

A publication of ISCA*:

International Society for Computers
and Their Applications

INTERNATIONAL JOURNAL OF

COMPUTERS AND THEIR
APPLICATIONS

TABLE OF CONTENTS

 Page

Real-Time Systems Scheduling of Multiple Virtual Machine . 91
 Christine Niyizamwiyitira and Lars Lundberg

An Enhancement in Segmentation of Magnetic Resonance Images of Brain

Tumors Using Symmetry and Active Contour 110
 Mubbashar Saddique, Kalim Qureshi, Jawad Haider Kazmi, and Zainab Meraj

Using an Uncalibrated Camera for Undistorted Projection over a Mobile

Region of Interest . 120
 Mamona Awan and Kwang Hee Ko

CMML: A Cloud Metering Markup Language . 133

 Karim Sobh and Amr El-Kadi

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPEC and
Scopus.”

Volume 24, No. 3, Sept. 2017 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…P. O. Box 1124, Winona, MN 55987 USA…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2017 by the International Society for Computers and Their Applications (ISCA)

All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Frederick C. Harris, Jr., Professor
Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA
Phone: 775-784-6571, Fax: 775-784-1877

Email: Fred.Harris@cse.unr.edu, Web: http://www.cse.unr.edu/~fredh

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid
University of Houston-Clear Lake,
USA
hisham@uhcl.edu

Dr. Antoine Bossard
Advanced Institute of Industrial
Technology, Tokyo, Japan
abossard@aiit.ac.jp

Dr. Mark Burgin
University of California,
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University,
Wrexham, UK
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan,
Dearborn, USA
magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science and
Technology, USA
ff@mst.edu

Dr. Muhanna Muhanna
Princess Sumaya University for
Technology, Amman, Jordan
m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York at
Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University, USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California
San Diego, USA
jianwu@sdsc.edu

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University,
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
 at Stony Brook, USA
rong.zhao@stonybrook.edu

http://www.isca-hq.org/
mailto:qzhu@umich.edu

IJCA, Vol. 24, No. 3, Sept. 2017 91

 ISCA Copyright© 2017

Real-Time Systems Scheduling of Multiple Virtual Machines

Christine Niyizamwiyitira* and Lars Lundberg*
Blekinge Institute of Technology, SE-379-71 Karlskrona, SWEDEN

Abstract

 The use of virtualized systems is growing, and one would like
to benefit from this kind of systems also for real-time
applications with hard deadlines. There are two levels of
scheduling in real-time applications executing in a virtualized
environment: traditional real-time scheduling of the tasks in the
real-time application inside a Virtual Machine (VM), and
scheduling of different VMs on the hypervisor level.
Traditional real-time scheduling uses methods based on periods,
deadlines and worst-case execution times of the real-time tasks.
In order to apply the existing theory also to virtualized
environments we must obtain periods and (worst-case)
execution times for VMs containing real-time applications. In
this paper, we describe a technique for calculating periods and
execution times and utilization for VMs containing real-time
applications with hard deadlines. We show that when we look
at all VMs that share a physical processor we are able to use
longer (better) periods. Alternatively, if the periods are the
same, we are able to use a smaller amount of the processor
resource for the VMs and more tasks become schedulable
compared to when we look at each VM in isolation. We also
introduce an overhead model that makes it possible to find VM
periods that minimize the processor utilization.
 Key Words: Real-time virtual machine; real-time
scheduling; hard deadlines; VM overhead; VM period.

1 Introduction

There is a strong trend towards virtualization of computer
systems, and one would like to also run real-time systems in
virtualized environments. However, moving a real-time system
with hard deadlines to a virtualized environment where a number
of Virtual Machines (VMs) share the same physical computer is
a challenging task. The original real-time application was
designed such that all tasks were guaranteed to meet their
deadlines provided that the physical computer was fast enough.
In a system with faster processors, and more cores, one would
like to put several VMs on the same physical hardware and some
or all of these VMs may contain real-time tasks with hard
deadlines. In order to take full advantage of the hardware, more

*Department of Computer Science and Engineering, Faculty of
Computing. Email: Christine.niyizamwiyitira@bth.se,
lars.lundberg@bth.se.

than one VM may share a processor core. This is the scenario
that we consider in this study, i.e. k VMs share the same
processor core, and each VM contains a real-time application.
We assume that for each core, the identities of the VMs that share
that core are known. We also assume that these VMs are
scheduled to the physical processor core using static priorities.
In such a system there will be scheduling on two levels [1, 24].
The first level is traditional real-time scheduling of the tasks
within a VM. The second level is scheduling of VMs by the
hypervisor; the hypervisor controls several VMs on the same
physical hardware.

Two classic real-time scheduling algorithms are Rate
Monotonic Scheduling (RMS) where tasks are assigned static
priorities based on deadlines, and Earliest Deadline First (EDF)
where task priorities are dynamic. These kind of scheduling
algorithms enable to guarantee certain real-time properties in
non-virtualized systems. These scheduling algorithms are based
on the periodic behavior of the real-time tasks, i.e. each task has
a period T and a worst-case execution time C. This means that a
task may in the worst-case need to use the processor for C time
units during each period, the length of the period is T time units.
In order to use existing real-time scheduling theory also on the
hypervisor level, i.e. when scheduling different VMs on the
physical hardware, we need to calculate a period 𝑇𝑇𝑉𝑉𝑉𝑉 and a
worst-case execution time 𝐶𝐶𝑉𝑉𝑉𝑉 for each VM such that all real-
time tasks in the VMs will meet their deadlines.

Previous work [20] has found a method for calculating an
execution time 𝐶𝐶𝑉𝑉𝑉𝑉 and a period 𝑇𝑇𝑉𝑉𝑉𝑉 for a VM such that all
real-time tasks in the VM will meet their deadlines. That study
considered each VM in isolation, i.e. without knowledge about
the other VMs sharing the processor. The contribution in this
paper is that we define an improved execution time 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 and
period 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , by considering a holistic perspective, i.e., we
consider the whole work-load of all VMs that share a processor
core.

The holistic approach gives more information about the work-
load and does not require to be overly pessimistic, and as a result
more real-time programs become schedulable. We also define
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 and 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 in the presence of overhead for context switches
between VMs.

2 Background and Related Work

Real-time scheduling theory (or non-virtualized systems

shows that the minimum processor utilization for which a

mailto:Christine.niyizamwiyitira@bth.se
mailto:lars.lundberg@bth.se

92 IJCA, Vol. 24, No. 3, Sept. 2017

periodic real-time system can miss a deadline, using fixed
priority scheduling, i.e. using RMS, decreases as the number of
processors increases, e.g. 69.3% for one processor systems [16],
and 53.2% for two processor systems and then down to as little
as 37.5% for systems with infinitely many processors [18].
Consequently, compared to multiprocessor systems, the
processor utilization is generally higher for systems with one
processor. This is one reason why we have assumed that each
core of a multi-core processor contains a number of VMs and
each VM that contains a real-time application has only one
virtual processor. Also, most existing real-time applications are
developed for systems with one processor.

An additional advantage of just having one virtual core in each
VM is that one can bind each VM to a physical core, thus
minimizing unpredictable dynamic cache effects, i.e., the
processor cache will be cold (empty) when a VM is migrated
from one core to another. Such effects become problematic in
real-time systems since applications with hard deadlines need to
control the worst-case behavior. We, therefore, expect that one
future way of using virtualization will be that a VM containing a
real-time application will be bound to a processor core a modern
multi-core hardware server. In order to provide high hardware
utilization, we expect that many VMs may share the same
processor core.

Very few studies have explicitly focused on hard real-time
scheduling in virtualized systems. Some results on real-time
tasks with soft deadlines have been studied with the focus on
real-time hypervisor scheduling framework for Xen [12, 29].
There are a number of results concerning so called proportional-
share schedulers [9, 22, 27]. These results looked at a real-time
application that runs inside an operating system process. The
proportional-share schedulers divide the processor resource in
predefined proportions to different processes. However, none of
these results explicitly address hard real-time issues such as
worst-case scenarios, periods/deadlines and worst-case
execution times. In [17], the authors looked at a model for
deciding which real-time tasks to discard when the cloud
system’s resources cannot satisfy the needs of all tasks. That
model does, however, not address the problems associated with
hard deadlines. The VSched system, which runs on top of Linux,
provides soft real-time scheduling of VMs on physical servers
[14]. However, the problems with hard deadlines are not
addressed in that system.

In the area of hierarchical scheduling, there have been plenty
of studies. In [10], authors proposed a hierarchical real-time
virtual resource model that permits resource partitioning to be
extended to multiple levels (similar to the two-level scheduling
situation in virtualized systems). In [25, 26] the authors proposed
a resource model for hierarchical schedulers to characterize a
periodic resource allocation and present exact schedulability
conditions under RMS and EDF algorithms. This method
derives timing requirements of a parent scheduler from the
timing requirements of its child scheduler in a compositional
manner such that the timing requirement of the parent scheduler
is satisfied if and only if the child scheduler is satisfied. Later
on, they proposed a compositional real-time scheduling
framework with a periodic model that enables a group of real-

time applications to be a single real-time resource requirement to
the upper level scheduler. These scheduling schemes help to
schedule large complex systems by breaking them down into
subsystems.

In [8, 15] the authors studied a two-level hierarchical
architecture to schedule many applications on a single processor.
Each application is associated with a server and each server is
assigned a portion of the processor [15]. There is a global
scheduler that determines which application, i.e., which server,
should be allocated to the processor at any given time and a local
scheduler that determines which of the chosen application’s tasks
should actually execute. Both schedulers use fixed priority pre-
emptive scheduling policy. All of the hierarchical scheduling
results mentioned above consider each VM in isolation, i.e., no
study takes a holistic approach where the entire set of VMs are
considered. Previous results on age-constraint real-time tasks (in
a uniprocessor environment) show that one can guarantee the
schedulability for more cases when the entire work-load is taken
into consideration [19].

In [6] the authors studied a reservation-based algorithm, i.e., a
constant bandwidth server (CBS) on top of EDF for scheduling
real-time tasks with hard deadlines on VMs. A reservation-based
scheduler allocates a computation budget for every reservation
period to each VM. The execution of a VM does not depend on
the other VMs running on the same hardware (temporal
isolation), rather it depends only on task’s period and execution
time. The results show that VM technology and scheduling
algorithm can affect the real-time application performance. They
propose to use less pessimistic analysis to dimension the VM
scheduling parameters if one uses CBS algorithm. Interaction
between VMs is not considered whereas in this paper, we
consider also the interaction between VMs therefore VMs
priority is set accordingly.

In [13] the authors developed a Compositional Scheduling
Architecture (CSA) that is built on the Xen virtualization
platform. The architecture allows timing isolation among virtual
machines and supports timing guarantees for real-time tasks
running on each virtual machine. The study uses a pessimistic
approach where every VMs is treated in isolation, whereas in this
paper every VM is treated with respect to other VMs that they
share resources. In [21] the authors present a model that include
the cache related in hierarchical scheduling while keeping
temporal isolation between applications that share a single
processor, yet interaction between VMs is not considered.

In [7] the authors propose a mechanism to schedule soft real-
time systems, which provides a temporal isolation between VMs
that share a CPU. In this paper we consider even when a VM is
affected by the work-load from other VMs that they share
resources, a hard-real-time system with a strict deadline is
considered.

In [5, 23] the authors present a model that accounts for the
overhead, in the compositional hierarchical scheduling for
uniprocessor however, the entire work-load was not considered.
In [30] compositional scheduling theory was also applied for
multi-core VM scheduler for Xen real-time virtualization
platform. However, task’s migration across processor/core in the
same VM which causes significant overhead was neglected.

IJCA, Vol. 24, No. 3, Sept. 2017 93

In connection with hard deadlines systems, the utilization has
been studied for real-time systems that respond to an external
environment within a specific deadline that is called age
constraint. This age constraint is the time between the beginning
of the execution of a task in one period and the end of the task in
the next period [19]. In this paper we use the idea from the age
constraint approach for scheduling real-time tasks in the VMs.

In [20] the authors addressed the problem of scheduling hard
real-time applications in a VM. The authors proposed a
technique such that real-time applications could meet their
deadlines when they are scheduled on a single VM. In this paper
we improve this technique by proposing a method that schedules
many VMs as whole instead of looking at each VM in isolation.
We should not ignore the overhead brought by VMs, a case that
considers this is also presented herein. The method described in
this paper saves the resource utilization while scheduling many
VMs.

3 Problem Definition

We consider the case when k VMs share the same processor

core (see Figure 1(i)); all VMs have one virtual processor. We
assume that for each core the identities of the VMs that share a

processor core is known. We also assume that these VMs are

scheduled to the physical core using static priorities. Each 𝑉𝑉𝑉𝑉𝑖𝑖
(1 ≤ 𝑖𝑖 ≤ 𝑘𝑘) runs a real-time program that consists of 𝑛𝑛𝑖𝑖 tasks
𝜏𝜏𝑖𝑖,𝑗𝑗 (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛𝑖𝑖), i.e. 𝜏𝜏𝑖𝑖,𝑗𝑗 denotes task j in 𝑉𝑉𝑉𝑉𝑖𝑖. A task 𝜏𝜏𝑖𝑖,𝑗𝑗 is
defined by its worst-case execution time 𝐶𝐶𝑖𝑖,𝑗𝑗 and period 𝑇𝑇𝑖𝑖,𝑗𝑗 [4].
Since we assume that the priority follows rate monotonic
scheduling (RMS), the tasks are ordered such that 𝑇𝑇𝑖𝑖,𝑗𝑗 ≤ 𝑇𝑇𝑖𝑖,𝑗𝑗+1 .
This means that inside 𝑉𝑉𝑉𝑉𝑖𝑖, task 𝜏𝜏𝑖𝑖,1 has the highest priority, i.e.,
it is never interrupted by any other task.

We assume that each task is independent and does not interact
with other tasks. We also assume that the first invocation of a
task is unrelated to the first invocation of any other task, i.e., we
make no assumptions regarding the phasing of tasks with equal
or harmonic periods. Since we assume that the deadline 𝐷𝐷𝑖𝑖 ,𝑗𝑗 is
equal to the period 𝑇𝑇𝑖𝑖,𝑗𝑗, we only need two parameters for each
task: 𝑇𝑇𝑖𝑖,𝑗𝑗 and 𝐶𝐶𝑖𝑖,𝑗𝑗 [4].

For each VM that share a physical core, we need to calculate
a period 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 and an execution time 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 such that all tasks
𝜏𝜏𝑖𝑖,𝑗𝑗 will meet their deadlines when VMi executes at least
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 time units every 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 period.

In [20] the authors found a method for calculating an
execution time 𝐶𝐶𝑉𝑉𝑉𝑉 and a period 𝑇𝑇𝑉𝑉𝑉𝑉 when one looks at a VM
in isolation.

Figure 1(i): A physical processor with m cores, and (ii) three virtual machines on a processor

94 IJCA, Vol. 24, No. 3, Sept. 2017

A main contribution in this paper is to use information about
the entire set of VMs sharing a core to reduce the resource
utilization 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄ compared to considering each VM in
isolation (we will also extend the previous result by introducing
an overhead model).

We also assume that we use static priorities on the hypervisor
level. 𝑉𝑉𝑉𝑉1 has the highest priority and cannot be interrupted by
any other VM, and 𝑉𝑉𝑉𝑉2 has the second highest priority. Figure
1(ii) shows a processor core that runs 𝑉𝑉𝑉𝑉1, 𝑉𝑉𝑉𝑉2 and 𝑉𝑉𝑉𝑉3. 𝑉𝑉𝑉𝑉1
has three tasks 𝜏𝜏1,1, 𝜏𝜏1,2, 𝜏𝜏1,3. 𝑉𝑉𝑉𝑉2 has also three tasks 𝜏𝜏2,1, 𝜏𝜏2,2,
𝜏𝜏2,3, and 𝑉𝑉𝑉𝑉3 has four tasks 𝜏𝜏3,1, 𝜏𝜏3,2, 𝜏𝜏3,3, 𝜏𝜏3,4 . A real-time
task may miss its deadline if the VM containing the task is not
scheduled for execution by the hypervisor during a certain
period of time. We would like to assign long periods
(i.e. 𝑇𝑇𝑉𝑉𝑉𝑉1 , 𝑇𝑇𝑉𝑉𝑉𝑉2, 𝑇𝑇𝑉𝑉𝑉𝑉3) to each VM, since this will minimize the
overhead for switching VMs. However, if the VM periods are
too long, the real-time tasks in the VM may miss their deadlines.
Previous results show that there is a trade-off between the length
of 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 and the utilization 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

⁄ that a VM needs to
guarantee that all tasks meet their deadlines [20]. We would like
to find combinations of periods 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 and execution times 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖
that strike a good compromise between a limited number of
context switches between VMs (i.e. long 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖) and a low
utilization 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

⁄ for all VMs.
In a traditional real-time application, a task 𝜏𝜏𝑖𝑖,𝑗𝑗 will

voluntarily release the processor when it has finished its
execution in a cycle, and 𝐶𝐶𝑖𝑖,𝑗𝑗 denotes the maximum time it may
execute before it releases the processor. In our case the

hypervisor will make sure that 𝑉𝑉𝑉𝑉𝑖𝑖 releases the processor after
executing for 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 time units in a period 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 .

4 Defining 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 and 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

Let 𝑅𝑅𝑖𝑖,𝑗𝑗 denotes the maximum response time for task 𝜏𝜏𝑖𝑖,𝑗𝑗.

Using traditional RMS scheduling, the worst- case response
time 𝑅𝑅𝑖𝑖,𝑗𝑗 for task 𝜏𝜏𝑖𝑖,𝑗𝑗 is given by Equation (1).

 𝑅𝑅𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝑖𝑖,𝑗𝑗+∑ �

𝑅𝑅𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑚𝑚

�𝑗𝑗−1
𝑚𝑚=1 𝐶𝐶𝑖𝑖,𝑚𝑚 (1)

In order to obtain 𝑅𝑅𝑖𝑖,𝑗𝑗 from Equation (1), we need to use

iterative numeric methods [4]. In Figure 2, we look at one VM
in isolation [20]. The main result in [20] is a method of finding
𝑇𝑇𝑉𝑉𝑉𝑉 and 𝐶𝐶𝑉𝑉𝑉𝑉 such that all tasks will meet their deadlines. The
most important part of the method is a function
 𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) that maps virtual time to real (wall clock)
time. Before we present the main results of this paper, we will
give a short overview of the previous results that considered
each VM in isolation.

Consider a time period of length t. Equation (2) denotes the
number of complete periods of length 𝑇𝑇𝑉𝑉𝑉𝑉 that are covered by t
for the worst-case scenario; each complete period 𝑇𝑇𝑉𝑉𝑉𝑉 has
execution 𝐶𝐶𝑉𝑉𝑉𝑉 (see Figure 2).

 �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑉𝑉−𝐶𝐶𝑉𝑉𝑉𝑉)

𝑇𝑇𝑉𝑉𝑉𝑉
� (2)

Figure 2: The worst-case scenario for an isolated VM

IJCA, Vol. 24, No. 3, Sept. 2017 95

Let t’ denotes the minimum amount of time that the VM is
running during time period t. Previous results show that t’ is
obtained in the following way:

 𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑉𝑉−𝐶𝐶𝑉𝑉𝑉𝑉)
𝑇𝑇𝑉𝑉𝑉𝑉

� 𝐶𝐶𝑉𝑉𝑉𝑉 + 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡 − 2(𝑇𝑇𝑉𝑉𝑉𝑉 −

 𝐶𝐶𝑉𝑉𝑉𝑉) − �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑉𝑉−𝐶𝐶𝑉𝑉𝑉𝑉)
𝑇𝑇𝑉𝑉𝑉𝑉

� 𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉�� (3)

This means that t´ is a function of three parameters, i.e. 𝑡𝑡′ =

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉).
For fixed 𝑇𝑇𝑉𝑉𝑉𝑉 and 𝐶𝐶𝑉𝑉𝑉𝑉, 𝑡𝑡′ = 𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) is a

continuously increasing function in t, consisting of straight line
segments from �(2 + 𝑛𝑛)𝑇𝑇𝑉𝑉𝑉𝑉 − 2𝐶𝐶𝑉𝑉𝑉𝑉),𝑛𝑛𝐶𝐶𝑉𝑉𝑉𝑉� to�(2 +
𝑛𝑛)𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝑉𝑉𝑉𝑉), (𝑛𝑛 + 1)𝐶𝐶𝑉𝑉𝑉𝑉� for any n = 0, 1, 2…, (see Figure
2). As a result,

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑀𝑀 ,𝐶𝐶𝑉𝑉𝑀𝑀) = �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑀𝑀−𝐶𝐶𝑉𝑉𝑀𝑀)
𝑇𝑇𝑉𝑉𝑀𝑀

� 𝐶𝐶𝑉𝑉𝑀𝑀 + 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − 2(𝑇𝑇𝑉𝑉𝑀𝑀 −

 𝐶𝐶𝑉𝑉𝑀𝑀) − �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑀𝑀−𝐶𝐶𝑉𝑉𝑀𝑀)
𝑇𝑇𝑉𝑉𝑀𝑀

� 𝑇𝑇𝑉𝑉𝑀𝑀� , 𝐶𝐶𝑉𝑉𝑀𝑀� (4)

The horizontal line that connects two consecutive segments

represents the end of a previous execution in a period and the
beginning of the next execution in the next period.

We now consider the inverse function, 𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉),
i.e., 𝑡𝑡 = 𝑓𝑓−1(𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉),𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉); by looking at Figure 3,
we see that 𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) is undefined during the time
intervals when 𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) is flat. In [2] the authors define
the inverse of a function with flat intervals; they call it a pseudo-
inverse since a function with flat intervals is not invertible. In
order to handle this problem in our case we take a safe (worst-

case) approach, and for all values of t in a flat interval we define
 𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) as the inverse of the maximum t value in that
interval, thus making the inverse defined for all parameters
𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 , and 𝐶𝐶𝑉𝑉𝑉𝑉.

Using the definition above, the (pseudo-)inverse of
𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) is

 𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) = 2(𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝑉𝑉𝑉𝑉) + 𝑡𝑡 + �� 𝑡𝑡

𝐶𝐶𝑉𝑉𝑉𝑉
� −

 1� (𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝑉𝑉𝑉𝑉) (5)

From the response time 𝑅𝑅𝑗𝑗 (see Equation (1)) and the

definition of the 𝑓𝑓−1, we get the worst-case response time 𝑟𝑟𝑗𝑗 for
task 𝜏𝜏𝑗𝑗 :

 𝑟𝑟𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅𝑗𝑗 ,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉� (6)

To meet all deadlines for all tasks 𝜏𝜏𝑗𝑗 , we need to select 𝑇𝑇𝑉𝑉𝑉𝑉
and 𝐶𝐶𝑉𝑉𝑉𝑉 such that

 𝑟𝑟𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅𝑗𝑗 ,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉� ≤ 𝑇𝑇𝑗𝑗 (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛𝑖𝑖) (7)

In this paper, instead of considering each VM in isolation, we

take a holistic view since we know the whole work-load on the
physical core. The only way that the execution can happen in
the end of periods (see Figure 2) is when the core is busy, i.e.,
when at least one of the other VMs has a higher priority. The
part indicated by “a” in Figure 2 is the difference between the
pessimistic (considering each VM in isolation) and the
optimistic (holistic) cases.

In the pessimistic case we have the same function
 𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖� for all VMs; each VM can of course have

Figure 3: The (pseudo-)inverse function for an isolated VM (i.e., the pessimistic case)

96 IJCA, Vol. 24, No. 3, Sept. 2017

their own period (𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖) and execution time (𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖). In the
optimistic (holistic) case we have a function
𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖), with 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 representing the worst-case
response time for 𝑉𝑉𝑉𝑉𝑖𝑖.

VMs are ordered such that 𝑉𝑉𝑉𝑉𝑖𝑖 has a higher priority than 𝑉𝑉𝑉𝑉𝑗𝑗
if 𝑖𝑖 < 𝑗𝑗. In the worst-case scenario, all VMs are released at the
same time; first of all, we consider 𝑉𝑉𝑉𝑉1 and take a time period
of length t which may extend over several periods (see Figure
4).

In the worst-case scenario period t starts right after a period
of 𝐶𝐶𝑉𝑉𝑉𝑉1 execution that occurred at the start of a period 𝑇𝑇𝑉𝑉𝑉𝑉1 .
Since 𝑉𝑉𝑉𝑉1 has the highest priority, the maximum time that 𝑉𝑉𝑉𝑉1
has to wait for, is 𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1 before it executes its first 𝐶𝐶𝑉𝑉𝑉𝑉1 .
The number of whole periods of length 𝑇𝑇𝑉𝑉𝑉𝑉1 that is covered by
t for the worst-case scenario is given in Equation (8).

