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Abstract 
 
 The use of virtualized systems is growing, and one would like 
to benefit from this kind of systems also for real-time 
applications with hard deadlines.  There are two levels of 
scheduling in real-time applications executing in a virtualized 
environment:  traditional real-time scheduling of the tasks in the 
real-time application inside a Virtual Machine (VM), and 
scheduling of different VMs on the hypervisor level.  
Traditional real-time scheduling uses methods based on periods, 
deadlines and worst-case execution times of the real-time tasks.  
In order to apply the existing theory also to virtualized 
environments we must obtain periods and (worst-case) 
execution times for VMs containing real-time applications.  In 
this paper, we describe a technique for calculating periods and 
execution times and utilization for VMs containing real-time 
applications with hard deadlines.  We show that when we look 
at all VMs that share a physical processor we are able to use 
longer (better) periods.  Alternatively, if the periods are the 
same, we are able to use a smaller amount of the processor 
resource for the VMs and more tasks become schedulable 
compared to when we look at each VM in isolation.  We also 
introduce an overhead model that makes it possible to find VM 
periods that minimize the processor utilization. 
 Key Words:  Real-time virtual machine; real-time 
scheduling; hard deadlines; VM overhead; VM period. 
 

1 Introduction 
 

There is a strong trend towards virtualization of computer 
systems, and one would like to also run real-time systems in 
virtualized environments.  However, moving a real-time system 
with hard deadlines to a virtualized environment where a number 
of Virtual Machines (VMs) share the same physical computer is 
a challenging task.  The original real-time application was 
designed such that all tasks were guaranteed to meet their 
deadlines provided that the physical computer was fast enough.  
In a system with faster processors, and more cores, one would 
like to put several VMs on the same physical hardware and some 
or all of these VMs may contain real-time tasks with hard 
deadlines.  In order to take full advantage of the hardware, more  
_____________________________ 
*Department of Computer Science and Engineering, Faculty of 
Computing.  Email:  Christine.niyizamwiyitira@bth.se, 
lars.lundberg@bth.se. 

than one VM may share a processor core.  This is the scenario 
that we consider in this study, i.e. k VMs share the same 
processor core, and each VM contains a real-time application.  
We assume that for each core, the identities of the VMs that share 
that core are known.  We also assume that these VMs are 
scheduled to the physical processor core using static priorities.  
In such a system there will be scheduling on two levels [1, 24].  
The first level is traditional real-time scheduling of the tasks 
within a VM.  The second level is scheduling of VMs by the 
hypervisor; the hypervisor controls several VMs on the same 
physical hardware.  

Two classic real-time scheduling algorithms are Rate 
Monotonic Scheduling (RMS) where tasks are assigned static 
priorities based on deadlines, and Earliest Deadline First (EDF) 
where task priorities are dynamic.  These kind of scheduling 
algorithms enable to guarantee certain real-time properties in 
non-virtualized systems.  These scheduling algorithms are based 
on the periodic behavior of the real-time tasks, i.e. each task has 
a period T and a worst-case execution time C.  This means that a 
task may in the worst-case need to use the processor for C time 
units during each period, the length of the period is T time units.  
In order to use existing real-time scheduling theory also on the 
hypervisor level, i.e. when scheduling different VMs on the 
physical hardware, we need to calculate a period 𝑇𝑇𝑉𝑉𝑉𝑉   and a 
worst-case execution time 𝐶𝐶𝑉𝑉𝑉𝑉 for each VM such that all real-
time tasks in the VMs will meet their deadlines.   

Previous work [20] has found a method for calculating an 
execution time  𝐶𝐶𝑉𝑉𝑉𝑉 and a period 𝑇𝑇𝑉𝑉𝑉𝑉  for a VM such that all 
real-time tasks in the VM will meet their deadlines.  That study 
considered each VM in isolation, i.e. without knowledge about 
the other VMs sharing the processor.  The contribution in this 
paper is that we define an improved execution time 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 and 
period 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , by considering a holistic perspective, i.e., we 
consider the whole work-load of all VMs that share a processor 
core. 

The holistic approach gives more information about the work-
load and does not require to be overly pessimistic, and as a result 
more real-time programs become schedulable.  We also define 
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  and 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  in the presence of overhead for context switches 
between VMs. 

 
2 Background and Related Work 

 
Real-time scheduling theory (or non-virtualized systems 

shows that the minimum processor utilization for which a  
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periodic real-time system can miss a deadline, using fixed 
priority scheduling, i.e. using RMS, decreases as the number of 
processors increases, e.g. 69.3% for one processor systems [16], 
and 53.2% for two processor systems and then down to as little 
as 37.5% for systems with infinitely many processors [18].  
Consequently, compared to multiprocessor systems, the 
processor utilization is generally higher for systems with one 
processor.  This is one reason why we have assumed that each 
core of a multi-core processor contains a number of VMs and 
each VM that contains a real-time application has only one 
virtual processor.  Also, most existing real-time applications are 
developed for systems with one processor.  

An additional advantage of just having one virtual core in each 
VM is that one can bind each VM to a physical core, thus 
minimizing unpredictable dynamic cache effects, i.e., the 
processor cache will be cold (empty) when a VM is migrated 
from one core to another.  Such effects become problematic in 
real-time systems since applications with hard deadlines need to 
control the worst-case behavior.  We, therefore, expect that one 
future way of using virtualization will be that a VM containing a 
real-time application will be bound to a processor core a modern 
multi-core hardware server.  In order to provide high hardware 
utilization, we expect that many VMs may share the same 
processor core.  

Very few studies have explicitly focused on hard real-time 
scheduling in virtualized systems.  Some results on real-time 
tasks with soft deadlines have been studied with the focus on 
real-time hypervisor scheduling framework for Xen [12, 29].  
There are a number of results concerning so called proportional-
share schedulers [9, 22, 27].  These results looked at a real-time 
application that runs inside an operating system process.  The 
proportional-share schedulers divide the processor resource in 
predefined proportions to different processes.  However, none of 
these results explicitly address hard real-time issues such as 
worst-case scenarios, periods/deadlines and worst-case 
execution times.  In [17], the authors looked at a model for 
deciding which real-time tasks to discard when the cloud 
system’s resources cannot satisfy the needs of all tasks.  That 
model does, however, not address the problems associated with 
hard deadlines.  The VSched system, which runs on top of Linux, 
provides soft real-time scheduling of VMs on physical servers 
[14].  However, the problems with hard deadlines are not 
addressed in that system. 

In the area of hierarchical scheduling, there have been plenty 
of studies.  In [10],  authors proposed a hierarchical real-time 
virtual resource model that permits resource partitioning to be 
extended to multiple levels (similar to the two-level scheduling 
situation in virtualized systems).  In [25, 26] the authors proposed 
a resource model for hierarchical schedulers to characterize a 
periodic resource allocation and present exact schedulability 
conditions under RMS and EDF algorithms.  This method 
derives timing requirements of a parent scheduler from the 
timing requirements of its child scheduler in a compositional 
manner such that the timing requirement of the parent scheduler 
is satisfied if and only if the child scheduler is satisfied.  Later 
on, they proposed a compositional real-time scheduling 
framework with a periodic model that enables a group of real-

time applications to be a single real-time resource requirement to 
the upper level scheduler.  These scheduling schemes help to 
schedule large complex systems by breaking them down into 
subsystems.  

In  [8, 15] the authors studied a two-level hierarchical 
architecture to schedule many applications on a single processor.  
Each application is associated with a server and each server is 
assigned a portion of the processor [15].  There is a global 
scheduler that determines which application, i.e., which server, 
should be allocated to the processor at any given time and a local 
scheduler that determines which of the chosen application’s tasks 
should actually execute.  Both schedulers use fixed priority pre-
emptive scheduling policy.  All of the hierarchical scheduling 
results mentioned above consider each VM in isolation, i.e., no 
study takes a holistic approach where the entire set of VMs are 
considered.  Previous results on age-constraint real-time tasks (in 
a uniprocessor environment) show that one can guarantee the 
schedulability for more cases when the entire work-load is taken 
into consideration [19]. 

In [6] the authors studied a reservation-based algorithm, i.e., a 
constant bandwidth server (CBS) on top of EDF for scheduling 
real-time tasks with hard deadlines on VMs.  A reservation-based 
scheduler allocates a computation budget for every reservation 
period to each VM.  The execution of a VM does not depend on 
the other VMs running on the same hardware (temporal 
isolation), rather it depends only on task’s period and execution 
time.  The results show that VM technology and scheduling 
algorithm can affect the real-time application performance.  They 
propose to use less pessimistic analysis to dimension the VM 
scheduling parameters if one uses CBS algorithm.  Interaction 
between VMs is not considered whereas in this paper, we 
consider also the interaction between VMs therefore VMs 
priority is set accordingly.  

In [13] the authors developed a Compositional Scheduling 
Architecture (CSA) that is built on the Xen virtualization 
platform.  The architecture allows timing isolation among virtual 
machines and supports timing guarantees for real-time tasks 
running on each virtual machine.  The study uses a pessimistic 
approach where every VMs is treated in isolation, whereas in this 
paper every VM is treated with respect to other VMs that they 
share resources.  In [21] the authors present a model that include 
the cache related in hierarchical scheduling while keeping 
temporal isolation between applications that share a single 
processor, yet interaction between VMs is not considered. 

In [7] the authors propose a mechanism to schedule soft real-
time systems, which provides a temporal isolation between VMs 
that share a CPU.  In this paper we consider even when a VM is 
affected by the work-load from other VMs that they share 
resources, a hard-real-time system with a strict deadline is 
considered. 

In [5, 23] the authors present a model that accounts for the 
overhead, in the compositional hierarchical scheduling for 
uniprocessor however, the entire work-load was not considered.  
In [30] compositional scheduling theory was also applied for 
multi-core VM scheduler for Xen real-time virtualization 
platform.  However, task’s migration across processor/core in the 
same VM which causes significant overhead was neglected. 
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In connection with hard deadlines systems, the utilization has 
been studied for real-time systems that respond to an external 
environment within a specific deadline that is called age 
constraint.  This age constraint is the time between the beginning 
of the execution of a task in one period and the end of the task in 
the next period [19].  In this paper we use the idea from the age 
constraint approach for scheduling real-time tasks in the VMs. 

In [20] the authors addressed the problem of scheduling hard 
real-time applications in a VM.  The authors proposed a 
technique such that real-time applications could meet their 
deadlines when they are scheduled on a single VM.  In this paper 
we improve this technique by proposing a method that schedules 
many VMs as whole instead of looking at each VM in isolation.  
We should not ignore the overhead brought by VMs, a case that 
considers this is also presented herein.  The method described in 
this paper saves the resource utilization while scheduling many 
VMs. 

 

3 Problem Definition 
 
We consider the case when k VMs share the same processor 

core (see Figure 1(i)); all VMs have one virtual processor.  We 
assume that for each core the identities of the VMs that share a  

processor core is known.  We also assume that these VMs are  
 

scheduled to the physical core using static priorities.  Each 𝑉𝑉𝑉𝑉𝑖𝑖 
(1 ≤  𝑖𝑖 ≤  𝑘𝑘) runs a real-time program that consists of 𝑛𝑛𝑖𝑖 tasks 
𝜏𝜏𝑖𝑖,𝑗𝑗  (1 ≤  𝑗𝑗 ≤  𝑛𝑛𝑖𝑖), i.e. 𝜏𝜏𝑖𝑖,𝑗𝑗  denotes task j in 𝑉𝑉𝑉𝑉𝑖𝑖.  A task 𝜏𝜏𝑖𝑖,𝑗𝑗   is 
defined by its worst-case execution time 𝐶𝐶𝑖𝑖,𝑗𝑗   and period 𝑇𝑇𝑖𝑖,𝑗𝑗 [4].  
Since we assume that the priority follows rate monotonic 
scheduling (RMS), the tasks are ordered such that 𝑇𝑇𝑖𝑖,𝑗𝑗 ≤ 𝑇𝑇𝑖𝑖,𝑗𝑗+1  .  
This means that inside 𝑉𝑉𝑉𝑉𝑖𝑖, task 𝜏𝜏𝑖𝑖,1   has the highest priority, i.e., 
it is never interrupted by any other task.  

We assume that each task is independent and does not interact 
with other tasks.  We also assume that the first invocation of a 
task is unrelated to the first invocation of any other task, i.e., we 
make no assumptions regarding the phasing of tasks with equal 
or harmonic periods.  Since we assume that the deadline 𝐷𝐷𝑖𝑖 ,𝑗𝑗 is 
equal to the period 𝑇𝑇𝑖𝑖,𝑗𝑗, we only need two parameters for each 
task: 𝑇𝑇𝑖𝑖,𝑗𝑗 and 𝐶𝐶𝑖𝑖,𝑗𝑗 [4].   

For each VM that share a physical core, we need to calculate 
a period 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  and an execution time 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  such that all tasks 
𝜏𝜏𝑖𝑖,𝑗𝑗 will meet their deadlines when VMi executes at least 
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖   time units every 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  period.  

In [20] the authors found a method for calculating an 
execution time 𝐶𝐶𝑉𝑉𝑉𝑉 and a period 𝑇𝑇𝑉𝑉𝑉𝑉 when one looks at a VM 
in isolation.   

 

 
 

Figure 1(i):  A physical processor with m cores, and (ii) three virtual machines on a processor  
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A main contribution in this paper is to use information about 
the entire set of VMs sharing a core to reduce the resource 
utilization 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄  compared to considering each VM in 
isolation (we will also extend the previous result by introducing 
an overhead model). 

We also assume that we use static priorities on the hypervisor 
level.  𝑉𝑉𝑉𝑉1 has the highest priority and cannot be interrupted by 
any other VM, and 𝑉𝑉𝑉𝑉2 has the second highest priority.  Figure 
1(ii) shows a processor core that runs 𝑉𝑉𝑉𝑉1, 𝑉𝑉𝑉𝑉2 and 𝑉𝑉𝑉𝑉3. 𝑉𝑉𝑉𝑉1 
has three tasks 𝜏𝜏1,1, 𝜏𝜏1,2, 𝜏𝜏1,3.  𝑉𝑉𝑉𝑉2 has also three tasks 𝜏𝜏2,1, 𝜏𝜏2,2, 
𝜏𝜏2,3, and 𝑉𝑉𝑉𝑉3  has four tasks 𝜏𝜏3,1, 𝜏𝜏3,2, 𝜏𝜏3,3, 𝜏𝜏3,4 .  A real-time 
task may miss its deadline if the VM containing the task is not 
scheduled for execution by the hypervisor during a certain 
period of time.  We would like to assign long periods 
(i.e. 𝑇𝑇𝑉𝑉𝑉𝑉1 ,  𝑇𝑇𝑉𝑉𝑉𝑉2,  𝑇𝑇𝑉𝑉𝑉𝑉3) to each VM, since this will minimize the 
overhead for switching VMs.  However, if the VM periods are 
too long, the real-time tasks in the VM may miss their deadlines.  
Previous results show that there is a trade-off between the length 
of  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  and the utilization  𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

⁄  that a VM needs to 
guarantee that all tasks meet their deadlines [20].  We would like 
to find combinations of periods  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  and execution times 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 
that strike a good compromise between a limited number of 
context switches between VMs (i.e. long  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖) and a low 
utilization  𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

⁄  for all VMs. 
In a traditional real-time application, a task 𝜏𝜏𝑖𝑖,𝑗𝑗  will 

voluntarily release the processor when it has finished its 
execution in a cycle, and 𝐶𝐶𝑖𝑖,𝑗𝑗 denotes the maximum time it may 
execute before it releases the processor.  In our case the 

hypervisor will make sure that 𝑉𝑉𝑉𝑉𝑖𝑖 releases the processor after 
executing for  𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  time units in a period  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 . 

 
4 Defining  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  and  𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  

 
Let 𝑅𝑅𝑖𝑖,𝑗𝑗 denotes the maximum response time for task 𝜏𝜏𝑖𝑖,𝑗𝑗.  

Using traditional RMS scheduling, the worst- case response 
time 𝑅𝑅𝑖𝑖,𝑗𝑗  for task 𝜏𝜏𝑖𝑖,𝑗𝑗 is given by Equation (1). 
 
 𝑅𝑅𝑖𝑖,𝑗𝑗 =   𝐶𝐶𝑖𝑖,𝑗𝑗+∑ �

𝑅𝑅𝑖𝑖,𝑗𝑗
𝑇𝑇𝑖𝑖,𝑚𝑚

�𝑗𝑗−1
𝑚𝑚=1 𝐶𝐶𝑖𝑖,𝑚𝑚  (1) 

 
In order to obtain 𝑅𝑅𝑖𝑖,𝑗𝑗 from Equation (1), we need  to use 

iterative numeric methods [4].  In Figure 2, we look at one VM 
in isolation [20].  The main result in [20] is a method of finding 
𝑇𝑇𝑉𝑉𝑉𝑉 and 𝐶𝐶𝑉𝑉𝑉𝑉 such that all tasks will meet their deadlines.  The 
most important part of the method is a function 
 𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) that maps virtual time to real (wall clock) 
time.  Before we present the main results of this paper, we will 
give a short overview of the previous results that considered 
each VM in isolation.  

Consider a time period of length t.  Equation (2) denotes the 
number of complete periods of length 𝑇𝑇𝑉𝑉𝑉𝑉 that are covered by t 
for the worst-case scenario; each complete period  𝑇𝑇𝑉𝑉𝑉𝑉 has 
execution 𝐶𝐶𝑉𝑉𝑉𝑉 (see Figure 2).  

 
 �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑉𝑉−𝐶𝐶𝑉𝑉𝑉𝑉)

𝑇𝑇𝑉𝑉𝑉𝑉
�    (2) 

 
 

 
 

Figure 2:  The worst-case scenario for an isolated VM 
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Let t’ denotes the minimum amount of time that the VM is 
running during time period t.  Previous results show that t’ is 
obtained in the following way: 

 

 𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑉𝑉−𝐶𝐶𝑉𝑉𝑉𝑉)
𝑇𝑇𝑉𝑉𝑉𝑉

� 𝐶𝐶𝑉𝑉𝑉𝑉 + 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡 − 2(𝑇𝑇𝑉𝑉𝑉𝑉 −

               𝐶𝐶𝑉𝑉𝑉𝑉) − �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑉𝑉−𝐶𝐶𝑉𝑉𝑉𝑉)
𝑇𝑇𝑉𝑉𝑉𝑉

� 𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉��   (3)  

 
This means that t´ is a function of three parameters, i.e. 𝑡𝑡′ =

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉). 
For fixed  𝑇𝑇𝑉𝑉𝑉𝑉  and  𝐶𝐶𝑉𝑉𝑉𝑉,   𝑡𝑡′ = 𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) is a 

continuously increasing function in t, consisting of straight line 
segments from �(2 + 𝑛𝑛)𝑇𝑇𝑉𝑉𝑉𝑉 − 2𝐶𝐶𝑉𝑉𝑉𝑉),𝑛𝑛𝐶𝐶𝑉𝑉𝑉𝑉� to�(2 +
𝑛𝑛)𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝑉𝑉𝑉𝑉), (𝑛𝑛 + 1)𝐶𝐶𝑉𝑉𝑉𝑉� for any n = 0, 1, 2…, (see Figure 
2).  As a result, 

 

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑀𝑀 ,𝐶𝐶𝑉𝑉𝑀𝑀 ) = �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑀𝑀−𝐶𝐶𝑉𝑉𝑀𝑀)
𝑇𝑇𝑉𝑉𝑀𝑀

� 𝐶𝐶𝑉𝑉𝑀𝑀 + 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − 2(𝑇𝑇𝑉𝑉𝑀𝑀 −

                                𝐶𝐶𝑉𝑉𝑀𝑀) − �𝑡𝑡−2(𝑇𝑇𝑉𝑉𝑀𝑀−𝐶𝐶𝑉𝑉𝑀𝑀)
𝑇𝑇𝑉𝑉𝑀𝑀

� 𝑇𝑇𝑉𝑉𝑀𝑀� ,  𝐶𝐶𝑉𝑉𝑀𝑀�   (4) 

 
The horizontal line that connects two consecutive segments 

represents the end of a previous execution in a period and the 
beginning of the next execution in the next period. 

We now consider the inverse function, 𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉), 
i.e.,  𝑡𝑡 = 𝑓𝑓−1(𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉),𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉); by looking at Figure 3, 
we see that   𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) is undefined during the time 
intervals when 𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) is flat.  In [2] the authors define 
the inverse of a function with flat intervals; they call it a pseudo- 
inverse since a function with flat intervals is not invertible.  In 
order to handle this problem in our case we take a safe (worst- 
 

case) approach, and for all values of t in a flat interval we define 
 𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) as the inverse of the maximum t value in that 
interval, thus making the inverse defined for all parameters 
𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 , and 𝐶𝐶𝑉𝑉𝑉𝑉. 

