 8 scientific systems studied. Even when
reduced to 8 open source scientific software systems, the
overall percent average of free-loops remains the same at 66%.
The overall average percent of free-loops across the 2012
version of all 8 systems is about 67%. As the systems grew
over a 5-year period, the average percent of free-loops
remained similar or had a very small increase or decrease. This
shows us that the developers of open source scientific systems
are not making significant improvements towards the
parallelizability of their systems. This addresses RQ3. The
findings show that there is not a higher percentage of free-loops
in the scientific systems as they evolve over time, but rather a
decrease in the percentage of free-loops over the 5-year period
studied.

Figure 2: The average percentage of free For-Loops and Non-Free-For-Loops
that contain at least one inhibitor, over all 12 systems.

46 IJCA, Vol. 24, No. 1, March 2017

Figure 3: Percentage of Free-loops for each of the 5 studied years of each system

7.2 Inhibitor Prevalence

In each of the 8 studied open source scientific software
systems, the inhibitor that was the most prevalent in 2012 was
the same inhibitor that was the most prevalent in 2016, which
was data dependency or function calls with side effects for most
of the studied systems. In fact, for most systems, the number of
each inhibitor stayed relatively similar or increased from 2012
to 2016. This addresses RQ4, as the most prevalent inhibitor
for each system remained the same over the 5-year period.

7.3 Uncovered Historical Trends

The results of this study show that open source scientific
systems are, in general, not becoming more parallelizable as

they evolve over time. Figure 3 shows the percentage of free-
loops for each version of the systems. Most systems show
fairly flat trends, but 3DSlicer shows a slight increase in
percentage of for-loops that are free-loops, while Marble and
Waffles show decreases. Even if the percentage of free for-
loops remained relatively the same, the percentage of jump
statements, data dependencies, and direct calls to functions with
side effects tended to increase or remained similar throughout
the 5-year period studied for most systems.

Figure 4 shows the percentage of for-loops with direct calls
to side effects over the 5-year period. Once again, most
systems show a flat trend, but Marble and Waffles show an
increasing trend that correlates to their drop-in percentage of
free-loops. Figure 5 shows the percentage of for-loops with
data dependency in the systems. Madagascar maintains a high

Figure 4: Percentage of For-Loops with a direct call to a function with side effects in all studied scientific systems

IJCA, Vol. 24, No. 1, March 2017 47

Figure 5: Percentage of For-loops with data dependency in all studied scientific systems

percentage of data dependency throughout the 5-year period,
while Cantor maintains 0% data dependency for the 5-year
period. Fityk had an increase in data dependency between 2012
and 2013, but then stayed flat. Waffles saw an increase over the
recent years for data dependency, and 3DSlicer saw a decrease
in data dependency.

Figure 6 shows the percentage of for-loops with jump
statements. Marble saw the most drastic increase, while
systems like Cantor and 3DSlicer saw decreases. While most
of the jump statements come from the use of break, some
developers are still using goto, such as the developers of
Gwyddion, where goto accounts for about 2% of the jump
statements in each version of the years studied despite
recommendations to avoid its use.

These results indicate that scientific developers are writing
their code in ways that are not improving their parallelizability.
One reason for this might be due to bad programming habits or
a programming background lacking in the knowledge or
experience needed to write programs that can be easily
parallelized.

The developers may not realize that such issues exist within
their code, and one goal of this study was to help make these
developers aware of potential issues that they may face when
they try to adapt their code to utilize multicore architecture.
Another reason might be that the developers know that there are
issues with the parallelizability of their code, but choose to
ignore the issues and leave them uncorrected.

Figure 6: Percentage of For-Loops with jumps (breaks and gotos) in all studied scientific systems

48 IJCA, Vol. 24, No. 1, March 2017

8 Conclusion

This study empirically examined the challenges scientific
software systems have to face before being able to take full
advantage of multicore technology. Twelve open source
scientific systems were studied, comprising over 5.4 million
lines of code and containing more than 84.5 thousand for-loop
statements. There are no other studies of this type that have
been conducted on scientific software systems in the context of
source-to-source parallelization currently in the literature.

We found that the greatest inhibitor to parallelizing scientific
software systems is the presence of function calls with side
effects, followed closely by data dependency. As such, more
attention needs to be placed on dealing with function-call and
data dependency inhibitors if a large amount of parallelization
is to occur in scientific software systems so they can take better
advantage of modern multicore hardware.

Our results show some indication that this is a different trend
from the trends general-purpose software systems show. That
is, function calls with side effects were larger than the data
dependency we detected in this study.

Additionally, we empirically showed that coding style can
play a big role in advancing a system’s parallelizability, with
developers of scientific systems causing more challenges to the
parallelization process by using patterns that cause function
side-effects. That is at least partially due to development teams
not focusing on developing software in a way that could one
day take advantage of parallel architectures. However, the
recent ubiquity of multicore processors gives rise to the need to
educate scientific software developers and make them aware of
inhibitors preventing the parallelization of their code.

In order to see how scientific systems are adapted over time
to take advantage of multicore architecture, we extended the
work by empirically examining the source code over a 5-year
period of history for 8 of the original 12 open source scientific
software systems to find the number of inhibitors and free for-
loops in order to discover whether or not the systems are
becoming more parallelizable over time, or if they are facing
more challenges towards the adaptation to utilize multicore
architecture as they grow and evolve over time.