 �𝑡𝑡−(𝑇𝑇𝑉𝑉𝑉𝑉1−𝐶𝐶𝑉𝑉𝑉𝑉1)

𝑇𝑇𝑉𝑉𝑉𝑉1
� (8)

Let t’ denote the minimum amount of time that VM1 is

running during a time period of length t.

𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉1−𝐶𝐶𝑉𝑉𝑉𝑉1�
𝑇𝑇𝑉𝑉𝑉𝑉1

� 𝐶𝐶𝑉𝑉𝑉𝑉1 + 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − �𝑇𝑇𝑉𝑉𝑉𝑉1 −

 𝐶𝐶𝑉𝑉𝑉𝑉1� − �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉1−𝐶𝐶𝑉𝑉𝑉𝑉1�
𝑇𝑇𝑉𝑉𝑉𝑉1

� 𝑇𝑇𝑉𝑉𝑉𝑉1� ,𝐶𝐶𝑉𝑉𝑉𝑉1�� (9)

For fixed 𝑇𝑇𝑉𝑉𝑉𝑉1 and 𝐶𝐶𝑉𝑉𝑉𝑉1 , Figure 4 shows that 𝑡𝑡′ =

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1) consists of straight line segments from

��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1� ,𝑛𝑛𝐶𝐶𝑉𝑉𝑉𝑉1� to �(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉1 , (𝑛𝑛 +

1)𝐶𝐶𝑉𝑉𝑉𝑉1� for n = 0, 1, 2,…. As a result,

𝑓𝑓�𝑡𝑡,𝑇𝑇𝑉𝑉𝑀𝑀1 ,𝐶𝐶𝑉𝑉𝑀𝑀1� = �
𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀1 − 𝐶𝐶𝑉𝑉𝑀𝑀1�

𝑇𝑇𝑉𝑉𝑀𝑀1

� 𝐶𝐶𝑉𝑉𝑀𝑀1 +

𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀1 − 𝐶𝐶𝑉𝑉𝑀𝑀1) − �𝑡𝑡−(𝑇𝑇𝑉𝑉𝑀𝑀1−𝐶𝐶𝑉𝑉𝑀𝑀1�
𝑇𝑇𝑉𝑉𝑀𝑀1

� 𝑇𝑇𝑉𝑉𝑀𝑀1� ,𝐶𝐶𝑉𝑉𝑀𝑀1�

 (10)

With 𝑅𝑅𝑉𝑉𝑉𝑉1 = 𝐶𝐶𝑉𝑉𝑉𝑉1, since 𝑉𝑉𝑉𝑉1 has the highest, Figure 5

shows that the (pseudo-)inverse function for 𝑉𝑉𝑉𝑉1

 𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1� = �𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1� + 𝑡𝑡 + �� 𝑡𝑡
𝐶𝐶𝑉𝑉𝑉𝑉1

� −

 1� (𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1) (11)

When comparing function in Equation (11) with function in

Equation (5), i.e., the pessimistic case, we see that the only
difference is that 2(𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝑉𝑉𝑉𝑉) in (5) is replaced by
�𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1� in (11). The reason for this is that in Equation
(11) we know that 𝑉𝑉𝑉𝑉1 has the highest priority and cannot be
blocked by other VMs.

The worst-case response time for task 𝜏𝜏1,𝑗𝑗 is 𝑟𝑟1,𝑗𝑗 =
𝑓𝑓−1�𝑅𝑅1,𝑗𝑗,𝑇𝑇𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1�

In order to meet all deadlines for all tasks 𝜏𝜏𝑖𝑖,𝑗𝑗 , we need to
select 𝑇𝑇𝑉𝑉𝑉𝑉1 and 𝐶𝐶𝑉𝑉𝑉𝑉1 such that is,

Figure 4: The worst-case scenario for 𝑉𝑉𝑉𝑉1

IJCA, Vol. 24, No. 3, Sept. 2017 97

Figure 5: The (pseudo-)inverse function for VM1

 𝑟𝑟1,𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅1,𝑗𝑗,𝑇𝑇𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1� ≤ 𝑇𝑇1,𝑗𝑗 .

𝑉𝑉𝑉𝑉2 has the second highest priority and will suffer

interference only from 𝑉𝑉𝑉𝑉1 (see Figure 6). The worst-case
response time of 𝑉𝑉𝑉𝑉2 is given in Equation (12).

 𝑅𝑅𝑉𝑉𝑉𝑉2 = 𝐶𝐶𝑉𝑉𝑉𝑉2 + �𝑅𝑅𝑉𝑉𝑉𝑉2

𝑇𝑇𝑉𝑉𝑉𝑉1
� 𝐶𝐶𝑉𝑉𝑉𝑉1 (12)

In the worst-case 𝑉𝑉𝑉𝑉2 will wait for (𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2)

before it can start its first execution.
 The number of whole periods of length 𝑇𝑇𝑉𝑉𝑉𝑉2 that is covered

by t for the worst-case scenario with each period 𝑇𝑇𝑉𝑉𝑉𝑉2contains

a total execution 𝐶𝐶𝑉𝑉𝑉𝑉2 is �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉2−2𝐶𝐶𝑉𝑉𝑉𝑉2+𝑅𝑅𝑉𝑉𝑉𝑉2�

𝑇𝑇𝑉𝑉𝑉𝑉2
� .

Let t’ denotes the minimum amount of time that the VM is
running during a time period of length t. Then we have

𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉2−2𝐶𝐶𝑉𝑉𝑉𝑉2+𝑅𝑅𝑉𝑉𝑉𝑉2�

𝑇𝑇𝑉𝑉𝑉𝑉2
� 𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡 −

 �𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2� −

 �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉2−2𝐶𝐶𝑉𝑉𝑉𝑉2+𝑅𝑅𝑉𝑉𝑉𝑉2�

𝑇𝑇𝑉𝑉𝑉𝑉2
� 𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2�� (13)

For fixed 𝑇𝑇𝑉𝑉𝑉𝑉2 , 𝐶𝐶𝑉𝑉𝑉𝑉2 and 𝑅𝑅𝑉𝑉𝑉𝑉2 , Figure 6 shows that 𝑡𝑡′ =

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2) is an increasing function that consists of
straight line segments from��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 +

𝑅𝑅𝑉𝑉𝑉𝑉2�,𝑛𝑛𝐶𝐶𝑉𝑉𝑉𝑉2� to ��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉2 − 𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2�, (𝑛𝑛 +

1)𝐶𝐶𝑉𝑉𝑉𝑉2� for n = 0, 1, 2….

As a result,

𝑓𝑓�𝑡𝑡,𝑇𝑇𝑉𝑉𝑀𝑀2 ,𝐶𝐶𝑉𝑉𝑀𝑀2 ,𝑅𝑅𝑉𝑉𝑀𝑀2�

= �
𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀2 + 𝑅𝑅𝑉𝑉𝑀𝑀2 − 2𝐶𝐶𝑉𝑉𝑀𝑀2�

𝑇𝑇𝑉𝑉𝑀𝑀2

� 𝐶𝐶𝑉𝑉𝑀𝑀2 +

 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀2 + 𝑅𝑅𝑉𝑉𝑀𝑀2 − 2𝐶𝐶𝑉𝑉𝑀𝑀2) −

�𝑡𝑡−(𝑇𝑇𝑉𝑉𝑀𝑀2+𝑅𝑅𝑉𝑉𝑀𝑀2−2𝐶𝐶𝑉𝑉𝑀𝑀2�

𝑇𝑇𝑉𝑉𝑀𝑀2
� 𝑇𝑇𝑉𝑉𝑀𝑀2 � ,𝐶𝐶𝑉𝑉𝑀𝑀2� (14)

Figure 7 shows the corresponding (pseudo-)inverse function

that is also defined in Equation (15).

𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2� = �𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2� + 𝑡𝑡 +

�� 𝑡𝑡
𝐶𝐶𝑉𝑉𝑉𝑉2

� − 1� (𝑇𝑇𝑉𝑉𝑉𝑉2 − 𝐶𝐶𝑉𝑉𝑉𝑉2) (15)

The worst-case response time for task 𝜏𝜏2,𝑗𝑗 is

 𝑟𝑟2,𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅2,𝑗𝑗,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2� (16)

In order to meet all deadlines for all tasks 𝜏𝜏𝑖𝑖,𝑗𝑗 we must select

𝑇𝑇𝑉𝑉𝑉𝑉2 and 𝐶𝐶𝑉𝑉𝑉𝑉2 such that

 𝑟𝑟2,𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅2,𝑗𝑗,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2� ≤ 𝑇𝑇2,𝑗𝑗 (17)

Figure 8 shows that in general for the worst-case scenario, t

starts with a 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 period before 𝑉𝑉𝑉𝑉𝑖𝑖 can
start its execution (𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 is the worst-case response time of
𝑉𝑉𝑉𝑉𝑖𝑖).

The number of complete periods of length 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , with
execution 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 , that are covered by t for the worst-case
scenario is given by Equation (18).

98 IJCA, Vol. 24, No. 3, Sept. 2017

Figure 6: The worst-case scenario for 𝑉𝑉𝑉𝑉2.

Figure 7: The (pseudo-)inverse function for 𝑉𝑉𝑉𝑉2

IJCA, Vol. 24, No. 3, Sept. 2017 99

Figure 8: The worst-case scenario for 𝑽𝑽𝑽𝑽𝒊𝒊

 �

𝑡𝑡−(𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖−2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖+𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖)

𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖
� (18)

Let t’ denotes the minimum time that the 𝑉𝑉𝑉𝑉 is running

during a time period of length t. Then we have

 𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �
𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖−2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖+𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖�

𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖
� 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 −

 �𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖� −

 �
𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖−2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖+𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖�

𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖
� 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖� ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖�� (19)

For fixed 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 and 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 , Figure 8 shows that 𝑡𝑡′ =

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2) is an increasing function that consists of
straight line segments from��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉i − 2𝐶𝐶𝑉𝑉𝑉𝑉i +

𝑅𝑅𝑉𝑉𝑉𝑉i�,𝑛𝑛𝐶𝐶𝑉𝑉𝑉𝑉i� to ��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉i − 𝐶𝐶𝑉𝑉𝑉𝑉i + 𝑅𝑅𝑉𝑉𝑉𝑉i�, (𝑛𝑛 +

1)𝐶𝐶𝑉𝑉𝑉𝑉i� for n = 0, 1, 2…., as a result,

 𝑓𝑓�𝑡𝑡,𝑇𝑇𝑉𝑉𝑀𝑀i ,𝐶𝐶𝑉𝑉𝑀𝑀i ,𝑅𝑅𝑉𝑉𝑀𝑀𝑖𝑖� = �
𝑡𝑡−(𝑇𝑇𝑉𝑉𝑀𝑀𝑖𝑖+𝑅𝑅𝑉𝑉𝑀𝑀𝑖𝑖−2𝐶𝐶𝑉𝑉𝑀𝑀𝑖𝑖�

𝑇𝑇𝑉𝑉𝑀𝑀i
� 𝐶𝐶𝑉𝑉𝑀𝑀i +

 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑀𝑀𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑀𝑀𝑖𝑖)) −

 �
𝑡𝑡−(𝑇𝑇𝑉𝑉𝑀𝑀𝑖𝑖+𝑅𝑅𝑉𝑉𝑀𝑀𝑖𝑖−2𝐶𝐶𝑉𝑉𝑀𝑀𝑖𝑖�

𝑇𝑇𝑉𝑉𝑀𝑀i
� 𝑇𝑇𝑉𝑉𝑀𝑀i),𝐶𝐶𝑉𝑉𝑀𝑀i� (20)

The number of complete periods of length 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , with

execution 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 , that are covered by t for the worst-case scenario
is shown in Figure 9, and Equation (21) shows the general
inverse function that maps virtual time to the worst-case real-
time for 𝑉𝑉𝑉𝑉𝑖𝑖.

100 IJCA, Vol. 24, No. 3, Sept. 2017

Figure 9: The (pseudo-)inverse function for 𝑽𝑽𝑽𝑽𝒊𝒊

𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖� = �𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖� + 𝑡𝑡 +

 �� 𝑡𝑡
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

� − 1� (𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖) (21)

 with 0 ≤ 𝑖𝑖 ≤ 𝑘𝑘 and 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 = 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + ∑ �

𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
𝑇𝑇𝑉𝑉𝑉𝑉𝑚𝑚

� 𝐶𝐶𝑉𝑉𝑉𝑉𝑚𝑚
𝑖𝑖−1
𝑚𝑚=1

The worst-case response time 𝑟𝑟𝑖𝑖,𝑗𝑗 for task 𝜏𝜏𝑖𝑖,𝑗𝑗 is (𝑅𝑅𝑖𝑖,𝑗𝑗 is

defined in Equation (1)) 𝑟𝑟𝑖𝑖,𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅𝑖𝑖,𝑗𝑗 ,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖�.
The function in Equation (21) becomes equal to the

pessimistic case when 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 = 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

5 Accounting for Overhead

Whenever a preemption takes place, different sources of

overhead should be taken into account. Previous studies have
considered overhead in compositional real-time systems [5, 23].
There are two important differences between these studies and
our study:

First, in the previous studies the authors did not assume that
we have information about the entire work-load i.e., they
assumed the pessimistic approach.

Second, in compositional real-time systems the components

are abstractions and do not correspond to any execution time
entity such as a VM. In our approach we inflate the execution
time of each VM to compensate for context switching overhead
between VMs (see Figure 10).

Overhead due to context switching between tasks inside a VM
is orthogonal to our approach and can be handled in the same
way as in non-virtualized systems, e.g., by inflating the
execution times of the real-time tasks.

In every execution cycle, the VM worst-case execution time
is inflated by an 𝑋𝑋 which is an accumulation of cache overhead,
release overhead, and some other overheads that are part of a
context switch. The maximum number of preemptions suffered
by a given VM is bounded by the number of releases of higher
priority VMs within its response time 𝑅𝑅𝑉𝑉𝑉𝑉, e.g., in Figure 10,
𝑉𝑉𝑉𝑉𝑖𝑖 with 𝑖𝑖 = 3, has 4𝑋𝑋 overhead, 1𝑋𝑋 is the initial startup
overhead of the 𝑉𝑉𝑀𝑀3, 2𝑋𝑋 preemptions from 𝑉𝑉𝑉𝑉1 and 1𝑋𝑋 from
𝑉𝑉𝑉𝑉2 in the worst-case scenario. Figure 11 shows the pseudo-
inverse function for VM𝑖𝑖 with overhead. The inflated execution
time is given by Equation (22)

 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖
′ = 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑋𝑋 + ∑ ��

𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′

𝑇𝑇𝑉𝑉𝑉𝑉𝑘𝑘
� 𝑋𝑋�𝑖𝑖−1

𝑘𝑘=1 (22)

IJCA, Vol. 24, No. 3, Sept. 2017 101

Figure 10: The worst-case scenario for 𝑉𝑉𝑉𝑉𝑖𝑖 with overhead

And the inflated response time is given by Equation (23)

 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′ = 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

′ + ∑ ��
𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′

𝑇𝑇𝑉𝑉𝑉𝑉𝑗𝑗
� 𝐶𝐶𝑉𝑉𝑉𝑉𝑗𝑗

′ �𝑖𝑖−1
𝑗𝑗=1 (23)

Equations (22) and (23) are solved using numeric iterative

method, Figure 12 describes this algorithm, below is the
description of Figure 12.

1. Inflated execution time is initialized, i.e. 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

′ = 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 +
𝑖𝑖𝑖𝑖

2. Inflated response time 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′ is calculated using initial

inflated execution time.

3. Inflated execution time 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖
′ is calculated, this 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

′ is
again used to calculate 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖

′ , this step iterates until 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′

value does not change anymore.
4. If 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖

′ value does not change anymore, then we get the
value for 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖

′ , and for 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖
′ .

E.g., in Figure 10, if i = 3, 𝐶𝐶𝑉𝑉𝑉𝑉1= 1, 𝐶𝐶𝑉𝑉𝑉𝑉2 = 1, 𝐶𝐶𝑉𝑉𝑉𝑉3 =
1, 𝑇𝑇𝑉𝑉𝑉𝑉1= 6, 𝑇𝑇𝑉𝑉𝑉𝑉2 = 12, 𝑇𝑇𝑉𝑉𝑉𝑉3 = 14, and X = 1,

𝐶𝐶𝑉𝑉𝑉𝑉1
′ = 𝐶𝐶𝑉𝑉𝑉𝑉1 + 𝑋𝑋 = 2, since 𝑉𝑉𝑉𝑉1 has the highest

priority, 𝑅𝑅𝑉𝑉𝑉𝑉1
′ = 2.

For 𝑉𝑉𝑉𝑉2 we have,

𝐶𝐶𝑉𝑉𝑉𝑉2
′ = 𝐶𝐶𝑉𝑉𝑉𝑉2 + 2𝑋𝑋 = 3, 𝑅𝑅𝑉𝑉𝑉𝑉2

′ = 3 + �3
6
�2 = 5, 𝐶𝐶𝑉𝑉𝑉𝑉2

′ = 2 +

�5
6
� 1 = 3, 𝑅𝑅𝑉𝑉𝑉𝑉2

′ = 3 + �5
6
�2 = 5,

Therefore 𝑅𝑅𝑉𝑉𝑉𝑉2

′ = 5,𝐶𝐶𝑉𝑉𝑉𝑉2
′ = 3

For 𝑉𝑉𝑉𝑉3 we have,

 𝐶𝐶𝑉𝑉𝑉𝑉3
′ = 𝐶𝐶𝑉𝑉𝑉𝑉3 + 3𝑋𝑋 = 4, 𝑅𝑅𝑉𝑉𝑉𝑉3

′ = 4 + �4
6
�2 + � 4

12
�3 = 9,

𝐶𝐶𝑉𝑉𝑉𝑉3
′ = 2 + �9

6
�1 + � 9

12
�1 = 5

𝑅𝑅𝑉𝑉𝑉𝑉3
′ = 5 + �9

6
�2 + � 9

12
�3 = 12, 𝐶𝐶𝑉𝑉𝑉𝑉3

′ = 2 + �12
6
�1 + �12

12
�1 =

5, 𝑅𝑅𝑉𝑉𝑉𝑉3
′ = 5 + �12

6
�2 + �12

12
�3 = 12

102 IJCA, Vol. 24, No. 3, Sept. 2017

Figure 11: The (pseudo-)inverse function for VM𝑖𝑖 with overhead.

Therefore 𝑅𝑅𝑉𝑉𝑉𝑉3
′ = 12, 𝐶𝐶𝑉𝑉𝑉𝑉3

′ = 5
In the optimistic case, while considering the overhead, the

pseudo-inverse function to calculate the worst-case response
time is given by Equation (24)

𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖

′ � = (𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′) + 𝑡𝑡 +

 �� 𝑡𝑡
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

� − 1� (𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖) (24)

Let 𝐶𝐶𝑉𝑉𝑉𝑉𝑗𝑗

′ denotes the inflated worst-case execution time for
𝑉𝑉𝑉𝑉𝑗𝑗. In that case we make a pessimistic but safe assumption by
accumulating all the overhead at the beginning of every
execution cycle. This gives a straight forward way of estimating
the maximum overhead that a VM will face in every period e.g.
if 𝑉𝑉𝑉𝑉𝑖𝑖 is released there is an overhead represented by one X,
and it is preempted 2 times by 𝑉𝑉𝑉𝑉2 and 2 times by 𝑉𝑉𝑉𝑉1, in

Figure 10, all X values will be added up, hence the total
overhead is 5X.

Figure 11 shows the minimum time t that 𝑉𝑉𝑉𝑉𝑖𝑖 can run. The
worst-case is when t starts right after 𝑉𝑉𝑉𝑉𝑖𝑖 has finished an
execution period that started directly after a release of 𝑉𝑉𝑉𝑉𝑖𝑖. The
worst-case execution time 𝐶𝐶𝑉𝑉𝑉𝑉 of higher priority VMs becomes
𝐶𝐶𝑉𝑉𝑉𝑉′ after overhead inflation. In order to find the worst-case
response time of 𝑉𝑉𝑉𝑉𝑖𝑖 during time t we consider a case when all
VMs are released at the same time.

6 Example when Overhead is Omitted

Tables 1 and 2 contain details about two programs: program

one is executed in virtual machine one (𝑉𝑉𝑉𝑉1) and program two
is executed in virtual machine two (𝑉𝑉𝑉𝑉2); each program has 3
tasks.

IJCA, Vol. 24, No. 3, Sept. 2017 103

Figure 12: The algorithm flow chart to find 𝑪𝑪𝑽𝑽𝑽𝑽𝒊𝒊
′ and 𝑹𝑹𝑽𝑽𝑽𝑽𝒊𝒊

′ .

Table 1: Program one with 3 tasks executing in 𝑉𝑉𝑉𝑉1
Task Period (Ti,j) Worst-case execution time (Ci,j) Utilization (Ui,j)

τ1,1 16 2 2/16 = 0.125

τ1,2 24 1 1/24 = 0.042

τ1,3 36 4 4/36 = 0.111

Total Utilization 0.278

Table 2: Program two with 3 tasks executing in 𝑉𝑉𝑉𝑉2

Task Period (Ti,j) Worst-case execution time (Ci,j) Utilization (Ui,j)

τ2,1 28 1 1/28 = 0.035

τ2,2 34 1 1/34 = 0.029

τ2,3 38 2 2/38 = 0.052

Total Utilization 0.116

104 IJCA, Vol. 24, No. 3, Sept. 2017

First, we use the pessimistic method where we look at each
VM in isolation. Let us assume that 𝑉𝑉𝑉𝑉1 uses 40%, and VM2
uses 30%, of the CPU, i.e. CVM1 TVM1⁄ = 0.4 and
CVM1 TVM1⁄ = 0.3.

When 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4, we can replace 𝐶𝐶𝑉𝑉𝑉𝑉1 by 0.4 𝑇𝑇𝑉𝑉𝑉𝑉1 in
Equation (5), thus obtaining the function
𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉1 , 0.4𝑇𝑇𝑉𝑉𝑉𝑉1� = 1.2𝑇𝑇𝑉𝑉𝑉𝑉1 + 𝑡𝑡 + �� 𝑡𝑡

0.4𝑇𝑇𝑉𝑉𝑉𝑉1
� −

1� 0.6𝑇𝑇𝑉𝑉𝑉𝑉1

We start by looking at 𝑉𝑉𝑉𝑉1 and task 𝜏𝜏1,1 . We want to find
the maximum 𝑇𝑇𝑉𝑉𝑉𝑉1 such that;

𝑟𝑟1,1 = 𝑓𝑓−1�𝑅𝑅1,1,𝑇𝑇𝑉𝑉𝑉𝑉1 , 0.4𝑇𝑇𝑉𝑉𝑉𝑉1� ≤ 𝑇𝑇1,1

𝑅𝑅1,1 = 𝐶𝐶1,1 , since τ1,1 has the highest priority in program one.

Therefore, we get the equation

1.2 𝑇𝑇𝑉𝑉𝑉𝑉1 + 2 + �� 2
0.4𝑇𝑇𝑉𝑉𝑉𝑉1

� − 1� 0.6𝑇𝑇𝑉𝑉𝑉𝑉1 = 16,

which gives 𝑇𝑇𝑉𝑉𝑉𝑉1 = 11.7 and 𝐶𝐶𝑉𝑉𝑉𝑉1 = 0.4 ∗ 11.7 = 4.68.

The first execution period will, in the worst-case, start at time
2(𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1) = 1.2𝑇𝑇𝑉𝑉𝑉𝑉1 = 14. Since 𝑇𝑇1,1 = 16 and 𝐶𝐶1,1 =
2 we see that 𝜏𝜏1,1 will execute two times back-to-back in this
interval, i.e., after the first execution of 𝜏𝜏1,1 it will be released
again at time 16. Consequently, 𝜏𝜏1,2 cannot start executing until
time 18. The first execution period of 𝑉𝑉𝑉𝑉1 will end at 2𝑇𝑇𝑉𝑉𝑉𝑉1 −
𝐶𝐶𝑉𝑉𝑉𝑉1 = 1.6 𝑇𝑇𝑉𝑉𝑉𝑉1 = 1.6 ∗ 11.7 = 18.7. Since 𝐶𝐶1,2 = 1, it

cannot complete during the first period of 𝑉𝑉𝑉𝑉1. The second
period of 𝑉𝑉𝑉𝑉1 starts at 3𝑇𝑇𝑉𝑉𝑉𝑉1 − 2𝐶𝐶𝑉𝑉𝑉𝑉1 = 2.2 𝑇𝑇𝑉𝑉𝑉𝑉1 = 2.2 ∗
11.7 = 25.7 which is after the deadline of τ1,2 (𝑇𝑇1,2 = 24).
Task τ1,3 will also miss its deadline. In [2] the authors looked
at this task set and found that 10.8 is the largest period that τ1,2
can tolerate and that 10 is the largest period that τ1,3 can
tolerate, when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4. This means that the
maximum period 𝑇𝑇𝑉𝑉𝑉𝑉1 that will guarantee that all three tasks
will meet their deadlines is 10 when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4 .