Using the definition above, the (pseudo-)inverse of 
𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉)  is 

 
  𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉) = 2(𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝑉𝑉𝑉𝑉) + 𝑡𝑡 + �� 𝑡𝑡

𝐶𝐶𝑉𝑉𝑉𝑉
� −

                                                1� (𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝑉𝑉𝑉𝑉)   (5)   
 
From the response time 𝑅𝑅𝑗𝑗  (see Equation (1)) and the 

definition of the 𝑓𝑓−1, we get the worst-case response time 𝑟𝑟𝑗𝑗 for 
task 𝜏𝜏𝑗𝑗 : 
 

 𝑟𝑟𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅𝑗𝑗 ,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉�  (6) 
 

To meet all deadlines for all tasks 𝜏𝜏𝑗𝑗 , we need to select 𝑇𝑇𝑉𝑉𝑉𝑉 
and 𝐶𝐶𝑉𝑉𝑉𝑉 such that  

 
 𝑟𝑟𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅𝑗𝑗 ,𝑇𝑇𝑉𝑉𝑉𝑉 ,𝐶𝐶𝑉𝑉𝑉𝑉� ≤ 𝑇𝑇𝑗𝑗   (1 ≤ 𝑗𝑗 ≤ 𝑛𝑛𝑖𝑖)     (7) 

 
In this paper, instead of considering each VM in isolation, we 

take a holistic view since we know the whole work-load on the 
physical core.  The only way that the execution can happen in 
the end of periods (see Figure 2) is when the core is busy, i.e., 
when at least one of the other VMs has a higher priority.  The 
part indicated by “a” in Figure 2 is the difference between the 
pessimistic (considering each VM in isolation) and the 
optimistic (holistic) cases.   

In the pessimistic case we have the same function 
 𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖� for all VMs; each VM can of course have 
 

 
 

Figure 3:  The (pseudo-)inverse function for an isolated VM (i.e., the pessimistic case) 
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their own period (𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖) and execution time (𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖).  In the 
optimistic (holistic) case we have a function 
𝑓𝑓−1(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖), with 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖  representing the worst-case 
response time for 𝑉𝑉𝑉𝑉𝑖𝑖.  

VMs are ordered such that 𝑉𝑉𝑉𝑉𝑖𝑖 has a higher priority than 𝑉𝑉𝑉𝑉𝑗𝑗 
if 𝑖𝑖 < 𝑗𝑗.  In the worst-case scenario, all VMs are released at the 
same time; first of all, we consider 𝑉𝑉𝑉𝑉1  and take a time period 
of length t which may extend over several periods (see Figure 
4). 

In the worst-case scenario period t starts right after a period 
of 𝐶𝐶𝑉𝑉𝑉𝑉1  execution that occurred at the start of a period 𝑇𝑇𝑉𝑉𝑉𝑉1 .  
Since 𝑉𝑉𝑉𝑉1  has the highest priority, the maximum time that 𝑉𝑉𝑉𝑉1 
has to wait for, is 𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1  before it executes its first  𝐶𝐶𝑉𝑉𝑉𝑉1 .  
The number of whole periods of length 𝑇𝑇𝑉𝑉𝑉𝑉1 that is covered by 
t for the worst-case scenario is given in Equation (8).  
 
 �𝑡𝑡−(𝑇𝑇𝑉𝑉𝑉𝑉1−𝐶𝐶𝑉𝑉𝑉𝑉1)

𝑇𝑇𝑉𝑉𝑉𝑉1
�     (8)  

 
Let t’ denote the minimum amount of time that VM1 is 

running during a time period of length t.  
 

𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉1−𝐶𝐶𝑉𝑉𝑉𝑉1�
𝑇𝑇𝑉𝑉𝑉𝑉1

� 𝐶𝐶𝑉𝑉𝑉𝑉1 + 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − �𝑇𝑇𝑉𝑉𝑉𝑉1 −

              𝐶𝐶𝑉𝑉𝑉𝑉1� − �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉1−𝐶𝐶𝑉𝑉𝑉𝑉1�
𝑇𝑇𝑉𝑉𝑉𝑉1

� 𝑇𝑇𝑉𝑉𝑉𝑉1� ,𝐶𝐶𝑉𝑉𝑉𝑉1��  (9) 

 
For fixed 𝑇𝑇𝑉𝑉𝑉𝑉1  and 𝐶𝐶𝑉𝑉𝑉𝑉1 , Figure 4 shows that  𝑡𝑡′ =

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1) consists of straight line segments from  

��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1� ,𝑛𝑛𝐶𝐶𝑉𝑉𝑉𝑉1�   to �(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉1 , (𝑛𝑛 +

1)𝐶𝐶𝑉𝑉𝑉𝑉1�      for n = 0, 1, 2,…. As a result, 

 

𝑓𝑓�𝑡𝑡,𝑇𝑇𝑉𝑉𝑀𝑀1 ,𝐶𝐶𝑉𝑉𝑀𝑀1� = �
𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀1 − 𝐶𝐶𝑉𝑉𝑀𝑀1�

𝑇𝑇𝑉𝑉𝑀𝑀1

� 𝐶𝐶𝑉𝑉𝑀𝑀1 + 

𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀1 − 𝐶𝐶𝑉𝑉𝑀𝑀1) − �𝑡𝑡−(𝑇𝑇𝑉𝑉𝑀𝑀1−𝐶𝐶𝑉𝑉𝑀𝑀1�
𝑇𝑇𝑉𝑉𝑀𝑀1

� 𝑇𝑇𝑉𝑉𝑀𝑀1� ,𝐶𝐶𝑉𝑉𝑀𝑀1� 

 (10) 
 
With 𝑅𝑅𝑉𝑉𝑉𝑉1 = 𝐶𝐶𝑉𝑉𝑉𝑉1, since 𝑉𝑉𝑉𝑉1 has the highest, Figure 5 

shows that the (pseudo-)inverse function for 𝑉𝑉𝑉𝑉1  
 

 𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1� = �𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1�  + 𝑡𝑡 + �� 𝑡𝑡
𝐶𝐶𝑉𝑉𝑉𝑉1

� −

                                                1� (𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1)   (11)  

 
When comparing function in Equation (11) with function in 

Equation (5), i.e., the pessimistic case, we see that the only 
difference is that 2(𝑇𝑇𝑉𝑉𝑉𝑉 − 𝐶𝐶𝑉𝑉𝑉𝑉) in (5) is replaced by 
�𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1� in (11).  The reason for this is that in Equation 
(11) we know that 𝑉𝑉𝑉𝑉1 has the highest priority and cannot be 
blocked by other VMs. 

The worst-case response time for task 𝜏𝜏1,𝑗𝑗  is  𝑟𝑟1,𝑗𝑗 =
𝑓𝑓−1�𝑅𝑅1,𝑗𝑗,𝑇𝑇𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1�      

In order to meet all deadlines for all tasks 𝜏𝜏𝑖𝑖,𝑗𝑗 , we need to 
select  𝑇𝑇𝑉𝑉𝑉𝑉1 and 𝐶𝐶𝑉𝑉𝑉𝑉1  such that is, 

 
 

 
 

Figure 4:  The worst-case scenario for 𝑉𝑉𝑉𝑉1 
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Figure 5:  The (pseudo-)inverse function for VM1 
 

 𝑟𝑟1,𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅1,𝑗𝑗,𝑇𝑇𝑉𝑉𝑉𝑉1 ,𝐶𝐶𝑉𝑉𝑉𝑉1� ≤ 𝑇𝑇1,𝑗𝑗 .     
 
𝑉𝑉𝑉𝑉2 has the second highest priority and will suffer 

interference only from 𝑉𝑉𝑉𝑉1 (see Figure 6).  The worst-case 
response time of 𝑉𝑉𝑉𝑉2 is given in Equation (12). 

 
 𝑅𝑅𝑉𝑉𝑉𝑉2 =   𝐶𝐶𝑉𝑉𝑉𝑉2 + �𝑅𝑅𝑉𝑉𝑉𝑉2

𝑇𝑇𝑉𝑉𝑉𝑉1
� 𝐶𝐶𝑉𝑉𝑉𝑉1    (12) 

 
In the worst-case 𝑉𝑉𝑉𝑉2 will wait for (𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2) 

before it can start its first execution.  
 The number of whole periods of length 𝑇𝑇𝑉𝑉𝑉𝑉2 that is covered 

by t for the worst-case scenario with each period 𝑇𝑇𝑉𝑉𝑉𝑉2contains 

a total execution 𝐶𝐶𝑉𝑉𝑉𝑉2  is �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉2−2𝐶𝐶𝑉𝑉𝑉𝑉2+𝑅𝑅𝑉𝑉𝑉𝑉2�

𝑇𝑇𝑉𝑉𝑉𝑉2
� . 

Let t’ denotes the minimum amount of time that the VM is 
running during a time period of length t.  Then we have 
 

𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉2−2𝐶𝐶𝑉𝑉𝑉𝑉2+𝑅𝑅𝑉𝑉𝑉𝑉2�

𝑇𝑇𝑉𝑉𝑉𝑉2
� 𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡 −

  �𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2� −

         �𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉2−2𝐶𝐶𝑉𝑉𝑉𝑉2+𝑅𝑅𝑉𝑉𝑉𝑉2�

𝑇𝑇𝑉𝑉𝑉𝑉2
� 𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2��   (13)  

 
For fixed 𝑇𝑇𝑉𝑉𝑉𝑉2 , 𝐶𝐶𝑉𝑉𝑉𝑉2  and 𝑅𝑅𝑉𝑉𝑉𝑉2 , Figure 6 shows that  𝑡𝑡′ =

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2) is an increasing function that consists of 
straight line segments from��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 +

𝑅𝑅𝑉𝑉𝑉𝑉2�,𝑛𝑛𝐶𝐶𝑉𝑉𝑉𝑉2�  to ��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉2 − 𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2�, (𝑛𝑛 +

1)𝐶𝐶𝑉𝑉𝑉𝑉2� for n = 0, 1, 2…. 
 
As a result, 

𝑓𝑓�𝑡𝑡,𝑇𝑇𝑉𝑉𝑀𝑀2 ,𝐶𝐶𝑉𝑉𝑀𝑀2 ,𝑅𝑅𝑉𝑉𝑀𝑀2�

= �
𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀2 + 𝑅𝑅𝑉𝑉𝑀𝑀2 − 2𝐶𝐶𝑉𝑉𝑀𝑀2�

𝑇𝑇𝑉𝑉𝑀𝑀2

� 𝐶𝐶𝑉𝑉𝑀𝑀2 + 

                                         𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀2 + 𝑅𝑅𝑉𝑉𝑀𝑀2 − 2𝐶𝐶𝑉𝑉𝑀𝑀2) −

�𝑡𝑡−(𝑇𝑇𝑉𝑉𝑀𝑀2+𝑅𝑅𝑉𝑉𝑀𝑀2−2𝐶𝐶𝑉𝑉𝑀𝑀2�

𝑇𝑇𝑉𝑉𝑀𝑀2
� 𝑇𝑇𝑉𝑉𝑀𝑀2  � ,𝐶𝐶𝑉𝑉𝑀𝑀2� (14) 

 
Figure 7 shows the corresponding (pseudo-)inverse function 

that is also defined in Equation (15).      
 
𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2� = �𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2� + 𝑡𝑡 +

�� 𝑡𝑡
𝐶𝐶𝑉𝑉𝑉𝑉2

� − 1� (𝑇𝑇𝑉𝑉𝑉𝑉2 − 𝐶𝐶𝑉𝑉𝑉𝑉2)   (15)    

 
The worst-case response time for task 𝜏𝜏2,𝑗𝑗  is 
 
 𝑟𝑟2,𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅2,𝑗𝑗,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2�    (16) 
 
In order to meet all deadlines for all tasks 𝜏𝜏𝑖𝑖,𝑗𝑗 we must select 

𝑇𝑇𝑉𝑉𝑉𝑉2 and 𝐶𝐶𝑉𝑉𝑉𝑉2  such that 
 
  𝑟𝑟2,𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅2,𝑗𝑗,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2� ≤  𝑇𝑇2,𝑗𝑗       (17) 
 
Figure 8 shows that in general for the worst-case scenario, t 

starts with a  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖   period before 𝑉𝑉𝑉𝑉𝑖𝑖   can 
start its execution (𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖  is the worst-case response time of 
𝑉𝑉𝑉𝑉𝑖𝑖).     

The number of complete periods of length 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , with 
execution 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 , that are covered by t for the worst-case 
scenario is given by Equation (18). 
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Figure 6:  The worst-case scenario for 𝑉𝑉𝑉𝑉2. 
 

 

 
 

Figure 7:  The (pseudo-)inverse function for 𝑉𝑉𝑉𝑉2 
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Figure 8:  The worst-case scenario for 𝑽𝑽𝑽𝑽𝒊𝒊   
 

 
 �

𝑡𝑡−(𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖−2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖+𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖)

𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖
�             (18)   

 
Let t’ denotes the minimum time that the 𝑉𝑉𝑉𝑉 is running 

during a time period of length t.  Then we have  
 

 𝑡𝑡′ = 𝑚𝑚𝑚𝑚𝑚𝑚 �0, �
𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖−2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖+𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖�

𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖
� 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 −

              �𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖� −

              �
𝑡𝑡−�𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖−2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖+𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖�

𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖
�  𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖� ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖��       (19) 

 
For fixed 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  and 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 , Figure 8 shows that  𝑡𝑡′ =

𝑓𝑓(𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2) is an increasing function that consists of 
straight line segments from��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉i − 2𝐶𝐶𝑉𝑉𝑉𝑉i +

𝑅𝑅𝑉𝑉𝑉𝑉i�,𝑛𝑛𝐶𝐶𝑉𝑉𝑉𝑉i�  to ��(𝑛𝑛 + 1)𝑇𝑇𝑉𝑉𝑉𝑉i − 𝐶𝐶𝑉𝑉𝑉𝑉i + 𝑅𝑅𝑉𝑉𝑉𝑉i�, (𝑛𝑛 +

1)𝐶𝐶𝑉𝑉𝑉𝑉i� for n = 0, 1, 2…., as a result, 
 

 𝑓𝑓�𝑡𝑡,𝑇𝑇𝑉𝑉𝑀𝑀i ,𝐶𝐶𝑉𝑉𝑀𝑀i ,𝑅𝑅𝑉𝑉𝑀𝑀𝑖𝑖� = �
𝑡𝑡−(𝑇𝑇𝑉𝑉𝑀𝑀𝑖𝑖+𝑅𝑅𝑉𝑉𝑀𝑀𝑖𝑖−2𝐶𝐶𝑉𝑉𝑀𝑀𝑖𝑖�

𝑇𝑇𝑉𝑉𝑀𝑀i
� 𝐶𝐶𝑉𝑉𝑀𝑀i + 

                               𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑡𝑡 − (𝑇𝑇𝑉𝑉𝑀𝑀𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑀𝑀𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑀𝑀𝑖𝑖)) −

                                   �
𝑡𝑡−(𝑇𝑇𝑉𝑉𝑀𝑀𝑖𝑖+𝑅𝑅𝑉𝑉𝑀𝑀𝑖𝑖−2𝐶𝐶𝑉𝑉𝑀𝑀𝑖𝑖�

𝑇𝑇𝑉𝑉𝑀𝑀i
� 𝑇𝑇𝑉𝑉𝑀𝑀i),𝐶𝐶𝑉𝑉𝑀𝑀i�   (20) 

 
The number of complete periods of length 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , with 

execution 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 , that are covered by t for the worst-case scenario 
is shown in Figure 9, and Equation (21) shows the general 
inverse function that maps virtual time to the worst-case real-
time for 𝑉𝑉𝑉𝑉𝑖𝑖.   
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Figure 9:  The (pseudo-)inverse function for 𝑽𝑽𝑽𝑽𝒊𝒊 
 

𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖� = �𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖� + 𝑡𝑡 +

                                                  �� 𝑡𝑡
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

� − 1� (𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖)    (21) 

 
   with 0 ≤ 𝑖𝑖 ≤ 𝑘𝑘 and   𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 =   𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + ∑ �

𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
𝑇𝑇𝑉𝑉𝑉𝑉𝑚𝑚

� 𝐶𝐶𝑉𝑉𝑉𝑉𝑚𝑚
𝑖𝑖−1
𝑚𝑚=1    

 
The worst-case response time 𝑟𝑟𝑖𝑖,𝑗𝑗  for task 𝜏𝜏𝑖𝑖,𝑗𝑗 is (𝑅𝑅𝑖𝑖,𝑗𝑗  is 

defined in Equation (1)) 𝑟𝑟𝑖𝑖,𝑗𝑗 = 𝑓𝑓−1�𝑅𝑅𝑖𝑖,𝑗𝑗  ,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖�.                                                 
The function in Equation (21) becomes equal to the 

pessimistic case when  𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 = 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  
 

5 Accounting for Overhead 
 
Whenever a preemption takes place, different sources of 

overhead should be taken into account.  Previous studies have 
considered overhead in compositional real-time systems [5, 23].  
There are two important differences between these studies and 
our study:  

First, in the previous studies the authors did not assume that 
we have information about the entire work-load i.e., they 
assumed the pessimistic approach.  

Second, in compositional real-time systems the components 
 

are abstractions and do not correspond to any execution time 
entity such as a VM.  In our approach we inflate the execution 
time of each VM to compensate for context switching overhead 
between VMs (see Figure 10).  

Overhead due to context switching between tasks inside a VM 
is orthogonal to our approach and can be handled in the same 
way as in non-virtualized systems, e.g., by inflating the 
execution times of the real-time tasks.    

In every execution cycle, the VM worst-case execution time 
is inflated by an 𝑋𝑋 which is an accumulation of cache overhead, 
release overhead, and some other overheads that are part of a 
context switch.  The maximum number of preemptions suffered 
by a given VM is bounded by the number of releases of higher 
priority VMs within its response time 𝑅𝑅𝑉𝑉𝑉𝑉, e.g., in Figure 10, 
𝑉𝑉𝑉𝑉𝑖𝑖   with  𝑖𝑖 = 3, has 4𝑋𝑋 overhead, 1𝑋𝑋 is the initial startup 
overhead of the 𝑉𝑉𝑀𝑀3, 2𝑋𝑋 preemptions from 𝑉𝑉𝑉𝑉1 and 1𝑋𝑋 from 
𝑉𝑉𝑉𝑉2 in the worst-case scenario.  Figure 11 shows the pseudo-
inverse function for VM𝑖𝑖 with overhead.  The inflated execution 
time is given by Equation (22) 

 
 

 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖
′ = 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑋𝑋 + ∑ ��

𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′

𝑇𝑇𝑉𝑉𝑉𝑉𝑘𝑘
� 𝑋𝑋�𝑖𝑖−1

𝑘𝑘=1      (22) 
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Figure 10:  The worst-case scenario for 𝑉𝑉𝑉𝑉𝑖𝑖 with overhead 
 

 

 
 
And the inflated response time is given by Equation (23) 
 

 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′ = 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

′ + ∑ ��
𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′

𝑇𝑇𝑉𝑉𝑉𝑉𝑗𝑗
� 𝐶𝐶𝑉𝑉𝑉𝑉𝑗𝑗

′ �𝑖𝑖−1
𝑗𝑗=1       (23) 

 
Equations (22) and (23) are solved using numeric iterative 

method, Figure 12 describes this algorithm, below is the 
description of Figure 12. 

 
1. Inflated execution time is initialized, i.e. 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

′ = 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 +
𝑖𝑖𝑖𝑖 

2. Inflated response time 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′  is calculated using initial 

inflated execution time. 

3. Inflated execution time 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖
′  is calculated, this 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

′  is 
again used to calculate 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖

′ , this step iterates until 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′   

value does not change anymore.  
4. If 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖

′   value does not change anymore, then we get the 
value for 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖

′ , and for 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖
′ . 

E.g., in Figure 10, if i = 3,  𝐶𝐶𝑉𝑉𝑉𝑉1= 1, 𝐶𝐶𝑉𝑉𝑉𝑉2 = 1, 𝐶𝐶𝑉𝑉𝑉𝑉3 =
1, 𝑇𝑇𝑉𝑉𝑉𝑉1= 6, 𝑇𝑇𝑉𝑉𝑉𝑉2 = 12, 𝑇𝑇𝑉𝑉𝑉𝑉3 = 14, and X = 1,  

𝐶𝐶𝑉𝑉𝑉𝑉1
′ = 𝐶𝐶𝑉𝑉𝑉𝑉1 + 𝑋𝑋 = 2, since 𝑉𝑉𝑉𝑉1 has the highest 

priority,  𝑅𝑅𝑉𝑉𝑉𝑉1
′ = 2. 