Our results showed that open source scientific systems are
not, in general, becoming more parallelizable as they evolve
over time. Instead, the average percentage of free for-loops
found in the systems saw a decrease of about 1% between the
years 2012 and 2016 meaning that these scientific systems are
becoming slightly less parallelizable as they grow instead of
more parallelizable. When the systems are examined
individually, many show a flat trend where their
parallelizability is neither increasing nor decreasing by a
significant amount.

From the results of this work, we recommend that scientific
software research communities develop techniques that assist in
removing jumping statements along with the identification of
functions with side effects (in the context of parallelization).

Acknowledgements

This work was supported in part by a grant from The
University of Wisconsin-Colleges and UW-Fox Valley.

References

[1] S. M. Alnaeli, A. A. Taha, and T. Timm, “On the
Prevalence of Function Side Effects in General Purpose
Open Source Software Systems,” Computer and
Information Science, R. Lee, Ed., ed Cham: Springer
International Publishing, pp. 149-166, 2016.

[2] S. M. Alnaeli, J. I. Maletic, and M. L. Collard, “An
Empirical Examination of the Prevalence of Inhibitors to
the Parallelizability of Open Source Software Systems,”
Empirical Software Engineering, 21:1272-1301, 2016.

[3] U. K. Banerjee, Dependence Analysis for
Supercomputing, Kluwer Academic Publishers, 1988.

[4] B. Barney, Introduction to Parallel Computing.
Available: https://computing.llnl.gov/tutorials/parallel_
comp/#Models, 2012.

[5] A. J. C. Bik and D. Gannon, “Automatically Exploiting
Implicit Parallelism in Java,” Concurrency - Practice and
Experience, pp. 579-619, 1997.

[6] M. L. Collard, M. J. Decker, and J. I. Maletic,
“Lightweight Transformation and Fact Extraction with the
srcML Toolkit,” Presented at the Proceedings of the 2011
IEEE 11th International Working Conference on Source
Code Analysis and Manipulation, 2011.

[7] L. Feng, Automatic Parallelization in Graphite, Available:
http://gcc.gnu.org/wiki/Graphite/Parallelization, 2009.

[8] C. Ghezzi and M. Jazayeri, Programming Language
Concepts, Wiley, 1982.

[9] J. E. Hannay, C. MacLeod, J. Singer, H. P. Langtangen, D.
Pfahl, and G. Wilson, “How do Scientists Develop and
Use Scientific Software?,” ICSE Workshop on Software
Engineering for Computational Science and Engineering,
2009. SECSE '09, pp. 1-8, 2009.

[10] D. A. P. J. L. Hennessy Computer Architecture: A
Quantitative Approach, Morgan Kaufman Publishers, San
Francisco, 2006.

[11] Intel., “Automatic Parallelization with Intel Compilers,”
Available: http://software.intel.com/en-us/articles/auto
matic-parallelization-with-intel-compilers/, 2010.

[12] N. Nadgir, “Using OpenMP to Parallelize a Program,”
Available: http://developers.sun.com/solaris/articles/
openmp.html, 2001.

[13] D. S. Nikolopoulos, C. D. Polychronopoulos, E.
Ayguad´e, J. U. Labarta, and T. S. Papatheodorou, “The
Trade-off between Implicit and Explicit Data Distribution
in Shared-Memory Programming Paradigms,” presented
at the ICS ’01, Sorrento, Italy, 2001.

[14] Oracle, “Inhibitors to Explicit Parallelization,” Available:
https://docs.oracle.com/cd/E19205-01/8195262/aeuji/
index.html, 2010.

IJCA, Vol. 24, No. 1, March 2017 49

Saleh M. Alnaeli is an Assistant
Professor in the Department of
Computer Science at The
University of Wisconsin-Fox
Valley. His research interests
focus on software evolution,
automatic parallelization,
software security, and mining

software repositories. Dr. Alnaeli obtained his PhD in
Computer Science from The Kent State University. He also
received the MS in Computer Science from Technical
University of Ostrava, Czech Republic 2006, and the BS in
Computer Science from The University of Zawia, Libya 1999.

Melissa M. Sarnowski is an
undergraduate student in the
Department of Computer Science at
University of Wisconsin-Fox Valley.
Her research interests are centered
around software evolution and security.
She has authored multiple referred
publications in the areas of analysis,
security, and parallelizability of
software. She is leading the computer
club at UW-Fox Valley and a member
of the software engineering lab lead by

Professor Alnaeli at UW-Colleges.

Calvin Meier is an undergraduate
student in the Department of
Computer Science at University of
Wisconsin-Oshkosh. His area of
interest for research is software
analysis. He was a member of the
computer club and of the software
engineering lab lead by Professor
Alnaeli prior to his transfer to the

UW-Oshkosh campus.

Mark Hall is an Associate Professor
in the Department of Computer
Science at University of Wisconsin-
Marathon County. He coordinates the
UW Colleges’ programming teams for
competitions and his area of interest
for research is Computer Science
education.

Instructions for Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr., Fred.Harris@cse.unr.edu.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence.
Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11

inch pages.
2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word
format should be submitted to the Editor-in-Chief.

2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should
be included:

 Paper text (required).
 Bios (required for each author). Integrate at the end of the paper.
 Author Photos (jpeg files are required by the printer, these also can be integrated into your paper).
 Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps).

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper.

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of
$50.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA
members, $100 of publication charges will be waived if requested.

January 2014

ISCA
 IN

TERN
A

TIO
N

A
L JO

U
RN

A
L O

F CO
M

PU
TERS A

N
D

 TH
EIR A

PPLICA
TIO

N
S

V
ol. 24, N

o. 1, M
arch 2017