For 𝑉𝑉𝑉𝑉2, with 𝐶𝐶𝑉𝑉𝑉𝑉2 = 0.3𝑇𝑇𝑉𝑉𝑉𝑉2, the inverse function in
Equation (5) becomes

𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉2 , 0.3𝑇𝑇𝑉𝑉𝑉𝑉2�

= 1.4𝑇𝑇𝑉𝑉𝑉𝑉2 + 𝑡𝑡 + ��
𝑡𝑡

0.3𝑇𝑇𝑉𝑉𝑉𝑉2

� − 1� 0.7𝑇𝑇𝑉𝑉𝑉𝑉2

By using the method above, we get 𝑇𝑇𝑉𝑉𝑉𝑉2 = 19.28, and thus

𝐶𝐶𝑉𝑉𝑉𝑉2 = 0.3 ∗ 19.28 = 5.78 which makes all tasks in 𝑉𝑉𝑉𝑉2 meet
their deadline when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.3.

We now use our method where we consider all VMs. We are
again using fixed priorities, and the examples in tables 1 and 2.
Program one is scheduled on 𝑉𝑉𝑉𝑉1, and we now know that 𝑉𝑉𝑉𝑉1
has the highest priority. Therefore, we use the inverse function
in Equation (11) to calculate the maximum 𝑇𝑇𝑉𝑉𝑉𝑉1 such that we
know that task τ1,1 meets its deadline.

𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉1 , 0.4𝑇𝑇𝑉𝑉𝑉𝑉1�

= 0.6𝑇𝑇𝑉𝑉𝑉𝑉1 + 𝑡𝑡 + ��
𝑡𝑡

0.4𝑇𝑇𝑉𝑉𝑉𝑉1

� − 1� 0.6𝑇𝑇𝑉𝑉𝑉𝑉1

We want to find the maximal 𝑇𝑇𝑉𝑉𝑉𝑉1 such that 𝑟𝑟1,1 =

𝑓𝑓−1�𝑅𝑅1,1,𝑇𝑇𝑉𝑉𝑉𝑉1 , 0.4𝑇𝑇𝑉𝑉𝑉𝑉1� ≤ 𝑇𝑇1,1 .
Note that 𝑅𝑅1,1 = 𝐶𝐶1,1 , since 𝜏𝜏1,1 has the highest priority in

program one.

From this we get 0.6𝑇𝑇𝑉𝑉𝑉𝑉1 + 2 + �� 2
0.4𝑇𝑇𝑉𝑉𝑉𝑉1

� − 1� 0.6𝑇𝑇𝑉𝑉𝑉𝑉1 =

16.
From this we get 𝑇𝑇𝑉𝑉𝑉𝑉1 = 23.33 . If we have a period of 23.33

we get 𝐶𝐶𝑉𝑉𝑉𝑉1 = 0.4 ∗ 23.33 = 9.33. The first execution period
𝐶𝐶𝑉𝑉𝑉𝑉1 will in the worst-case start at time at 𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1 = 14
and it will end at 𝑇𝑇𝑉𝑉𝑉𝑉1 = 23.33. Since T1,1 = 16 and C1,1 = 2
we see that τ1,1 will execute two times back-to-back in this
interval, i.e., after the first execution of τ1,1 from 14 to 16, and
task τ1,1 will be released again at time 16 and execute from 16
to 18. Since C1,2 = 1 and τ1,2 = 24, τ1,2 will execute from 18
to 19. It is clear that τ1,3 will also execute in the first cycle from
19 to 23, since C1,3 = 4. It is thus clear that all tasks in 𝑉𝑉𝑉𝑉2 will
meet their deadlines for 𝑇𝑇𝑉𝑉𝑉𝑉1 = 23.33 when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4.

We now do the same thing for 𝑉𝑉𝑉𝑉2. 𝑉𝑉𝑉𝑉2 has the second
highest priority, and may be interrupted by 𝑉𝑉𝑉𝑉1. We use the
inverse function in Equation (15), and 𝐶𝐶𝑉𝑉𝑉𝑉2 = 0.3𝑇𝑇𝑉𝑉𝑉𝑉2 . The
worst-case response time (see Equation (17)) 𝑟𝑟2,1 =
𝑓𝑓−1�𝑅𝑅2,1,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2� ≤ 𝑇𝑇2,1 = 28 (N.B. 𝑅𝑅2,1= 𝐶𝐶2,1).

With 𝑅𝑅𝑉𝑉𝑉𝑉2 = 𝐶𝐶𝑉𝑉𝑉𝑉2 + �𝑅𝑅𝑉𝑉𝑉𝑉2
𝑇𝑇𝑉𝑉𝑉𝑉1

� 𝐶𝐶𝑉𝑉𝑉𝑉1 , and 𝐶𝐶𝑉𝑉𝑉𝑉2 = 0.3𝑇𝑇𝑉𝑉𝑉𝑉2 we

get 𝑅𝑅𝑉𝑉𝑉𝑉2 = 0.3𝑇𝑇𝑉𝑉𝑉𝑉2 + �𝑅𝑅𝑉𝑉𝑉𝑉2
23.33

�9.33. By using our formulas we
see that 𝑟𝑟2,1 = 28 for 𝑇𝑇𝑉𝑉𝑉𝑉2 = 25.24, i.e., this is the maximum
period for 𝑉𝑉𝑉𝑉2 that task τ2,1 can tolerate, 𝐶𝐶𝑉𝑉𝑉𝑉2 = 7.57, and
𝑅𝑅𝑉𝑉𝑉𝑉2 = 16.9. The first execution period 𝐶𝐶𝑉𝑉𝑉𝑉2 will in the worst-
case start at time 𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2 = 27 and it will end at
𝑇𝑇𝑉𝑉𝑉𝑉2−𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2 = 34.57. Since 𝑇𝑇2,1 = 28 and 𝐶𝐶2,1 = 1 we
see that τ2,1 will execute two times back-to-back in this interval,
i.e., after the first execution of τ2,1 from 27 to 28, it will be
released again at time 28 and executes from 28 to 29. Since
𝐶𝐶2,2 = 1 and 𝑇𝑇2,2 = 34, τ2,2 will execute from 29 to 30. It is
clear that τ2,3 will also execute in the first cycle from 30 to 32
since 𝐶𝐶2,3 = 2 and 𝑇𝑇2,3 = 38. It is thus clear that all tasks in
𝑉𝑉𝑉𝑉2 will meet their deadlines. As shown in the example, the
method that looks at all VMs, gives longer periods than the
method that takes each VM individually, e.g., 𝑇𝑇𝑉𝑉𝑉𝑉1increases
from 10 to 23.33 and 𝑇𝑇𝑉𝑉𝑉𝑉2 increases from 19.28 to 25.24.

Figures 13(a), (b), and (c) show the values that 𝑇𝑇𝑉𝑉𝑉𝑉 can take
with respect to different values of 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖/𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 . Pessimistic
means that we treat each VM in isolation, whereas optimistic
means that we considered all VMs. The detailed example above
is extended below; we calculate the maximal 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 for each of
the ni tasks in the program, such that 𝑟𝑟𝑖𝑖,𝑗𝑗 ≤ 𝑇𝑇𝑖𝑖,𝑗𝑗 for 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑉𝑉𝑉𝑉𝑖𝑖
(u is the 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖/𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 value that we consider, i.e., the values on the

IJCA, Vol. 24, No. 3, Sept. 2017 105

 Figure 13(a): 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ versus minimum of the max 𝑇𝑇𝑉𝑉𝑉𝑉1 , (b) 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ versus minimum of the max 𝑇𝑇𝑉𝑉𝑉𝑉2 when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ =

0.3, (c) 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ versus minimum of the max 𝑇𝑇𝑉𝑉𝑉𝑉2 when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4.

x-axis) and then we choose the shortest of these ni values on
𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 . We call this value the minimum of the maximum (min
max) 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 . Figure 13 (a) shows (min max) 𝑇𝑇𝑉𝑉𝑉𝑉1 as a function
of 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ , the detailed example above corresponds to the
value 0.4 on the x-axis.

If we consider the case where we have knowledge about one
VM only, we have to make a pessimistic assumption, we see
that 𝑇𝑇𝑉𝑉𝑉𝑉1 is shorter than the case when we have knowledge of
all VMs, i,e., the optimistic case.

Figures 13(b) and (c) plot 𝑇𝑇𝑉𝑉𝑉𝑉2 versus 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ for
𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.3 and 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4, respectively, (the
pessimistic values are not affected by 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ , and are thus
the same in both Figures). The detailed example above
corresponds to the value 0.3 on the x-axis in Figure 13(c). The
resource allocated to 𝑉𝑉𝑉𝑉2 should be less or equal to 1 −
𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ , since (𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1)⁄ + (𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2)⁄ cannot

exceed 1.
It may seem counter intuitive that the period 𝑇𝑇𝑉𝑉𝑉𝑉2 of the

optimistic case may decrease when we increase 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ .
The reason for this is that when we increase 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ , then
𝐶𝐶𝑉𝑉𝑉𝑉2 also increases, and this affects 𝑅𝑅𝑉𝑉𝑉𝑉2 . When
𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ goes from 0.4 to 0.5, then 𝑅𝑅𝑉𝑉𝑉𝑉2 will increase since
𝐶𝐶𝑉𝑉𝑉𝑉1will interfere two times since 𝑅𝑅𝑉𝑉𝑉𝑉2 ≥ 𝑇𝑇𝑉𝑉𝑉𝑉1 (remember

𝑅𝑅𝑉𝑉𝑉𝑉2 = 𝐶𝐶𝑉𝑉𝑉𝑉2 + �𝑅𝑅𝑉𝑉𝑉𝑉2
𝑇𝑇𝑉𝑉𝑉𝑉1

� 𝐶𝐶𝑉𝑉𝑉𝑉1).

In the optimistic case we use the (safe but actually somewhat
pessimistic) assumption that in the worst-case 𝑉𝑉𝑉𝑉2 may not
start running until 𝑅𝑅𝑉𝑉𝑉𝑉2– 𝐶𝐶𝑉𝑉𝑉𝑉2 time units after the release. To
compensate for the double interference from 𝐶𝐶𝑉𝑉𝑉𝑉1 ,
𝑇𝑇𝑉𝑉𝑉𝑉2 decreases when 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ increases from 0.4 to 0.5 in
Figure 13 (b). The drops of 𝑇𝑇𝑉𝑉𝑉𝑉2 in Figure 13 (c) are due to the
same effect.

106 IJCA, Vol. 24, No. 3, Sept. 2017

7 Simulation

The scheduling of tasks inside each VM uses RMS. We

consider 8 programs that run in one VM each. Each program is
a task set of 10 tasks. Tasks periods are randomly generated
with a uniform distribution. We assume that the average task
periods are not the same in all programs, and we generated
random periods for the intervals [200, 800], [300, 900], [400,
1000],…, [900, 1500] for tasks inside 𝑉𝑉𝑉𝑉1, 𝑉𝑉𝑉𝑉2,…, 𝑉𝑉𝑉𝑉8
respectively. We see that task periods overlap and we sorted the
VMs in increasing average period order. Inspired by the well-
known RMS algorithm, we decided to use the average periods
as the basis for assigning static priorities to VMs, i.e. 𝑉𝑉𝑉𝑉1 has
the highest priority and 𝑉𝑉𝑉𝑉8 has the lowest priority. We
simulated four cases, case 1 with one VM, case 2 with two VMs,
case 3 with four VMs and case 4 with eight VMs.

Each case is simulated for different total utilizations U [0.1,
0.2, …, 0.8]; the utilization is for the entire set of VMs in the
simulation, and each VM has the same utilization. For example,
if we have two VMs and a utilization of 0.6, then VMs equally
share this utilization, i.e., each VM has a total utilization of 0.3.
When we have total utilization of a VM, we distribute this total
utilization to the 10 tasks inside that VM using the UniFast
algorithm [3]. Each task’s execution 𝐶𝐶𝑖𝑖,𝑗𝑗 is then obtained by
multiplying the utilization of the task with the task’s period.

Each VM will get a period that is half of the shortest period
of any task in that VM, which seems to be a reasonable heuristic.
The hypervisor will assign a priority to each VM based on the
VM period length, the shorter the length the higher the priority.
Thereafter, it will find a 𝐶𝐶𝑉𝑉𝑉𝑉 that makes the task set schedulable
using Equation (5) for the pessimistic case, and Equation (21)
for the optimistic case, or Equation (24) if overhead is included.
The simulation is done for the pessimistic and the optimistic
methods. We repeated each unique case 20 times to be able to
calculate average values and standard deviations, e.g., one
unique case is 4 VMs and a total utilization of 0.4, another one
unique case is 4 VMs and a total utilization of 0.6. We used the
MATLAB scheduling toolbox TORSCHE (Time Optimization
of Resources, SCHEduling) in our simulations [11, 28].

We repeated the simulation for different overhead values (X
values) X= [0,1,2,…,9], zero means the absence of overhead and
the results are presented in Figure 15. Figures 14(a,b,c,d) show
the 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄ versus total task utilization and the standard
deviation of 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄ . The figures show that total 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄
increases as the number of VMs increases. These figures also
show that the optimistic method performs better than the
pessimistic method for all cases. Figure 15 shows that the
impact of overhead becomes larger when there are more VMs,
e.g., the slope in the overhead weight direction of the planes in
Figure 15 is larger for the cases with 4 and 8 VMs compared to
the cases with only 1 or 2 VMs. The reason for this is that low
priority VMs will suffer from more VM context switches

compared to high priority VMs (see Figure 10).

8 Conclusions

In this paper we have extended previous results on two-level

(sometimes called hierarchical) scheduling of virtual machines
(VMs). Previous studies have considered each VM in isolation.
Our contribution is that we have taken a holistic approach and
included the entire work-load consisting of k VMs in our
method. A simulation study shows that our approach makes it
possible to guarantee real-time response requirements for more
cases (higher loads) compared to the previous approach (where
each VM is analyzed in isolation).

Whether the overhead is accounted for or ignored; we have
defined a function 𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖� that returns the
maximum (worst-case) wall clock time that is needed in order
to guarantee that 𝑉𝑉𝑉𝑉𝑖𝑖 has executed at least t time units. 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 is
the period of 𝑉𝑉𝑀𝑀𝑖𝑖, 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 is the time 𝑉𝑉𝑉𝑉𝑖𝑖 has to execute each
period, and 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 denotes the worst-case response time of 𝑉𝑉𝑉𝑉𝑖𝑖,
i.e., the maximum time it may take until 𝑉𝑉𝑉𝑉𝑖𝑖 has executed
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 time units after a release. Each 𝑉𝑉𝑉𝑉𝑖𝑖, (1 ≤ 𝑖𝑖 ≤ 𝑘𝑘) runs a
real-time program that consists of 𝑛𝑛𝑖𝑖 tasks 𝜏𝜏𝑖𝑖,𝑗𝑗 (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛𝑖𝑖),
i.e., 𝜏𝜏𝑖𝑖,𝑗𝑗 denotes task j in 𝑉𝑉𝑉𝑉𝑖𝑖. Each task 𝜏𝜏𝑖𝑖,𝑗𝑗 is defined by its
worst-case execution time 𝐶𝐶𝑖𝑖,𝑗𝑗 and period 𝑇𝑇𝑖𝑖,𝑗𝑗. For a fixed
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

⁄ our function and the method described here make it
possible to find a maximal period 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 for 𝑉𝑉𝑉𝑉𝑖𝑖 such that tasks
meet their deadlines. Furthermore, we can also use our function
and method for finding the minimum 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

⁄ given a 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,
such that all tasks meet their deadlines.

We have included a detailed example that explains the
reasons why our holistic method (called optimistic method in
the paper) performs better than the previous approach that
considered each VM in isolation (called pessimistic method in
the paper). This quantifies how much the optimistic method
saves resources than the pessimistic method.

If we do not consider context switching overhead, the
minimum resource utilization is trivially obtained when the
period of each VM is infinitely small. Having infinitely small
VM periods is of course not realistic, and to be able to calculate
the real optimal length of VM periods we have introduced an
overhead model. Simulations show (and quantify) that the
context switching overhead becomes more significant when
many VMs share the same hardware resource.

Acknowledgements

This work is part of the research project "Scalable resource-

efficient systems for big data analytics" funded by the
Knowledge Foundation (grant: 20140032) in Sweden.

IJCA, Vol. 24, No. 3, Sept. 2017 107

Figure 14(a): 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄ versus Total utilization for 1 VM, (b) 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄ versus Total utilization for 2 VMs, (c) 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄ versus

Total utilization for 4 VMs, (d) 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄ versus Total utilization for 8 VMs

References

[1] L. Abeni and T. Cucinotta, “Efficient Virtualization of

Real-Time Activities”, 2011 IEEE International
Conference on Service-Oriented Computing and
Applications (SOCA), pp. 1–4, 2011.

[2] E. Bini, T. H. C. Nguyen, P. Richard, and S. K. Baruah,
“A Response-Time Bound in Fixed-Priority Scheduling
with Arbitrary Deadlines”, IEEE Transactions on
Computers, 58(2):279–286, Feb. 2009.

[3] E. Bini and G. C. Buttazzo, “Measuring the Performance
of Schedulability Tests”, Real-Time Systems, 30(1–
2):129–154, 2005.

[4] A. Burns and A. Wellings, Real-Time Systems and

 Programming Languages: Ada, Real-Time Java and
C/Real-Time POSIX, Addison-Wesley Educational
Publishers Inc, 2009.

[5] S. Chen, L. T. Phan, J. Lee, I. Lee, and O. Sokolsky,
 “Removing Abstraction Overhead in the Composition of
Hierarchical Real-Time Systems”, 2011 17th IEEE Real-
Time and Embedded Technology and Applications
Symposium (RTAS), pp. 81–90, 2011.

[6] T. Cucinotta, G. Anastasi, and L. Abeni, “Respecting
Temporal Constraints in Virtualised Services”, 33rd
Annual IEEE International Computer Software and
Applications Conference, 2009. COMPSAC ’09., 2:73–78,
2009.

[7] T. Cucinotta, D. Giani, D. Faggioli, and F. Checconi,

108 IJCA, Vol. 24, No. 3, Sept. 2017

Figure 15: 𝑪𝑪𝑽𝑽𝑽𝑽 𝑻𝑻𝑽𝑽𝑽𝑽⁄ versus Total utilization for the optimistic case

 “Providing Performance Guarantees to Virtual Machines

using Real-Time Scheduling”, Euro-Par 2010 Parallel
Processing Workshops, pp. 657–664, 2011.

[8] R. I. Davis and A. Burns, “Hierarchical Fixed Priority Pre-
emptive Scheduling”, 26th IEEE International Real-Time
Systems Symposium, 2005. RTSS 2005, 10 pp, 2005.

[9] K. J. Duda and D. R. Cheriton, “Borrowed-Virtual-Time
(BVT) Scheduling: Supporting Latency-Sensitive
Threads in a General-Purpose Scheduler”, ACM SIGOPS
Operating Systems Review, 33:261–276, 1999.

[10] X. Feng and A. K. Mok, “A Model of Hierarchical Real-
Time Virtual Resources”, Real-Time Systems Symposium,
2002. RTSS 2002. 23rd IEEE, pp. 26–35, 2002.

[11] M. Kutil, P. Sucha, R. Capek, and Z. Hanzalek,
“Optimization and Scheduling Toolbox”, Matlab—
Modelling, Programming and Simulations, pp. 239–260,
2010.

[12] M. Lee, A. S. Krishnakumar, P. Krishnan, N. Singh, and
S. Yajnik, “Supporting Soft Real-Time Tasks in the Xen
Hypervisor”, Proceedings of the 6th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, New York, NY, USA, pp. 97–
108, 2010.

[13] J. Lee, S. Xi, S. Chen, L. T. Phan, C. Gill, I. Lee, C. Lu,
and O. Sokolsky, “Realizing Compositional Scheduling
through Virtualization”, 2012 IEEE 18th Real-Time and

Embedded Technology and Applications Symposium
(RTAS), pp. 13–22, 2012.

[14] B. Lin and P. A. Dinda, “Vsched: Mixing Batch and
Interactive Virtual Machines using Periodic Real-Time
Scheduling”, Proceedings of the 2005 ACM/IEEE
Conference on Supercomputing, pp. 8, 2005.

[15] G. Lipari and E. Bini, “A Methodology for Designing
Hierarchical Scheduling Systems”, Journal of Embedded
Computing, 1(2):257–269, 2005.

[16] C. L. Liu and J. W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment”,
Journal of the ACM (JACM), 20(1):46–61, 1973.

[17] S. Liu, G. Quan, and S. Ren, “On-Line Scheduling of
Real-Time Services for Cloud Computing”, 2010 6th
World Congress on Services (SERVICES-1), pp. 459–464,
2010.

[18] L. Lundberg, “Analyzing Fixed-Priority Global
Multiprocessor Scheduling”, Proceedings of the Eighth
IEEE Real-Time and Embedded Technology and
Applications Symposium, 2002, pp. 145–153, 2002.

[19] L. Lundberg, “Utilization Based Schedulability Bounds
for Age Constraint Process Sets in Real-Time Systems”,
Real-Time Systems, 23(3):273–295, 2002.

[20] L. Lundberg and S. Shirinbab, “Real-Time Scheduling in
Cloud-Based Virtualized Software Systems”, Proceedings
of the Second Nordic Symposium on Cloud Computing &

IJCA, Vol. 24, No. 3, Sept. 2017 109

 Internet Technologies, pp. 54–58, 2013.
[21] W. Lunniss, S. Altmeyer, G. Lipari, and R. I. Davis,

“Accounting for Cache Related Pre-Emption Delays in
Hierarchical Scheduling”, University of York, York,
Technical Report YCS-2014-491 Available from
http://www-users. cs. york. ac. uk/∼ wlunniss, 2014.

[22] J. Nieh and M. S. Lam, “A SMART Scheduler for
Multimedia Applications”, ACM Transactions on
Computer Systems (TOCS), 21(2):117–163, 2003.

[23] L. T. Phan, M. Xu, J. Lee, I. Lee, and O. Sokolsky,
“Overhead-Aware Compositional Analysis of Real-Time
Systems”, 2013 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp.
237–246, 2013.

[24] H. Salimi, M. Najafzadeh, and M. Sharifi, “Advantages,
Challenges and Optimization of Virtual Machine
Scheduling in Cloud Computing Environments”,
International Journal of Computer Theory and
Engineering, 4(2),189-193, 2012.

[25] I. Shin and I. Lee, “Periodic Resource Model for
Compositional Real-Time Guarantees”, 24th IEEE Real-
Time Systems Symposium, 2003, RTSS 2003, pp. 2–13,
2003.

[26] I. Shin and I. Lee, “Compositional Real-Time Scheduling
Framework with Periodic Model”, ACM Transactions on
Embedded Computing Systems (TECS), 7(3):30, 2008.

[27] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E.
Gehrke, and C. G. Plaxton, “A Proportional Share
Resource Allocation Algorithm for Real-Time, Time-
Shared Systems”, 17th IEEE Real-Time Systems
Symposium, 1996, pp. 288–299, 1996.

[28] P. Sucha, M. Kutil, M. Sojka, and Z. Hanzálek,
“TORSCHE Scheduling Toolbox for Matlab”, 2006 IEEE
Computer Aided Control System Design, 2006 IEEE
International Conference on Control Applications, 2006.
IEEE International Symposium on Intelligent Control, pp.
1181–1186, 2006.

[29] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards
Real-Time Hypervisor Scheduling in Xen”, 2011
Proceedings of the International Conference on
Embedded Software (EMSOFT), pp. 39–48, 2011.