 
For 𝑉𝑉𝑉𝑉2 we have,  
 
𝐶𝐶𝑉𝑉𝑉𝑉2
′ = 𝐶𝐶𝑉𝑉𝑉𝑉2 + 2𝑋𝑋 = 3, 𝑅𝑅𝑉𝑉𝑉𝑉2

′ = 3 + �3
6
�2 = 5,  𝐶𝐶𝑉𝑉𝑉𝑉2

′ = 2 +

�5
6
� 1 = 3, 𝑅𝑅𝑉𝑉𝑉𝑉2

′ = 3 + �5
6
�2 = 5, 

 
Therefore  𝑅𝑅𝑉𝑉𝑉𝑉2

′ = 5,𝐶𝐶𝑉𝑉𝑉𝑉2
′ = 3  

For 𝑉𝑉𝑉𝑉3 we have, 
 

 𝐶𝐶𝑉𝑉𝑉𝑉3
′ = 𝐶𝐶𝑉𝑉𝑉𝑉3 + 3𝑋𝑋 = 4, 𝑅𝑅𝑉𝑉𝑉𝑉3

′ = 4 + �4
6
�2 + � 4

12
�3 = 9,  

𝐶𝐶𝑉𝑉𝑉𝑉3
′ = 2 + �9

6
�1 + � 9

12
�1 = 5 

 
𝑅𝑅𝑉𝑉𝑉𝑉3
′ = 5 + �9

6
�2 + � 9

12
�3 = 12, 𝐶𝐶𝑉𝑉𝑉𝑉3

′ = 2 + �12
6
�1 + �12

12
�1 =

5, 𝑅𝑅𝑉𝑉𝑉𝑉3
′ = 5 + �12

6
�2 + �12

12
�3 = 12 
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Figure 11:  The (pseudo-)inverse function for VM𝑖𝑖 with overhead. 
 

Therefore  𝑅𝑅𝑉𝑉𝑉𝑉3
′ = 12,  𝐶𝐶𝑉𝑉𝑉𝑉3

′ = 5 
In the optimistic case, while considering the overhead, the 

pseudo-inverse function to calculate the worst-case response 
time is given by Equation (24)  

 
𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖

′ � = (𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 2𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 + 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖
′ ) + 𝑡𝑡 +

                                                  �� 𝑡𝑡
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖

� − 1� (𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 − 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖)   (24) 

 
Let 𝐶𝐶𝑉𝑉𝑉𝑉𝑗𝑗

′  denotes the inflated worst-case execution time for 
𝑉𝑉𝑉𝑉𝑗𝑗.  In that case we make a pessimistic but safe assumption by 
accumulating all the overhead at the beginning of every 
execution cycle.  This gives a straight forward way of estimating 
the maximum overhead that a VM will face in every period e.g. 
if 𝑉𝑉𝑉𝑉𝑖𝑖 is released there is an overhead represented by one X, 
and it is preempted 2 times by 𝑉𝑉𝑉𝑉2 and 2 times by 𝑉𝑉𝑉𝑉1, in 

Figure 10, all X values will be added up, hence the total 
overhead is 5X. 

Figure 11 shows the minimum time t that 𝑉𝑉𝑉𝑉𝑖𝑖 can run.  The 
worst-case is when t starts right after 𝑉𝑉𝑉𝑉𝑖𝑖  has finished an 
execution period that started directly after a release of 𝑉𝑉𝑉𝑉𝑖𝑖.  The 
worst-case execution time 𝐶𝐶𝑉𝑉𝑉𝑉 of higher priority VMs becomes 
𝐶𝐶𝑉𝑉𝑉𝑉′  after overhead inflation.  In order to find the worst-case 
response time of  𝑉𝑉𝑉𝑉𝑖𝑖 during time t we consider a case when all 
VMs are released at the same time.  

 
6 Example when Overhead is Omitted 

 
Tables 1 and 2 contain details about two programs: program 

one is executed in virtual machine one ( 𝑉𝑉𝑉𝑉1) and program two 
is executed in virtual machine two ( 𝑉𝑉𝑉𝑉2); each program has 3 
tasks.  
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Figure 12:  The algorithm flow chart to find 𝑪𝑪𝑽𝑽𝑽𝑽𝒊𝒊
′  and 𝑹𝑹𝑽𝑽𝑽𝑽𝒊𝒊

′ . 
 

Table 1:  Program one with 3 tasks executing in 𝑉𝑉𝑉𝑉1 
Task Period (Ti,j) Worst-case execution time (Ci,j) Utilization (Ui,j) 

τ1,1 16 2 2/16 = 0.125 

τ1,2 24 1 1/24 = 0.042 

τ1,3 36 4 4/36 = 0.111 

Total Utilization 0.278 
 
Table 2:  Program two with 3 tasks executing in 𝑉𝑉𝑉𝑉2 

Task Period (Ti,j) Worst-case execution time (Ci,j) Utilization (Ui,j) 

τ2,1 28 1 1/28 = 0.035 

τ2,2 34 1 1/34 = 0.029 

τ2,3 38 2 2/38 = 0.052 

Total Utilization 0.116 
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First, we use the pessimistic method where we look at each 
VM in isolation.  Let us assume that 𝑉𝑉𝑉𝑉1 uses 40%, and VM2 
uses 30%, of the CPU, i.e. CVM1 TVM1⁄ = 0.4  and 
CVM1 TVM1⁄ = 0.3. 

When 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4, we can replace 𝐶𝐶𝑉𝑉𝑉𝑉1  by  0.4 𝑇𝑇𝑉𝑉𝑉𝑉1  in 
Equation (5), thus obtaining the function 
𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉1 , 0.4𝑇𝑇𝑉𝑉𝑉𝑉1� = 1.2𝑇𝑇𝑉𝑉𝑉𝑉1 + 𝑡𝑡 + �� 𝑡𝑡

0.4𝑇𝑇𝑉𝑉𝑉𝑉1
� −

1� 0.6𝑇𝑇𝑉𝑉𝑉𝑉1  

We start by looking at 𝑉𝑉𝑉𝑉1 and task 𝜏𝜏1,1 .  We want to find 
the maximum 𝑇𝑇𝑉𝑉𝑉𝑉1 such that;  

 
𝑟𝑟1,1 = 𝑓𝑓−1�𝑅𝑅1,1,𝑇𝑇𝑉𝑉𝑉𝑉1 , 0.4𝑇𝑇𝑉𝑉𝑉𝑉1� ≤ 𝑇𝑇1,1  

 
𝑅𝑅1,1 = 𝐶𝐶1,1 , since τ1,1 has the highest priority in program one.  

Therefore, we get the equation 
 

1.2 𝑇𝑇𝑉𝑉𝑉𝑉1 + 2 + �� 2
0.4𝑇𝑇𝑉𝑉𝑉𝑉1

� − 1� 0.6𝑇𝑇𝑉𝑉𝑉𝑉1 = 16, 

 
which gives 𝑇𝑇𝑉𝑉𝑉𝑉1 = 11.7 and  𝐶𝐶𝑉𝑉𝑉𝑉1 = 0.4 ∗ 11.7 = 4.68. 

The first execution period will, in the worst-case, start at time 
2(𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1) = 1.2𝑇𝑇𝑉𝑉𝑉𝑉1 = 14.  Since 𝑇𝑇1,1 = 16 and 𝐶𝐶1,1 =
2 we see that 𝜏𝜏1,1 will execute two times back-to-back in this 
interval, i.e., after the first execution of 𝜏𝜏1,1  it will be released 
again at time 16.  Consequently, 𝜏𝜏1,2  cannot start executing until 
time 18.  The first execution period of 𝑉𝑉𝑉𝑉1 will end at 2𝑇𝑇𝑉𝑉𝑉𝑉1 −
𝐶𝐶𝑉𝑉𝑉𝑉1 = 1.6 𝑇𝑇𝑉𝑉𝑉𝑉1 = 1.6 ∗ 11.7 = 18.7.  Since 𝐶𝐶1,2 = 1, it 

cannot complete during the first period of 𝑉𝑉𝑉𝑉1.  The second 
period of 𝑉𝑉𝑉𝑉1 starts at 3𝑇𝑇𝑉𝑉𝑉𝑉1 − 2𝐶𝐶𝑉𝑉𝑉𝑉1 = 2.2 𝑇𝑇𝑉𝑉𝑉𝑉1 = 2.2 ∗
11.7 = 25.7 which is after the deadline of τ1,2 (𝑇𝑇1,2 = 24).  
Task τ1,3 will also miss its deadline.  In [2] the authors looked 
at this task set and found that 10.8 is the largest period that τ1,2 
can tolerate and that 10 is the largest period that  τ1,3 can 
tolerate, when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4.  This means that the 
maximum period 𝑇𝑇𝑉𝑉𝑉𝑉1 that will guarantee that all three tasks 
will meet their deadlines is 10 when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4 . 

For  𝑉𝑉𝑉𝑉2, with 𝐶𝐶𝑉𝑉𝑉𝑉2 = 0.3𝑇𝑇𝑉𝑉𝑉𝑉2, the inverse function in 
Equation (5) becomes 

 
𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉2 , 0.3𝑇𝑇𝑉𝑉𝑉𝑉2�

= 1.4𝑇𝑇𝑉𝑉𝑉𝑉2 + 𝑡𝑡 + ��
𝑡𝑡

0.3𝑇𝑇𝑉𝑉𝑉𝑉2

� − 1� 0.7𝑇𝑇𝑉𝑉𝑉𝑉2 

 
By using the method above, we get 𝑇𝑇𝑉𝑉𝑉𝑉2 = 19.28, and thus 

𝐶𝐶𝑉𝑉𝑉𝑉2 = 0.3 ∗ 19.28 = 5.78 which makes all tasks in 𝑉𝑉𝑉𝑉2  meet 
their deadline when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.3.  

We now use our method where we consider all VMs.  We are 
again using fixed priorities, and the examples in tables 1 and 2.  
Program one is scheduled on 𝑉𝑉𝑉𝑉1, and we now know that 𝑉𝑉𝑉𝑉1  
has the highest priority.  Therefore, we use the inverse function 
in Equation (11) to calculate the maximum 𝑇𝑇𝑉𝑉𝑉𝑉1 such that we 
know that task τ1,1 meets its deadline. 

𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉1 , 0.4𝑇𝑇𝑉𝑉𝑉𝑉1�

= 0.6𝑇𝑇𝑉𝑉𝑉𝑉1 + 𝑡𝑡 + ��
𝑡𝑡

0.4𝑇𝑇𝑉𝑉𝑉𝑉1

� − 1� 0.6𝑇𝑇𝑉𝑉𝑉𝑉1 

 
We want to find the maximal 𝑇𝑇𝑉𝑉𝑉𝑉1 such that  𝑟𝑟1,1 =

𝑓𝑓−1�𝑅𝑅1,1,𝑇𝑇𝑉𝑉𝑉𝑉1 , 0.4𝑇𝑇𝑉𝑉𝑉𝑉1� ≤ 𝑇𝑇1,1 . 
Note that 𝑅𝑅1,1 = 𝐶𝐶1,1 , since 𝜏𝜏1,1 has the highest priority in 

program one. 

From this we get  0.6𝑇𝑇𝑉𝑉𝑉𝑉1 + 2 + �� 2
0.4𝑇𝑇𝑉𝑉𝑉𝑉1

� − 1� 0.6𝑇𝑇𝑉𝑉𝑉𝑉1 =

16. 
From this we get 𝑇𝑇𝑉𝑉𝑉𝑉1 = 23.33 . If we have a period of 23.33 

we get 𝐶𝐶𝑉𝑉𝑉𝑉1 = 0.4 ∗ 23.33 = 9.33.  The first execution period 
𝐶𝐶𝑉𝑉𝑉𝑉1  will in the worst-case start at time at 𝑇𝑇𝑉𝑉𝑉𝑉1 − 𝐶𝐶𝑉𝑉𝑉𝑉1 = 14 
and it will end at 𝑇𝑇𝑉𝑉𝑉𝑉1 = 23.33.  Since T1,1 = 16 and C1,1 = 2 
we see that τ1,1 will execute two times back-to-back in this 
interval, i.e., after the first execution of τ1,1 from 14 to 16, and 
task τ1,1 will be released again at time 16 and execute from 16 
to 18.  Since C1,2 = 1 and τ1,2 = 24, τ1,2 will execute from 18 
to 19.  It is clear that τ1,3 will also execute in the first cycle from 
19 to 23, since C1,3 = 4.  It is thus clear that all tasks in 𝑉𝑉𝑉𝑉2 will 
meet their deadlines for 𝑇𝑇𝑉𝑉𝑉𝑉1 = 23.33  when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4. 

We now do the same thing for 𝑉𝑉𝑉𝑉2.  𝑉𝑉𝑉𝑉2 has the second 
highest priority, and may be interrupted by 𝑉𝑉𝑉𝑉1.  We use the 
inverse function in Equation (15), and 𝐶𝐶𝑉𝑉𝑉𝑉2 = 0.3𝑇𝑇𝑉𝑉𝑉𝑉2 .  The 
worst-case response time (see Equation (17)) 𝑟𝑟2,1 =
𝑓𝑓−1�𝑅𝑅2,1,𝑇𝑇𝑉𝑉𝑉𝑉2 ,𝐶𝐶𝑉𝑉𝑉𝑉2 ,𝑅𝑅𝑉𝑉𝑉𝑉2� ≤ 𝑇𝑇2,1 = 28  (N.B. 𝑅𝑅2,1= 𝐶𝐶2,1). 

With 𝑅𝑅𝑉𝑉𝑉𝑉2 =   𝐶𝐶𝑉𝑉𝑉𝑉2 + �𝑅𝑅𝑉𝑉𝑉𝑉2
𝑇𝑇𝑉𝑉𝑉𝑉1

� 𝐶𝐶𝑉𝑉𝑉𝑉1 , and 𝐶𝐶𝑉𝑉𝑉𝑉2 = 0.3𝑇𝑇𝑉𝑉𝑉𝑉2 we 

get 𝑅𝑅𝑉𝑉𝑉𝑉2 =   0.3𝑇𝑇𝑉𝑉𝑉𝑉2 + �𝑅𝑅𝑉𝑉𝑉𝑉2
23.33

�9.33.  By using our formulas we 
see that 𝑟𝑟2,1 = 28 for 𝑇𝑇𝑉𝑉𝑉𝑉2  = 25.24, i.e., this is the maximum 
period for 𝑉𝑉𝑉𝑉2 that task τ2,1 can tolerate, 𝐶𝐶𝑉𝑉𝑉𝑉2 = 7.57, and 
𝑅𝑅𝑉𝑉𝑉𝑉2 = 16.9.  The first execution period 𝐶𝐶𝑉𝑉𝑉𝑉2  will in the worst-
case start at time 𝑇𝑇𝑉𝑉𝑉𝑉2 − 2𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2 = 27 and it will end at 
𝑇𝑇𝑉𝑉𝑉𝑉2−𝐶𝐶𝑉𝑉𝑉𝑉2 + 𝑅𝑅𝑉𝑉𝑉𝑉2 = 34.57.  Since 𝑇𝑇2,1 = 28 and 𝐶𝐶2,1 = 1 we 
see that τ2,1 will execute two times back-to-back in this interval, 
i.e., after the first execution of τ2,1 from 27 to 28, it will be 
released again at time 28 and executes from 28 to 29.  Since 
𝐶𝐶2,2 = 1 and 𝑇𝑇2,2 = 34, τ2,2 will execute from 29 to 30.  It is 
clear that τ2,3  will also execute in the first cycle from 30 to 32 
since 𝐶𝐶2,3 = 2 and 𝑇𝑇2,3 = 38.  It is thus clear that all tasks in 
𝑉𝑉𝑉𝑉2 will meet their deadlines.  As shown in the example, the 
method that looks at all VMs, gives longer periods than the 
method that takes each VM individually, e.g., 𝑇𝑇𝑉𝑉𝑉𝑉1increases 
from 10 to 23.33 and 𝑇𝑇𝑉𝑉𝑉𝑉2 increases from 19.28 to 25.24.  

Figures 13(a), (b), and (c) show the values that 𝑇𝑇𝑉𝑉𝑉𝑉 can take 
with respect to different values of 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖/𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 .  Pessimistic 
means that we treat each VM in isolation, whereas optimistic 
means that we considered all VMs.  The detailed example above 
is extended below; we calculate the maximal 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  for each of 
the ni tasks in the program, such that 𝑟𝑟𝑖𝑖,𝑗𝑗 ≤ 𝑇𝑇𝑖𝑖,𝑗𝑗 for 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 = 𝑢𝑢𝑢𝑢𝑉𝑉𝑉𝑉𝑖𝑖  
(u is the 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖/𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  value that we consider, i.e., the values on the  
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 Figure 13(a):  𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄  versus minimum of the max  𝑇𝑇𝑉𝑉𝑉𝑉1 , (b) 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄  versus minimum of the max 𝑇𝑇𝑉𝑉𝑉𝑉2  when   𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ =

0.3, (c)  𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄  versus minimum of the max 𝑇𝑇𝑉𝑉𝑉𝑉2  when 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4. 
 
 
x-axis) and then we choose the shortest of these ni values on 
𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 .  We call this value the minimum of the maximum (min 
max) 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 .  Figure 13 (a) shows (min max) 𝑇𝑇𝑉𝑉𝑉𝑉1  as a function 
of 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ , the detailed example above corresponds to the 
value 0.4 on the x-axis. 

If we consider the case where we have knowledge about one 
VM only, we have to make a pessimistic assumption, we see 
that 𝑇𝑇𝑉𝑉𝑉𝑉1  is shorter than the case when we have knowledge of 
all VMs, i,e., the optimistic case.  

Figures 13(b) and (c) plot 𝑇𝑇𝑉𝑉𝑉𝑉2 versus 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄  for 
𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.3 and  𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ = 0.4, respectively, (the 
pessimistic values are not affected by 𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ , and are thus 
the same in both Figures).  The detailed example above 
corresponds to the value 0.3 on the x-axis in Figure 13(c).  The 
resource allocated to 𝑉𝑉𝑉𝑉2 should be less or equal to 1 −
𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1⁄ , since (𝐶𝐶𝑉𝑉𝑉𝑉1 𝑇𝑇𝑉𝑉𝑉𝑉1)⁄ + (𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2)⁄  cannot  
 

 

exceed 1.  
It may seem counter intuitive that the period 𝑇𝑇𝑉𝑉𝑉𝑉2  of the 

optimistic case may decrease when we increase 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ .  
The reason for this is that when we increase 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄ , then 
𝐶𝐶𝑉𝑉𝑉𝑉2  also increases, and this affects 𝑅𝑅𝑉𝑉𝑉𝑉2 .  When 
𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄  goes from 0.4 to 0.5, then 𝑅𝑅𝑉𝑉𝑉𝑉2 will increase since 
𝐶𝐶𝑉𝑉𝑉𝑉1will interfere two times since 𝑅𝑅𝑉𝑉𝑉𝑉2 ≥  𝑇𝑇𝑉𝑉𝑉𝑉1   (remember 

𝑅𝑅𝑉𝑉𝑉𝑉2 =   𝐶𝐶𝑉𝑉𝑉𝑉2 + �𝑅𝑅𝑉𝑉𝑉𝑉2
𝑇𝑇𝑉𝑉𝑉𝑉1

� 𝐶𝐶𝑉𝑉𝑉𝑉1).  

In the optimistic case we use the (safe but actually somewhat 
pessimistic) assumption that in the worst-case 𝑉𝑉𝑉𝑉2  may not 
start running until 𝑅𝑅𝑉𝑉𝑉𝑉2– 𝐶𝐶𝑉𝑉𝑉𝑉2  time units after the release.  To 
compensate for the double interference from 𝐶𝐶𝑉𝑉𝑉𝑉1 , 
𝑇𝑇𝑉𝑉𝑉𝑉2 decreases when 𝐶𝐶𝑉𝑉𝑉𝑉2 𝑇𝑇𝑉𝑉𝑉𝑉2⁄  increases from 0.4 to 0.5 in 
Figure 13 (b).  The drops of 𝑇𝑇𝑉𝑉𝑉𝑉2 in Figure 13 (c) are due to the 
same effect. 
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7 Simulation 
 
The scheduling of tasks inside each VM uses RMS.  We 

consider 8 programs that run in one VM each.  Each program is 
a task set of 10 tasks.  Tasks periods are randomly generated 
with a uniform distribution.  We assume that the average task 
periods are not the same in all programs, and we generated 
random periods for the intervals [200, 800], [300, 900], [400, 
1000],…, [900, 1500] for tasks inside 𝑉𝑉𝑉𝑉1, 𝑉𝑉𝑉𝑉2,…, 𝑉𝑉𝑉𝑉8 
respectively.  We see that task periods overlap and we sorted the 
VMs in increasing average period order.  Inspired by the well-
known RMS algorithm, we decided to use the average periods 
as the basis for assigning static priorities to VMs, i.e. 𝑉𝑉𝑉𝑉1 has 
the highest priority and 𝑉𝑉𝑉𝑉8 has the lowest priority.  We 
simulated four cases, case 1 with one VM, case 2 with two VMs, 
case 3 with four VMs and case 4 with eight VMs. 