[30] M. Xu, L. T. Phan, I. Lee, O. Sokolsky, S. Xi, C. Lu, and
C. Gill, “Cache-Aware Compositional Analysis of Real-
Time Multicore Virtualization Platforms”, 2013 IEEE
34th Real-Time Systems Symposium (RTSS), pp. 1–10,
2013.

Christine Niyizamwiyitira is a PhD
student in Computer Systems
Engineering at Sweden’s Blekinge
Institute of Technology (BTH) in the
Computer Science and Engineering
Department. Her research interests
include: Real time systems, cloud
computing, high performance

computing, database performance, and voice based application.
Her current research focuses on scheduling of real time systems
on virtual machines (uniprocessor & multiprocessor) and big
data processing.

Lars Lundberg is a Professor in
Computer Systems Engineering at the
Department of Computer Science and
Engineering at Blekinge Institute of
Technology in Sweden. He has a M.Sc.
in Computer Science from Linköping
University (1986) and a Ph.D. in
Computer Engineering from Lund
University (1993). His research
interests include parallel and cluster

computing, real-time systems and software engineering.
Professor Lundberg's current work focuses on performance and
availability aspects.

110 IJCA, Vol. 24, No. 4, Sept. 2017

ISCA Copyright© 2017

An Enhancement in Segmentation of Magnetic Resonance Images of Brain Tumors
Using Symmetry and Active Contour

Mubbashar Saddique*
COMSATS Institute of Information Technology, Abbottabad, PAKISTAN

Kalim Qureshi†

Kuwait University, KUWAIT

Jawad Haider Kazmi*
COMSATS Institute of Information Technology, Abbottabad, PAKISTAN

Zainab Meraj†

Kuwait University, KUWAIT

Abstract

Brain tumor segmentation from Magnetic Resonance

Imaging (MRI) is an important step toward surgical planning,
treatment planning and monitoring of therapy. However,
manual tumor segmentation commonly used in clinical
practice is time consuming and challenging. Furthermore,
none of the existing automated methods are highly robust,
reliable, and efficient in a clinical setting. We present a
segmentation technique named Algorithm using Symmetry
Line and Active Contour (ASLAC). ASLAC has several
advantages: (a) MRI image segmentation is performing
automatically. (b) It exploits approximate left-right symmetry
of the brain, (c) No preprocessing, such as intensity
standardization or noise removal, is required by our algorithm,
(d) It requires no labeled image data, nor any training, (e) It
does not require image registration, (f) It can be implemented
in real-time, (g) It can detect multiple tumors if tumor is
fragmented into multiple parts of right/left side. Measured
performance of ASLAC technique has improvement in terms
of MRI image quality as compared to Chan-Vese [2] and
HASA [19].

Key Words: MRI images, images segmentation, brain
tumor segmentation, symmetry and active contour techniques,
and image filters.

1 Introduction

Each year, more than 190,000 people in the United States
and 10,000 people in Canada are diagnosed with a brain tumor.
Of these, over 40,000 are primary brain tumors. In the United

* Department of Computer Science. Email:
mubashar.chaudary@gmail.com, jawadkazmi@ciit.net.pk.
† Department of Information Science, College of Computing Sciences
and Engineering. Email: kalimuddinqureshi@gmail.com,
z.almeraj@gmail.com.

States, the overall incidence of all primary brain tumors is 14.1
per 100,000 people per year. Primary brain tumors are the
leading cause of solid tumor cancer deaths in children under
the age of 20. The National Brain Tumor Foundation (NBTF)
for research in the United States estimates the death of 13,000
patients while 29,000 undergo primary brain tumor diagnosis
every year [20]. The detection of brain and tumor tissue in
Magnetic Resonance (MR) images and Computed
Tomography (CT) scan images has been an active research
area. Brain image segmentation from MRI images is
problematical and challenging, but its precise segmentation is
necessary for tumor detection and classification [14]. MRI’s
are the most efficient imaging technique used for early
detection of abnormalities in the brain.

Today MRI brain tumor detection has significant
importance. Doctors and radiologists can miss the abnormality
due to inexperience in the field of cancer or tumor detection.
The pre-processing is the most important step in MRI brain
image analysis due to poor captured image quality. Pre-
processing is necessary to correct and adjust the image for
further study and processing. Different types of filtering
techniques are available for pre-processing. These filters are
normally used to improve the image quality, suppress the
noise, preserves the edges in an image, enhance and smoothen
the image. For this purpose, median, adaptive median, average
or mean, and wiener filter used for MRI brain image pre-
processing.

Brain tumor segmentation consists of separating the
different tumor tissues (solid or active tumor, edema, and
necrosis) from normal brain tissues: gray matter (GM), white
matter (WM), and cerebrospinal fluid (CSF). In brain tumor
studies, the existence of abnormal tissues may be easily
detectable most of the time. However, accurate and
reproducible segmentation and characterization of
abnormalities are not straightforward. In the past, many
researchers have made significant survey in the field of
medical imaging, soft computing and brain tumor

mailto:mubashar.chaudary@gmail.com
mailto:jawadkazmi@ciit.net.pk
mailto:Email:%20kalimuddinqureshi@gmail.com,%20z.almeraj@gmail.com
mailto:Email:%20kalimuddinqureshi@gmail.com,%20z.almeraj@gmail.com

IJCA, Vol. 24, No. 4, Sept. 2017 111

segmentation [1, 12, 21]. Both semiautomatic and fully
automatic methods have been surveyed in [12]. Clinical
acceptance of segmentation techniques has depended on the
simplicity of the segmentation, and the degree of user
supervision. Interactive or semiautomatic methods are likely
to remain dominant in practice for some time, especially in
these applications where erroneous interpretations are
unacceptable. We have been studying MRI/MRA imaging
[10, 16, 18] and the work presented in this paper is an
extension of our paper published in [19].

A healthy brain has a strong sagittal symmetry that is
weakened by the presence of tumor. The comparison between
the healthy and ill hemisphere, considering that tumors are
generally not symmetrically placed in both hemispheres, was
used to detect the anomaly. Supervised, unsupervised and
registration based techniques required prior knowledge and
user interaction for segmentation [19] but we have proposed a
solution using symmetry and active contour that produce better
results than above discussed techniques which does not require
prior knowledge and user interaction.

The rest of the paper is organized as follows, in Section 2,
we briefly describe classification of brain tumor image
segmentation techniques. In Section 3, we describe the related
work, in Section 4, we presented HASA and ASLAC proposed
scheme. The measured results are outlined in Section 5 and
discussion on results is described in Section 5. Section 6
concludes the paper.

2 Brain Tumor Image Segmentation

Methods Classification

 Brain tumor segmentation methods can be classified into
three categories according to the degree of required human
interaction as described [5] manual segmentation,
semiautomatic segmentation, and fully automatic
segmentation. In the section below we describe the advantages
and limitations of category.

2.1 Manual Segmentation

In manual segmentation, human experts

(radiologists/anatomists/trained technologists) not only make
use of the information presented in the image but also make
use of additional knowledge such as anatomy. Manual
delineation requires software tools with sophisticated graphical
user interfaces to facilitate drawing regions of interest and
image display. In practice, the selection of the tumor region,
which is the region of interest (ROI), is a tedious and time-
consuming task. If the person drawing the ROI is not a
radiologist/anatomist/trained technologist who is well versed
with that brain anatomy, it will most likely yield poor
segmentation results. The task of marking the tumor regions
slice by slice sometimes limits the human rater’s view and
generates jaggy images. As a result, the segmented images are
less than optimal showing a “stripping" effect [15].

2.2 Semiautomatic Segmentation

In semiautomatic brain tumor segmentation, the intervention
of a human operator is often needed to initialize the method, to
check the accuracy of the result, or even to manually correct
the segmentation result. Most of the current research is
targeted at semiautomatic segmentation of brain tumors with
the intention of having the least human interaction possible.
According to [5], the main components of an interactive brain
tumor segmentation method are the computational part, the
interactive part, and the user interface. The computational part
corresponds to one or more pieces of program capable of
generating a delineation of the tumor given some parameters.
The interactive part is responsible for mediating information
between the user and the computational part. It translates the
outcome produced by the computational part into visual
feedback to the user and the data input by the user into
parameters for the program.

2.3 Fully Automatic Segmentation

In fully automatic methods, the computer determines the

segmentation of tumor without any human interaction. Fully
automatic methods generally incorporate human intelligence
and prior knowledge in the algorithms, and are usually
developed making use of soft computing and model-based
techniques such as deformable models. The study of
automatic brain tumor segmentation represents [7, 22] an
interesting research issue in Machine Learning and Pattern
Recognition, since it represents a problem that humans can
learn to do effectively. However, developing highly accurate
automatic methods remains a challenging problem. For
automatic segmentation, it is essential to have a model that not
only describes the size, shape, location and appearance of the
tumor but that also permits expected variations in these
characteristics. However, no completely automatic
segmentation algorithm has yet been adopted in the clinic
environment.

3 Review of Current Generation Tumor Image

Segmentation Techniques

The segmentation of brain tumor images is a challenging

task for several reasons. Firstly, high-grade gliomas usually
exhibit unclear and irregular boundaries with discontinuities.
Secondly, after contrast injection, contrast uptake and image
acquisition time can vary, which changes tumor appearance
significantly however, the non-imaginable component of the
tumor should be handled by segmentation algorithms. In
recent years a great effort of the research in the field of
medical imaging was focused on brain tumor segmentation.

Image 4 segmentation refers to the process of partitioning an
image into groups of pixels that are homogeneous with respect
to some criterion. The result of segmentation is the splitting
up of the image into connected areas. Thus, segment is

112 IJCA, Vol. 24, No. 3, Sept. 2017

concerned with dividing an image into meaningful regions.
Here in this section, we will describe the efforts of other
researchers in tumor segmentation techniques such as detection
of brain tumor by wavelet based image fusion, fuzzy symmetry
based genetic clustering technique, wavelet and FCM
algorithm, random walk, modified kernelized fuzzy c-mean,
multiple kernel fuzzy c-means, neural network used for image
segmentation, and symmetric technique.

3.1 Detection of Brain Tumor based on Wavelet Based

Image Fusion

The objective of image fusion is to combine information
from multiple images of the same scene. The result of image
fusion is a new image which is more suitable for human and
machine perception or further image-processing tasks such as
segmentation, feature extraction and object recognition.
Different fusion methods have been proposed in literature,
including multi-resolution analysis. In [7], wavelets based
image fusion algorithm was applied to the MR images and CT
images, used as primary sources to extract the redundant and
later information to enhance the brain tumor detection in the
resulting fused image.

In [6], an image fusion technique was effectively used to
detect the tumor in a mixture of complex backgrounds. Image
fusions were applied by merging multiple images resulting into
precise information about the size, shape and placement of the
tumor.

3.2 Fuzzy Symmetry Based Genetic Clustering Technique

for MRI Brain Image Segmentation

In [11], an automatic segmentation technique of
multispectral image of the brain is proposed using a fuzzy
symmetry based on genetic clustering. A developed fuzzy
point symmetry based cluster validity index, fuzzy symmetry
index, was used to measure ‘goodness’ of the corresponding
partition. The genetic fuzzy clustering technique evolves the
number of clusters present in the data set automatically. The
proposed method was better when compared with Fuzzy C-
means. This method does not require any priority specification
of the number of clusters present in the data set. The obtained
results are compared with the available ground truth
information. This method segments the membership values of
points to different clusters which are calculated by the point
symmetry based distance rather than the Euclidean distance.
This method is used to automatically develop the proper
clustering of all types of clusters, both convex and non-convex,
which have some symmetrical structures.

3.3 Wavelet and FCM Algorithm for MRI Brain Image

Segmentation

In [4, 9], Fuzzy C-Means (FCM) Clustering and wavelet
decomposition for the feature extraction and feature vector are
treated as input to FCM. This method is called Wavelet Fuzzy
Fuzzy C-Means (WFCM) and is used to segment the tumor

from MRI. WFCM involves two stages, one is feature
extraction and the other is clustering. The feature extraction
was processed by using multilevel 2D wavelet decomposition
features. Extracted features from wavelet decomposition are
forwarded to FCM for the purpose of clustering.

3.4 Random Walk MRI Brain Image Segmentation

 Random walk is defined as discrete random motion in which
a particle repeatedly moves a fixed distance up, down, left and
right. This is a region growing based image segmentation
method based on random walk of a particle. In this method,
the initial position at which a particle is initially present is
known as seed point movement from one position to another
method based on the probability calculations. This method has
three pragmatic properties that are, weak boundary detection,
noise robustness and the assignment of ambiguous regions.
Seed point selection is very important for random walk, after
the seed point has been detected random walk methods
performed better segmentation [13].

3.5 Modified Kernelized Fuzzy C-Means (MKFCM)

Segmentation for MRI Images

Image topology and statistical parameters of a window

around the pixel are also considered to modify the algorithm.
MKFCM was directly applied to image segmentation like
FCM. The MKFCM algorithm was implemented for MRI
image segmentation [8].

3.6 Multiple Kernel Fuzzy C-Means (MKFC)

The fuzzy c-means is a popular soft clustering method.

Applying kernel behavior, the kernel fuzzy c-means algorithm
attempts to address the problem by mapping data with
nonlinear relationships to correct feature spaces. Kernel
combination, or choice, is critical for efficient kernel
clustering. Unfortunately, for most applications, it is not easy
to find the right combination [3].

3.7 Neural Network Based Methods

Artificial Neural Networks (ANNs) were developed for a

variety of applications such as function approximation, feature
extraction, optimization, pattern recognition and classification.
Mostly, they have been developed for image enhancement,
segmentation, registration, feature extraction, and object
recognition. From the above applications, image segmentation
is more important and a crucial step for high level image
processing such as detection of tumors in medical images.
Hopfield, Back Propagation Networks (BPN), Self-Organized
Map (SOM), Multi-Layer Perceptron (MLP), Radial Basis
Function (RBF), Adaptive Resonance Theory (ART), Cellular,
and Pulse-Coupled neural networks have been used for image
segmentation [17].

IJCA, Vol. 24, No. 4, Sept. 2017 113

3.8 Symmetry Imaging

Symmetry is an important characteristic to identify the
structure of the object and has been used in many domains. In
the medical imaging field symmetry was mainly applied to the
brain imaging where a healthy brain has symmetry in the right
and the left side of a brain image. Symmetry imaging has
many advantages over other imaging techniques for example;
this technique has not required preprocessing, labeled image
data, training and registration as other techniques are required.
Symmetry based brain tumor investigation was carried out in
[19].

4 Hybrid Symmetry Approaches [19]

The proposed technique is an extension of our research

paper that was published in [19]. A flowchart of HASA
(Hybrid Algorithm using Symmetric and Active contour) is
shown in Figure 1 and in complete detail [19] for the readers

understanding.

4.1 Proposed Algorithm Using Symmetry Line and Active
Contour (ASLAC)

In ASLAC we cut the image into two parts left and right
along the symmetry line. Compute the reflection image of left
or right part opposite of tumor side i.e., (if tumor is present on
right side take reflection of left side and if tumor is present on
left side then take reflection of right side). In the next step we
find the difference of the tumor side and reflection image. We
apply the threshold value and get the binary image on the
newly created image. We map the image on the original left or
right side of the image. After that we apply an active contour
and find the boundary of the abnormal region. The proposed
ASLAC technique flow chart (shown in Figure 2) and its
detailed steps are shown in Section 4.1. The Chan-Vese [2],
HASA [19] and proposed ASLAC techniques component
comparison is listed in Table 1.

Find the Reflection Image

Apply some
morphological

operation

Start

Yes

NO

Preprocessing
Required

Calculate the difference
between original and

reflection image

To make boundary of the tumor
apply active contour on previous

calculated image

Make binary image of the
bounded image

End

Take input
MR image

Figure 1: Flow chart of HASA

114 IJCA, Vol. 24, No. 3, Sept. 2017

Get edge map of the image

Apply some morphological
operation and get image

Start

Yes

NO

Preprocessing
Required

Find symmetry line of
the image with edge

map

To make boundary of the tumor
apply active contour on previous

calculated image

Make binary image of
the bounded image

End

Divide the image into
left and right part of the

symmetry line

Make binary image of
the difference image

Check tumor
location

Find difference b/w
right part and reflection

of left part

LeftFind difference b/w
left part and reflection

of right part

Find the product of binary and left or
right part of the symmetry line

Right

Take input
MR image

Figure 2: Flow chart of ASLAC Algorithm

Table 1: Chan-Vese[2], HASA[19] and proposed ASLAC techniques main component based comparison
Chan-Vese HASA Proposed ASLAC
1. Apply some morpho-

logical operations to
preprocess the image.

2. Apply the active contour
and segment the tumor

1. Apply active contour on
difference of images
between actual and
reflection of actual
image.

1. Find Symmetry line of image from edge map.
2. Divide the image into left and right part of the

symmetry line.
3. Find tumor location in left or right part of image.
4. Find the difference between right/left with reflection

image of right/left part.
5. Make binary image of difference.
6. Apply active contour on only left or right part on which

side tumor exist.

IJCA, Vol. 24, No. 4, Sept. 2017 115

1. Apply morphological operations, like erosion and dilation, if preprocessing needed. After this optional step let our image be denoted by O(x; y).

2. Find the edges of the image.

3. Find the symmetry line with the following ways

• Find location of 1 from each row in the matrix of edge map image

• Now calculate the average location of each row

• Now from these avg values find the line by the formula

xY βα += ---------- (i)

Where

𝛼𝛼 =
∑ 𝑦𝑦𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖2 − ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖−1

𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1) 2

𝛽𝛽 =
𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 − ∑ 𝑥𝑥𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖−1

𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1) 2

4. Separate the right and left part along the symmetry line

• For Left side

i. Start outer loop 1 to maxcol or maxrow

ii. Start inner loop 1 to symmetryline

• Put all the values in new matrix of location outer and inner loop

• For Right side

i. Start outer loop 1 to maxcol or maxrow

ii. Start inner loop symmetryline+1 to end of maxcol or maxrow

• Put all the values in new matrix of location outer and inner loop

5. Find the reflection image of both right and left part i.e Right(x,y) and Left(x,y) which are calculated in step 4

• If tumor is right side then

New image= Rightimage – Reflection of leftimage

• Else

New image1= Leftimage – Reflection of rightimage

6. Find the threshold with the formula

 Avg= max { O(x,y) }*0.25

7. Now find the mask of newimage(x,y) or newimage1(x,y) using the threshold value

If (N (x,y) or N1(x,y)>avg)

N (x,y) or N1(x,y)=1

Else

 N (x,y) or N1(x,y)=0

8. Map the mask with original image O(x,y) i.e multiply the mask and original image.

9. Now find the location of the tumor

• Find max intensity in the new image

• Find the locations of max intensity, and apply active contour

Pseudocode of proposed ASLAC Technique

5 Results

We have applied the ASLAC technique on DICOM
formatted MRI data of 3 different patients. The specifications
of all three data sets were the same and are listed in Table 2.
The investigated original images are shown in Figures 3(a),
3(b), & 3(c). The images produced by applying the ASLAC

technique is shown in Figure 4. Figure 4(a) is the original
DICOM image which after morphological pre-processing
yields the image in Figure 4(b). Figure 4(c) is the edge map of
Figure 4(b) after applying canny algorithm. Figure 4(d) yields
the image after applying the symmetry line. Figures 4(e) and
4(f) is the right and left part of Figure 4(d). Figure 4(g) is the
reflection part of Figure 4(f). Figure 4(h) is the difference of

116 IJCA, Vol. 24, No. 3, Sept. 2017

Table 2: Parameter values of MRI images dataset

Parameters Dataset 1-3 Values

Magnetic Field Strength 1.5
File Size 1049472
Format DICOM
Width 1024
Height 1024
Bit Depth 8
Color Type grayscale

Modality ‘MR’

Samples Per Pixel 1

Photometric Interpretation Monochrome2

Rows: 1024
Columns 1024
Pixel Aspect Ratio [2x1 double]
Bits Allocated 8
Bits Stored 8
High Bit 7
Pixel Representation 0
Window Center 127.5000
Window Width 255

4(a): Original slice of size
1024x1024 before
morphological operation

4(b): After morphological operations 4(c): Edge map of Figure 4b

4(d): Image with symmetry line 4(e): Right part of Figure 4(d) 4(f): Left part of Figure 4(d)

3(a)

3(b)

3(c)

Figure 3: 3(a), 3(b), and 3(c) are original images

IJCA, Vol. 24, No. 4, Sept. 2017 117

4(g): Reflection image of figure 4f 4(h): Difference between right part

and reflection of left part
4(i): Binary image of figure 4(h)

4(j): Mapping of figure 4i and 4e 4(k): Boundary of the tumor after

applying the active contour
4(l): Binary image of figure 4(k)

Figures 4(a)-4(l): Represents the step by step images produced by applying ASLAC technique

Figures 4(e) and 4(g). Figure 4(i) is the binary image of
Figure 4(h) by applying the threshold formula. Figure
4(j) is the product of Figures 4(i) and 4(e). Figure 4(k)
yields an image after applying the active contour [2]. Figure
4(l) depicts the binary image of Figure 4(k).

6 Discussion

By applying Chan Vese algorithm [2] on images 3(a), 3(b)

& 3(c) the results produced are listed in Figures 5(a), 6(a),
and 7(a), and by applying HASA [19] the produced images
are shown in Figures 5(b), 6(b), 7(b). The segmentation

quality is improved as compared to the images produce by
applying Chan-Vese algorithm. The results produced by
applying ASLAC technique is shown in Figures 5(c), 6(c),
and 7(c). By examining the segmentation quality produced
by applying Chan-Vese (Figures 5(a), 6(a), 7(a)), HASA
(Figures 5(b), 6(b), 7(b)), and ASLAC (Figures 5(c), 6(c),
7(c)), the images produced by applying the ASLAC
technique has shown improvement. Each image is improved
in terms of filtering unwanted information and the contrast
of tumor region is also improved as seen in Figures 5(c),
6(c) and 7(c).

(a) Chan-Vese (b) HASA (c) ASLAC

Figure 5: Images produced by applying Chan-Vese, HASA, EHASA, ASLAC on image data set 1

118 IJCA, Vol. 24, No. 3, Sept. 2017

(a) Chan-Vese (b) HASA (c) ASLAC

Figure 6: Images produced by applying Chan-Vese, HASA, EHASA, and ASLAC on image data set 2

(a) Chan-Vese (b) HASA (c) ASLAC

Figure 7: Images produced by applying Chan-Vese, HASA and ASLAC on image data set 3

The images produced by using the ASLAC algorithm are
better as compare to the Chan-Vese, and HASA, techniques.
In ASLAC technique, the image is divided into parts and
applied to the active contour only that part which has a tumor,
either the left or the right. So in this way we have a better
segmentation of the brain tumor and the number of iterations
are also reduced by half as compared to the Chan-Vese, and
HASA techniques.

7 Conclusion

The proposed ASLAC technique can identify the

tumor/abnormality in either the right or the left side and can
also find more than one tumor. This technique does not
require any user interaction and is fully automatic. The images
produced by ASLAC have a better result as compared to other
well-known existing techniques. One limitation of our
technique is that it will not produce true results if the tumor is
present on the symmetry line. In the future, we will address
the deficiencies of the ASLAC technique.

References

[1] Stefan Bauer, Roland Wiest, Lutz-P Nolte, and Mauricio

Reyes, “A Survey of MRI Medical Image Analysis for
Brain Tumor Studies”, Physics in Medicine and Biology,
58:97-129, 2013.

[2] T. Chan and L. Vese, “Active Contours without Edges”,
IEEE Transactions on Image Processing, 10(2):266-277,
2001.

[3] L. P. Clarke, R. P. Velthuizen, M. A Camacho, J. J.
Heine, and M. Vaidyanathan, “MRI Segmentation:
Methods and Application”, Magnetic Resonance
Imaging, 13:343-368, 1995.

[4] Moumen T. El-Melegy and Hashim M. Mokhtar, “Tumor
Segmentation in Brain MRI using a Fuzzy Approach
with Class Center Priors”, EURASIP Journal of Image
and Video Processing, 2014:21, 2014.

[5] Nelly Gordillo, Eduard Montseny, and Pilar Sobrevilla,
“State of the Art Survey on MRI Brain Tumor
Segmentation”, Magnetic Resonance Imaging, 31:1426-
1438, 2013.

[6] Leo Grady, Random Walk for Image Segmentation”,
IEEE Trans. on Pattern Analysis and Machine
Intelligence, 28:1768-1783, 2006.