Each case is simulated for different total utilizations U [0.1, 
0.2, …, 0.8]; the utilization is for the entire set of VMs in the 
simulation, and each VM has the same utilization.  For example, 
if we have two VMs and a utilization of 0.6, then VMs equally 
share this utilization, i.e., each VM has a total utilization of 0.3.  
When we have total utilization of a VM, we distribute this total 
utilization to the 10 tasks inside that VM using the UniFast 
algorithm [3].  Each task’s execution 𝐶𝐶𝑖𝑖,𝑗𝑗 is then obtained by 
multiplying the utilization of the task with the task’s period.  

Each VM will get a period that is half of the shortest period 
of any task in that VM, which seems to be a reasonable heuristic.  
The hypervisor will assign a priority to each VM based on the 
VM period length, the shorter the length the higher the priority.  
Thereafter, it will find a 𝐶𝐶𝑉𝑉𝑉𝑉 that makes the task set schedulable 
using Equation (5) for the pessimistic case, and Equation (21) 
for the optimistic case, or Equation (24) if overhead is included.  
The simulation is done for the pessimistic and the optimistic 
methods.  We repeated each unique case 20 times to be able to 
calculate average values and standard deviations, e.g., one 
unique case is 4 VMs and a total utilization of 0.4, another one 
unique case is 4 VMs and a total utilization of 0.6.  We used the 
MATLAB scheduling toolbox TORSCHE (Time Optimization 
of Resources, SCHEduling) in our simulations [11, 28]. 

We repeated the simulation for different overhead values (X 
values) X= [0,1,2,…,9], zero means the absence of overhead and 
the results are presented in Figure 15.  Figures 14(a,b,c,d) show 
the 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄  versus total task utilization and the standard 
deviation of 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄ .  The figures show that total 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄  
increases as the number of VMs increases.  These figures also 
show that the optimistic method performs better than the 
pessimistic method for all cases.  Figure 15 shows that the 
impact of overhead becomes larger when there are more VMs, 
e.g., the slope in the overhead weight direction of the planes in 
Figure 15 is larger for the cases with 4 and 8 VMs compared to 
the cases with only 1 or 2 VMs.  The reason for this is that low 
priority VMs will suffer from more VM context switches  
 

 

compared to high priority VMs (see Figure 10). 
 

8 Conclusions 
 
In this paper we have extended previous results on two-level 

(sometimes called hierarchical) scheduling of virtual machines 
(VMs).  Previous studies have considered each VM in isolation.  
Our contribution is that we have taken a holistic approach and 
included the entire work-load consisting of k VMs in our 
method.  A simulation study shows that our approach makes it 
possible to guarantee real-time response requirements for more 
cases (higher loads) compared to the previous approach (where 
each VM is analyzed in isolation). 

Whether the overhead is accounted for or ignored; we have 
defined a function 𝑓𝑓−1�𝑡𝑡,𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 ,𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 ,𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖� that returns the 
maximum (worst-case) wall clock time that is needed in order 
to guarantee that 𝑉𝑉𝑉𝑉𝑖𝑖 has executed at least t time units. 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  is 
the period of 𝑉𝑉𝑀𝑀𝑖𝑖, 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  is the time 𝑉𝑉𝑉𝑉𝑖𝑖 has to execute each 
period, and 𝑅𝑅𝑉𝑉𝑉𝑉𝑖𝑖 denotes the worst-case response time of 𝑉𝑉𝑉𝑉𝑖𝑖, 
i.e., the maximum time it may take until 𝑉𝑉𝑉𝑉𝑖𝑖 has executed 
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖  time units after a release.  Each 𝑉𝑉𝑉𝑉𝑖𝑖, (1 ≤ 𝑖𝑖 ≤  𝑘𝑘) runs a 
real-time program that consists of 𝑛𝑛𝑖𝑖 tasks 𝜏𝜏𝑖𝑖,𝑗𝑗 (1 ≤  𝑗𝑗 ≤  𝑛𝑛𝑖𝑖), 
i.e., 𝜏𝜏𝑖𝑖,𝑗𝑗 denotes task j in 𝑉𝑉𝑉𝑉𝑖𝑖.  Each task 𝜏𝜏𝑖𝑖,𝑗𝑗 is defined by its 
worst-case execution time 𝐶𝐶𝑖𝑖,𝑗𝑗 and period 𝑇𝑇𝑖𝑖,𝑗𝑗.  For a fixed 
𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

⁄  our function and the method described here make it 
possible to find a maximal period 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖  for 𝑉𝑉𝑉𝑉𝑖𝑖 such that tasks 
meet their deadlines.  Furthermore, we can also use our function 
and method for finding the minimum 𝐶𝐶𝑉𝑉𝑉𝑉𝑖𝑖 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖

⁄  given a 𝑇𝑇𝑉𝑉𝑉𝑉𝑖𝑖 , 
such that all tasks meet their deadlines. 

We have included a detailed example that explains the 
reasons why our holistic method (called optimistic method in 
the paper) performs better than the previous approach that 
considered each VM in isolation (called pessimistic method in 
the paper).  This quantifies how much the optimistic method 
saves resources than the pessimistic method.  

If we do not consider context switching overhead, the 
minimum resource utilization is trivially obtained when the 
period of each VM is infinitely small.  Having infinitely small 
VM periods is of course not realistic, and to be able to calculate 
the real optimal length of VM periods we have introduced an 
overhead model.  Simulations show (and quantify) that the 
context switching overhead becomes more significant when 
many VMs share the same hardware resource. 
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Figure 14(a): 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄  versus Total utilization for 1 VM,  (b) 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄  versus Total utilization for 2 VMs,  (c) 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄  versus 

Total utilization for 4 VMs,  (d) 𝐶𝐶𝑉𝑉𝑉𝑉 𝑇𝑇𝑉𝑉𝑉𝑉⁄  versus Total utilization for 8 VMs 
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Abstract 

 
Brain tumor segmentation from Magnetic Resonance 

Imaging (MRI) is an important step toward surgical planning, 
treatment planning and monitoring of therapy.  However, 
manual tumor segmentation commonly used in clinical 
practice is time consuming and challenging.  Furthermore, 
none of the existing automated methods are highly robust, 
reliable, and efficient in a clinical setting.  We present a 
segmentation technique named Algorithm using Symmetry 
Line and Active Contour (ASLAC).  ASLAC has several 
advantages:  (a) MRI image segmentation is performing 
automatically.  (b) It exploits approximate left-right symmetry 
of the brain, (c) No preprocessing, such as intensity 
standardization or noise removal, is required by our algorithm, 
(d) It requires no labeled image data, nor any training, (e) It 
does not require image registration, (f) It can be implemented 
in real-time, (g) It can detect multiple tumors if tumor is 
fragmented into multiple parts of right/left side.  Measured 
performance of ASLAC technique has improvement in terms 
of MRI image quality as compared to Chan-Vese [2] and 
HASA [19]. 

Key Words:  MRI images, images segmentation, brain 
tumor segmentation, symmetry and active contour techniques, 
and image filters. 
 

1 Introduction 
 

Each year, more than 190,000 people in the United States 
and 10,000 people in Canada are diagnosed with a brain tumor.  
Of these, over 40,000 are primary brain tumors.  In the United 
                                                           
* Department of Computer Science.  Email: 
mubashar.chaudary@gmail.com, jawadkazmi@ciit.net.pk. 
† Department of Information Science, College of Computing Sciences 
and Engineering.  Email: kalimuddinqureshi@gmail.com, 
z.almeraj@gmail.com. 

States, the overall incidence of all primary brain tumors is 14.1 
per 100,000 people per year.  Primary brain tumors are the 
leading cause of solid tumor cancer deaths in children under 
the age of 20.  The National Brain Tumor Foundation (NBTF) 
for research in the United States estimates the death of 13,000 
patients while 29,000 undergo primary brain tumor diagnosis 
every year [20].  The detection of brain and tumor tissue in 
Magnetic Resonance (MR) images and Computed 
Tomography (CT) scan images has been an active research 
area.  Brain image segmentation from MRI images is 
problematical and challenging, but its precise segmentation is 
necessary for tumor detection and classification [14].  MRI’s 
are the most efficient imaging technique used for early 
detection of abnormalities in the brain. 

Today MRI brain tumor detection has significant 
importance. Doctors and radiologists can miss the abnormality 
due to inexperience in the field of cancer or tumor detection.  
The pre-processing is the most important step in MRI brain 
image analysis due to poor captured image quality.  Pre-
processing is necessary to correct and adjust the image for 
further study and processing.  Different types of filtering 
techniques are available for pre-processing.  These filters are 
normally used to improve the image quality, suppress the 
noise, preserves the edges in an image, enhance and smoothen 
the image.  For this purpose, median, adaptive median, average 
or mean, and wiener filter used for MRI brain image pre-
processing.  

Brain tumor segmentation consists of separating the 
different tumor tissues (solid or active tumor, edema, and 
necrosis) from normal brain tissues: gray matter (GM), white 
matter (WM), and cerebrospinal fluid (CSF).  In brain tumor 
studies, the existence of abnormal tissues may be easily 
detectable most of the time.  However, accurate and 
reproducible segmentation and characterization of 
abnormalities are not straightforward.  In the past, many 
researchers have made significant survey in the field of 
medical imaging, soft computing and brain tumor 
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segmentation [1, 12, 21].  Both semiautomatic and fully 
automatic methods have been surveyed in [12].  Clinical 
acceptance of segmentation techniques has depended on the 
simplicity of the segmentation, and the degree of user 
supervision.  Interactive or semiautomatic methods are likely 
to remain dominant in practice for some time, especially in 
these applications where erroneous interpretations are 
unacceptable.  We have been studying MRI/MRA imaging 
[10, 16, 18] and the work presented in this paper is an 
extension of our paper published in [19].  

A healthy brain has a strong sagittal symmetry that is 
weakened by the presence of tumor.  The comparison between 
the healthy and ill hemisphere, considering that tumors are 
generally not symmetrically placed in both hemispheres, was 
used to detect the anomaly.  Supervised, unsupervised and 
registration based techniques required prior knowledge and 
user interaction for segmentation [19] but we have proposed a 
solution using symmetry and active contour that produce better 
results than above discussed techniques which does not require 
prior knowledge and user interaction.  

The rest of the paper is organized as follows, in Section 2, 
we briefly describe classification of brain tumor image 
segmentation techniques.  In Section 3, we describe the related 
work, in Section 4, we presented HASA and ASLAC proposed 
scheme.  The measured results are outlined in Section 5 and 
discussion on results is described in Section 5.  Section 6 
concludes the paper. 

 
2 Brain Tumor Image Segmentation 

Methods Classification 
 
 Brain tumor segmentation methods can be classified into 
three categories according to the degree of required human 
interaction as described [5] manual segmentation, 
semiautomatic segmentation, and fully automatic 
segmentation.  In the section below we describe the advantages 
and limitations of category.  
 
2.1 Manual Segmentation 

 
In manual segmentation, human experts 

(radiologists/anatomists/trained technologists) not only make 
use of the information presented in the image but also make 
use of additional knowledge such as anatomy.  Manual 
delineation requires software tools with sophisticated graphical 
user interfaces to facilitate drawing regions of interest and 
image display.  In practice, the selection of the tumor region, 
which is the region of interest (ROI), is a tedious and time-
consuming task.  If the person drawing the ROI is not a 
radiologist/anatomist/trained technologist who is well versed 
with that brain anatomy, it will most likely yield poor 
segmentation results.  The task of marking the tumor regions 
slice by slice sometimes limits the human rater’s view and 
generates jaggy images.  As a result, the segmented images are 
less than optimal showing a “stripping" effect [15].  

2.2 Semiautomatic Segmentation 
 

In semiautomatic brain tumor segmentation, the intervention 
of a human operator is often needed to initialize the method, to 
check the accuracy of the result, or even to manually correct 
the segmentation result.  Most of the current research is 
targeted at semiautomatic segmentation of brain tumors with 
the intention of having the least human interaction possible.  
According to [5], the main components of an interactive brain 
tumor segmentation method are the computational part, the 
interactive part, and the user interface.  The computational part 
corresponds to one or more pieces of program capable of 
generating a delineation of the tumor given some parameters.  
The interactive part is responsible for mediating information 
between the user and the computational part.  It translates the 
outcome produced by the computational part into visual 
feedback to the user and the data input by the user into 
parameters for the program.  
 
2.3 Fully Automatic Segmentation 

 
In fully automatic methods, the computer determines the 

segmentation of tumor without any human interaction.  Fully 
automatic methods generally incorporate human intelligence 
and prior knowledge in the algorithms, and are usually 
developed making use of soft computing and model-based 
techniques such as deformable models.  The study of 
automatic brain tumor segmentation represents [7, 22] an 
interesting research issue in Machine Learning and Pattern 
Recognition, since it represents a problem that humans can 
learn to do effectively.  However, developing highly accurate 
automatic methods remains a challenging problem.  For 
automatic segmentation, it is essential to have a model that not 
only describes the size, shape, location and appearance of the 
tumor but that also permits expected variations in these 
characteristics.  However, no completely automatic 
segmentation algorithm has yet been adopted in the clinic 
environment.  

 
3 Review of Current Generation Tumor Image 

Segmentation Techniques 
 
The segmentation of brain tumor images is a challenging 

task for several reasons.  Firstly, high-grade gliomas usually 
exhibit unclear and irregular boundaries with discontinuities.  
Secondly, after contrast injection, contrast uptake and image 
acquisition time can vary, which changes tumor appearance 
significantly however, the non-imaginable component of the 
tumor should be handled by segmentation algorithms.  In 
recent years a great effort of the research in the field of 
medical imaging was focused on brain tumor segmentation. 

Image 4 segmentation refers to the process of partitioning an 
image into groups of pixels that are homogeneous with respect 
to some criterion.  The result of segmentation is the splitting 
up of the image into connected areas.  Thus, segment is 
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concerned with dividing an image into meaningful regions.  
Here in this section, we will describe the efforts of other 
researchers in tumor segmentation techniques such as detection 
of brain tumor by wavelet based image fusion, fuzzy symmetry 
based genetic clustering technique, wavelet and FCM 
algorithm, random walk, modified kernelized fuzzy c-mean, 
multiple kernel fuzzy c-means, neural network used for image 
segmentation, and symmetric technique. 

 
3.1 Detection of Brain Tumor based on Wavelet Based 

Image Fusion 
 

The objective of image fusion is to combine information 
from multiple images of the same scene.  The result of image 
fusion is a new image which is more suitable for human and 
machine perception or further image-processing tasks such as 
segmentation, feature extraction and object recognition.  
Different fusion methods have been proposed in literature, 
including multi-resolution analysis.  In [7], wavelets based 
image fusion algorithm was applied to the MR images and CT 
images, used as primary sources to extract the redundant and 
later information to enhance the brain tumor detection in the 
resulting fused image.  

In [6], an image fusion technique was effectively used to 
detect the tumor in a mixture of complex backgrounds. Image 
fusions were applied by merging multiple images resulting into 
precise information about the size, shape and placement of the 
tumor.  

 
3.2 Fuzzy Symmetry Based Genetic Clustering Technique 

for MRI Brain Image Segmentation 
 

In [11], an automatic segmentation technique of 
multispectral image of the brain is proposed using a fuzzy 
symmetry based on genetic clustering.  A developed fuzzy 
point symmetry based cluster validity index, fuzzy symmetry 
index, was used to measure ‘goodness’ of the corresponding 
partition.  The genetic fuzzy clustering technique evolves the 
number of clusters present in the data set automatically.  The 
proposed method was better when compared with Fuzzy C-
means.  This method does not require any priority specification 
of the number of clusters present in the data set.  The obtained 
results are compared with the available ground truth 
information.  This method segments the membership values of 
points to different clusters which are calculated by the point 
symmetry based distance rather than the Euclidean distance.  
This method is used to automatically develop the proper 
clustering of all types of clusters, both convex and non-convex, 
which have some symmetrical structures. 

 
3.3 Wavelet and FCM Algorithm for MRI Brain Image 

Segmentation 
 

In [4, 9], Fuzzy C-Means (FCM) Clustering and wavelet 
decomposition for the feature extraction and feature vector are 
treated as input to FCM.  This method is called Wavelet Fuzzy 
Fuzzy C-Means (WFCM) and is used to segment the tumor 
 

from MRI. WFCM involves two stages, one is feature 
extraction and the other is clustering.  The feature extraction 
was processed by using multilevel 2D wavelet decomposition 
features.  Extracted features from wavelet decomposition are 
forwarded to FCM for the purpose of clustering.   
 
3.4 Random Walk MRI Brain Image Segmentation 
 
 Random walk is defined as discrete random motion in which 
a particle repeatedly moves a fixed distance up, down, left and 
right.  This is a region growing based image segmentation 
method based on random walk of a particle.  In this method, 
the initial position at which a particle is initially present is 
known as seed point movement from one position to another 
method based on the probability calculations.  This method has 
three pragmatic properties that are, weak boundary detection, 
noise robustness and the assignment of ambiguous regions.  
Seed point selection is very important for random walk, after 
the seed point has been detected random walk methods 
performed better segmentation [13]. 
 
3.5 Modified Kernelized Fuzzy C-Means (MKFCM) 

Segmentation for MRI Images 
 
Image topology and statistical parameters of a window 

around the pixel are also considered to modify the algorithm.  
MKFCM was directly applied to image segmentation like 
FCM.  The MKFCM algorithm was implemented for MRI 
image segmentation [8]. 

 
3.6 Multiple Kernel Fuzzy C-Means (MKFC) 

 
The fuzzy c-means is a popular soft clustering method.  

Applying kernel behavior, the kernel fuzzy c-means algorithm 
attempts to address the problem by mapping data with 
nonlinear relationships to correct feature spaces.  Kernel 
combination, or choice, is critical for efficient kernel 
clustering. Unfortunately, for most applications, it is not easy 
to find the right combination [3].  

 
3.7 Neural Network Based Methods 

 
Artificial Neural Networks (ANNs) were developed for a 

variety of applications such as function approximation, feature 
extraction, optimization, pattern recognition and classification.  
Mostly, they have been developed for image enhancement, 
segmentation, registration, feature extraction, and object 
recognition.  From the above applications, image segmentation 
is more important and a crucial step for high level image 
processing such as detection of tumors in medical images.  
Hopfield, Back Propagation Networks (BPN), Self-Organized 
Map (SOM), Multi-Layer Perceptron (MLP), Radial Basis 
Function (RBF), Adaptive Resonance Theory (ART), Cellular, 
and Pulse-Coupled neural networks have been used for image 
segmentation [17].  
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3.8 Symmetry Imaging 
 

Symmetry is an important characteristic to identify the 
structure of the object and has been used in many domains.  In 
the medical imaging field symmetry was mainly applied to the 
brain imaging where a healthy brain has symmetry in the right 
and the left side of a brain image.  Symmetry imaging has 
many advantages over other imaging techniques for example; 
this technique has not required preprocessing, labeled image 
data, training and registration as other techniques are required.  
Symmetry based brain tumor investigation was carried out in 
[19].   

 
4 Hybrid Symmetry Approaches [19] 

 
The proposed technique is an extension of our research 

paper that was published in [19].  A flowchart of HASA 
(Hybrid Algorithm using Symmetric and Active contour) is 
shown in Figure 1 and in complete detail [19] for the readers  

understanding. 
 

4.1 Proposed Algorithm Using Symmetry Line and Active 
Contour (ASLAC) 
 

In ASLAC we cut the image into two parts left and right 
along the symmetry line.  Compute the reflection image of left 
or right part opposite of tumor side i.e., (if tumor is present on 
right side take reflection of left side and if tumor is present on 
left side then take reflection of right side).  In the next step we 
find the difference of the tumor side and reflection image.  We 
apply the threshold value and get the binary image on the 
newly created image.  We map the image on the original left or 
right side of the image.  After that we apply an active contour 
and find the boundary of the abnormal region.  The proposed 
ASLAC technique flow chart (shown in Figure 2) and its 
detailed steps are shown in Section 4.1.  The Chan-Vese [2], 
HASA [19] and proposed ASLAC techniques component 
comparison is listed in Table 1. 

 
 

Find the Reflection  Image

Apply some 
morphological 

operation  

Start

Yes

NO

Preprocessing 
Required

Calculate the difference 
between original and 

reflection image

To make boundary of the tumor 
apply active contour on previous 

calculated image 

Make binary image of the 
bounded image 

End

Take input 
MR image 

 

Figure 1:  Flow chart of HASA 
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Get edge map of the image

Apply some morphological 
operation and get image  

Start

Yes

NO

Preprocessing 
Required 

Find symmetry line of 
the image with edge 

map

To make boundary of the tumor 
apply active contour on previous 

calculated image 

Make binary image of 
the bounded image 

End

Divide the image into 
left and right part of the 

symmetry line 

Make binary image of 
the difference image 

Check tumor 
location 

Find difference b/w 
right part and reflection 

of left part 

LeftFind difference b/w 
left part and reflection 

of right part 

Find the product of binary and left or 
right part of the symmetry line  

Right

Take input 
MR image 

 
Figure 2:  Flow chart of ASLAC Algorithm 

 
 

Table 1:  Chan-Vese[2], HASA[19] and proposed ASLAC techniques main component based comparison 
Chan-Vese HASA Proposed ASLAC 
1.  Apply some morpho-

logical operations to 
preprocess the image. 

2.  Apply the active contour 
and segment the tumor 

 

1.  Apply active contour on 
difference of images 
between actual and 
reflection of actual 
image.  

1. Find Symmetry line of image from edge map. 
2.  Divide the image into left and right part of the 

symmetry line. 
3. Find tumor location in left or right part of image. 
4. Find the difference between right/left with reflection 

image of right/left part. 
5. Make binary image of difference. 
6. Apply active contour on only left or right part on which 

side tumor exist.  
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1. Apply morphological operations, like erosion and dilation, if preprocessing needed.  After this optional step let our image be denoted by O(x; y). 

2. Find the edges of the image. 

3. Find the symmetry line with the following ways 

• Find location of 1 from each row in the matrix of edge map image 

• Now calculate the average location of each row 

• Now from these avg values find the line by the formula 

xY βα += ---------- (i) 

Where 

𝛼𝛼 =
∑ 𝑦𝑦𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖2 − ∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 ∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖−1

𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 ) 2
 

 

𝛽𝛽 =
𝑛𝑛∑ 𝑥𝑥𝑖𝑖𝑦𝑦𝑖𝑖 −  ∑ 𝑥𝑥𝑖𝑖 ∑ 𝑦𝑦𝑖𝑖𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1

𝑛𝑛
𝑖𝑖−1

𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖2𝑛𝑛
𝑖𝑖=1 − (∑ 𝑥𝑥𝑖𝑖𝑛𝑛

𝑖𝑖=1 ) 2
 

4. Separate the right and left part along the symmetry line 

• For Left side 

i. Start outer loop 1 to maxcol or maxrow 

ii. Start inner loop 1 to symmetryline 

• Put all the values in new matrix of location outer and inner loop 

• For Right side 

i. Start outer loop 1 to maxcol or maxrow 

ii. Start inner loop symmetryline+1 to end of maxcol or maxrow 

• Put all the values in new matrix of location outer and inner loop 

5. Find the reflection image of both right and left part i.e Right(x,y) and Left(x,y)  which are calculated in step 4 

• If tumor is right side then 

New image= Rightimage – Reflection of  leftimage 

• Else 

New image1= Leftimage – Reflection of  rightimage 

6. Find the  threshold with the formula  

  Avg= max { O(x,y) }*0.25 

7. Now find the mask of  newimage(x,y) or newimage1(x,y) using the threshold value 

If ( N (x,y) or N1(x,y)>avg) 

N (x,y) or N1(x,y)=1 

Else 

 N (x,y) or N1(x,y)=0 

8. Map the mask with original image O(x,y) i.e multiply the mask and original image.  

9. Now find the location of the tumor  

• Find max intensity in the new image 

• Find the locations of max intensity, and apply active contour  
 

Pseudocode of proposed ASLAC Technique 
 

5 Results 
 

We have applied the ASLAC technique on DICOM 
formatted MRI data of 3 different patients.  The specifications 
of all three data sets were the same and are listed in Table 2.  
The investigated original images are shown in Figures 3(a), 
3(b), & 3(c).  The images produced by applying the ASLAC 

technique is shown in Figure 4.  Figure 4(a) is the original 
DICOM image which after morphological pre-processing 
yields the image in Figure 4(b).  Figure 4(c) is the edge map of 
Figure 4(b) after applying canny algorithm.  Figure 4(d) yields 
the image after applying the symmetry line.  Figures 4(e) and 
4(f) is the right and left part of Figure 4(d).  Figure 4(g) is the 
reflection part of Figure 4(f).  Figure 4(h) is the difference of  
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Table 2: Parameter values of MRI images dataset 

Parameters Dataset 1-3 Values 

Magnetic Field Strength 1.5 
File Size 1049472 
Format                                                                 DICOM 
Width 1024 
Height 1024 
Bit Depth 8 
Color Type grayscale 

Modality ‘MR’ 

Samples Per Pixel 1 

Photometric         Interpretation Monochrome2 

Rows: 1024 
Columns 1024 
Pixel Aspect Ratio [2x1 double] 
Bits Allocated 8 
Bits Stored 8 
High Bit 7 
Pixel Representation 0 
Window Center 127.5000 
Window Width 255 

 
 
 

 

    

4(a): Original slice of size 
1024x1024 before 
morphological operation 

 

4(b): After morphological operations 4(c): Edge map of Figure 4b 

    
4(d): Image with symmetry line 4(e): Right part of Figure 4(d) 4(f): Left part of Figure 4(d) 

 
3(a) 

 
3(b) 

 
3(c) 

 
Figure 3:  3(a), 3(b), and 3(c) are original images 
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4(g): Reflection image of figure 4f 4(h): Difference between right part 

and reflection of left part 
4(i): Binary image of figure 4(h) 

   
4(j): Mapping of figure 4i and 4e 4(k): Boundary of the tumor after 

applying the active contour 
4(l): Binary image of figure 4(k) 

 
 

Figures 4(a)-4(l):  Represents the step by step images produced by applying ASLAC technique 
 
 
Figures 4(e) and 4(g).  Figure 4(i) is the binary image of 
Figure 4(h) by applying the threshold formula.  Figure 
4(j) is the product of Figures 4(i) and 4(e).  Figure 4(k) 
yields an image after applying the active contour [2].  Figure 
4(l) depicts the binary image of Figure 4(k).   

 
6 Discussion 

 
By applying Chan Vese algorithm [2] on images 3(a), 3(b) 

& 3(c) the results produced are listed in Figures 5(a), 6(a), 
and 7(a), and by applying HASA [19] the produced images 
are shown in Figures 5(b), 6(b), 7(b).  The segmentation 

quality is improved as compared to the images produce by 
applying Chan-Vese algorithm.  The results produced by 
applying ASLAC technique is shown in Figures 5(c), 6(c), 
and 7(c).  By examining the segmentation quality produced 
by applying Chan-Vese (Figures 5(a), 6(a), 7(a)), HASA 
(Figures 5(b), 6(b), 7(b)), and ASLAC (Figures 5(c), 6(c), 
7(c)), the images produced by applying the ASLAC 
technique has shown improvement.  Each image is improved 
in terms of filtering unwanted information and the contrast 
of tumor region is also improved as seen in Figures 5(c), 
6(c) and 7(c). 

 
 

 

   
(a) Chan-Vese (b) HASA (c) ASLAC 

 
Figure 5:  Images produced by applying Chan-Vese, HASA, EHASA, ASLAC on image data set 1 
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(a) Chan-Vese (b) HASA (c) ASLAC 

 
Figure 6:  Images produced by applying Chan-Vese, HASA, EHASA, and ASLAC on image data set 2 

 

   
(a) Chan-Vese (b) HASA (c) ASLAC 

 
Figure 7:  Images produced by applying Chan-Vese, HASA and ASLAC on image data set 3 

 
 

The images produced by using the ASLAC algorithm are 
better as compare to the Chan-Vese, and HASA, techniques.  
In ASLAC technique, the image is divided into parts and 
applied to the active contour only that part which has a tumor, 
either the left or the right.  So in this way we have a better 
segmentation of the brain tumor and the number of iterations 
are also reduced by half as compared to the Chan-Vese, and 
HASA techniques. 

 
7 Conclusion 

 
The proposed ASLAC technique can identify the 

tumor/abnormality in either the right or the left side and can 
also find more than one tumor.  This technique does not 
require any user interaction and is fully automatic.  The images 
produced by ASLAC have a better result as compared to other 
well-known existing techniques.  One limitation of our 
technique is that it will not produce true results if the tumor is 
present on the symmetry line.  In the future, we will address 
the deficiencies of the ASLAC technique.  
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Abstract 

 
This paper presents a system for projection over a mobile 

region of interest.  The region is supposed to be located on an 
arbitrarily placed planar surface.  The system consists of a 
projector, a laptop and an uncalibrated camera.  Our method is 
based on homography concepts and computes mappings 
between a camera, a projector and the region.  The technique 
excludes calibration parameters of the camera and the 
projector; hence, the intrinsic and extrinsic parameters are 
neither given nor calculated.  The positions of the projector, 
the camera, and the surface are unknown.  For the numerous 
unknowns, we show that each mapping corrected distortion 
can be achieved.  The system is capable of dynamically 
identifying the shape of the region of interest in which 
projection is on, while the region moves with a certain constant 
speed.  Upon a sudden and abrupt motion of the region of 
interest, the projection iteratively adjusts its position until it 
fits the region perfectly.  The system is demonstrated with real 
examples. 

Key Words:  Undistorted projection, uncalibrated camera, 
mobile surface projection, projector-camera system. 

 
1 Introduction 

 
Projector systems are widely used for the purpose of 

entertainment, work, and even as public displays. They often 
retain a few problems; one of the problems is a distorted 
projection. Unless the projector is carefully aligned with 
respect to the display area, the projected image appears 
distorted. The second problem is a fixed projection; the 
projector is unable to project over a mobile surface unless a 
special device is developed that tracks the position and 
orientation of the moving surface.  Such problems may limit 
the application of a projector system. In order to solve this 
problem, a device like a camera can be considered to obtain the 
information of the position and the orientation of the surface. 

                                                           
* E-mail:  mamonaawan@nu.edu.pk. 
† E-mail:  khko@gist.ac.kr. 
 

In this way, we can make the projection system efficient 
enough such that it can form an undistorted projection and 
project the undistorted images over a mobile surface. 

There are several systems for correcting the distortion or the 
keystone problem of a projector as in [12], [14] and [15].  A 
number of systems are also designed for the integration of 
multiple images projected by multiple projectors to form a 
large seamless image as in [2], [3] and [11].  There is another 
research dedicated for the pose estimation of the projector 
using images obtained by a camera using the screen-camera 
homography [9].  Although these systems can provide efficient 
methods for projecting undistorted images on a surface, they 
do not handle dynamic projection.  The dynamic projection 
includes the projection over randomly moving objects or 
region of interests.  Another system is designed using light 
sensors and a frequency variation of the projector light, using a 
complex pre-calibration process, which needs hefty 
calculations and special apparatuses [8].  

There exists another method for calibrating a projector using 
structured light patterns over the screen embedded with light 
sensors.  This approach has two major drawbacks; first, the use 
of light sensors requires other communication modules to 
transmit necessary data to the computer; secondly the system 
needs to recalibrate as the position of the projection surface 
changes.  This recalibration process is done by projecting a 
series of structured light patterns again [7].  Other studies have 
explored tracking techniques of a moving surface for 
projection of content; however, they primarily depend upon 
either electromagnetic sensors or a number of visual based 
tracking systems that add a significant amount of cost, 
infrastructure and complexity to achieve such an effect as done 
in [1] and [13].  Optical and magnetic trackers are used in [1] 
for the tracking of the projectable object while in [13] they 
have used photo-sensing wireless tags such as active radio-
frequency (RF) tags. 

In this paper, we propose a system for projection over a 
mobile region of interest exclusive of such complexities.  Our 
system consists of a laptop connected to a projector and an 
uncalibrated camera independent of any costly sensors and 
trackers for the purpose of mobile projection.  The mobile 
region of interest is supposed to be moving within a planar 

mailto:mamonaawan@nu.edu.pk
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domain, and through an image processing method the mobile 
region is detected and then used as a display region for 
projection.  The image fits the moving region of interest with 
proper alignment, exclusive of any distortion or bleeding.  The 
system is also capable of correcting the keystone distortion, 
given only a display screen is in consideration without any 
mobile region of interest.  Our system excludes hefty 
calculations of calibrations of the camera, as well as the 
projector.  The intrinsic and extrinsic elements of the projector 
and the camera are totally ignored and the process excludes all 
of such relations with these elements. 

 
2 Overall Procedure 

 
The process flow for projection over an arbitrarily placed 

planar surface is shown in Figure 1.  The process starts by 
taking an image of planar surface without any projection over 
it via camera; the planar surface may or may not include the 
region of interest (ROI) at this point.  This image is processed 
to identify the boundary of the planar surface.  As the aspect 
ratio of the length and width of this planar surface is known, 
we can form a homography relation between the camera and 
the planar surface.  We refer to this homography as 𝐻𝐻𝑐𝑐𝑐𝑐 in the 
paper.  

The second process (process 2) in Figure 1 includes 
projecting a source image to determine the transformation 
between the projector domain and the camera domain.  The 
position of the planar surface is assumed to be such that when 
the source image is projected, a certain region of the source 
image is visible over the planar surface.  An image of this 
projection is taken by the camera.  The source image and the 
camera image are then used to formulate a homography 
relation between the projector and the camera, which is 
denoted as 𝐻𝐻𝑝𝑝𝑝𝑝 .  Once these two homographies, i.e., 𝐻𝐻𝑐𝑐𝑐𝑐 and 
𝐻𝐻𝑝𝑝𝑝𝑝 are calculated, we can form a projection over this planar  
 

surface without any distortion. 
The homography relations can be summarized as: 
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and 
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In (1) and (2), (𝑥𝑥𝑝𝑝 ,𝑦𝑦𝑝𝑝 ), (𝑥𝑥𝑐𝑐 ,𝑦𝑦𝑐𝑐 ), and (𝑥𝑥𝑠𝑠 ,𝑦𝑦𝑠𝑠 ) are the 

corresponding points in the projector domain, the camera 
domain, and the planar surface domain, respectively.  The 
homography between two domains 𝐻𝐻𝐷𝐷1𝐷𝐷2  (where “𝐷𝐷1 ” and 
“𝐷𝐷2 ” represent two random domains), is an invertible 3x3 
matrix.  Hence, a relation between the projector and the planar 
surface can be formed using (1) and (2). The effect of 𝐻𝐻𝑐𝑐𝑐𝑐 can 
be excluded from the relation calculated previously, as the 
relation linking the projector and the camera 𝐻𝐻𝑝𝑝𝑝𝑝  is calculated 
using the planar surface amid.  This gives us the relation 
between the projector and the surface as a 3x3 matrix, 
mathematically expressed as: 
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𝑥𝑥𝑝𝑝
𝑦𝑦𝑝𝑝
1
� ≈ 𝐻𝐻𝑐𝑐𝑐𝑐−1 ∗ 𝐻𝐻𝑝𝑝𝑝𝑝 �
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In Equation (3) 𝐻𝐻𝑐𝑐𝑐𝑐−1  represents the inverse of the 

homography 𝐻𝐻𝑐𝑐𝑐𝑐. 
The system then continues and determines if any region of 

interest is present within the planar surface or not.  As shown 
in Figure 2, if the region of interest is absent, then the system 
considers the same surface as a display screen and merely 
 

 

 
Figure 1:  Process flow for projection over arbitrarily placed planar surface 
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Figure 2:  Process flow for projection over mobile ROI in planar surface 

 
 
projects over it.  If the planar surface is moved, the display 
modifies with respect to it as well, up to a certain extent. 

If the region of interest is present, then the system follows 
the process flow presented further in Figure 2.  It determines 
the position and orientation of region of interest in the surface 
domain.  The process begins with application of morphological 
operations over the image that has already planar surface area 
extracted.  Then we extract contours and form a convex hull 
over the contours detected.  Using these contours, we identify 
the shape of the ROI and also form a bounding box to estimate 
and refine its position and orientation in the planar surface.  As 
the original aspect ratio of the ROI is known, so we can form a 
homography 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  for the ROI and planar surface.  The 
expression can be stated as: 

 

 �
𝑥𝑥𝑠𝑠
𝑦𝑦𝑠𝑠
1
� ≈ 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �

𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟
𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟
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Where (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠) and (𝑥𝑥𝑟𝑟𝑟𝑟𝑟𝑟 ,𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟) are the corresponding points in 

the surface domain and the ROI domain respectively.  𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
can be used to determine the exact orientation of the ROI on 
the surface.  The relation between the projection domain and 
the ROI can also be formed by using this homography.  For 
this computation, we modify the previously calculated 
mapping in (3), so the mapping or homography between the 
ROI and a projector can be stated as: 
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 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗ 𝐻𝐻𝑐𝑐𝑐𝑐−1 ∗ 𝐻𝐻𝑝𝑝𝑝𝑝  (6) 

 
Where 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the homography relation between the 

projector and the ROI.  This homography can then be used to 
pre-warp the image to be projected such that it fits the region 

of interest without any distortion or bleeding.  However, 
homography will only give us the true mapping for the ROI, so 
the scale and the correct position should also be considered in 
order to fit the projection correctly without any bleeding. 

 
3 Technical Details 

 
In order to project over the mobile surface, a few 

assumptions are made for our system.  The mobile surface is 
supposed to be any of the three shapes (rectangular, triangular, 
or circular).  It should have a white surface with black 
boundary to simplify identification.  The system is not 
configured for any other shape but a few modifications can 
enable it to recognize other shapes as well.  The shape is 
unknown by the system as a priori but has to be any of the 
above mentioned.  The size of this surface is arbitrary but the 
aspect ratio of the length and width is assumed to be known.  
Only one region of interest can be introduced over the planar 
surface at a time.  The mobile region of interest (ROI) is 
supposed to be moving within a planar surface.  For these 
experiments we have taken a white board (non-reflective type) 
with boundaries marked with black, as a planar surface.  This 
board can also be used as a conventional projector screen; 
however, its dimensions are significantly smaller as compared 
to a conventional projector screen.  The size of screen is 
irrelevant and can be random; however, the aspect ratio of the 
size (length: width) is assumed to be known. 

The tiresome task of calibrating the camera by taking 
pictures of a checkerboard is completely excluded; hence for 
any instance we do not need any intrinsic or extrinsic 
parameters of the camera.  The relative position of the 
projector and the camera does not change once the system has 
started; however, for another instance, the relative position of 
the camera and the projector may vary.  The experiments are 
performed in a projection cubicle that is a dark room with the 
projector being the only light source.  The application is valid  
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Figure 3:  Planar Surface (Board) and the Region of Interest (ROI) within it, as seen by the camera.  Projector (not shown) is 
projecting a black image to represent projectable space.  The visibility of this image is improved for the sake of 
illustration 

 
 
for most of the instances with minor changes in threshold 
values used in the program which can be set manually. 
 
3.1 Homography Calculation 

 
While a projection is viewed via a camera, any point in the 

projector domain can be mapped to a certain point in the 
camera domain.  This mapping from the projected image to the 
captured image or from the captured image to the projected 
image, form a homograph H, a 3x3 matrix.  As for any point in 
a domain we can calculate its corresponding point in the other 
domain as follows: 

 
 (𝑥𝑥,𝑦𝑦) = �𝐻𝐻11𝑥𝑥

′+𝐻𝐻12𝑦𝑦′+𝐻𝐻13
𝐻𝐻31𝑥𝑥′+𝐻𝐻32𝑦𝑦′+𝐻𝐻33

, 𝐻𝐻21𝑥𝑥
′+𝐻𝐻22𝑦𝑦′+𝐻𝐻23

𝐻𝐻31𝑥𝑥′+𝐻𝐻32𝑦𝑦′+𝐻𝐻33
�  (7) 

 
Where (x, y) is a point in a domain and (𝑥𝑥 ′ ,𝑦𝑦′ ) is its 

corresponding point in the other domain.  The parameters 
𝐻𝐻11,…,𝐻𝐻33 are the unknowns to be determined as follows: 

 

 𝐻𝐻 = �
𝐻𝐻11 𝐻𝐻12 𝐻𝐻13
𝐻𝐻21 𝐻𝐻22 𝐻𝐻23
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�  (8) 

 
Although there are 9 unknown parameters, there are only 8 

DOF (degree of freedom) as ∑ 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1.  Hence, only four 
corresponding pairs of points are required, as each point 
provides two constraints.  If four pairs of corresponding points 
are attained, then we can obtain a unique solution for these 
parameters by using a direct linear transformation algorithm 
(DLT).  