[7] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A.
Courville, Y. Bengio, C. Pal, P.-M. Jodoin, and H.
Larochelle, "Brain Tumor Segmentation with Deep
Neural Networks”, Medical image analysis, 35:18-31,
2017.

[8] Hsin-Chien Huang, Yung-Yu Chuang and Chu-Song
Chan, “Multiple Kernel Fuzzy Clustering”, IEEE
Transactions on Fuzzy Systems, 2011.

[9] I. Irakykhalifa, Aliaa Youssif, Howida Youssry, “MRI

IJCA, Vol. 24, No. 4, Sept. 2017 119

Brain Image Segmentation based on Wavelet and FCM
Algorithm”, International Journal of Computer
Applications, 47(16):32-39, 2012.

[10] J. H. Kazmi, K. Qureshi, and H. Rasheed, “An
Implementation of SAN Filter and Edge Sharpening
Method for MRA Images”, Malaysian Journal of
Computer Science, 20:99-114, 2007.

[11] Chunming Li, Rui Huang, Zhaohua Ding, J. Chris
Gatenby, and Dimitris N. Metaxas, “A Level Set
Method for Image Segmentation in the Presence of
Intensity in Homogeneities with Application to MRI”,
IEEE Transactions on Image Processing, 20:2007-2016,
2011.

[12] J. Liu, M. Li, J. Wang, F. Wu, T. Liu, and Y. Pan, “A
Survey of MRI-Based Brain Tumor Segmentation
Methods”, Tsinghua Science and Technology, 19:578-
595, 2014.

[13] Abdenour Mekhmoukh, Karim Mokrani, and Mohamed
Cheriet, “A Modified Kernelized Fuzzy C-Means
Algorithm for Noisy Images Segmentation: Application
to MRI Images”, IJCSI International Journal of
Computer Science Issues, 9(1):1694-0814, 2012

[14] J. J. Pedroso De Lima, “New Trends in Medical
Imaging”, Radiation Protection Dosimetry”, 115(1-4):51-
57, 2005.

[15] M. Prastawa, E. Bullitt, N. Moon, K. Van Leemput, and
G. Gerig, “Automatic Brain Tumor Segmentation by
Subject Specific Modification of Atlas Priors”,
AcadRadiol, 10(12):1341–1348, 2003.

[16] Sonia Rauf, “A Study of Vessels Extraction Techniques
from MRA”, MS Thesis, supervised by Jawad H. Kazmi
and Kalim Qureshi, Comsats Institute of Information
Technology, Abbottabad, Pakistan, 2013.

[17] N. Ray, B. N. Saha, and M. R. Graham Brown, “Locating
Brain Tumors from MR Imagery Using Symmetry
Signals”, Systems and Computers, pp. 224–228. 2007.

[18] Mubbashar Saddique, “Classification and Segmentation
of Brain Abnormality from MRI Using Symmetry”, MS
Thesis, supervised by Jawad H. Kazmi and Kalim
Qureshi, Comsats Institute of Information Technology,
Abbottabad, Pakistan, 2012.

[19] Mubbashar Saddique, Jawad Haider Kazmi, and Kalim
Qureshi, “A Hybrid Approach of Using Symmetry
Technique for Brain Tumor Segmentation”, Journal of
Computational Mathematical Methods in Medicine,
Article ID 712783, 2014,
http://dx.doi.org/10.1155/2014/712783.

[20] Amarjot Singh, Srikrishna Karanam, Shivesh Bajpai,
Akash Choubey, and Thaluru Raviteja, “Malignant Brain
Tumor Detection”, 4th IEEE International Conference on
Computer Science and Information Technology, IEEE
Xplore, 1:163-167, 2011.

[21] S. Valarmathy, R. Ramani, and N. Suthanthira Vanitha,
“A Survey of Recent Image Segmentation Techniques
for MRI Brain Images”, IJCST, 4(1):2013.

[22] Lian Yanyun and Song Zhijian, “Automated Brain
Tumor Segmentation in Magnetic Resonace Imaging

based on Sliding-Window Technique and Symmetry
Analysis”, Chinese Medical Journal, 127:462-468, 2014.

Mubbashar Saddique is working as
Deputy Director (IT) at Punjab
Employees Social Security Institution,
Lahore, Punjab, Pakistan. He
completed a B.Sc (Telecommunication
Engineering) from Institute of
Engineering & Technology, Lahore
Campus, Pakistan. He received a merit

scholarship from COMSATS Institute of Information
Technology, Abbottabad, Pakistan where he completed his MS
computer science in 2012. His area of research interest is
imaging processing, networks and data mining. His contact
email is mubashar.chaudary@gmail.com.

Kalim Qureshi is an Associate
Professor of Information Science
Department, Kuwait University,
Kuwait. His research interests include
network parallel distributed computing,
thread programming, concurrent
algorithms designing, task scheduling,
performance measurement and medical
imaging. Dr. Qureshi receive his Ph.D

and MS degrees from Muroran Institute of Technology,
Hokkaido, Japan in (2000, 1997). He published more than 40
journal papers in reputed journals. His email addresses:
kalimuddinqureshi@gmail.com, and kalim_qureshi@hot
mail.com.

Jawad Haider Kazmi is an Assistant
Professor at the Department of
Computer Science, CIIT Abbottabad,
Pakistan since 2008. He received a
MIT in 2003 and MS in Computer
Science in 2007. His research interest
includes medical imaging, distributed

systems and computer networks. His contact email is
jawad.kazmi@yahoo.com.

Zainab Meraj (Photo not available). She is working in
Kuwait University, Information Science Department. She is
an active researcher in area of computer graphics.

http://dx.doi.org/10.1155/2014/712783
mailto:mubashar.chaudary@gmail.com
mailto:kalimuddinqureshi@gmail.com
mailto:kalim_qureshi@hotmail.com
mailto:kalim_qureshi@hotmail.com

120 IJCA, Vol. 24, No. 3, Sept. 2017

ISCA Copyright© 2017

Using an Uncalibrated Camera for Undistorted
Projection over a Mobile Region of Interest

Mamona Awan*
National University of Computer and Emerging Sciences – FAST,

Lahore, 54700 PAKISTAN

Kwang Hee Ko†
Gwangju Institute of Science and Technology

Gwangju, 61005 REPUBLIC OF KOREA

Abstract

This paper presents a system for projection over a mobile

region of interest. The region is supposed to be located on an
arbitrarily placed planar surface. The system consists of a
projector, a laptop and an uncalibrated camera. Our method is
based on homography concepts and computes mappings
between a camera, a projector and the region. The technique
excludes calibration parameters of the camera and the
projector; hence, the intrinsic and extrinsic parameters are
neither given nor calculated. The positions of the projector,
the camera, and the surface are unknown. For the numerous
unknowns, we show that each mapping corrected distortion
can be achieved. The system is capable of dynamically
identifying the shape of the region of interest in which
projection is on, while the region moves with a certain constant
speed. Upon a sudden and abrupt motion of the region of
interest, the projection iteratively adjusts its position until it
fits the region perfectly. The system is demonstrated with real
examples.

Key Words: Undistorted projection, uncalibrated camera,
mobile surface projection, projector-camera system.

1 Introduction

Projector systems are widely used for the purpose of

entertainment, work, and even as public displays. They often
retain a few problems; one of the problems is a distorted
projection. Unless the projector is carefully aligned with
respect to the display area, the projected image appears
distorted. The second problem is a fixed projection; the
projector is unable to project over a mobile surface unless a
special device is developed that tracks the position and
orientation of the moving surface. Such problems may limit
the application of a projector system. In order to solve this
problem, a device like a camera can be considered to obtain the
information of the position and the orientation of the surface.

* E-mail: mamonaawan@nu.edu.pk.
† E-mail: khko@gist.ac.kr.

In this way, we can make the projection system efficient
enough such that it can form an undistorted projection and
project the undistorted images over a mobile surface.

There are several systems for correcting the distortion or the
keystone problem of a projector as in [12], [14] and [15]. A
number of systems are also designed for the integration of
multiple images projected by multiple projectors to form a
large seamless image as in [2], [3] and [11]. There is another
research dedicated for the pose estimation of the projector
using images obtained by a camera using the screen-camera
homography [9]. Although these systems can provide efficient
methods for projecting undistorted images on a surface, they
do not handle dynamic projection. The dynamic projection
includes the projection over randomly moving objects or
region of interests. Another system is designed using light
sensors and a frequency variation of the projector light, using a
complex pre-calibration process, which needs hefty
calculations and special apparatuses [8].

There exists another method for calibrating a projector using
structured light patterns over the screen embedded with light
sensors. This approach has two major drawbacks; first, the use
of light sensors requires other communication modules to
transmit necessary data to the computer; secondly the system
needs to recalibrate as the position of the projection surface
changes. This recalibration process is done by projecting a
series of structured light patterns again [7]. Other studies have
explored tracking techniques of a moving surface for
projection of content; however, they primarily depend upon
either electromagnetic sensors or a number of visual based
tracking systems that add a significant amount of cost,
infrastructure and complexity to achieve such an effect as done
in [1] and [13]. Optical and magnetic trackers are used in [1]
for the tracking of the projectable object while in [13] they
have used photo-sensing wireless tags such as active radio-
frequency (RF) tags.

In this paper, we propose a system for projection over a
mobile region of interest exclusive of such complexities. Our
system consists of a laptop connected to a projector and an
uncalibrated camera independent of any costly sensors and
trackers for the purpose of mobile projection. The mobile
region of interest is supposed to be moving within a planar

mailto:mamonaawan@nu.edu.pk
mailto:khko@gist.ac.kr

IJCA, Vol. 24, No. 3, Sept. 2017 121

domain, and through an image processing method the mobile
region is detected and then used as a display region for
projection. The image fits the moving region of interest with
proper alignment, exclusive of any distortion or bleeding. The
system is also capable of correcting the keystone distortion,
given only a display screen is in consideration without any
mobile region of interest. Our system excludes hefty
calculations of calibrations of the camera, as well as the
projector. The intrinsic and extrinsic elements of the projector
and the camera are totally ignored and the process excludes all
of such relations with these elements.

2 Overall Procedure

The process flow for projection over an arbitrarily placed

planar surface is shown in Figure 1. The process starts by
taking an image of planar surface without any projection over
it via camera; the planar surface may or may not include the
region of interest (ROI) at this point. This image is processed
to identify the boundary of the planar surface. As the aspect
ratio of the length and width of this planar surface is known,
we can form a homography relation between the camera and
the planar surface. We refer to this homography as 𝐻𝐻𝑐𝑐𝑐𝑐 in the
paper.

The second process (process 2) in Figure 1 includes
projecting a source image to determine the transformation
between the projector domain and the camera domain. The
position of the planar surface is assumed to be such that when
the source image is projected, a certain region of the source
image is visible over the planar surface. An image of this
projection is taken by the camera. The source image and the
camera image are then used to formulate a homography
relation between the projector and the camera, which is
denoted as 𝐻𝐻𝑝𝑝𝑝𝑝 . Once these two homographies, i.e., 𝐻𝐻𝑐𝑐𝑐𝑐 and
𝐻𝐻𝑝𝑝𝑝𝑝 are calculated, we can form a projection over this planar

surface without any distortion.
The homography relations can be summarized as:

 �
𝑥𝑥𝑝𝑝
𝑦𝑦𝑝𝑝
1
� ≈ 𝐻𝐻𝑝𝑝𝑝𝑝 �

𝑥𝑥𝑐𝑐
𝑦𝑦𝑐𝑐
1
� (1)

and

 �
𝑥𝑥𝑐𝑐
𝑦𝑦𝑐𝑐
1
� ≈ 𝐻𝐻𝑐𝑐𝑐𝑐 �

𝑥𝑥𝑠𝑠
𝑦𝑦𝑠𝑠
1
� (2)

In (1) and (2), (𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝), (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐), and (𝑥𝑥𝑠𝑠 ,𝑦𝑦𝑠𝑠) are the

corresponding points in the projector domain, the camera
domain, and the planar surface domain, respectively. The
homography between two domains 𝐻𝐻𝐷𝐷1𝐷𝐷2 (where “𝐷𝐷1 ” and
“𝐷𝐷2 ” represent two random domains), is an invertible 3x3
matrix. Hence, a relation between the projector and the planar
surface can be formed using (1) and (2). The effect of 𝐻𝐻𝑐𝑐𝑐𝑐 can
be excluded from the relation calculated previously, as the
relation linking the projector and the camera 𝐻𝐻𝑝𝑝𝑝𝑝 is calculated
using the planar surface amid. This gives us the relation
between the projector and the surface as a 3x3 matrix,
mathematically expressed as:

 �
𝑥𝑥𝑝𝑝
𝑦𝑦𝑝𝑝
1
� ≈ 𝐻𝐻𝑐𝑐𝑐𝑐−1 ∗ 𝐻𝐻𝑝𝑝𝑝𝑝 �

𝑥𝑥𝑠𝑠
𝑦𝑦𝑠𝑠
1
� (3)

In Equation (3) 𝐻𝐻𝑐𝑐𝑐𝑐−1 represents the inverse of the

homography 𝐻𝐻𝑐𝑐𝑐𝑐.
The system then continues and determines if any region of

interest is present within the planar surface or not. As shown
in Figure 2, if the region of interest is absent, then the system
considers the same surface as a display screen and merely

Figure 1: Process flow for projection over arbitrarily placed planar surface

122 IJCA, Vol. 24, No. 3, Sept. 2017

Figure 2: Process flow for projection over mobile ROI in planar surface

projects over it. If the planar surface is moved, the display
modifies with respect to it as well, up to a certain extent.

If the region of interest is present, then the system follows
the process flow presented further in Figure 2. It determines
the position and orientation of region of interest in the surface
domain. The process begins with application of morphological
operations over the image that has already planar surface area
extracted. Then we extract contours and form a convex hull
over the contours detected. Using these contours, we identify
the shape of the ROI and also form a bounding box to estimate
and refine its position and orientation in the planar surface. As
the original aspect ratio of the ROI is known, so we can form a
homography 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 for the ROI and planar surface. The
expression can be stated as:

 �
𝑥𝑥𝑠𝑠
𝑦𝑦𝑠𝑠
1
� ≈ 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟

1
� (4)

Where (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠) and (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟) are the corresponding points in

the surface domain and the ROI domain respectively. 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
can be used to determine the exact orientation of the ROI on
the surface. The relation between the projection domain and
the ROI can also be formed by using this homography. For
this computation, we modify the previously calculated
mapping in (3), so the mapping or homography between the
ROI and a projector can be stated as:

 �
𝑥𝑥𝑝𝑝
𝑦𝑦𝑝𝑝
1
� ≈ 𝐻𝐻𝑠𝑠𝑠𝑠𝑜𝑜𝑜𝑜 ∗ 𝐻𝐻𝑐𝑐𝑐𝑐−1 ∗ 𝐻𝐻𝑝𝑝𝑝𝑝 �

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1
� (5)

 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐻𝐻𝑐𝑐𝑐𝑐−1 ∗ 𝐻𝐻𝑝𝑝𝑝𝑝 (6)

Where 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the homography relation between the

projector and the ROI. This homography can then be used to
pre-warp the image to be projected such that it fits the region

of interest without any distortion or bleeding. However,
homography will only give us the true mapping for the ROI, so
the scale and the correct position should also be considered in
order to fit the projection correctly without any bleeding.

3 Technical Details

In order to project over the mobile surface, a few

assumptions are made for our system. The mobile surface is
supposed to be any of the three shapes (rectangular, triangular,
or circular). It should have a white surface with black
boundary to simplify identification. The system is not
configured for any other shape but a few modifications can
enable it to recognize other shapes as well. The shape is
unknown by the system as a priori but has to be any of the
above mentioned. The size of this surface is arbitrary but the
aspect ratio of the length and width is assumed to be known.
Only one region of interest can be introduced over the planar
surface at a time. The mobile region of interest (ROI) is
supposed to be moving within a planar surface. For these
experiments we have taken a white board (non-reflective type)
with boundaries marked with black, as a planar surface. This
board can also be used as a conventional projector screen;
however, its dimensions are significantly smaller as compared
to a conventional projector screen. The size of screen is
irrelevant and can be random; however, the aspect ratio of the
size (length: width) is assumed to be known.

The tiresome task of calibrating the camera by taking
pictures of a checkerboard is completely excluded; hence for
any instance we do not need any intrinsic or extrinsic
parameters of the camera. The relative position of the
projector and the camera does not change once the system has
started; however, for another instance, the relative position of
the camera and the projector may vary. The experiments are
performed in a projection cubicle that is a dark room with the
projector being the only light source. The application is valid

IJCA, Vol. 24, No. 3, Sept. 2017 123

Figure 3: Planar Surface (Board) and the Region of Interest (ROI) within it, as seen by the camera. Projector (not shown) is
projecting a black image to represent projectable space. The visibility of this image is improved for the sake of
illustration

for most of the instances with minor changes in threshold
values used in the program which can be set manually.

3.1 Homography Calculation

While a projection is viewed via a camera, any point in the

projector domain can be mapped to a certain point in the
camera domain. This mapping from the projected image to the
captured image or from the captured image to the projected
image, form a homograph H, a 3x3 matrix. As for any point in
a domain we can calculate its corresponding point in the other
domain as follows:

 (𝑥𝑥,𝑦𝑦) = �𝐻𝐻11𝑥𝑥

′+𝐻𝐻12𝑦𝑦′+𝐻𝐻13
𝐻𝐻31𝑥𝑥′+𝐻𝐻32𝑦𝑦′+𝐻𝐻33

, 𝐻𝐻21𝑥𝑥
′+𝐻𝐻22𝑦𝑦′+𝐻𝐻23

𝐻𝐻31𝑥𝑥′+𝐻𝐻32𝑦𝑦′+𝐻𝐻33
� (7)

Where (x, y) is a point in a domain and (𝑥𝑥 ′ ,𝑦𝑦′) is its

corresponding point in the other domain. The parameters
𝐻𝐻11,…,𝐻𝐻33 are the unknowns to be determined as follows:

 𝐻𝐻 = �
𝐻𝐻11 𝐻𝐻12 𝐻𝐻13
𝐻𝐻21 𝐻𝐻22 𝐻𝐻23
𝐻𝐻31 𝐻𝐻32 𝐻𝐻33

� (8)

Although there are 9 unknown parameters, there are only 8

DOF (degree of freedom) as ∑ 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1. Hence, only four
corresponding pairs of points are required, as each point
provides two constraints. If four pairs of corresponding points
are attained, then we can obtain a unique solution for these
parameters by using a direct linear transformation algorithm
(DLT).

3.1.1 Camera-Planar Surface Homography. In order to
calculate camera-planar surface homography, the camera
captures an image of the planar surface. This image is used to
detect the boundary of the planar surface and the corners are
extracted. The aspect ratio of the surface is already known.
We compute the maximum length of the surface in the camera
domain and calculate four corresponding points using the
known aspect ratio. These corners are then used to calculate
the homography “𝐻𝐻𝑐𝑐𝑐𝑐”, between the camera and the surface.

We can convert each point from the surface domain to the
camera domain and vice-versa using the expression stated
previously in (2). If only a planar surface is provided (a planar
surface does not have ROI within it), then the system uses the
surface as a display screen and forms an undistorted projection
over it. If the surface is moved up to some extent during this
projection, the system can modify the projection
simultaneously to project over it correctly; however, the main
focus of the system is to project over ROI.

3.1.2 Projector-Camera Homography. Many techniques

are followed to form a relation between a projector and a
camera. These techniques usually include projecting a series
of images via the projector and capturing these by the camera.
The images may contain structured light patterns, AR
(augmented reality) tags or even calibration grids. We exclude
the cumbersome task of projecting a series of images as it
takes a lot of time for a user, to project at least 10 images in
the case of structured light and 3 images in the case of AR
tags. We have also excluded the projection of calibration grids
as it incorporates other correspondence techniques as well.

Our method includes projection of a simple image that can

124 IJCA, Vol. 24, No. 3, Sept. 2017

be reproduced without any complex considerations. The
image is supposed to have a white rectangle with a black
background as shown in Figure 4. It should also have
dimensions similar to the resolution of the projector, so that the
projector does not apply any transformation on it before
projecting it. Each pixel in the image is supposed to represent
each pixel in the projector domain.

The system is capable of camera exposure adjustment and
the user is also given a provision to adjust the exposure, if
necessary. An image of projection is taken by the camera and
morphological operations are applied over it to extract the
edges and register contours. These contours are then
approximated into another simpler contour using the Ramer-
Douglas-Puecker algorithm [10]. This approximation

significantly improves the detection of lines in the contour due
to reduced curves in the contour.

The lines are detected by applying Hough Lines Transform
over the approximated contour and then the best fitting lines
are selected using a minimum least square error computation
[4]. The lines are used for the calculation of four corners of
the white rectangle. These corners are then sorted in the
clockwise manner and correspond with the points of the source
image. The simplicity of the source image provides such
convenience that we can find corresponding points in the
source image by merely using a corner extraction algorithm
and a sorting algorithm.

These four-point correspondences are enough for the
calculation of homography 𝐻𝐻𝑝𝑝𝑝𝑝.

Figure 4: The source image used for projector-camera homography calculation. The image dimensions are 1920 by 1080 pixel

Figure 5: Projection of source image as viewed by the camera. The region of interest can also be seen in this image. The presence
of ROI does not affect the calculation of projector-camera homography

IJCA, Vol. 24, No. 3, Sept. 2017 125

Each point in the camera image or domain can be converted
into the corresponding point in the projector domain using (1).

3.2 Initial Pose Estimation

Now that the system can already map from a projector to a

camera and the camera to a planar surface, the only
computation left is to form a mapping between the planar
surface and the region of interest within it. For this purpose,
the system analyzes the same image captured for camera-
planar surface homography calculation. By applying different
morphological operations, the boundary of the ROI is stored as
a contour and approximated into a much simpler contour by
the Ramer-Douglas-Peucker algorithm. This approximation
makes it easy for us to form a better convex hull with the least
computation time, as the number of vertices is significantly
reduced by the approximation. This reduction in the number
of vertices can be seen in Figure 6. The approximated contour
also eliminates the complexity of smaller curves in the convex
hull to be formed.

The convex hull is then used to identify the shape of the
ROI. The vertices of the convex hull and the interior angles at
each vertex are calculated along with the calculation of Hu
Moments [5] of the convex hull. The number of vertices,
interior angles at vertices, and Hu moments of the convex hull
are the three parameters that decide the shape of the ROI. The
shape of ROI can either be a rectangle, a triangle or a circle.
Once the shape of ROI is decided, we form a bounding box
over the convex hull of ROI. For the case of circular ROI, we
form an upright bounding box (un-rotatable), as a rotatable
bounding box will be redundant in this case. We form a
rotatable bounding box for other shapes of ROI.

The introduction of the bounding box solves a number of

problems for us. As the convex hull changes with each frame,
we apply Kalman filter of order 2, over the center and the
rotation angle of our corresponding bounding box [6].

The filter avoids all the abrupt changes in the position or the
rotation of the bounding box and provides a smooth variation
in both of these values. Furthermore, the size of convex hull
also changes as each frame is processed. This variation in size
is caused by different miscellaneous effects like intensity
variation caused by the simultaneous projection. So, we
calculate the size of the corresponding bounding box as the
average of the previously determined sizes along with the
recent size. Figures 6 and 7 are excellent examples to
demonstrate the importance of forming a bounding box over
the convex hull. Although, the convex hull in Figure 6 lacks
one corner completely, the bounding box still manages to
provide the fourth corner as seen in Figure 7. The corners of
this bounding box can then be used to form homography 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
as explained earlier in (4).

3.3 Image Rendering for Projection

Using the calculated mappings, we can form a pre-warp for

the image to be projected; however, simply pre-warping the
image will not be enough. The process of rendering the image
starts by scaling the image to be projected, as homography
does not give us the true scale of the image. The true scale of
the image depends on the resolution of the projector, as each
pixel in the image should light only one pixel in the projector
domain. The system then warps the image by the inverse of
𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 calculated in (6). The dimensions of the image to be
projected are kept the same as the resolution of the projector.
The image is rendered by placing the transformed image at
such a position 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , that it coincides with the ROI. The rest

Figure 6: ROI (rectangular) is being detected in planar-surface. Contour of ROI (Blue), contour after approximation by Ramer-
Douglas-Peucker algorithm (Red), and convex hull of the approximated contour (Green) can be seen in the image. The
image is taken as seen in the planar surface domain

126 IJCA, Vol. 24, No. 3, Sept. 2017

Figure 7: The bounding box for ROI (rectangular). The corresponding contours and convex hull can be seen in Figure 6. The
image is shown as seen in planar-surface domain

of the pixels are rendered as black.
To calculate 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , we take in the position of ROI in planar

surfaces domain and convert it into the projector domain using
the inverse of 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . This will give us the position 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , as
stated in (9).