3.1.1 Camera-Planar Surface Homography.  In order to 
calculate camera-planar surface homography, the camera 
captures an image of the planar surface.  This image is used to 
detect the boundary of the planar surface and the corners are 
extracted.  The aspect ratio of the surface is already known.  
We compute the maximum length of the surface in the camera 
domain and calculate four corresponding points using the 
known aspect ratio.  These corners are then used to calculate 
the homography “𝐻𝐻𝑐𝑐𝑐𝑐”, between the camera and the surface. 

We can convert each point from the surface domain to the 
camera domain and vice-versa using the expression stated 
previously in (2).  If only a planar surface is provided (a planar 
surface does not have ROI within it), then the system uses the 
surface as a display screen and forms an undistorted projection 
over it.  If the surface is moved up to some extent during this 
projection, the system can modify the projection 
simultaneously to project over it correctly; however, the main 
focus of the system is to project over ROI. 

 
3.1.2 Projector-Camera Homography.  Many techniques 

are followed to form a relation between a projector and a 
camera.  These techniques usually include projecting a series 
of images via the projector and capturing these by the camera.  
The images may contain structured light patterns, AR 
(augmented reality) tags or even calibration grids.  We exclude 
the cumbersome task of projecting a series of images as it 
takes a lot of time for a user, to project at least 10 images in 
the case of structured light and 3 images in the case of AR 
tags.  We have also excluded the projection of calibration grids 
as it incorporates other correspondence techniques as well.  

Our method includes projection of a simple image that can 
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be reproduced without any complex considerations.  The 
image is supposed to have a white rectangle with a black 
background as shown in Figure 4.  It should also have 
dimensions similar to the resolution of the projector, so that the 
projector does not apply any transformation on it before 
projecting it.  Each pixel in the image is supposed to represent 
each pixel in the projector domain. 

The system is capable of camera exposure adjustment and 
the user is also given a provision to adjust the exposure, if 
necessary.  An image of projection is taken by the camera and 
morphological operations are applied over it to extract the 
edges and register contours.  These contours are then 
approximated into another simpler contour using the Ramer-
Douglas-Puecker algorithm [10].  This approximation 

significantly improves the detection of lines in the contour due  
to reduced curves in the contour.  

The lines are detected by applying Hough Lines Transform 
over the approximated contour and then the best fitting lines 
are selected using a minimum least square error computation 
[4].  The lines are used for the calculation of four corners of 
the white rectangle.  These corners are then sorted in the 
clockwise manner and correspond with the points of the source 
image.  The simplicity of the source image provides such 
convenience that we can find corresponding points in the 
source image by merely using a corner extraction algorithm 
and a sorting algorithm.  

These four-point correspondences are enough for the 
calculation of homography 𝐻𝐻𝑝𝑝𝑝𝑝.   

 

 
 
Figure 4:  The source image used for projector-camera homography calculation.  The image dimensions are 1920 by 1080 pixel 

 

 
 

Figure 5: Projection of source image as viewed by the camera.  The region of interest can also be seen in this image.  The presence 
of ROI does not affect the calculation of projector-camera homography 
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Each point in the camera image or domain can be converted 
into the corresponding point in the projector domain using (1). 

 
3.2 Initial Pose Estimation 

 
Now that the system can already map from a projector to a 

camera and the camera to a planar surface, the only 
computation left is to form a mapping between the planar 
surface and the region of interest within it.  For this purpose, 
the system analyzes the same image captured for camera-
planar surface homography calculation.  By applying different 
morphological operations, the boundary of the ROI is stored as 
a contour and approximated into a much simpler contour by 
the Ramer-Douglas-Peucker algorithm.  This approximation 
makes it easy for us to form a better convex hull with the least 
computation time, as the number of vertices is significantly 
reduced by the approximation.  This reduction in the number 
of vertices can be seen in Figure 6.  The approximated contour 
also eliminates the complexity of smaller curves in the convex 
hull to be formed. 

The convex hull is then used to identify the shape of the 
ROI.  The vertices of the convex hull and the interior angles at 
each vertex are calculated along with the calculation of Hu 
Moments [5] of the convex hull.  The number of vertices, 
interior angles at vertices, and Hu moments of the convex hull 
are the three parameters that decide the shape of the ROI.  The 
shape of ROI can either be a rectangle, a triangle or a circle.  
Once the shape of ROI is decided, we form a bounding box 
over the convex hull of ROI.  For the case of circular ROI, we 
form an upright bounding box (un-rotatable), as a rotatable 
bounding box will be redundant in this case.  We form a 
rotatable bounding box for other shapes of ROI. 

The introduction of the bounding box solves a number of  

 

problems for us.  As the convex hull changes with each frame, 
we apply Kalman filter of order 2, over the center and the 
rotation angle of our corresponding bounding box [6].  

The filter avoids all the abrupt changes in the position or the 
rotation of the bounding box and provides a smooth variation 
in both of these values.  Furthermore, the size of convex hull 
also changes as each frame is processed.  This variation in size 
is caused by different miscellaneous effects like intensity 
variation caused by the simultaneous projection.  So, we 
calculate the size of the corresponding bounding box as the 
average of the previously determined sizes along with the 
recent size.  Figures 6 and 7 are excellent examples to 
demonstrate the importance of forming a bounding box over 
the convex hull.  Although, the convex hull in Figure 6 lacks 
one corner completely, the bounding box still manages to 
provide the fourth corner as seen in Figure 7.  The corners of 
this bounding box can then be used to form homography 𝐻𝐻𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  
as explained earlier in (4). 

 
3.3 Image Rendering for Projection 

 
Using the calculated mappings, we can form a pre-warp for 

the image to be projected; however, simply pre-warping the 
image will not be enough.  The process of rendering the image 
starts by scaling the image to be projected, as homography 
does not give us the true scale of the image.  The true scale of 
the image depends on the resolution of the projector, as each 
pixel in the image should light only one pixel in the projector 
domain.  The system then warps the image by the inverse of 
𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  calculated in (6).  The dimensions of the image to be 
projected are kept the same as the resolution of the projector.  
The image is rendered by placing the transformed image at 
such a position 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , that it coincides with the ROI.  The rest  
 

 
 

Figure 6: ROI (rectangular) is being detected in planar-surface.  Contour of ROI (Blue), contour after approximation by Ramer-
Douglas-Peucker algorithm (Red), and convex hull of the approximated contour (Green) can be seen in the image.  The 
image is taken as seen in the planar surface domain 
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Figure 7: The bounding box for ROI (rectangular).  The corresponding contours and convex hull can be seen in Figure 6.  The 
image is shown as seen in planar-surface domain 

 

of the pixels are rendered as black.  
To calculate 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , we take in the position of ROI in planar 

surfaces domain and convert it into the projector domain using 
the inverse of 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 .  This will give us the position 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟 , as 
stated in (9).  

 
 𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝑜𝑜𝑜𝑜 =  𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠   (9) 

 
In (9), 𝑃𝑃𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  is the position of ROI as seen in the planar 

surface domain and 𝐻𝐻𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−1  represents the inverse of the 
mapping transformation calculated in (6).  Figure 8 shows an 
example of the rendered image for projection. 
 

4 Implementation 
 
The projector used in our implementation is EPSON LCD 

Projector EB-1776W, Model H476C.  The projector provides a 
projection at resolution of 1920 by 1080 pixels at 50-60 Hz of 
refresh rate. The brightness of the projector is 3000 lumens for 
both white and color pixels.  The camera we have used is 
Logitech HD Pro Webcam C920 operating at 30 fps (frames 
per second).  The webcam images are captured with the 
resolution of 640 by 480 pixels with a bit depth of 24.  The 
camera also has an automatic low-light correction feature; 
however, this feature is disabled for these experimentations.  

The application is written in C++ using OpenCV Library 
and implemented using a Lenovo ThinkPad E440, with 
Microsoft Windows 8 Pro.  It has an Intel core i5-4210M 
processor working at 2.60GHz.  The laptop has also NVidia  
 

GeForce 840M installed in it; however, GPU modules have not 
been used for this application.  The planar surface and the 
region of interest both are made of a foam board, covered with 
a paper sheet of A0 and A4 sizes respectively. 

The foam boards are considered because of their light 
weight and easy mobility.  The boundaries of these boards are 
painted black.  The dimensions of the foam boards for the 
planar surface and ROI are A0 and A4 respectively.  The 
experiments are performed in a cubicle with only a projector as 
the light source.  The camera is placed near the projector and 
the board is mounted over a poster stand.  The board has an 
arbitrary inclination away from the setup.  The distance of the 
board from the setup is taken to be arbitrary and has changed 
between different experimental instances as well. 

 
4.1 Reprojection Error 

 
As the homography we have calculated is just an 

approximation of the relation between the two domains, hence 
its projection image rendered using this approximated 
homography has a reprojection error.  In Figure 9, the green 
circle represents the top-left corner of the ROI in the camera 
co-ordinates and the red circle represents the top-left corner of 
the ROI in planar surface co-ordinates.  It can be vividly seen 
that the projected image does not coincide properly over the 
ROI.  To solve this issue, we calculate the reprojection error in 
terms of Euclidean distance and then threshold it under an 
acceptable range.  The rendered image was then modified by 
eliminating this error and the image overlaid over the ROI 
properly. 
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Figure 8: Sample of image rendered for projection over ROI (rectangular). The rendered image has a resolution of 1920 x1080 
pixels (same as our projector) 

 

 
 

Figure 9:  The projected image does not coincide with the actual boundary 
 

4.2 Image Clipping Issue 
 
To render the image, we have used inverse transformation; 

however, if ROI is rotated at a larger angle then inverse 
transformation can cause the image to rotate out of the visible 

range of the of the image plane.  This can result in image 
clipping as shown in Figure 10 where it rotates out of the ROI 
at the top-right corner and in Figure 11 where it rotates out at 
the bottom-left corner.  To cater to this problem, we calculate 
the inverse transformation for the boundary pixels first and  
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Figure 10:  Image clipped in top-right corner of ROI 
 

 

 
 

Figure 11:  Image clipped in bottom-left corner of ROI 
 

check if those pixels are in visible range.  If those pixels 
transform out of the visible range, we calculate the difference 
(𝑑𝑑𝑥𝑥 ,𝑑𝑑𝑦𝑦 ) and modify the translation of our transformation 
matrix.  Whenever the ROI is oriented in a rotated manner, this 
modification allows us to refrain the clipping of the projected 
image. 
 

5 Results 
 
The system is tested for several instances and it takes less 

than 13 seconds to project and capture images. The projection 
converges efficiently; however, the use of a Kalman filter has 
significant effect over the pace of the system. 
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5.1 Planar Surface without ROI 

 
Figure 12 shows an image being displayed over the planar 

surface without any keystone distortion or bleeding.  As ROI is 
absent, the system utilizes whole planar surfaces to display the 

image.  The system also effectively forms a correct projection 
over the planar surface even if it is moved up to an extent.  The 
orientation of the surface has also changed for various 
instances.  This difference can be observed clearly in Figures 
12, 13, 14, and 15. 

 

 
 

Figure 12: Planar surface is used a display screen, while ROI is not provided.  The projection is keystone corrected and does not 
bleed out of the planar surface 

 
 

 
 
Figure 13: Projection fits the rotated rectangular ROI with proper orientation and position precisely. The illuminated lines are 

boundaries of window displaying the image 
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5.2 Planar Surface with ROI 

 
The projection image modifies as soon as the ROI is moved 

and fits over it correctly provided that the ROI is moved with a 
constant speed and there are no sudden changes or movements.  
If the ROI is moved abruptly, the projection follows it, and 
then oscillates about it while the distance error between the 
current position and the required position decreases.  The 
oscillations of the projection finally converge to the correct 
position of the ROI for all the instances. 
Figures 14 and 15 illustrate the occasions where the system has 
successfully formed a precise projection over a triangular and a 
circular ROI, respectively.  For the case where the ROI is 
abruptly moved from an extreme corner to the other extreme 
corner, the setting time or convergence time for the projection 
is calculated to be 5 seconds on the average. 
Figure 13 shows the projection over rectangular ROI, where 
the projection image can be seen perfectly fitted over the ROI, 
even though the ROI has significantly larger angle of rotation.  
The illuminated lines in Figures. 13, 14, and 15, are the 
boundaries of the window containing the rendered image.  The 
resolution of the rendered image can also be adjusted to 
eliminate these lines; however, the concern of this application 
is not affected by them. 

During these experiments, we moved the ROI abruptly to 
test its efficiency.  The system successfully fits the projection 
after a few oscillations upon abrupt motion.  It is also moved 
with a constant speed while the projection fits over it perfectly. 

 

6 Discussion 
 
The results of this approach can be improved by introducing 

fast computing techniques such as the use of GPU and a 
camera with a better frame per second rate.  As we used a 
webcam, an addition of a camera with better resolution will 
provide considerably precise information.  

The accuracy of the system can yet be improved by taking 
more images while forming homography mappings.  The 
homography with a least re-projection error can be selected 
from the homographies calculated using these images.  
However, these benefits come with a significant cost of either 
time or expenditure. 

A cell phone application version of this system is also being 
considered to be designed.  The cell phone application will 
utilize the in-built camera of the cell phone and a Pico 
projector will be required, to be connected with the cell phone 
via a data cable.  Such a system will have an exceptional 
portability, as cell phones and Pico projectors are sufficiently 
compact and easily portable. 

 
7 Conclusion 

 
We have designed a simple system for projection over a 

mobile region of interest by using an uncalibrated camera.  The 
system tracks and projects over the region of interest with true 
orientation and scale, while the region of interest moves with a 
certain constant speed.  It takes minimal information to form  

 
 

 
 
Figure 14: Triangular ROI is introduced over the planar surface.  The system identifies the shape and projects over it, while it 

moves in the planar surface 
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Figure 15: The instance of circular ROI with image projected over it.  The projection for this complex shaped ROI overlays 

entirely without any bleeding 
 

homographies between a projector, an uncalibrated camera, 
and the planar surface with ROI in it.  The system is provided 
with no information about the intrinsic and extrinsic 
parameters and neither calculates them.  It is assessed to be 
efficient enough for projection over the ROI without bleeding 
out of it.  As other researches depend over specialized 
equipment to track the mobile projection area, our system 
excludes all such specialized apparatuses and equipment.  Our 
system can also utilize the in-built camera of the laptop or even 
of a cell phone for this purpose, making it suitable for common 
use. 
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Abstract

Cloud computing is about utility computing achieved through
resource consolidation shared among different applications
transparently. Cloud resources are shaped based on the target
services provided. A cloud metering framework, that can shape
with the cloud resources, need to be in place to be able to
meter the cloud resources accurately. The target cloud metering
framework needs to be extensible, programmable, scalable,
and shareable. At the heart of the proposed framework is an
interpreted extensible object oriented cloud metering markup
language (CMML). CMML is capable of modeling cloud
metering data dynamically and adapt to the elasticity and the
scalability of the target cloud environment. A shareable model
is continuously maintained by the deployed CMML framework
that is capable of modeling cloud metering data in the form of
Cloud Metering Objects (CMOs), as well as the cloud metering
architecture. The main contribution of this paper is to provide
a formal specification of the transactional aspect of CMML
through a Structural Operational Semantics (SOS) approach
based on the Big-Step and the Small-Step methods.

Key Words: Cloud metering, cloud computing, metering
framework, cloud metering markup language, autonomous
cloud metering objects, proc filesystem, kernel level transport
layer, netfilter hooks.

1 Introduction

Cloud environments are the realization of utility computing.
A hybrid pool of resources is managed by the cloud middleware
and shapes them dynamically to provide different isolated
services. A resource can be primitive or composite, e.g., a
virtual machine is a composite resource that is built up of a
number of primitive resources such as CPUs, RAM, virtual
disks, etc. With virtualization being introduced, more complex
resources can be constructed, which need to be metered.

A cloud metering framework that can shape accordingly with
the cloud services’ needs at runtime needs to be in place to
accurately and reliably meter the target cloud services. Being
shareable and extensible, the metering framework can cater to
different applications such as billing, Service Level Agreement
(SLA) monitors, Quality of Service (QoS) monitors, predictive
resource scaling, etc.

The Cloud Metering Markup Language (CMML) is an object
oriented interpreted modeling language that is designed to

*E-mail: kmsobh@aucegypt.edu
†E-mail:elkadi@aucegypt.edu.
‡The Department of Computer Science and Engineering
§US Patent Application no. 15/088,476. Date: April 1, 2016.

maintain a shareable cloud metering data model. CMML
provides the capabilities, through built-in metering constructs,
of correlating resources usage across different architectural
layers. Consequently, different metering abstraction levels
can be achieved through the flexibility of writing code. The
main contribution of this paper is to present the details of the
language, and provide a semantic formal specification for the
transactional perspective of the language. More information
about the whole framework is presented in [25].

In Section 2 we present the background followed by related
work in section 3. We present the problem characteristics in
section 4 and introduce the proposed metering framework in
section 5. In Section 6, we present the formal specifications
of the CMML language, and we conclude in section 7.

2 Background

Cloud environments consolidate computing resources located
in different architectural layers as shown in Figure 1. The
complexity of accurate metering arises from multiplexing cloud
resources among different applications. Virtualization is another
dimension of complexity resulting from unsynchronized virtual
clocks, leading to inaccurate metering results from within a
virtual machine. Correlating metering data generated from
distributed virtual resources is a complex challenging task by
nature.

Figure 1: Cloud architectural layers

Figure 2 shows a three-tier metering architecture. Log
collection takes place in the front-tier, where metering data
incompatibility is exhibited and the need for unification arises.
Metering data collected from different sources are correlated
in the middle-tier. Metering data storage, billing, and Service
Level Agreement (SLA) monitoring are considered back-end

ISCA Copyright© 2017
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metering services. Interaction with the target cloud management
middleware is essential for the metering engines to be able
to retrieve vital information about the cloud resources to be
metered.

Figure 2: Multi-tier metering architecture

The phases of the metering process are: log collection,
unification, transportation, correlation, and back-end
processing. Collection engines running on cloud service
nodes extract and parse logs, and hence pose as the main source
for probe effect. Data transport between collection engines and
the correlation tier need to be optimized to reduce the probe
effect on the cloud network resources.

3 Related Work

Cloud metering is a new research domain and consequently
limited work exists in the literature that tackles the cloud
metering problem in a unified approach. A comparative study
on different metering domains in distributed systems and cloud
computing was conducted, namely power and resource usage,
virtual resource usage, log management, billing and accounting,
and other attempts of unified cloud metering approaches. A
selective representative sample of the related work in each
domain is presented in this section.

Power and resource usage, being one of the main sources
of raw metering data, is a very important aspect in cloud
metering. Aman Kansal et al. presented the Joulemeter in
[12] to overcome the lack of power metering within a virtual
machine. T. Singh and P.K. Vara presented guidelines for smart
metering cloud environments in [24]. A comprehensive study
for power consumption in data centers by Anton Beloglazov
et al. is presented in [5]. A Digital Continuous Profiling
Infrastructure (DCPI) is presented by Jennifer M. Anderson et
al. in [1]. Google-wide profiling (GWP), presented by Gang
Ren et al. in [20] is a distributed profiler for data centers and
cloud environments.

Virtualized resource metering is a very important metering
aspect due to the metering difficulties resulting from virtualized
resources multiplexing over physical ones. Exposing hardware
counters for profiling in virtualized environments is discussed
by Benjamin Serebrin and Daniel Hecht in [22]. Jiaqing
Du et al. tackled the problem of interrupt forwarding and
enabling access to the Performance Monitoring Unit to the
guest environment in [6], and an implementation of virtualized
profiling on KVM is presented. A metering technique for
Virtual Machines based on the Virtual Platform Architecture is
proposed in [9] to run from within virtual machines.