 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜 = 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (9)

In (9), 𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the position of ROI as seen in the planar

surface domain and 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1 represents the inverse of the
mapping transformation calculated in (6). Figure 8 shows an
example of the rendered image for projection.

4 Implementation

The projector used in our implementation is EPSON LCD

Projector EB-1776W, Model H476C. The projector provides a
projection at resolution of 1920 by 1080 pixels at 50-60 Hz of
refresh rate. The brightness of the projector is 3000 lumens for
both white and color pixels. The camera we have used is
Logitech HD Pro Webcam C920 operating at 30 fps (frames
per second). The webcam images are captured with the
resolution of 640 by 480 pixels with a bit depth of 24. The
camera also has an automatic low-light correction feature;
however, this feature is disabled for these experimentations.

The application is written in C++ using OpenCV Library
and implemented using a Lenovo ThinkPad E440, with
Microsoft Windows 8 Pro. It has an Intel core i5-4210M
processor working at 2.60GHz. The laptop has also NVidia

GeForce 840M installed in it; however, GPU modules have not
been used for this application. The planar surface and the
region of interest both are made of a foam board, covered with
a paper sheet of A0 and A4 sizes respectively.

The foam boards are considered because of their light
weight and easy mobility. The boundaries of these boards are
painted black. The dimensions of the foam boards for the
planar surface and ROI are A0 and A4 respectively. The
experiments are performed in a cubicle with only a projector as
the light source. The camera is placed near the projector and
the board is mounted over a poster stand. The board has an
arbitrary inclination away from the setup. The distance of the
board from the setup is taken to be arbitrary and has changed
between different experimental instances as well.

4.1 Reprojection Error

As the homography we have calculated is just an

approximation of the relation between the two domains, hence
its projection image rendered using this approximated
homography has a reprojection error. In Figure 9, the green
circle represents the top-left corner of the ROI in the camera
co-ordinates and the red circle represents the top-left corner of
the ROI in planar surface co-ordinates. It can be vividly seen
that the projected image does not coincide properly over the
ROI. To solve this issue, we calculate the reprojection error in
terms of Euclidean distance and then threshold it under an
acceptable range. The rendered image was then modified by
eliminating this error and the image overlaid over the ROI
properly.

IJCA, Vol. 24, No. 3, Sept. 2017 127

Figure 8: Sample of image rendered for projection over ROI (rectangular). The rendered image has a resolution of 1920 x1080
pixels (same as our projector)

Figure 9: The projected image does not coincide with the actual boundary

4.2 Image Clipping Issue

To render the image, we have used inverse transformation;

however, if ROI is rotated at a larger angle then inverse
transformation can cause the image to rotate out of the visible

range of the of the image plane. This can result in image
clipping as shown in Figure 10 where it rotates out of the ROI
at the top-right corner and in Figure 11 where it rotates out at
the bottom-left corner. To cater to this problem, we calculate
the inverse transformation for the boundary pixels first and

128 IJCA, Vol. 24, No. 3, Sept. 2017

Figure 10: Image clipped in top-right corner of ROI

Figure 11: Image clipped in bottom-left corner of ROI

check if those pixels are in visible range. If those pixels
transform out of the visible range, we calculate the difference
(𝑑𝑑𝑥𝑥 ,𝑑𝑑𝑦𝑦) and modify the translation of our transformation
matrix. Whenever the ROI is oriented in a rotated manner, this
modification allows us to refrain the clipping of the projected
image.

5 Results

The system is tested for several instances and it takes less

than 13 seconds to project and capture images. The projection
converges efficiently; however, the use of a Kalman filter has
significant effect over the pace of the system.

IJCA, Vol. 24, No. 3, Sept. 2017 129

5.1 Planar Surface without ROI

Figure 12 shows an image being displayed over the planar

surface without any keystone distortion or bleeding. As ROI is
absent, the system utilizes whole planar surfaces to display the

image. The system also effectively forms a correct projection
over the planar surface even if it is moved up to an extent. The
orientation of the surface has also changed for various
instances. This difference can be observed clearly in Figures
12, 13, 14, and 15.

Figure 12: Planar surface is used a display screen, while ROI is not provided. The projection is keystone corrected and does not
bleed out of the planar surface

Figure 13: Projection fits the rotated rectangular ROI with proper orientation and position precisely. The illuminated lines are

boundaries of window displaying the image

130 IJCA, Vol. 24, No. 3, Sept. 2017

5.2 Planar Surface with ROI

The projection image modifies as soon as the ROI is moved

and fits over it correctly provided that the ROI is moved with a
constant speed and there are no sudden changes or movements.
If the ROI is moved abruptly, the projection follows it, and
then oscillates about it while the distance error between the
current position and the required position decreases. The
oscillations of the projection finally converge to the correct
position of the ROI for all the instances.
Figures 14 and 15 illustrate the occasions where the system has
successfully formed a precise projection over a triangular and a
circular ROI, respectively. For the case where the ROI is
abruptly moved from an extreme corner to the other extreme
corner, the setting time or convergence time for the projection
is calculated to be 5 seconds on the average.
Figure 13 shows the projection over rectangular ROI, where
the projection image can be seen perfectly fitted over the ROI,
even though the ROI has significantly larger angle of rotation.
The illuminated lines in Figures. 13, 14, and 15, are the
boundaries of the window containing the rendered image. The
resolution of the rendered image can also be adjusted to
eliminate these lines; however, the concern of this application
is not affected by them.

During these experiments, we moved the ROI abruptly to
test its efficiency. The system successfully fits the projection
after a few oscillations upon abrupt motion. It is also moved
with a constant speed while the projection fits over it perfectly.

6 Discussion

The results of this approach can be improved by introducing

fast computing techniques such as the use of GPU and a
camera with a better frame per second rate. As we used a
webcam, an addition of a camera with better resolution will
provide considerably precise information.

The accuracy of the system can yet be improved by taking
more images while forming homography mappings. The
homography with a least re-projection error can be selected
from the homographies calculated using these images.
However, these benefits come with a significant cost of either
time or expenditure.

A cell phone application version of this system is also being
considered to be designed. The cell phone application will
utilize the in-built camera of the cell phone and a Pico
projector will be required, to be connected with the cell phone
via a data cable. Such a system will have an exceptional
portability, as cell phones and Pico projectors are sufficiently
compact and easily portable.

7 Conclusion

We have designed a simple system for projection over a

mobile region of interest by using an uncalibrated camera. The
system tracks and projects over the region of interest with true
orientation and scale, while the region of interest moves with a
certain constant speed. It takes minimal information to form

Figure 14: Triangular ROI is introduced over the planar surface. The system identifies the shape and projects over it, while it

moves in the planar surface

IJCA, Vol. 24, No. 3, Sept. 2017 131

Figure 15: The instance of circular ROI with image projected over it. The projection for this complex shaped ROI overlays

entirely without any bleeding

homographies between a projector, an uncalibrated camera,
and the planar surface with ROI in it. The system is provided
with no information about the intrinsic and extrinsic
parameters and neither calculates them. It is assessed to be
efficient enough for projection over the ROI without bleeding
out of it. As other researches depend over specialized
equipment to track the mobile projection area, our system
excludes all such specialized apparatuses and equipment. Our
system can also utilize the in-built camera of the laptop or even
of a cell phone for this purpose, making it suitable for common
use.

References

[1] D. Badyopadhyay, R. Raskar, and H. Fuchs, “Dynamic

Shader Lamps: Painting on Real Objects”, IEEE ACM
Int. Symposium on Augmented Reality (ISAR), New
York, 2001.

[2] M. Beus, R. Blach, S. Stegmaier, and U. Hafner,
“Towards a Scalable High-Performance Application
Platform for Immersive Virtual Environments”,
Eurographics Workshop on Virtual Environments, 2001.

[3] C. Cruz-Neira, D. J. Sandin, T. A. DeFanti, R. Kenyon,
and J. C. Hart, “The CAVE, Audio Visual Experience
Automatic Virtual Environment”, Communications of the
ACM, pp. 64-72, 1992.

[4] P. V. C. Hough, “Machine Analysis of Bubble Chamber
Pictures”, Proc. Int. Conf. High Energy Accelerators and
Instrumentation, pp. 554-558, 1959.

[5] M. K. Hu, “Visual Pattern Recognition by Moment
Invariants”, IRE Transactions of Information Theory, pp.
179–187, 1962.

[6] R. E. Kalman, “A New Approach to Linear Filtering and
Prediction Problems”, Transactions of the ASME –
Journal of Basic Engineering, pp. 34-45, 1960.

[7] J. C. Lee, P. H. Dietz, D. Aminzade, and S. E. Hudson,
“Automatic Projector Calibration using Embedded Light
Sensors”, Proc. ACM UIST ’04, pp. 123-126, 2004.

[8] J. C. Lee, S. E. Hudson, J. W. Summet, and P. H. Dietz,
“Moveable Interactive Projected Displays Using
Projector Based Tracking”, Proc. ACM UIST ’05, pp. 63-
72, 2005.

[9] T. Okatani, and K. Deguchi, “Autocalibration of a
Projector-Camera System”, IEEE Transactions of
Pattern Analysis and Machine Intelligence 27(12):1845-
1855, 2005.

[10] U. Ramer, “An Iterative Procedure for the Polygonal
Approximation of Plane Curves”, Computer Graphics
and Image Processing 1(3):244-256, 1972.

[11] R. Rasker, M. S. Brown, R. Yang, W. C. Chen, G.
Welch, and H. Towles, “Multi-Projector Displays Using
Camera-Based Registration”, Proc. IEEE Visualization,
pp. 161-168, 1999.

[12] R. Raskar, P. A. Beardsley, “A Self-Correcting
Projector”, IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR), pp.
II-504-II-508 2001.

[13] R. Raskar, P. A. Beardsley, J. V. Baar, Y. Wang, P. H.

132 IJCA, Vol. 24, No. 3, Sept. 2017

Dietz, J. Lee, D. Leigh, and T. Willwacher, “RFIG
Lamps: Interacting with a Self-Describing World via
Photosensing Wireless Tags and Projectors”, Proc. of
ACM SIGGRAPH, 23(3):406-415, 2004.

[14] R. Suthankar, R. Stockton, and M. Mulin, “Automatic
Keystone Correction for Camera-Assisted Presentation
Interfaces”, Proc. International Conference on
Multimodal Interfaces (ICMI), pp. 607-614, 2000.

[15] R. Suthankar, R. Stockton, and M. Mulin, “Smarter
Presentations: Exploiting Homography in Camera-
Projector Systems”, Proc. International Conference on
Computer Vision, pp. 247-253, 2001.

Mamona Awan received Bachelor’s
degree in Mechatronics and Control
Engineering from University of
Engineering and Technology, Lahore
Pakistan in 2013. She did Masters in
Mechatronics from Gwangju Institute of
Science and Technology, South Korea in
2016. She has also worked as a research

assistant in School of Mechatronics (GIST, South Korea). She
is currently a lecturer in National university of Emerging
Sciences-FAST, Lahore Pakistan. She has research experience
in Computer Vision, Computer Graphics and Spatial
Augmented Reality. Her research interests include computer
vision, graphics, augmented reality, 3D modeling and robotics.

Kwang Hee Ko received a B.S
degree in Naval Architecture and
Ocean Engineering from Seoul
National University in 1995, M.S.
degrees in Mechanical and Ocean
engineering in 2001 and a Ph.D.
degree in Ocean Engineering from
the Massachusetts Institute of

Technology (MIT), Cambridge, MA, USA, in 2003. His
research interests include automation of ship and offshore
fabrication, feature matching, landmine detection, geometric
modeling, CAD/CAM and computer graphics. He worked as a
postdoctoral associate at MIT from 2003 to 2004 and as a
research associate at the Design and Manufacturing Institute,
Stevens Institute of Technology, Hoboken, NJ, from 2004 to
2005. He joined the School of Mechanical Engineering,
Gwangju Institute of Science and Technology, Gwangju,
Korea, in 2006 and worked as an assistant professor until 2010
and as an associate professor until 2016. He is currently a
professor at the Gwangju Institute of Science and Technology,
Gwangju, Korea.

IJCA, Vol. 24, No. 3, Sept. 2017 133

CMML: A Cloud Metering Markup Language

Karim Sobh*‡§ and Amr El-Kadi†‡§

American University in Cairo, Cairo, EGYPT 11835.

Abstract

Cloud computing is about utility computing achieved through
resource consolidation shared among different applications
transparently. Cloud resources are shaped based on the target
services provided. A cloud metering framework, that can shape
with the cloud resources, need to be in place to be able to
meter the cloud resources accurately. The target cloud metering
framework needs to be extensible, programmable, scalable,
and shareable. At the heart of the proposed framework is an
interpreted extensible object oriented cloud metering markup
language (CMML). CMML is capable of modeling cloud
metering data dynamically and adapt to the elasticity and the
scalability of the target cloud environment. A shareable model
is continuously maintained by the deployed CMML framework
that is capable of modeling cloud metering data in the form of
Cloud Metering Objects (CMOs), as well as the cloud metering
architecture. The main contribution of this paper is to provide
a formal specification of the transactional aspect of CMML
through a Structural Operational Semantics (SOS) approach
based on the Big-Step and the Small-Step methods.

Key Words: Cloud metering, cloud computing, metering
framework, cloud metering markup language, autonomous
cloud metering objects, proc filesystem, kernel level transport
layer, netfilter hooks.

1 Introduction

Cloud environments are the realization of utility computing.
A hybrid pool of resources is managed by the cloud middleware
and shapes them dynamically to provide different isolated
services. A resource can be primitive or composite, e.g., a
virtual machine is a composite resource that is built up of a
number of primitive resources such as CPUs, RAM, virtual
disks, etc. With virtualization being introduced, more complex
resources can be constructed, which need to be metered.

A cloud metering framework that can shape accordingly with
the cloud services’ needs at runtime needs to be in place to
accurately and reliably meter the target cloud services. Being
shareable and extensible, the metering framework can cater to
different applications such as billing, Service Level Agreement
(SLA) monitors, Quality of Service (QoS) monitors, predictive
resource scaling, etc.

The Cloud Metering Markup Language (CMML) is an object
oriented interpreted modeling language that is designed to

*E-mail: kmsobh@aucegypt.edu
†E-mail:elkadi@aucegypt.edu.
‡The Department of Computer Science and Engineering
§US Patent Application no. 15/088,476. Date: April 1, 2016.

maintain a shareable cloud metering data model. CMML
provides the capabilities, through built-in metering constructs,
of correlating resources usage across different architectural
layers. Consequently, different metering abstraction levels
can be achieved through the flexibility of writing code. The
main contribution of this paper is to present the details of the
language, and provide a semantic formal specification for the
transactional perspective of the language. More information
about the whole framework is presented in [25].

In Section 2 we present the background followed by related
work in section 3. We present the problem characteristics in
section 4 and introduce the proposed metering framework in
section 5. In Section 6, we present the formal specifications
of the CMML language, and we conclude in section 7.

2 Background

Cloud environments consolidate computing resources located
in different architectural layers as shown in Figure 1. The
complexity of accurate metering arises from multiplexing cloud
resources among different applications. Virtualization is another
dimension of complexity resulting from unsynchronized virtual
clocks, leading to inaccurate metering results from within a
virtual machine. Correlating metering data generated from
distributed virtual resources is a complex challenging task by
nature.

Figure 1: Cloud architectural layers

Figure 2 shows a three-tier metering architecture. Log
collection takes place in the front-tier, where metering data
incompatibility is exhibited and the need for unification arises.
Metering data collected from different sources are correlated
in the middle-tier. Metering data storage, billing, and Service
Level Agreement (SLA) monitoring are considered back-end

ISCA Copyright© 2017

134 IJCA, Vol. 24, No. 3, Sept. 2017

metering services. Interaction with the target cloud management
middleware is essential for the metering engines to be able
to retrieve vital information about the cloud resources to be
metered.

Figure 2: Multi-tier metering architecture

The phases of the metering process are: log collection,
unification, transportation, correlation, and back-end
processing. Collection engines running on cloud service
nodes extract and parse logs, and hence pose as the main source
for probe effect. Data transport between collection engines and
the correlation tier need to be optimized to reduce the probe
effect on the cloud network resources.

3 Related Work

Cloud metering is a new research domain and consequently
limited work exists in the literature that tackles the cloud
metering problem in a unified approach. A comparative study
on different metering domains in distributed systems and cloud
computing was conducted, namely power and resource usage,
virtual resource usage, log management, billing and accounting,
and other attempts of unified cloud metering approaches. A
selective representative sample of the related work in each
domain is presented in this section.

Power and resource usage, being one of the main sources
of raw metering data, is a very important aspect in cloud
metering. Aman Kansal et al. presented the Joulemeter in
[12] to overcome the lack of power metering within a virtual
machine. T. Singh and P.K. Vara presented guidelines for smart
metering cloud environments in [24]. A comprehensive study
for power consumption in data centers by Anton Beloglazov
et al. is presented in [5]. A Digital Continuous Profiling
Infrastructure (DCPI) is presented by Jennifer M. Anderson et
al. in [1]. Google-wide profiling (GWP), presented by Gang
Ren et al. in [20] is a distributed profiler for data centers and
cloud environments.

Virtualized resource metering is a very important metering
aspect due to the metering difficulties resulting from virtualized
resources multiplexing over physical ones. Exposing hardware
counters for profiling in virtualized environments is discussed
by Benjamin Serebrin and Daniel Hecht in [22]. Jiaqing
Du et al. tackled the problem of interrupt forwarding and
enabling access to the Performance Monitoring Unit to the
guest environment in [6], and an implementation of virtualized
profiling on KVM is presented. A metering technique for
Virtual Machines based on the Virtual Platform Architecture is
proposed in [9] to run from within virtual machines.

Log management is an important building block in any
metering process, and a lot of complexities and challenges
are entailed in such a task especially in distributed systems.
D. Huemer and A.M. Tjoa introduced a solution for log
incomparability in [8] through automatic log evaluation based
on XML. Predictive Modelling Markup Language (PMML)
is presented by Guazzelli et al. in [7] as an open standard
for sharing models through coupling data with its operation
definitions. The scalable Run Time Correlation Engine (RTCE)
is introduced by Miao Wang et al. in [27] for correlating
distributed logs, and using dispatchers for load balancing and
scalability. William M. Jones et al. presented analytical and
simulation-based approaches in [10] showing the negligible
impact of choosing a sub-optimal checkpoint. The issues
of continuous sampling are raised by Gang Ren et al. in
[20]. Jennifer M. Andersonet al. presented in [1] a technique
for hardware counters continuous sampling through hardware
support on Digital ALPHA systems.

Accounting and billing are very important examples of
applications that depend on metering, and would exist in
any utility based computing environment. A series of work
presented by Francisco Airton Pereira da Silva et al. in [23, 15,
16] for a cloud accounting system and charging policy based
on a domain specific language (DSL). The DGAS, Distributed
Grid Accounting System, is presented in [17] as an accounting
infrastructure for grid environments. The GridBank (GB) is
presented in [4] as a secure grid-wide accounting infrastructure
service. Ali Anwar et al. presented in [2] a Cost-Aware cloud
metering for dynamic revenue scaling, which is concerned with
estimating the metering data size for efficient cloud resource
scaling. In [14], Naik, V. K. et al. presented an end-to-end
metering framework for federated hybrid cloud services. The
presented framework is claimed to solve numerous problems
in cloud metering such as single subscription, metering
composition over multiple service providers, license usage
restrictions, integration with legacy accounting and billing
systems, and horizontal distribution of workload for better
economic resource utilization. Architectural approaches were
adopted with less emphasis on the data representation to tackle
traditional basic cloud services metering.

IJCA, Vol. 24, No. 3, Sept. 2017 135

4 Problem Definition

Cloud metering inherits its complexity from that of cloud
environments. The target metering framework should be able to
provide metering perspectives at different levels of abstractions.
Normalization challenges, of hybrid metering data formats,
increases with larger resource pools. The ability to correlate
different resources usage with their different distributed running
cloud applications is an even more insisting problem. Moreover,
ability to collect metering data from cloud resources in a
seamless and low overhead manner is another dimension of the
problem, as it might affect the quality of the services running on
the cloud, and thus exhibiting high probe effect.

We have identified a set of features and design goals that we
wanted our target cloud metering framework to exhibit, these
are as follows:

(1) Extensible Representation: Ease of interpretation and
shareability between federated clouds.

(2) Autonomous Metering Data: Coupling metering data with
their corresponding operations.

(3) Correlation Capabilities: Correlation of metering data
extracted from different architectural layers.

(4) Programmability: Flexibility of defining metering
constructs through writing code.

(5) Standard Metering Transport: Transporting metering
data over simple standard APIs.

(6) Elastic Multi-tier Architecture: Can scale with the
metering needs.

(7) Metering Services Redundancy: For fault tolerance and
recovery.

(8) Low Probe Effect: Low metering probe overhead.
(9) Online Metering: Fast and responsive metering data

processing.
(10) Ease of Integration: Ease of integration with different

cloud environments irrespective of their type, topology,
underlying technologies, and service nature.

Based on the above characteristics, our research question can be
formulated as “Does a unified cloud metering framework that
can provide extensible, scalable, programmable, and low
overhead cloud metering exist? Would the above mentioned
characteristics lead to a cloud metering framework that can
cope with cloud environment complexities resulting from
cloud resources heterogeneity, their existence and execution
in different cloud architectural layers? ”

5 The Metering Framework

5.1 Framework Overall View

The metering framework is based on an extensible metering
markup data modeling language coupled with a multi-tier
scalable architecture. Our target is not a cloud metering system,
rather a set of specifications that could be taken as guidelines
and/or standards for building different cloud metering systems
fitting various target cloud environments.

The extensible object oriented Cloud Metering Markup
Language (CMML) is proposed to represent metering data

across the framework, through which the concept of
autonomous Cloud Metering Objects (CMOs) can be realized.
The adopted object oriented model was superimposed over
an extensible markup data representation for maximum
shareability. Metering data, represented by OO class data
members, are coupled with their operations represented by OO
class methods. The OO model is further extended with built-
in receptors encapsulating routing information within the CMO
to enable it to navigate between different framework engines
autonomously using self-contained information. The concept of
CMOs eliminated the usage of passive metering data through
operation definition annotations.

A three-tier architecture was adopted, where each tier can
be decomposed further based on the the target functionality of
metering. Figure 3 gives an overview of the overall metering
framework architecture together with the main metering
engines. The cloud environment is considered the metering
framework front-end where the metering collection engines are
deployed close to their target resources. Collection engines
collect raw metering traces and convert them to collection
CMOs. Correlation engines are deployed in the middle-tier
where collection CMOs are correlated to generate correlation
CMOs. The correlation CMOs are sent to the back-end services
for further long term processing. All metering engines across
the metering architecture should be able to interpret CMOs
represented in CMML. Consequently, a CMML interpreter
should be deployed to provide a living environment from
CMOs.

Figure 3: Metering framework architecture

One of the main roles of a cloud middleware is to maintain
a resource inventory, and hence a Cloud Metering Extension
(CME) is expected to be integrated with the cloud middleware to
generate metering CMML scripts, based on resource types and
relations, to be downloaded and executed by different metering
engines. The (CME) is a core service used by all metering
engines as shown in Figure 2.

5.2 Cloud Metering Markup Language (CMML)

CMML is a markup language with functional capabilities. A
CMML tag is a construct that executes corresponding logic by
a target CMML interpreter. Two mandatory tags need to exist
in a CMML script, namely “CMMLScript” and “CMMLMain”.

136 IJCA, Vol. 24, No. 3, Sept. 2017

The CMMLScript tag encloses the whole script body, and the
CMMLMain tag identifies the main entry point for the script
execution. A CMML tag can be invoked by name via its
“Name” sub-tag. The “CMMLRoutine” tag is used to define
routines to support modular programming. Concurrency is
built at the core of the language. The “Thread” tag is used to
activate tags execution as threads, and can define threads affinity
configuration upon requirement. Listing 1 presents a “Hello
World” CMML Script that demonstrates the basic features of
the language. This script should print “Hello World” twice,
through invoking the CMMLRoutine and the CMMLOut tag by
name. Notice that the two “Exec” calls will run in parallel as the
routine tag has the “Thread” sub-tag enabled.

1 <CMMLScript>
2 <CMMLRoutine>
3 <Name>PRINT HELLO WORLD</Name>
4 <Thread>TRUE</Thread>
5 <CMMLOut>
6 <Name>HELLO WORLD</Name>
7 <Subject>Hello World !!</Subject>
8 <Target>
9 <PipeTo>STDOUT</PipeTo>

10 </Target>
11 </CMMLOut>
12 </CMMLRoutine>
13 <CMMLMain>
14 <Exec>PRINT HELLO WORLD</Exec>
15 <Exec>HELLO WORLD</Exec>
16 </CMMLMain>
17 </CMMLScript>

Listing 1: CMML hello world script

CMML supports object oriented capabilities as well. Listing
2 shows a simplified CMML class definition for collecting
VM CPU data. Each class has a name, set of data members,
and set of methods. The CMML object model is extended
to support metering constructs. A set of tags are defined in
the class definition to hold CMML logic that can execute at
different stages of the metering processing, namely “Collect”,
“Correlate”, “Bill”, and “SLA”. Each tag is executed by a
metering engine based on the location of the CMO at the time
of execution. Each CMML object can be executed as a thread
through invoking the built-in predefined implicit method “start”
which invokes the CMML class “Collect” tag, implicitly.

The CMML Object Model was also extended to a Distributed
Object Model based on service state migration. Special
CMML built-in serialization tags are supported, namely
“CMMLObjectXMALalize” and “CMMLObjectCMMLalize”.
The adopted mode of operation is that CMOs are suspended
and serialized via the “CMMLObjectXMALalize” tag, as in
Listing 2, sent over the network to another metering engine,
restarted into the destination CMML runtime environment via
“CMMLObjectCMMLalize”, and resume via the CMML tag
corresponding to the destination.

1 <CMMLClass>
2 <Name>VMCPUStat</Name>
3 <DataMembers>
4 <DataMember>
5 <Name>VMName</Name>
6 <Visibility>PRIVATE</Visibility>
7 <Type>string</Type>

8 <Exportable>true</Exportable>
9 </DataMember>

10 <DataMember>
11 <Name>cpustat</Name>
12 <Visibility>PRIVATE</Visibility>
13 <Type>integer</Type>
14 <Exportable>true</Exportable>
15 </DataMember>
16 <DataMembers>
17 <Collect>
18 <NextCollectionDelay>2</NextCollectionDelay> <!-- Sleep 2

Seconds -->
19 <Iterations>0</Iterations>
20 <!-- Runs for ever-->
21
22 <CMMLObjectXMLalize>
23 <CMMLObject>this</CMMLObject>
24 <RedirectTo>
25 <PipeTo>FILE</PipeTo>
26 <PipeName>/dev/CloudMeterDev0</PipeName>
27 </RedirectTo>
28 </CMMLObjectXMLalize>
29 </Collect>
30 <Correlate> </Correlate>
31 <Billing> </Billing>
32 <SLA>.....</SLA>
33 <Methods>
34
35 <Method>
36 <Name>GetCPUStats</Name>
37 <Body>
38 <CMML>.....</CMML>
39 </Body>
40 </Method>
41 </Methods>
42 </CMMLClass>

Listing 2: VMCPUStat class definition

5.3 Transport Layer

The framework specifications mandates that communication
between the collection engines and the middle-tier be carried
out over standard filesystem I/O operations. Collection
engines run on cloud nodes with diversified specifications and
capabilities, and a simple as well as primitive data transfer
mechanism available on most operating systems is needed. This
would provide needed flexibility for the implementation of the
transport layer on a range of possibilities (i.e., ranging from a
simple file transfer to a sophisticated distributed filesystem.)

A REST/HTTP web service protocol was adopted between
the correlation engines and the back-end services, as well
as between the framework engines and services deployed
outside the framework. This allows for a standardized
communication, and decouples the metering services’ execution
from the communication operations. The REST protocol
is a very primitive web service protocol that provides a lot
of implementation flexibility and provides the freedom of
superimposing more complex protocols like SOAP, or XML-
RPC based on the need.

5.4 Metering Engines

5.4.1 Collection Engines. Collection engines instantiate
objects of classes downloaded from the CME and represent
resources to be metered. The “Collect” Tag enclosing the data
collection logic is invoked in detached threads. As per Listing
2, the “NextCollectionDelay” represents the inter-collect-gap in
seconds between every execution of the “Collect” tag body. The

IJCA, Vol. 24, No. 3, Sept. 2017 137

“Iterations” define the number of times the “Collect” tag body
should be executed before the CMML object thread terminates,
with zero indicating an endless run. The “Collect” tag logic
should perform collection, preprocessing, CMO serialization,
and injection into the transport layer.

5.4.2 Correlation Engines. CMML classes are
downloaded from the CME and instantiated by the correlation
server CMML runtime environment. All resource classes are
aggregated into wrapper objects that group related resources.
The correlation engines read serialized CMOs via filesystem
I/O operations. The receptors of each CMO is extracted and
the target correlation engine CMML objects are identified. The
CMO is then deserialized, started, and passed to the target
correlation engine objects as a parameter upon invoking the
“Correlate” tag. After correlating all CMOs, the resulting
Correlation CMOs are sent to the back-end services over
REST/HTTP. The correlation tier can be decomposed into
hierarchical sub-tiers where by different processing stages can
be defined and established to represent different correlation
abstraction layers, and hence different metering perspectives.

Correlation engines perform data and time correlation. Based
on the CMOs receptor definitions, related CMOs are grouped
and data correlation is achieved. The time correlation is
based on the existence of a virtual clock across the framework,
and the mechanism for implementing it is left to be decided
on at implementation time. The following are two time
related correlation mechanisms adopted by the framework
specifications.

Adhoc Correlation. CMOs are considered related if they
arrive at the correlation engine in the same time frame.
This mode of operation is very light weight and does not
need intensive computing resources to carry out the needed
correlation. This mode should only be used when commutative
usage evaluation is needed, or when monitoring specific
thresholds of the cloud services usage.

Epoch-Based Correlation. CMOs are timestamped and
grouped in time epochs with preconfigured lengths. CMOs
belonging to the same time epoch are correlated together and
the resulting correlation CMOs are stamped with the start
and end timestamps of the epoch. A crucial performance
problem is encountered when the rate of collection CMOs
is higher than the processing rate. This might hinder the
stability and the responsiveness of the correlation environment,
and consequently two runtime configurations are constructed to
overcome this situation:

(1) Exact: The correlation process is terminated if it exceeds
the duration of the corresponding epoch. This case can
be used if the CMOs represent commutative metering
and detailed break down of the metering indicators is not
important, e.g. CPU time from the proc filesystem which
represents the time of a process since it started.

(2) Adaptive: A feedback mechanism between the correlation
engines and the CME should be in place for reporting
the percentage of CMOs processed post the correlation

duration. The CME should automatically change the inter-
collect-gaps represented by the “NextCollectionDelay” at
runtime to reduce the CMOs generation rate. This process
should be performed iteratively until equilibrium is reached.

5.4.3 Storage Engines. The storage engines are back-end
services deployed on storage servers. A storage server receives
its corresponding storage engine definitions from the CME. The
storage servers receive correlation CMOs and store them into
corresponding storage engines based on the receptors definition.

5.4.4 Billing Engines. The billing engines are back-end
services deployed on billing servers. A billing server receives
correlation CMOs based on their receptors and execute the logic
enclosed in their “Bill” tag. The billing operations generate
billing CMOs that are stored in special billing storage engines.

5.4.5 SLA Engines. The SLA engines are back-end
services deployed on SLA servers. An SLA server receives
correlation CMOs based on their receptors and execute the logic
enclosed in their “SLA” tag, which should perform actions
that need to be executed based on usage thresholds that are
represented by the CMO data members.

A full prototype has been built for the proposed unified
cloud metering framework and was applied on a real life cloud-
deployed online shopping store environment as a case study for
performace evaluation. The details of the framework design,
prototype, case study, deployment decisions, ANOVA/GLM
experiments design and results are presented in [25].

6 Formal Specifications

In this section a formal specification for CMML is presented
following the Structural Operational Semantics (SOS) approach
[18][19], coupled with a syntactical set notation specifications.
This allowed us to show the validity of the language’s
operational aspect, as well as providing a formal specification
for the language syntax. We have decided to concentrate on
SOS for numerous reasons. Since the functional and operational
aspects are the main contribution of CMML over other
markup languages, we have chosen SOS over Denotational
and Axiomatic methods. The drawbacks of using a purely
denotational definition in a context like ours are enumerated by
G. Kahn in [11]. Moreover, flattening all expressions in CMML
as markup emphasised withdrawing the denotational approach.
On the other hand, Axiomatic methods such as Hoare Logic [3],
are concerned with a specific program correctness and not with
the general semantics of the whole language. Finally, CMML
inherits its syntax from SGML [26], which makes it effeciently
extensible[21], and allowed us to take that fact for granted.

6.1 Set Notation Formal Specifications

In this section we will present a set of rules that defines the
general syntax of the language. Listing 3 presents a primitive
set that we will use in our rule definitions.

138 IJCA, Vol. 24, No. 3, Sept. 2017

lc = [a z] The set of all lower case characters
uc = [’A Z] The set of all upper case characters
dig = [0 9] The set of all digits
pascii = [’ ’ ’ ~’] The set of all printable ASCII character

from ASCII(32) to ASCII(126)

Listing 3: Primitive sets

CMML has a basic set of predefined CMML tags, which
are the minimum set of tags that need to be supported for
a CMML script to execute correctly. Listing 4 presents the
CMML mandatory tags.

CMMLScriptTag = {"CMMLScript"}
CMMLMainTag = {"CMMLMain"}
CMMLReservedTags ={"CMMLRoutine","CMMLInclude","

CMMLRemoteInclude","CMMLClass","CMMLObject", "Exec"}
CMMLInternalTags = {"Subject","Value","Name"}
DataTypes = {integer,boolean,double,float,long,string,

CMMLObject,numeric}
Visibility = {Public,Private}
Boolean = {True,False}

Listing 4: Predefined CMML tags

A CMML Script is defined based on CMML tags that enclose
both data and operational logic. As described formally in listing
5, a CMML tag is a tag whose name should start with “CMML”
and is a maximum of 80 characters. A CMML tag has the
following formal definition.

CSTN: CMML Service Tag Name
CSTN = {s | s is a string such that

s ∈ "CMML"(lc|uc)n and n > 0 and n <=76
and s /∈ CMMLScriptTag ∪ CMMLMainTag ∪

CMMLReservedTags}

Listing 5: CMML service tag name

For the sake of simplicity and encapsulation, we define in
listing 6 a set of functions that return sets of elements that we
will refer to in our subsequent definitions.

MethodNames(β) = The set of method names of the CMML Object
β or CMML Class β based on the context

MethodParameters(β,δ) = The set of parameter names of the
method δ of the CMML Object β or CMML Class β based on
the context

DataMembers(β) = The set of data member names of the CMML
Object β or CMML Class β based on the context

Listing 6: Set functions

Listing 7 presents the sets of tags following common patterns.
We will refer to those sets in the our definitions of more complex
tags.

GT: General Tag
GT = {s | s is a string such that s ∈ (lc|uc)n where n > 0

and n <=80 }

STR: Simple Tag Record
STR = {s | s is a string such that s ∈ "<"β">"pascii+"</"

β">" and β ∈ GT}

CTR: Composite Tag Record
CTR = {s | s is a string such that s ∈ "<"β"><Name>"δ"</

Name>"(CTR|STR)+"</"β">"

and β ∈ GT and δ /∈ TagNames, and δ will be added to
TagNames after successful declaration}

CSR: CMML Service Record
CSR= {s | s is a string such that s ∈ "<"β">"(STR|CTR)+"</"

β">" and β ∈ CSTN}

Listing 7: CMML different tag types definition

The CMML language is an extendable language in the sense
that it can be extended by adding new tags to it. Within our
scope we will not be able to define each and every CMML
tag currently in the language as they follow the operational
definition behind the need of their functionality; a tag is added
for a specific functionality whose need arises due to its absence.
So a special set notation definition can be constructed as per
CMML tag, but the most important matter is that it needs to
be a subset of the general definition of the CSR tag defined
above; CMML Service Record. Consequently, we will choose
a set of complex fundamental CMML tags and present their set
notation specification as examples, and similarly other CMML
tag definitions can follow the same line of definition.

The Exec Tag: The Exec tag is a special fundamental tag
used to invoke any tag declared in the current CMML Script by
name. Listing lst:CMML Exec Tag defines the Exec tag.

Exec = {s | s is a string where
s ∈ "<Exec>"(β|CSR)"</Exec>" and β ∈ TagNames

}

Listing 8: CMML Exec tag

The CMMLMain Tag: The CMMLMain tag, defined in
listing lst:CMML Main Record, should be located inside the
CMMLScipt tag only once and it designates the starting point
of execution of the script.

CMR: CMML Main Record
CMR = { s | s is a string such that s ∈ "<"β">"(CSR ∪ EXEC)

∗ "</"β">"
and β ∈ CMMLMainTag}

Listing 9: CMML main record

The CMMLScript Tag: The CMMLScript tag, defined
in listing 10, is the main tag that defines a CMML script
and it encloses all its CMML tags. It essentially needs the
CMMLMain tag to be defined some where to designate the
starting point of the execution.

CSCR: CMML Script Record
CSCR = {s | s is a string where s ∈ "<"β">"(CSR|CMMLClass)∗

CMR "</"β">" and β ∈ CMMLScriptTag }

Listing 10: CMML script record

The CMMLClass Tag: The CMMLClass tag, defined in
listing 11, is the most complex tag in the language as it defines
an object oriented class. The CMMLClass tag encloses all
the class definitions including data members, methods, and
metering constructs.

IJCA, Vol. 24, No. 3, Sept. 2017 139

CMMLClass = { s | s is a string such that
s ∈ "<CMMLClass>
<Name>"σ"</Name>"
(ε |"<FlattenedName>"µ"</FlattenedName>")
"<DataMembers>"
(ε |"<DataMember>"
"<Name>"δ"</Name>"
<Visibility>"β"</Visibility>"
<Type>"κ"</Type>"
"<Exportable>"λ"</Exportable>"
"<Sync>"ζ"</Sync>"
"<Billing>"ζ"</Billing>"
"<SLA>"ζ"</SLA>"
"<Size>"dig+"</Size>"
(ε |"<FetchScopes>"
("<FetchScope>"pascii+"</FetchScope>")+

</FetchScopes>")∗)∗

"</DataMembers>"
"<Collect>"(CSR ∪ Exec)∗"</Collect>"
"<Correlate>"(CSR ∪ Exec)∗"</Correlate>"
"<Bill>"(CSR ∪ Exec)∗"</Bill>"
"<SLA>"(CSR ∪ Exec)∗"</SLA>"
"<Methods>"
("<Method>"
"<Name>"ω"</Name>"
(ε | "<Parameters>"
("<Parameter>
<Name>"φ"</Name>
<Type>"ς"</Type>

</Parameter>")+

"</Parameters>")
"<Body>"
"<CMML>"(CSR ∪ Exec)∗"</CMML>"

"</Body>"
"</Method>")∗

"</Methods>"
"</CMMLClass>"
and σ ∈ pascii+ and σ /∈ TagNames
and µ ∈ pascii+ and µ /∈ TagNames ∪ {σ}
and δ ∈ pascii+ and δ /∈ DataMembers(σ)
and β ∈ Visibility and κ ∈ DataTypes
and λ ∈ Boolean and ζ ∈ Boolean
and δ ∈ pascii+ and δ /∈ DataMembers(σ)
and ω ∈ pascii+ and ω /∈ MethodNames(σ)
and φ ∈ pascii+ and φ /∈ MethodParameters(σ,ω)
and ς ∈ DataTypes}

Listing 11: CMMLClass tag definition

The CMMLExecuteMethod Tag: To execute a method of
an instantiated object, the CMMLExecuteMethod tag, defined
in listing 12, is invoked with the target object reference and the
method name as well as parameters.

CMMLExecuteMethod = { s | s is a string where
s ∈ "<CMMLExecuteMethod>
<CMMLObject>"pascii+"</CMMLObject>
<CMMLObjectMethod>"pascii+"</CMMLObjectMethod>"
(ε | "<Parameters>"
("<Parameter>
<Name>"pascii+"</Name>
<Value>"pascii+"</Value>

</Parameter>")∗

"</Parameters>")
"</CMMLExecuteMethod>" }

Listing 12: CMMLExecuteMethod tag definition

6.2 Operational Semantics

In this section we will present the the Big-Step [11] and the
Small-Step [13] SOS methods. We chose three fundamental
operations to illustrate, namely expression evaluation, loop
iterations, and conditionals. After presenting the Big-Step

proofs, we will show their deatiled breakdown derivations using
the Small-Step method.

6.2.1 Big-Step Semantics

Expression Evaluation: The CMMLAdd and the
CMMLIncrement are two tags that perform mathematical
operations. The CMMLAdd adds any number of operands
and returns the result of the summation to the caller tag, and
the CMMLIncrement increments a value with an offset and
returns the new value to the caller tag. The example in listing
13 illustrates both in one shot.

1 <CMMLAdd>
2 <Value>
3 <CMMLIncrement>
4 <Value>10</Value>
5 <Inc>3</Inc>
6 </CMMLIncrement>
7 </Value>
8 <Value>12</Value>
9 </CMMLAdd>

Listing 13: Expression evaluation example

The CMMLAdd can take any number of the “Value” tag
and sum their values. The “Value” tag can enclose either a
constant or another expression. In case of another expression,
the expression will need to be evaluated first and the result will
be used in the summation. The CMMLIncrement has two tags,
the first one is the “Value” tag and it should be incremented by
the value of the “Inc” Tag. Similarly, the “Value” and the “Inc”
tags of the CMMLIncrement tag can enclose either constants
or an expression that will need to be evaluated first before the
CMMLIncrement can perform its operation.

The CMML Tags were broken down to represent its internal
tags, so we have introduced three new tags to be used in the Big-
Step Semantics which are Add-Value, Increment-Value, and
Increment-Inc. The three tags identify the starting point of
the internal tag to represent the substitution of their internal
enclosed values. Figure 4 shows the Big-Step semantics for both
CMMLAdd and CMMLIncrement.

Add−Value
true
n ⇓ n

Increment−Value
true
n ⇓ n

Increment− Inc
true
n ⇓ n

Add
V Ti ⇓ ni

Σk
i=1V Ti ⇓ ntotal where ntotal = Σk

i=1ni

Increment
V T ⇓ n1 V I ⇓ n2

V T +V I ⇓ nresult nresult = n1 +n2

(1)

(2)

(3)

(4)

(5)

Figure 4: Big-Step expression evaluation

The CMMLAdd-Value, CMMLIncrement-Value, and the
CMMLIncrement-Inc tags are reduced to the constant value
of the equivalent expression that they enclose. CMMLAdd

140 IJCA, Vol. 24, No. 3, Sept. 2017

is reduced to the summation of all the return values of
all the CMMLAdd-Value tags, and the CMMLIncrement is
reduced to the summation of the return values of the enclosed
CMMLIncrement-Value and the CMMLIncrement-Inc tags.

For verification, we apply the above semantics to the example
presented earlier in listing 13 to prove the validity of its
operations with respect to the CMML syntax as well as the tag
semantics. Figure 5 illustrates the proof steps. It is important to
highlight that the example proof works in a bottom-up inference
approach where the full tag is represented at the lowest level and
is broken down until we reach the top; so every atomic tag will
be represented by a portion and its yield or reduction will be
stated right below it.

Figure 5: Big-Step expression evaluation proof example

Repeat-Until Loop: The CMMLRepeatUntil tag
implements the repeat-until loop. It encloses two tags,
the “LoopBody” tag and the “Until” tag. The “LoopBody” tag
encloses a sequence of CMML tags to be executed as a routine
and is considered the loop body that the loop engine iterates on
as long as the expression enclosed in the “Until” tag evaluates to
false. Listing 14 shows an example of the CMMLRepeatUntil
loop. Basically it loops on the CMML tags that increment an
object data member and exits the loop when the data member
value is greater than three.

1 <CMMLRepeatUntil>
2 <Name>Check_Value</Name>
3 <LoopBody>
4 <CMMLObjectAssignDataMember>
5 <CMMLDataMember>
6 int_val
7 </CMMLDataMember>
8 <AssignTo>
9 <CMMLInc>

10 <Value>
11 <CMMLObjectFetchDataMember>
12 <CMMLDataMember>
13 int_val
14 </CMMLDataMember>
15 </CMMLObjectFetchDataMember>
16 </Value>
17 <Inc>1</Inc>
18 </CMMLInc>
19 </AssignTo>
20 </CMMLObjectAssignDataMember>
21 </LoopBody>
22 <Until>
23 <CMMLGreaterThan>

24 <Subject>
25 <CMMLObjectFetchDataMember>
26 <CMMLDataMember>
27 int_val
28 </CMMLDataMember>
29 </CMMLObjectFetchDataMember>
30 </Subject>
31 <Value>3</Value>
32 </CMMLGreaterThan>
33 </Until>
34 </CMMLRepeatUntil>

Listing 14: Repeat-Until loop example

Figure 6 shows the Big-Steps semantics of the
CMMLRepeatUntil tag. We have constructed three new
tags to be able to cover all situations. The first tag is the
CMMLRepeatUntil-Out which is a construct indicating the
transfer of the execution to the next CMML tag outside the
CMMLRepeatUntil tag. The CMMLRepeatUntil-FALSE will
be invoked in case the Until tag yields a false value, and the
CMMLRepeatUntil-TRUE will be invoked in the case of the
Until tag yielding a true value.

RepeatUntil ⇓ RepeatUntil−LoopBody

RepeatUntil−LoopBody ⇓ RepeatUntil−Until

RepeatUntil−Out ⇓ Next− Instruction

RepeatUntil−Until
true
n ⇓ n

RepeatUntil−FALSE
RepeatUntil−Until ⇓ f alse

RepeatUntil ⇓ RepeatUntil−LoopBody

RepeatUntil−T RUE
RepeatUntil−Until ⇓ true

RepeatUntil ⇓ RepeatUntil−Out

(6)

(7)

(8)

(9)

(10)

(11)

Figure 6: Big-Step repeat-until loop semantics

Figure 7 shows a proof of the example introduced in the
code listing 14 above using the Big-Step semantics rules of the
CMMLRepeatUntil tag. As we can see, the proof inference
starts with rule 1 and alternates between rule 2 and 5. Rule 6
is then invoked when the until condition yields false.

Conditional Case Statement: Adopting the same template
used in expression evaluation and loop iteration, we illustrate
the conditional case statement. The CMMLCase statement is
a very extensible CMML conditional tag that can achieve both
the if-then-else statement as well as the case-switch statement.
The CMMLCase statement can contain an unlimited number
of CMMLWhen tags, which is considered a conditional block.
The CMMLWhen tag contains three optional tags which are
CMMLCondition, Exec, and Otherwise. The CMMLCondition
should yield a Boolean true or false value; it should enclose
a Boolean or an expression that yields to Boolean. Based on
the evaluation of the CMMLCondition tag, the execution will
branch. If the CMMLCondition tag yields true the Exec tag will
be invoked and the CMMLCase will then exit. On the other
hand, if the CMMLCondition yields false, then the interpreter
should check if there is an Otherwise tag, in which case it will
be invoked or else the execution will be transfered to the next
CMMLWhen tag if any exist. The process will continue until a

IJCA, Vol. 24, No. 3, Sept. 2017 141

Figure 7: Big-Step Repeat-Until loop proof example

CMMLCondition of a CMMLWhen tag yields true, Otherwise
tag is reached and executed, or all the CMMLWhen tags are
exhausted.

Listing 15 represents an example of a CMMLCase that
checks the value of a data member and prints a message on the
standard output accordingly. As we can see from the code, if
the data member int val is equal to 5 then the CMMLCase will
print out a message saying that the value is 5, else if it is equal
to 10 another message will be printed saying that the value is
10, otherwise a message will be printed indicating that the value
is neither 5 nor 10.