Log management is an important building block in any
metering process, and a lot of complexities and challenges
are entailed in such a task especially in distributed systems.
D. Huemer and A.M. Tjoa introduced a solution for log
incomparability in [8] through automatic log evaluation based
on XML. Predictive Modelling Markup Language (PMML)
is presented by Guazzelli et al. in [7] as an open standard
for sharing models through coupling data with its operation
definitions. The scalable Run Time Correlation Engine (RTCE)
is introduced by Miao Wang et al. in [27] for correlating
distributed logs, and using dispatchers for load balancing and
scalability. William M. Jones et al. presented analytical and
simulation-based approaches in [10] showing the negligible
impact of choosing a sub-optimal checkpoint. The issues
of continuous sampling are raised by Gang Ren et al. in
[20]. Jennifer M. Andersonet al. presented in [1] a technique
for hardware counters continuous sampling through hardware
support on Digital ALPHA systems.

Accounting and billing are very important examples of
applications that depend on metering, and would exist in
any utility based computing environment. A series of work
presented by Francisco Airton Pereira da Silva et al. in [23, 15,
16] for a cloud accounting system and charging policy based
on a domain specific language (DSL). The DGAS, Distributed
Grid Accounting System, is presented in [17] as an accounting
infrastructure for grid environments. The GridBank (GB) is
presented in [4] as a secure grid-wide accounting infrastructure
service. Ali Anwar et al. presented in [2] a Cost-Aware cloud
metering for dynamic revenue scaling, which is concerned with
estimating the metering data size for efficient cloud resource
scaling. In [14], Naik, V. K. et al. presented an end-to-end
metering framework for federated hybrid cloud services. The
presented framework is claimed to solve numerous problems
in cloud metering such as single subscription, metering
composition over multiple service providers, license usage
restrictions, integration with legacy accounting and billing
systems, and horizontal distribution of workload for better
economic resource utilization. Architectural approaches were
adopted with less emphasis on the data representation to tackle
traditional basic cloud services metering.
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4 Problem Definition

Cloud metering inherits its complexity from that of cloud
environments. The target metering framework should be able to
provide metering perspectives at different levels of abstractions.
Normalization challenges, of hybrid metering data formats,
increases with larger resource pools. The ability to correlate
different resources usage with their different distributed running
cloud applications is an even more insisting problem. Moreover,
ability to collect metering data from cloud resources in a
seamless and low overhead manner is another dimension of the
problem, as it might affect the quality of the services running on
the cloud, and thus exhibiting high probe effect.

We have identified a set of features and design goals that we
wanted our target cloud metering framework to exhibit, these
are as follows:

(1) Extensible Representation: Ease of interpretation and
shareability between federated clouds.

(2) Autonomous Metering Data: Coupling metering data with
their corresponding operations.

(3) Correlation Capabilities: Correlation of metering data
extracted from different architectural layers.

(4) Programmability: Flexibility of defining metering
constructs through writing code.

(5) Standard Metering Transport: Transporting metering
data over simple standard APIs.

(6) Elastic Multi-tier Architecture: Can scale with the
metering needs.

(7) Metering Services Redundancy: For fault tolerance and
recovery.

(8) Low Probe Effect: Low metering probe overhead.
(9) Online Metering: Fast and responsive metering data

processing.
(10) Ease of Integration: Ease of integration with different

cloud environments irrespective of their type, topology,
underlying technologies, and service nature.

Based on the above characteristics, our research question can be
formulated as “Does a unified cloud metering framework that
can provide extensible, scalable, programmable, and low
overhead cloud metering exist? Would the above mentioned
characteristics lead to a cloud metering framework that can
cope with cloud environment complexities resulting from
cloud resources heterogeneity, their existence and execution
in different cloud architectural layers? ”

5 The Metering Framework

5.1 Framework Overall View

The metering framework is based on an extensible metering
markup data modeling language coupled with a multi-tier
scalable architecture. Our target is not a cloud metering system,
rather a set of specifications that could be taken as guidelines
and/or standards for building different cloud metering systems
fitting various target cloud environments.

The extensible object oriented Cloud Metering Markup
Language (CMML) is proposed to represent metering data

across the framework, through which the concept of
autonomous Cloud Metering Objects (CMOs) can be realized.
The adopted object oriented model was superimposed over
an extensible markup data representation for maximum
shareability. Metering data, represented by OO class data
members, are coupled with their operations represented by OO
class methods. The OO model is further extended with built-
in receptors encapsulating routing information within the CMO
to enable it to navigate between different framework engines
autonomously using self-contained information. The concept of
CMOs eliminated the usage of passive metering data through
operation definition annotations.

A three-tier architecture was adopted, where each tier can
be decomposed further based on the the target functionality of
metering. Figure 3 gives an overview of the overall metering
framework architecture together with the main metering
engines. The cloud environment is considered the metering
framework front-end where the metering collection engines are
deployed close to their target resources. Collection engines
collect raw metering traces and convert them to collection
CMOs. Correlation engines are deployed in the middle-tier
where collection CMOs are correlated to generate correlation
CMOs. The correlation CMOs are sent to the back-end services
for further long term processing. All metering engines across
the metering architecture should be able to interpret CMOs
represented in CMML. Consequently, a CMML interpreter
should be deployed to provide a living environment from
CMOs.

Figure 3: Metering framework architecture

One of the main roles of a cloud middleware is to maintain
a resource inventory, and hence a Cloud Metering Extension
(CME) is expected to be integrated with the cloud middleware to
generate metering CMML scripts, based on resource types and
relations, to be downloaded and executed by different metering
engines. The (CME) is a core service used by all metering
engines as shown in Figure 2.

5.2 Cloud Metering Markup Language (CMML)

CMML is a markup language with functional capabilities. A
CMML tag is a construct that executes corresponding logic by
a target CMML interpreter. Two mandatory tags need to exist
in a CMML script, namely “CMMLScript” and “CMMLMain”.
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The CMMLScript tag encloses the whole script body, and the
CMMLMain tag identifies the main entry point for the script
execution. A CMML tag can be invoked by name via its
“Name” sub-tag. The “CMMLRoutine” tag is used to define
routines to support modular programming. Concurrency is
built at the core of the language. The “Thread” tag is used to
activate tags execution as threads, and can define threads affinity
configuration upon requirement. Listing 1 presents a “Hello
World” CMML Script that demonstrates the basic features of
the language. This script should print “Hello World” twice,
through invoking the CMMLRoutine and the CMMLOut tag by
name. Notice that the two “Exec” calls will run in parallel as the
routine tag has the “Thread” sub-tag enabled.

1 <CMMLScript>
2 <CMMLRoutine>
3 <Name>PRINT HELLO WORLD</Name>
4 <Thread>TRUE</Thread>
5 <CMMLOut>
6 <Name>HELLO WORLD</Name>
7 <Subject>Hello World !!</Subject>
8 <Target>
9 <PipeTo>STDOUT</PipeTo>

10 </Target>
11 </CMMLOut>
12 </CMMLRoutine>
13 <CMMLMain>
14 <Exec>PRINT HELLO WORLD</Exec>
15 <Exec>HELLO WORLD</Exec>
16 </CMMLMain>
17 </CMMLScript>

Listing 1: CMML hello world script

CMML supports object oriented capabilities as well. Listing
2 shows a simplified CMML class definition for collecting
VM CPU data. Each class has a name, set of data members,
and set of methods. The CMML object model is extended
to support metering constructs. A set of tags are defined in
the class definition to hold CMML logic that can execute at
different stages of the metering processing, namely “Collect”,
“Correlate”, “Bill”, and “SLA”. Each tag is executed by a
metering engine based on the location of the CMO at the time
of execution. Each CMML object can be executed as a thread
through invoking the built-in predefined implicit method “start”
which invokes the CMML class “Collect” tag, implicitly.

The CMML Object Model was also extended to a Distributed
Object Model based on service state migration. Special
CMML built-in serialization tags are supported, namely
“CMMLObjectXMALalize” and “CMMLObjectCMMLalize”.
The adopted mode of operation is that CMOs are suspended
and serialized via the “CMMLObjectXMALalize” tag, as in
Listing 2, sent over the network to another metering engine,
restarted into the destination CMML runtime environment via
“CMMLObjectCMMLalize”, and resume via the CMML tag
corresponding to the destination.

1 <CMMLClass>
2 <Name>VMCPUStat</Name>
3 <DataMembers>
4 <DataMember>
5 <Name>VMName</Name>
6 <Visibility>PRIVATE</Visibility>
7 <Type>string</Type>

8 <Exportable>true</Exportable>
9 </DataMember>

10 <DataMember>
11 <Name>cpustat</Name>
12 <Visibility>PRIVATE</Visibility>
13 <Type>integer</Type>
14 <Exportable>true</Exportable>
15 </DataMember>
16 <DataMembers>
17 <Collect>
18 <NextCollectionDelay>2</NextCollectionDelay> <!-- Sleep 2

Seconds -->
19 <Iterations>0</Iterations>
20 <!-- Runs for ever-->
21 .......
22 <CMMLObjectXMLalize>
23 <CMMLObject>this</CMMLObject>
24 <RedirectTo>
25 <PipeTo>FILE</PipeTo>
26 <PipeName>/dev/CloudMeterDev0</PipeName>
27 </RedirectTo>
28 </CMMLObjectXMLalize>
29 </Collect>
30 <Correlate> ..... </Correlate>
31 <Billing> ..... </Billing>
32 <SLA>.....</SLA>
33 <Methods>
34 .....
35 <Method>
36 <Name>GetCPUStats</Name>
37 <Body>
38 <CMML>.....</CMML>
39 </Body>
40 </Method>
41 </Methods>
42 </CMMLClass>

Listing 2: VMCPUStat class definition

5.3 Transport Layer

The framework specifications mandates that communication
between the collection engines and the middle-tier be carried
out over standard filesystem I/O operations. Collection
engines run on cloud nodes with diversified specifications and
capabilities, and a simple as well as primitive data transfer
mechanism available on most operating systems is needed. This
would provide needed flexibility for the implementation of the
transport layer on a range of possibilities (i.e., ranging from a
simple file transfer to a sophisticated distributed filesystem.)

A REST/HTTP web service protocol was adopted between
the correlation engines and the back-end services, as well
as between the framework engines and services deployed
outside the framework. This allows for a standardized
communication, and decouples the metering services’ execution
from the communication operations. The REST protocol
is a very primitive web service protocol that provides a lot
of implementation flexibility and provides the freedom of
superimposing more complex protocols like SOAP, or XML-
RPC based on the need.

5.4 Metering Engines

5.4.1 Collection Engines. Collection engines instantiate
objects of classes downloaded from the CME and represent
resources to be metered. The “Collect” Tag enclosing the data
collection logic is invoked in detached threads. As per Listing
2, the “NextCollectionDelay” represents the inter-collect-gap in
seconds between every execution of the “Collect” tag body. The
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“Iterations” define the number of times the “Collect” tag body
should be executed before the CMML object thread terminates,
with zero indicating an endless run. The “Collect” tag logic
should perform collection, preprocessing, CMO serialization,
and injection into the transport layer.

5.4.2 Correlation Engines. CMML classes are
downloaded from the CME and instantiated by the correlation
server CMML runtime environment. All resource classes are
aggregated into wrapper objects that group related resources.
The correlation engines read serialized CMOs via filesystem
I/O operations. The receptors of each CMO is extracted and
the target correlation engine CMML objects are identified. The
CMO is then deserialized, started, and passed to the target
correlation engine objects as a parameter upon invoking the
“Correlate” tag. After correlating all CMOs, the resulting
Correlation CMOs are sent to the back-end services over
REST/HTTP. The correlation tier can be decomposed into
hierarchical sub-tiers where by different processing stages can
be defined and established to represent different correlation
abstraction layers, and hence different metering perspectives.

Correlation engines perform data and time correlation. Based
on the CMOs receptor definitions, related CMOs are grouped
and data correlation is achieved. The time correlation is
based on the existence of a virtual clock across the framework,
and the mechanism for implementing it is left to be decided
on at implementation time. The following are two time
related correlation mechanisms adopted by the framework
specifications.

Adhoc Correlation. CMOs are considered related if they
arrive at the correlation engine in the same time frame.
This mode of operation is very light weight and does not
need intensive computing resources to carry out the needed
correlation. This mode should only be used when commutative
usage evaluation is needed, or when monitoring specific
thresholds of the cloud services usage.

Epoch-Based Correlation. CMOs are timestamped and
grouped in time epochs with preconfigured lengths. CMOs
belonging to the same time epoch are correlated together and
the resulting correlation CMOs are stamped with the start
and end timestamps of the epoch. A crucial performance
problem is encountered when the rate of collection CMOs
is higher than the processing rate. This might hinder the
stability and the responsiveness of the correlation environment,
and consequently two runtime configurations are constructed to
overcome this situation:

(1) Exact: The correlation process is terminated if it exceeds
the duration of the corresponding epoch. This case can
be used if the CMOs represent commutative metering
and detailed break down of the metering indicators is not
important, e.g. CPU time from the proc filesystem which
represents the time of a process since it started.

(2) Adaptive: A feedback mechanism between the correlation
engines and the CME should be in place for reporting
the percentage of CMOs processed post the correlation

duration. The CME should automatically change the inter-
collect-gaps represented by the “NextCollectionDelay” at
runtime to reduce the CMOs generation rate. This process
should be performed iteratively until equilibrium is reached.

5.4.3 Storage Engines. The storage engines are back-end
services deployed on storage servers. A storage server receives
its corresponding storage engine definitions from the CME. The
storage servers receive correlation CMOs and store them into
corresponding storage engines based on the receptors definition.

5.4.4 Billing Engines. The billing engines are back-end
services deployed on billing servers. A billing server receives
correlation CMOs based on their receptors and execute the logic
enclosed in their “Bill” tag. The billing operations generate
billing CMOs that are stored in special billing storage engines.

5.4.5 SLA Engines. The SLA engines are back-end
services deployed on SLA servers. An SLA server receives
correlation CMOs based on their receptors and execute the logic
enclosed in their “SLA” tag, which should perform actions
that need to be executed based on usage thresholds that are
represented by the CMO data members.

A full prototype has been built for the proposed unified
cloud metering framework and was applied on a real life cloud-
deployed online shopping store environment as a case study for
performace evaluation. The details of the framework design,
prototype, case study, deployment decisions, ANOVA/GLM
experiments design and results are presented in [25].

6 Formal Specifications

In this section a formal specification for CMML is presented
following the Structural Operational Semantics (SOS) approach
[18][19], coupled with a syntactical set notation specifications.
This allowed us to show the validity of the language’s
operational aspect, as well as providing a formal specification
for the language syntax. We have decided to concentrate on
SOS for numerous reasons. Since the functional and operational
aspects are the main contribution of CMML over other
markup languages, we have chosen SOS over Denotational
and Axiomatic methods. The drawbacks of using a purely
denotational definition in a context like ours are enumerated by
G. Kahn in [11]. Moreover, flattening all expressions in CMML
as markup emphasised withdrawing the denotational approach.
On the other hand, Axiomatic methods such as Hoare Logic [3],
are concerned with a specific program correctness and not with
the general semantics of the whole language. Finally, CMML
inherits its syntax from SGML [26], which makes it effeciently
extensible[21], and allowed us to take that fact for granted.

6.1 Set Notation Formal Specifications

In this section we will present a set of rules that defines the
general syntax of the language. Listing 3 presents a primitive
set that we will use in our rule definitions.
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lc = [a z] The set of all lower case characters
uc = [’A Z] The set of all upper case characters
dig = [0 9] The set of all digits
pascii = [’ ’ ’ ~’] The set of all printable ASCII character

from ASCII(32) to ASCII(126)

Listing 3: Primitive sets

CMML has a basic set of predefined CMML tags, which
are the minimum set of tags that need to be supported for
a CMML script to execute correctly. Listing 4 presents the
CMML mandatory tags.

CMMLScriptTag = {"CMMLScript"}
CMMLMainTag = {"CMMLMain"}
CMMLReservedTags ={"CMMLRoutine","CMMLInclude","

CMMLRemoteInclude","CMMLClass","CMMLObject", "Exec"}
CMMLInternalTags = {"Subject","Value","Name"}
DataTypes = {integer,boolean,double,float,long,string,

CMMLObject,numeric}
Visibility = {Public,Private}
Boolean = {True,False}

Listing 4: Predefined CMML tags

A CMML Script is defined based on CMML tags that enclose
both data and operational logic. As described formally in listing
5, a CMML tag is a tag whose name should start with “CMML”
and is a maximum of 80 characters. A CMML tag has the
following formal definition.

CSTN: CMML Service Tag Name
CSTN = {s | s is a string such that

s ∈ "CMML"(lc|uc)n and n > 0 and n <=76
and s /∈ CMMLScriptTag ∪ CMMLMainTag ∪

CMMLReservedTags}

Listing 5: CMML service tag name

For the sake of simplicity and encapsulation, we define in
listing 6 a set of functions that return sets of elements that we
will refer to in our subsequent definitions.

MethodNames(β) = The set of method names of the CMML Object
β or CMML Class β based on the context

MethodParameters(β,δ) = The set of parameter names of the
method δ of the CMML Object β or CMML Class β based on
the context

DataMembers(β) = The set of data member names of the CMML
Object β or CMML Class β based on the context

Listing 6: Set functions

Listing 7 presents the sets of tags following common patterns.
We will refer to those sets in the our definitions of more complex
tags.

GT: General Tag
GT = {s | s is a string such that s ∈ (lc|uc)n where n > 0

and n <=80 }

STR: Simple Tag Record
STR = {s | s is a string such that s ∈ "<"β">"pascii+"</"

β">" and β ∈ GT}

CTR: Composite Tag Record
CTR = {s | s is a string such that s ∈ "<"β"><Name>"δ"</

Name>"(CTR|STR)+"</"β">"

and β ∈ GT and δ /∈ TagNames, and δ will be added to
TagNames after successful declaration}

CSR: CMML Service Record
CSR= {s | s is a string such that s ∈ "<"β">"(STR|CTR)+"</"

β">" and β ∈ CSTN}

Listing 7: CMML different tag types definition

The CMML language is an extendable language in the sense
that it can be extended by adding new tags to it. Within our
scope we will not be able to define each and every CMML
tag currently in the language as they follow the operational
definition behind the need of their functionality; a tag is added
for a specific functionality whose need arises due to its absence.
So a special set notation definition can be constructed as per
CMML tag, but the most important matter is that it needs to
be a subset of the general definition of the CSR tag defined
above; CMML Service Record. Consequently, we will choose
a set of complex fundamental CMML tags and present their set
notation specification as examples, and similarly other CMML
tag definitions can follow the same line of definition.

The Exec Tag: The Exec tag is a special fundamental tag
used to invoke any tag declared in the current CMML Script by
name. Listing lst:CMML Exec Tag defines the Exec tag.

Exec = {s | s is a string where
s ∈ "<Exec>"(β|CSR)"</Exec>" and β ∈ TagNames

}

Listing 8: CMML Exec tag

The CMMLMain Tag: The CMMLMain tag, defined in
listing lst:CMML Main Record, should be located inside the
CMMLScipt tag only once and it designates the starting point
of execution of the script.

CMR: CMML Main Record
CMR = { s | s is a string such that s ∈ "<"β">"(CSR ∪ EXEC)

∗ "</"β">"
and β ∈ CMMLMainTag}

Listing 9: CMML main record

The CMMLScript Tag: The CMMLScript tag, defined
in listing 10, is the main tag that defines a CMML script
and it encloses all its CMML tags. It essentially needs the
CMMLMain tag to be defined some where to designate the
starting point of the execution.