1 <CMMLCase>
2 <CMMLWhen>
3 <CMMLCondition>
4 <CMMLEqual>
5 <Subject>
6 <CMMLObjectFetchDataMember>
7 <CMMLDataMember>
8 int_val
9 </CMMLDataMember>

10 </CMMLObjectFetchDataMember>
11 </Subject>
12 <Value>5</Value>
13 </CMMLEqual>
14 </CMMLCondition>
15 <Exec>
16 <CMMLOut>
17 <Subject> int_val = 5 </Subject>
18 <Target>
19 <PipeTo>STDOUT</PipeTo>
20 </Target>
21 </CMMLOut>
22 </Exec>
23 </CMMLWhen>
24 <CMMLWhen>
25 <CMMLCondition>
26 <CMMLEqual>
27 <Subject>
28 <CMMLObjectFetchDataMember>
29 <CMMLDataMember>
30 int_val
31 </CMMLDataMember>
32 </CMMLObjectFetchDataMember>

33 </Subject>
34 <Value>10</Value>
35 </CMMLEqual>
36 </CMMLCondition>
37 <Exec>
38 <CMMLOut>
39 <Subject> int_val = 10 </Subject>
40 <Target>
41 <PipeTo>STDOUT</PipeTo>
42 </Target>
43 </CMMLOut>
44 </Exec>
45 <Otherwise>
46 <CMMLOut>
47 <Subject> int_val is neither equal to 10 nor 5 </

Subject>
48 <Target>
49 <PipeTo>STDOUT</PipeTo>
50 </Target>
51 </CMMLOut>
52 </Otherwise>
53 </CMMLWhen>
54 <CMMLCase>

Listing 15: Conditional case statement example

Figure 8 presents the Big-Step semantic rules for the
CMMLCase. Notice here also that we have the newly defined
tag CMMLCase-Out which is used to exit or break the execution
of the CMMLCase tag. The CMMLCase-Out simply transfers
the execution pointer for the current script to the following
CMML tag in the current script’s chronological execution order.

Case ⇓Case0

RepeatUntil−Out ⇓ Next− Instruction

Case−T RUEi
Count(When)> i

Wheni

Case−FALSEi
Count(When)<= i

Case−Out

When−T RUE−Execi
Conditioni ⇓ true !Exist(Execi)

Case−Out

When−T RUE
Conditioni ⇓ f alse !Exist(Execi)

Case−Out

When−FALSE−Otherwisei
Conditioni ⇓ true !Exist(Otherwisei)

Case−Out

When−FALSEi
Conditioni ⇓ f alse !Exist(Otherwisei)

Casei+1

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Figure 8: Big-Step case statement specifications

For the CMMLCase tag we will show three proofs of the
example presented in the above code snippet presented in code
listing 15. The three presented proofs correspond to the tree
cases attempting to cover all the alternative execution paths.
Figure figures 9 shows the execution path when the int value
is equal to 5 which will results in executing the CMML code
within the “Exec” tag of the first “CMMLCondition” of the first
“CMMLWhen” tag. Figure 10 shows the execution path when
the int value is equal to 10 and hence executing the “Exec”
tag of the second “CMMLWhen”. Finally, figure 11 shows the
execution path when int value is equal to any other value which
results in executing the CMML “Otherwise” tag.

142 IJCA, Vol. 24, No. 3, Sept. 2017

Figure 9: Big-Step conditional case statement proof example

Figure 10: Big-Step conditional case statement proof example

Figure 11: Big-Step conditional case statement proof example

6.2.2 Small-Step Semantics In the Small-Step semantics
we will break down the Big-Step Semantics illustrated in the
previous section to show the details of execution of the three
fundamental operations. The importance of the Small-Step
semantics is that it gives an insight of how expressions are
evaluated, how loops iterate, and how conditionals perform
branching decisions.

To be able to present the Small-Step semantics, we need
to define a state that needs to be maintained by the CMML

tag execution engine, and which represents the internal state
of the interpreter during execution in each step of inference.
Also the state will be passed to sub-tags that need to execute
recursively within the context of a running tag. Listing 16 shows
an abstract structure that represents the state of the CMML tag
during execution.

1 struct state{
2 int i;
3 float f;
4 long l;
5 double d;
6 string s;
7 bool b;
8 bool intFlag;
9 bool floatFlag;

10 bool longFlag;
11 bool doubleFlag;
12 bool stringFlag;
13 bool boolFlag;
14

15 params: a key-value array of parameters declared for the
tag;

16 currentParam: a pointer to the current param item in the
params array

17 parentStatus: a pointer to the parent tag state struct
18 };

Listing 16: CMML tag state structure

The state has a set of primitive type fields and a set of
corresponding flags indicating which one is set. We will assume
in our derivations below that when a primitive type variable is
set, its corresponding internal flag will be set automatically.
Three other important variables are defined which are the
params, currentParam, and parentStatus. In any CMML tag,
each enclosed tag should be evaluated to a value based on its
enclosed content. The params is a vector of a set of elements
equivalent to the number of tags inside the current CMML tag,
and each element of the params vector represents the value of
the tag that results after evaluating the tag. The currentParam
is an index defining which element in the parameters vector is
currently being executed. Finally, the parentStatus is a pointer
that points to the state variable of the parent CMML tag.

To be able to construct the Small-Step semantics for CMML,
we have extended the tags with extra sub-tags to identify the
opening, the closing, and the body of each tag, e.g. the Value tag
of the CMMLAdd will be decomposed to CMMLAdd-ovalue,
CMMLAdd-cvalue, and CMMLAdd-value respectively. This
will allow us to describe the behavior of the language in each
atomic step of execution. To be able to handle tag recurrence,
we use a subscript to identify the sequence of the tag based on
its appearance, e.g. in case of the CMMLAdd we can have
an unlimited number of “Value” tags, and hence we can have
CMMLAdd-ovaluei to designate a specific tag. Finally, for the
sake of the diagrams clarity, we will use abbreviations for long
CMML tags like CMMLRepeatUntil and CMMLCondition to
avoid diagram congestion and achieve clear and easy to read
derivation diagrams.

A rule in the small-step semantics has three constructs,
namely: a name, a condition, and an execute statement. The
name identifies the entry point of the rule. A rule can only

IJCA, Vol. 24, No. 3, Sept. 2017 143

be executed if its condition yields true. The execute statement
is an implication statement that describes the operations to
be performed when the target rule fires. Multiple rules with
the same name can exist for different conditions. Figure 12
represents a general template for a small-step rule.

Name
Condition

< SourceTag,SourceState >→< ReducedTag,NewState >
(20)

Figure 12: Small-Step specification rule

The execution rule is in the form of a reduction from one state
to another. The source tag and state are reduced to a new tag and
state. Throughout rules traversal, the reduced tag is used to fetch
the next rule to be inferenced until the execution terminates via
a predefined implicit tag that has an “Exit” postfix in its name,
e.g Add-Exit.

Expression Evaluation: Figure 13 illustrates the small-step
semantics of the CMMLAdd tag demonstrating the internals
of its execution. Upon arriving at a CMMLAdd tag, rule 1 is
invoked identifying the entry point for the CMMLAdd tag. The
state of the tag is initialized, and the parent state passed to the
tag will be saved in the state ParentStatus variable. Rule 2 and
3 have the same name but with different preconditions. Rule 2
captures the end of execution of the tag while rule 3 performs
a transition to the next “Value” to be processed. As long as
there are still “Value” tags to be processed the inference engine
will iterate over the rule set from 3 to 6. Upon processing the
last “Value” tag, rule 2 will be executed leading to the Add-
close rule which will reduce to the Add-Exit and lead to the
termination of the tag execution. Notice that in rule 7 the state
of the execution tag is assigned to the ParentStatus currentParam
variable which returns the result of the tag execution to the
parent tag.

Add−open
i = 0

< Add−open0, ps >→
< Add−ovalue0,s.init();s.ParentStatus = ps >

Add−openi
count(Value)<= i

< Add−openi,s >→< Add− close,s >

Add−openi
count(value)> i

< Add−openi, ps >→
< Add−ovaluei,s.init();s.ParentStatus = ps >

Add−ovaluei
true

< Add−ovaluei,s >→< Add− valuei,s >

Add− valuei
true

< Add− valuei,s >→
< Add− cvaluei, params[valuei] = s.currentParam >

Add− cvaluei
true

< Add− cvaluei,s >→
< Add−openi+1,s.i+= params[valuei]>

Add− close
true

< Add− close, ps >→
< Add−Exit,s.ParentStatues.currentParam = s.i >

.

(21)

(22)

(23)

(24)

(25)

(26)

(27)

Figure 13: Expression evaluation Small-Step specifications

Repeat-Until Loop: Figure 14 presents the small-step rules
for the CMML conditional statement. The repeat-until loop
is split into two main sections, the loop section and the exit
condition checking section. Rule 1 will be invoked upon
encountering a CMMLRepeatUntil tag, where the state of the
tag will be initialized and the ParentStatus will be set to the
passed ps state parameter. Rules 2-4 will be executed for the
loop body, followed by rules 5-7 for the condition checking. In
rule 7 the result of the condition checking is stored in the state
boolean attribute to be checked and based on its value either rule
8 or rule 9 is invoked. Rule 8 is invoked if the Until condition
evaluates to false which will start the loop body again. Rule 9
is invoked if the Until condition evaluates to true indicating the
end of the loop, and invoking the RU-Exit to terminate the tag
inferencing execution.

RU−open
true

< RU−open, ps >→< Ru−LoopBody,
s.init();s.ParentStatus = ps >

RU−LoopBody−open
true

< RU−LoopBody,s >→
< RU−Until− value,s >

RU−LoopBody− value
true

< RU−LoopBody− value,s >→
< RU−LoopBody− close,

params[loopBody] = s.currentParam >

RU−LoopBody− close
true

< RU−LoopBody− close,s >→
< RU−Until−open,s = s.currentParam >

RU−Until−open
true

< RU−Until−open,s >→
< RU−Until− value,s >

RU−Until− value
true

< RU−Until− value,s >→
< RU−Until− close,

params[Until] = s.currentParam >

RU−Until− close
true

< RU−Until− close,s >→
< RU− close,s.b = params[Until]>

RU− close
s.b == f alse

< RU−open,s >→< RU−LoopBody−open,s >

RU− close
s.b == true

< RU−open,s >→
< RU−Exit,s.ParentStatus.currentParam = s >

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Figure 14: Repeat-Until loop Small-Step specifications

Conditional Case Statement: Figure 15 presents the small-
step rules for the CMML conditional statement.The conditional
case statement is inferenced in the same way as the expression
evaluation and the Repeat-Until loop. The condition of each
CMMLWhen is inferenced by the rules 4-9, and if the condition
yields true the corresponding Exec tag is inferenced through the
rules 10-14, otherwise the Otherwise tag is inferenced using
the rules 15-17. The inference will iterate through all the
CMMLWhen statements by their index and terminate either
upon executing the Exec or the Otherwise tag of a CMMLWhen
or after exhausting all the CMMLWhen tags.

We have presented the small-step semantics for the above
three examples as a representative sample of the most

144 IJCA, Vol. 24, No. 3, Sept. 2017

Case−open
true

<Case−open0, ps >→<When−open0,s.init();
s.parentstatus = ps >

Case−openi
count(When)<= i

<Case−openi,s >→<When−openi,s >

Case−openi
count(When)> i

<Case−openi,s >→<When−openi,s >

When−openi
Exist(Condi)

<When−openi,s >→<Condi,s >

When−openi
!Exist(Condi)

<When−openi,s >→<Condi+1,s >

Cond−openi
true

<Cond−openi,s >→<Cond− valuei,s >

Cond− valuei
true

<Cond− valuei,s >→<Cond− closei,

params[Condi] = s.currentParam >

Cond− closei
Exist(Exec−openi)

<Cond− closei,s >→< Exec−openi,

s = params[Condi]>

Cond− closei
!Exist(Exec−openi)

<Cond− closei,s >→<Case− close,
s = params[Condi]>

Exec−openi
s.b = true

< Exec−openi,s >→< Exec− valuei,s >

Exec−openi
s.b = f alseExist(Otherwisei)

< Exec−openi,s >→< Otherwisei,s >

Exec−openi
s.b = f alse!Exist(Otherwisei)

< Exec−openi,s >→<Casei+1,s >

Exec− valuei
true

< Exec− valuei,s >→< Exec− closei,

params[Execi] = s.currentParam >

Exec− closei
true

< Exec− closei,s >→<Case− closei,

s = params[Execi]>

Otherwise−openi
s.b = f alse

< Otherwise−openi,s >→< Otherwise− valuei,s >

Otherwise− valuei
true

< Otherwise−openi,s >→< Otherwise− closei,

params[Otherwisei] = s.currentParam >

Otherwise− close
true

< Otherwise− closei,s >→<Case− closei,

s = params[Otherwisei]>

Case− close
true

<Case− closei,s >→<Case−Exit,
sParentStatus.currentParam = s >

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

Figure 15: Small-Step case statement specifications

fundamental executional constructs of the language. The same
approach can be applied to all the CMML tags in the language.

7 Conclusion and Future Work

In this paper, a unified cloud metering framework was
presented based on a data modeling approach. An extensible
data representation is demonstrated through an object oriented
extensible Cloud Metering Markup Language (CMML), which
contributed to the highly shareable characteristics of the model.
The proposed framework is programmable and extensible,
enabling the metering of cloud resources at various levels
of abstractions with ease through the flexibility of writing
code. The key design decision adopted is to deal with
metering objects rather than flat passive data. The introduction

of autonomous mobile CMOs and object receptors unlocked
a lot of desired features whereby the metering data are
coupled with their corresponding operations. The framework
is capable of presenting the underlying deployment metering
architecture dynamically through the object receptors definition.
The main contribution of this paper is presenting a formal
specifications for the CMML language through a Structural
Operations Semantics SOS approach based on the Big-Step
and the Small-Step methodologies. Moreover, a prototype of
the overall framework was built and tested through a factorial
ANOVA/GLM experiments and presented in [25].

Our future work will be concentrating on designing a virtual
bare metal deployment mechanism that utilizes virtual resources
for CMML metering engines deployment. The new approach
aims at reducing the waste of resources used in the framework
deployment targeting higher Return on Investment ROI, lower
probe effect, and better performance.

References

[1] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean,
Sanjay Ghemawat, Monika R. Henzinger, Shun-Tak A.
Leung, Richard L. Sites, Mark T. Vandevoorde, Carl A.
Waldspurger, and William E. Weihl. “Continuous
Profiling: Where have all the Cycles Gone?” ACM Trans.
Comput. Syst., 15(4):357–390, November 1997.

[2] A. Anwar, A. Sailer, A. Kochut, C.O. Schulz, A. Segal,
and A.R. Butt. “Cost-aware Cloud Metering with Scalable
Service Management Infrastructure”. 2015 IEEE 8th
International Conference on Cloud Computing (CLOUD),
pp. 285–292, June 2015.

[3] Krzysztof R Apt. “Ten Years of Hoare’s Logic: A Survey
– Part I”. ACM Transactions on Programming Languages
and Systems (TOPLAS), 3(4):431–483, 1981.

[4] Alexander Barmouta and Rajkumar Buyya. “Gridbank:
A Grid Accounting Services Architecture (GASA)
for Distributed Systems Sharing”. IEEE Computer
Proceedings of the 17th Annual International Parallel and
Distributed Processing Symposium (IPDPS 2003), pp 22–
26. Society Press, 2002.

[5] Anton Beloglazov, Rajkumar Buyya, Young Choon Lee,
and Albert Y. Zomaya. “A Taxonomy and Survey
of Energy-efficient Data Centers and Cloud Computing
Systems”. CoRR, abs/1007.0066, 2010.

[6] Jiaqing Du, Nipun Sehrawat, and Willy Zwaenepoel.
“Performance Profiling of Virtual Machines”. SIGPLAN
Not., 46(7):3–14, March 2011.

[7] Alex Guazzelli, Michael Zeller, Wen-Ching Lin, and
Graham Williams. “PMML: An Open Standard for
Sharing Models”. The R Journal, 1(1):60–65, 2009.

[8] D. Huemer and A.M. Tjoa. “A Stepwise Approach
Towards an Interoperable and Flexible Logging Principle

IJCA, Vol. 24, No. 3, Sept. 2017 145

for Audit Trails”. 2010 Seventh International Conference
on Information Technology: New Generations (ITNG) , pp.
114 –119, April 2010.

[9] Ravi Iyer, Ramesh Illikkal, Li Zhao, Don Newell, and
Jaideep Moses. “Virtual Platform Architectures for
Resource Metering in Data Centers”. SIGMETRICS
Perform. Eval. Rev., 37(2):89–90, October 2009.

[10] William M. Jones, John T. Daly, and Nathan
DeBardeleben. “Impact of Sub-optimal Checkpoint
Intervals on Application Efficiency in Computational
Clusters”. Proceedings of the 19th ACM International
Symposium on High Performance Distributed Computing,
HPDC ’10, pp. 276–279, New York, NY, USA, 2010.
ACM.

[11] Gilles Kahn. Natural Semantics. Springer, 1987.

[12] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari,
and Arka A. Bhattacharya. “Virtual Machine Power
Metering and Provisioning”. Proceedings of the 1st ACM
symposium on Cloud computing, SoCC ’10, pp. 39–50,
New York, NY, USA, 2010. ACM.

[13] Peter D Mosses. “Modular Structural Operational
Semantics”. 2005.

[14] V.K. Naik, K. Beaty, and A. Kundu. “Service Usage
Metering in Hybrid Cloud Environments”. 2014 IEEE
International Conference on Cloud Engineering (IC2E),
pp. 253–260, March 2014.

[15] F.A. Pereira da Silva, P.A. Da Mota Silveira Neto,
V. Cardoso Garcia, F.A. Mota Trinta, and R. Elia Assad.
“Monext: An Accounting Framework for Infrastructure
Clouds”. 2013 IEEE 12th International Symposium on
Parallel and Distributed Computing (ISPDC), pp. 26–33,
June 2013.

[16] F.A. Pereira da Silva, P.A. Da Mota Silveira Neto,
V. Cardoso Garcia, F.A. Mota Trinta, and R. Elia Assad.
“Veloz: A charging Policy Specification Language
for Infrastructure Clouds”. 2013 22nd International
Conference on Computer Communications and Networks
(ICCCN), pp. 1–7, July 2013.

[17] Rosario M. Piro, Michele Pace, Antonia Ghiselli,
Andrea Guarise, Eleonora Luppi, Giuseppe Patania, Luca
Tomassetti, and Albert Werbrouck. “Tracing Resource
Usage over Heterogeneous Grid Platforms: A Prototype
RUS Interface for DGAS”. Proceedings of the Third
IEEE International Conference on e-Science and Grid
Computing, E-SCIENCE ’07, Washington, DC, USA,
2007. IEEE Computer Society, pp. 93–101.

[18] GD Plotkin. A Structural Approach to Operational
Semantics. 1981.

[19] Gordon D Plotkin. “The Origins of Structural Operational
Semantics”. The Journal of Logic and Algebraic
Programming , 6061:3 – 15, 2004.

[20] Gang Ren, E. Tune, T. Moseley, Yixin Shi, S. Rus,
and R. Hundt. “Google-Wide Profiling: A Continuous
Profiling Infrastructure for Data Centers”. Micro, IEEE,
30(4):65 –79, July-Aug. 2010.

[21] Michael Lee Scott. Programming Panguage Pragmatics.
Morgan Kaufmann, 2000.

[22] Benjamin Serebrin and Daniel Hecht. “Virtualizing
Performance Counters”. ACM Trans. Comput. Syst., 2011.

[23] F.A. Silva, P. Neto, V. Garcia, F. Trinta, and
R. Assad. “Accounting Federated Clouds Based on the
JITCloud Platform”. 2013 13th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 186–187, May 2013.

[24] T. Singh and P.K. Vara. “Smart Metering the Clouds”. 18th
IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, 2009.
WETICE ’09. , pp. 66 –71, July 1 2009.

[25] Karim Sobh and Amr El-Kadi. “A Unified Cloud Metering
Framework”. International Journal of Computers and
Their Applications, pp. 124 –139, 23(2), 2016.

[26] W3C. “Overview of GDML Resources”. https://www.
w3.org/MarkUp/SGML/, 2016. [Online; accessed 25-
January-2016].

[27] Miao Wang, V. Holub, T. Parsons, J. Murphy, and
P. O’Sullivan. “Scalable Run-time Correlation Engine for
Monitoring in a Cloud Computing Environment”. 2010
17th IEEE International Conference and Workshops on
Engineering of Computer Based Systems (ECBS) , pp. 29
–38, March 2010.

Karim Sobh is an Assistant Professor
in the Department of Informatics and
Computer Science at Nile University
in Cairo. He has a Ph.D. in
Computer Science from the American
University in Cairo. He received his
B.Sc. and M.Sc. degrees in Computer
Science from the same university. Dr.
Sobh’s specialization is in distributed
systems and cloud computing, and
his PhD. topic is cloud environments

metering. As a systems architecture consultant at IBM Egypt
his role was to provide system architecture consultation for
large projects. Moreover, he is the founder of Code-Corner,
a software development firm providing software development,
subcontracted services, cloud deployment services, consultation
services, and turn-key solutions using open source technologies.

146 IJCA, Vol. 24, No. 3, Sept. 2017

Amr El-Kadi is Professor and
former Chair, the Computer Science
and Engineering Department at the
American University in Cairo. He
was a member of the IEEE-CS/ACM
Joint Task Force on Software
Engineering Ethics and Professional
Practices (SEEPP) that developed
the Software Engineering Code of
Ethics and Professional Practices.

Before joining AUC he was a consulting engineer with the
Information, Technology and Facilities Department at the
World Bank, Washington DC. He received his D.Sc. degree in
Electrical Engineering and Computer Science from The George
Washington University. Dr. El-Kadi is a Senior Member of
IEEE (serving as the Middle East Representative of the IEEE
Technical Committee on Operating Systems and Applications
Environments), a member of ACM, and a member of Eta Kappa
Nu (the US National Electrical and Computer Engineering
Honor Society).

Instructions for Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr., Fred.Harris@cse.unr.edu.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence.
Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11
inch pages.

2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS Word
format should be submitted to the Editor-in-Chief.

2. The submission may be on a CD/DVD or as an email attachment(s) . The following electronic files should
be included:

 Paper text (required).
 Bios (required for each author). Integrate at the end of the paper.
 Author Photos (jpeg files are required by the printer, these also can be integrated into your paper).
 Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps).

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the paper.

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that they are
transferring the copyright to ISCA or declaring the work to be government-sponsored work in the public domain. Also,
letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced for publication charges of
$50.00 USD per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA
members, $100 of publication charges will be waived if requested.

January 2014

ISC
A

 IN
TER

N
A

TIO
N

A
L JO

U
R

N
A

L O
F C

O
M

PU
TER

S A
N

D
 TH

EIR
 A

PPLIC
A

TIO
N

S
V

ol. 24, N
o. 3, Sept. 2017

	International Society for Computers
	TABLE OF CONTENTS
	Christine Niyizamwiyitira and Lars Lundberg
	Mubbashar Saddique, Kalim Qureshi, Jawad Haider Kazmi, and Zainab Meraj

	IJCA Jrnl inside front cover Sept. 2017.pdf
	A publication of the International Society for Computers and Their Applications
	EDITOR-IN-CHIEF
	ASSOCIATE EDITORS

	Dr. Hisham Al-Mubaid
	Dr. Antoine Bossard
	Dr. Mark Burgin
	Dr. Sergiu Dascalu
	University of Nevada, USA
	dascalus@cse.unr.edu
	Dr. Sami Fadali

	Dr. Vic Grout
	Glyndŵr University,
	Wrexham, UK
	v.grout@glyndwr.ac.uk
	Dr. Yi Maggie Guo
	University of Michigan,
	Dearborn, USA
	magyiguo@umich.edu
	Dr. Wen-Chi Hou
	Southern Illinois University, USA
	hou@cs.siu.edu
	Dr. Ramesh K. Karne
	Towson University, USA
	rkarne@towson.edu
	Dr. Bruce M. McMillin
	Dr. Muhanna Muhanna

	Dr. Mehdi O. Owrang
	Dr. Xing Qiu

	University of Rochester, USA
	xqiu@bst.rochester.edu
	Dr. Abdelmounaam Rezgui
	Dr. Ramalingam Sridhar
	Dr. Junping Sun

	Dr. Jianwu Wang
	Dr. Yiu-Kwong Wong

	Dr. Rong Zhao

	3 MamonaAwan, HeeKo final.pdf
	3.1.2 Projector-Camera Homography. Many techniques are followed to form a relation between a projector and a camera. These techniques usually include projecting a series of images via the projector and capturing these by the camera. The images may ...
	3.3 Image Rendering for Projection
	4.1 Reprojection Error
	4.2 Image Clipping Issue
	5.1 Planar Surface without ROI
	5.2 Planar Surface with ROI