CSCR: CMML Script Record
CSCR = {s | s is a string where s ∈ "<"β">"(CSR|CMMLClass)∗

CMR "</"β">" and β ∈ CMMLScriptTag }

Listing 10: CMML script record

The CMMLClass Tag: The CMMLClass tag, defined in
listing 11, is the most complex tag in the language as it defines
an object oriented class. The CMMLClass tag encloses all
the class definitions including data members, methods, and
metering constructs.
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CMMLClass = { s | s is a string such that
s ∈ "<CMMLClass>
<Name>"σ"</Name>"
(ε |"<FlattenedName>"µ"</FlattenedName>")
"<DataMembers>"
(ε |"<DataMember>"
"<Name>"δ"</Name>"
<Visibility>"β"</Visibility>"
<Type>"κ"</Type>"
"<Exportable>"λ"</Exportable>"
"<Sync>"ζ"</Sync>"
"<Billing>"ζ"</Billing>"
"<SLA>"ζ"</SLA>"
"<Size>"dig+"</Size>"
(ε |"<FetchScopes>"
("<FetchScope>"pascii+"</FetchScope>")+

</FetchScopes>")∗)∗

"</DataMembers>"
"<Collect>"(CSR ∪ Exec)∗"</Collect>"
"<Correlate>"(CSR ∪ Exec)∗"</Correlate>"
"<Bill>"(CSR ∪ Exec)∗"</Bill>"
"<SLA>"(CSR ∪ Exec)∗"</SLA>"
"<Methods>"
("<Method>"
"<Name>"ω"</Name>"
(ε | "<Parameters>"
("<Parameter>
<Name>"φ"</Name>
<Type>"ς"</Type>

</Parameter>")+

"</Parameters>")
"<Body>"
"<CMML>"(CSR ∪ Exec)∗"</CMML>"

"</Body>"
"</Method>")∗

"</Methods>"
"</CMMLClass>"
and σ ∈ pascii+ and σ /∈ TagNames
and µ ∈ pascii+ and µ /∈ TagNames ∪ {σ}
and δ ∈ pascii+ and δ /∈ DataMembers(σ)
and β ∈ Visibility and κ ∈ DataTypes
and λ ∈ Boolean and ζ ∈ Boolean
and δ ∈ pascii+ and δ /∈ DataMembers(σ)
and ω ∈ pascii+ and ω /∈ MethodNames(σ)
and φ ∈ pascii+ and φ /∈ MethodParameters(σ,ω)
and ς ∈ DataTypes}

Listing 11: CMMLClass tag definition

The CMMLExecuteMethod Tag: To execute a method of
an instantiated object, the CMMLExecuteMethod tag, defined
in listing 12, is invoked with the target object reference and the
method name as well as parameters.

CMMLExecuteMethod = { s | s is a string where
s ∈ "<CMMLExecuteMethod>
<CMMLObject>"pascii+"</CMMLObject>
<CMMLObjectMethod>"pascii+"</CMMLObjectMethod>"
( ε | "<Parameters>"
("<Parameter>
<Name>"pascii+"</Name>
<Value>"pascii+"</Value>

</Parameter>")∗

"</Parameters>")
"</CMMLExecuteMethod>" }

Listing 12: CMMLExecuteMethod tag definition

6.2 Operational Semantics

In this section we will present the the Big-Step [11] and the
Small-Step [13] SOS methods. We chose three fundamental
operations to illustrate, namely expression evaluation, loop
iterations, and conditionals. After presenting the Big-Step

proofs, we will show their deatiled breakdown derivations using
the Small-Step method.

6.2.1 Big-Step Semantics

Expression Evaluation: The CMMLAdd and the
CMMLIncrement are two tags that perform mathematical
operations. The CMMLAdd adds any number of operands
and returns the result of the summation to the caller tag, and
the CMMLIncrement increments a value with an offset and
returns the new value to the caller tag. The example in listing
13 illustrates both in one shot.

1 <CMMLAdd>
2 <Value>
3 <CMMLIncrement>
4 <Value>10</Value>
5 <Inc>3</Inc>
6 </CMMLIncrement>
7 </Value>
8 <Value>12</Value>
9 </CMMLAdd>

Listing 13: Expression evaluation example

The CMMLAdd can take any number of the “Value” tag
and sum their values. The “Value” tag can enclose either a
constant or another expression. In case of another expression,
the expression will need to be evaluated first and the result will
be used in the summation. The CMMLIncrement has two tags,
the first one is the “Value” tag and it should be incremented by
the value of the “Inc” Tag. Similarly, the “Value” and the “Inc”
tags of the CMMLIncrement tag can enclose either constants
or an expression that will need to be evaluated first before the
CMMLIncrement can perform its operation.

The CMML Tags were broken down to represent its internal
tags, so we have introduced three new tags to be used in the Big-
Step Semantics which are Add-Value, Increment-Value, and
Increment-Inc. The three tags identify the starting point of
the internal tag to represent the substitution of their internal
enclosed values. Figure 4 shows the Big-Step semantics for both
CMMLAdd and CMMLIncrement.

Add−Value
true
n ⇓ n

Increment−Value
true
n ⇓ n

Increment− Inc
true
n ⇓ n

Add
V Ti ⇓ ni

Σk
i=1V Ti ⇓ ntotal where ntotal = Σk

i=1ni

Increment
V T ⇓ n1 V I ⇓ n2

V T +V I ⇓ nresult nresult = n1 +n2

(1)

(2)

(3)

(4)

(5)

Figure 4: Big-Step expression evaluation

The CMMLAdd-Value, CMMLIncrement-Value, and the
CMMLIncrement-Inc tags are reduced to the constant value
of the equivalent expression that they enclose. CMMLAdd
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is reduced to the summation of all the return values of
all the CMMLAdd-Value tags, and the CMMLIncrement is
reduced to the summation of the return values of the enclosed
CMMLIncrement-Value and the CMMLIncrement-Inc tags.

For verification, we apply the above semantics to the example
presented earlier in listing 13 to prove the validity of its
operations with respect to the CMML syntax as well as the tag
semantics. Figure 5 illustrates the proof steps. It is important to
highlight that the example proof works in a bottom-up inference
approach where the full tag is represented at the lowest level and
is broken down until we reach the top; so every atomic tag will
be represented by a portion and its yield or reduction will be
stated right below it.

Figure 5: Big-Step expression evaluation proof example

Repeat-Until Loop: The CMMLRepeatUntil tag
implements the repeat-until loop. It encloses two tags,
the “LoopBody” tag and the “Until” tag. The “LoopBody” tag
encloses a sequence of CMML tags to be executed as a routine
and is considered the loop body that the loop engine iterates on
as long as the expression enclosed in the “Until” tag evaluates to
false. Listing 14 shows an example of the CMMLRepeatUntil
loop. Basically it loops on the CMML tags that increment an
object data member and exits the loop when the data member
value is greater than three.

1 <CMMLRepeatUntil>
2 <Name>Check_Value</Name>
3 <LoopBody>
4 <CMMLObjectAssignDataMember>
5 <CMMLDataMember>
6 int_val
7 </CMMLDataMember>
8 <AssignTo>
9 <CMMLInc>

10 <Value>
11 <CMMLObjectFetchDataMember>
12 <CMMLDataMember>
13 int_val
14 </CMMLDataMember>
15 </CMMLObjectFetchDataMember>
16 </Value>
17 <Inc>1</Inc>
18 </CMMLInc>
19 </AssignTo>
20 </CMMLObjectAssignDataMember>
21 </LoopBody>
22 <Until>
23 <CMMLGreaterThan>

24 <Subject>
25 <CMMLObjectFetchDataMember>
26 <CMMLDataMember>
27 int_val
28 </CMMLDataMember>
29 </CMMLObjectFetchDataMember>
30 </Subject>
31 <Value>3</Value>
32 </CMMLGreaterThan>
33 </Until>
34 </CMMLRepeatUntil>

Listing 14: Repeat-Until loop example

Figure 6 shows the Big-Steps semantics of the
CMMLRepeatUntil tag. We have constructed three new
tags to be able to cover all situations. The first tag is the
CMMLRepeatUntil-Out which is a construct indicating the
transfer of the execution to the next CMML tag outside the
CMMLRepeatUntil tag. The CMMLRepeatUntil-FALSE will
be invoked in case the Until tag yields a false value, and the
CMMLRepeatUntil-TRUE will be invoked in the case of the
Until tag yielding a true value.

RepeatUntil ⇓ RepeatUntil−LoopBody

RepeatUntil−LoopBody ⇓ RepeatUntil−Until

RepeatUntil−Out ⇓ Next− Instruction

RepeatUntil−Until
true
n ⇓ n

RepeatUntil−FALSE
RepeatUntil−Until ⇓ f alse

RepeatUntil ⇓ RepeatUntil−LoopBody

RepeatUntil−T RUE
RepeatUntil−Until ⇓ true

RepeatUntil ⇓ RepeatUntil−Out

(6)

(7)

(8)

(9)

(10)

(11)

Figure 6: Big-Step repeat-until loop semantics

Figure 7 shows a proof of the example introduced in the
code listing 14 above using the Big-Step semantics rules of the
CMMLRepeatUntil tag. As we can see, the proof inference
starts with rule 1 and alternates between rule 2 and 5. Rule 6
is then invoked when the until condition yields false.

Conditional Case Statement: Adopting the same template
used in expression evaluation and loop iteration, we illustrate
the conditional case statement. The CMMLCase statement is
a very extensible CMML conditional tag that can achieve both
the if-then-else statement as well as the case-switch statement.
The CMMLCase statement can contain an unlimited number
of CMMLWhen tags, which is considered a conditional block.
The CMMLWhen tag contains three optional tags which are
CMMLCondition, Exec, and Otherwise. The CMMLCondition
should yield a Boolean true or false value; it should enclose
a Boolean or an expression that yields to Boolean. Based on
the evaluation of the CMMLCondition tag, the execution will
branch. If the CMMLCondition tag yields true the Exec tag will
be invoked and the CMMLCase will then exit. On the other
hand, if the CMMLCondition yields false, then the interpreter
should check if there is an Otherwise tag, in which case it will
be invoked or else the execution will be transfered to the next
CMMLWhen tag if any exist. The process will continue until a
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Figure 7: Big-Step Repeat-Until loop proof example

CMMLCondition of a CMMLWhen tag yields true, Otherwise
tag is reached and executed, or all the CMMLWhen tags are
exhausted.

Listing 15 represents an example of a CMMLCase that
checks the value of a data member and prints a message on the
standard output accordingly. As we can see from the code, if
the data member int val is equal to 5 then the CMMLCase will
print out a message saying that the value is 5, else if it is equal
to 10 another message will be printed saying that the value is
10, otherwise a message will be printed indicating that the value
is neither 5 nor 10.

1 <CMMLCase>
2 <CMMLWhen>
3 <CMMLCondition>
4 <CMMLEqual>
5 <Subject>
6 <CMMLObjectFetchDataMember>
7 <CMMLDataMember>
8 int_val
9 </CMMLDataMember>

10 </CMMLObjectFetchDataMember>
11 </Subject>
12 <Value>5</Value>
13 </CMMLEqual>
14 </CMMLCondition>
15 <Exec>
16 <CMMLOut>
17 <Subject> int_val = 5 </Subject>
18 <Target>
19 <PipeTo>STDOUT</PipeTo>
20 </Target>
21 </CMMLOut>
22 </Exec>
23 </CMMLWhen>
24 <CMMLWhen>
25 <CMMLCondition>
26 <CMMLEqual>
27 <Subject>
28 <CMMLObjectFetchDataMember>
29 <CMMLDataMember>
30 int_val
31 </CMMLDataMember>
32 </CMMLObjectFetchDataMember>

33 </Subject>
34 <Value>10</Value>
35 </CMMLEqual>
36 </CMMLCondition>
37 <Exec>
38 <CMMLOut>
39 <Subject> int_val = 10 </Subject>
40 <Target>
41 <PipeTo>STDOUT</PipeTo>
42 </Target>
43 </CMMLOut>
44 </Exec>
45 <Otherwise>
46 <CMMLOut>
47 <Subject> int_val is neither equal to 10 nor 5 </

Subject>
48 <Target>
49 <PipeTo>STDOUT</PipeTo>
50 </Target>
51 </CMMLOut>
52 </Otherwise>
53 </CMMLWhen>
54 <CMMLCase>

Listing 15: Conditional case statement example

Figure 8 presents the Big-Step semantic rules for the
CMMLCase. Notice here also that we have the newly defined
tag CMMLCase-Out which is used to exit or break the execution
of the CMMLCase tag. The CMMLCase-Out simply transfers
the execution pointer for the current script to the following
CMML tag in the current script’s chronological execution order.

Case ⇓Case0

RepeatUntil−Out ⇓ Next− Instruction

Case−T RUEi
Count(When)> i

Wheni

Case−FALSEi
Count(When)<= i

Case−Out

When−T RUE−Execi
Conditioni ⇓ true !Exist(Execi)

Case−Out

When−T RUE
Conditioni ⇓ f alse !Exist(Execi)

Case−Out

When−FALSE−Otherwisei
Conditioni ⇓ true !Exist(Otherwisei)

Case−Out

When−FALSEi
Conditioni ⇓ f alse !Exist(Otherwisei)

Casei+1

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

Figure 8: Big-Step case statement specifications

For the CMMLCase tag we will show three proofs of the
example presented in the above code snippet presented in code
listing 15. The three presented proofs correspond to the tree
cases attempting to cover all the alternative execution paths.
Figure figures 9 shows the execution path when the int value
is equal to 5 which will results in executing the CMML code
within the “Exec” tag of the first “CMMLCondition” of the first
“CMMLWhen” tag. Figure 10 shows the execution path when
the int value is equal to 10 and hence executing the “Exec”
tag of the second “CMMLWhen”. Finally, figure 11 shows the
execution path when int value is equal to any other value which
results in executing the CMML “Otherwise” tag.
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Figure 9: Big-Step conditional case statement proof example

Figure 10: Big-Step conditional case statement proof example

Figure 11: Big-Step conditional case statement proof example

6.2.2 Small-Step Semantics In the Small-Step semantics
we will break down the Big-Step Semantics illustrated in the
previous section to show the details of execution of the three
fundamental operations. The importance of the Small-Step
semantics is that it gives an insight of how expressions are
evaluated, how loops iterate, and how conditionals perform
branching decisions.

To be able to present the Small-Step semantics, we need
to define a state that needs to be maintained by the CMML

tag execution engine, and which represents the internal state
of the interpreter during execution in each step of inference.
Also the state will be passed to sub-tags that need to execute
recursively within the context of a running tag. Listing 16 shows
an abstract structure that represents the state of the CMML tag
during execution.

1 struct state{
2 int i;
3 float f;
4 long l;
5 double d;
6 string s;
7 bool b;
8 bool intFlag;
9 bool floatFlag;

10 bool longFlag;
11 bool doubleFlag;
12 bool stringFlag;
13 bool boolFlag;
14

15 params: a key-value array of parameters declared for the
tag;

16 currentParam: a pointer to the current param item in the
params array

17 parentStatus: a pointer to the parent tag state struct
18 };

Listing 16: CMML tag state structure

The state has a set of primitive type fields and a set of
corresponding flags indicating which one is set. We will assume
in our derivations below that when a primitive type variable is
set, its corresponding internal flag will be set automatically.
Three other important variables are defined which are the
params, currentParam, and parentStatus. In any CMML tag,
each enclosed tag should be evaluated to a value based on its
enclosed content. The params is a vector of a set of elements
equivalent to the number of tags inside the current CMML tag,
and each element of the params vector represents the value of
the tag that results after evaluating the tag. The currentParam
is an index defining which element in the parameters vector is
currently being executed. Finally, the parentStatus is a pointer
that points to the state variable of the parent CMML tag.

To be able to construct the Small-Step semantics for CMML,
we have extended the tags with extra sub-tags to identify the
opening, the closing, and the body of each tag, e.g. the Value tag
of the CMMLAdd will be decomposed to CMMLAdd-ovalue,
CMMLAdd-cvalue, and CMMLAdd-value respectively. This
will allow us to describe the behavior of the language in each
atomic step of execution. To be able to handle tag recurrence,
we use a subscript to identify the sequence of the tag based on
its appearance, e.g. in case of the CMMLAdd we can have
an unlimited number of “Value” tags, and hence we can have
CMMLAdd-ovaluei to designate a specific tag. Finally, for the
sake of the diagrams clarity, we will use abbreviations for long
CMML tags like CMMLRepeatUntil and CMMLCondition to
avoid diagram congestion and achieve clear and easy to read
derivation diagrams.

A rule in the small-step semantics has three constructs,
namely: a name, a condition, and an execute statement. The
name identifies the entry point of the rule. A rule can only
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be executed if its condition yields true. The execute statement
is an implication statement that describes the operations to
be performed when the target rule fires. Multiple rules with
the same name can exist for different conditions. Figure 12
represents a general template for a small-step rule.

Name
Condition

< SourceTag,SourceState >→< ReducedTag,NewState >
(20)

Figure 12: Small-Step specification rule

The execution rule is in the form of a reduction from one state
to another. The source tag and state are reduced to a new tag and
state. Throughout rules traversal, the reduced tag is used to fetch
the next rule to be inferenced until the execution terminates via
a predefined implicit tag that has an “Exit” postfix in its name,
e.g Add-Exit.

Expression Evaluation: Figure 13 illustrates the small-step
semantics of the CMMLAdd tag demonstrating the internals
of its execution. Upon arriving at a CMMLAdd tag, rule 1 is
invoked identifying the entry point for the CMMLAdd tag. The
state of the tag is initialized, and the parent state passed to the
tag will be saved in the state ParentStatus variable. Rule 2 and
3 have the same name but with different preconditions. Rule 2
captures the end of execution of the tag while rule 3 performs
a transition to the next “Value” to be processed. As long as
there are still “Value” tags to be processed the inference engine
will iterate over the rule set from 3 to 6. Upon processing the
last “Value” tag, rule 2 will be executed leading to the Add-
close rule which will reduce to the Add-Exit and lead to the
termination of the tag execution. Notice that in rule 7 the state
of the execution tag is assigned to the ParentStatus currentParam
variable which returns the result of the tag execution to the
parent tag.

Add−open
i = 0

< Add−open0, ps >→
< Add−ovalue0,s.init();s.ParentStatus = ps >

Add−openi
count(Value)<= i

< Add−openi,s >→< Add− close,s >

Add−openi
count(value)> i

< Add−openi, ps >→
< Add−ovaluei,s.init();s.ParentStatus = ps >

Add−ovaluei
true

< Add−ovaluei,s >→< Add− valuei,s >

Add− valuei
true

< Add− valuei,s >→
< Add− cvaluei, params[valuei] = s.currentParam >

Add− cvaluei
true

< Add− cvaluei,s >→
< Add−openi+1,s.i+= params[valuei]>

Add− close
true

< Add− close, ps >→
< Add−Exit,s.ParentStatues.currentParam = s.i >

.

(21)

(22)

(23)

(24)

(25)

(26)

(27)

Figure 13: Expression evaluation Small-Step specifications

Repeat-Until Loop: Figure 14 presents the small-step rules
for the CMML conditional statement. The repeat-until loop
is split into two main sections, the loop section and the exit
condition checking section. Rule 1 will be invoked upon
encountering a CMMLRepeatUntil tag, where the state of the
tag will be initialized and the ParentStatus will be set to the
passed ps state parameter. Rules 2-4 will be executed for the
loop body, followed by rules 5-7 for the condition checking. In
rule 7 the result of the condition checking is stored in the state
boolean attribute to be checked and based on its value either rule
8 or rule 9 is invoked. Rule 8 is invoked if the Until condition
evaluates to false which will start the loop body again. Rule 9
is invoked if the Until condition evaluates to true indicating the
end of the loop, and invoking the RU-Exit to terminate the tag
inferencing execution.

RU−open
true

< RU−open, ps >→< Ru−LoopBody,
s.init();s.ParentStatus = ps >

RU−LoopBody−open
true

< RU−LoopBody,s >→
< RU−Until− value,s >

RU−LoopBody− value
true

< RU−LoopBody− value,s >→
< RU−LoopBody− close,

params[loopBody] = s.currentParam >

RU−LoopBody− close
true

< RU−LoopBody− close,s >→
< RU−Until−open,s = s.currentParam >

RU−Until−open
true

< RU−Until−open,s >→
< RU−Until− value,s >

RU−Until− value
true

< RU−Until− value,s >→
< RU−Until− close,

params[Until] = s.currentParam >

RU−Until− close
true

< RU−Until− close,s >→
< RU− close,s.b = params[Until]>

RU− close
s.b == f alse

< RU−open,s >→< RU−LoopBody−open,s >

RU− close
s.b == true

< RU−open,s >→
< RU−Exit,s.ParentStatus.currentParam = s >

(28)

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

Figure 14: Repeat-Until loop Small-Step specifications

Conditional Case Statement: Figure 15 presents the small-
step rules for the CMML conditional statement.The conditional
case statement is inferenced in the same way as the expression
evaluation and the Repeat-Until loop. The condition of each
CMMLWhen is inferenced by the rules 4-9, and if the condition
yields true the corresponding Exec tag is inferenced through the
rules 10-14, otherwise the Otherwise tag is inferenced using
the rules 15-17. The inference will iterate through all the
CMMLWhen statements by their index and terminate either
upon executing the Exec or the Otherwise tag of a CMMLWhen
or after exhausting all the CMMLWhen tags.

We have presented the small-step semantics for the above
three examples as a representative sample of the most
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Case−open
true

<Case−open0, ps >→<When−open0,s.init();
s.parentstatus = ps >

Case−openi
count(When)<= i

<Case−openi,s >→<When−openi,s >

Case−openi
count(When)> i

<Case−openi,s >→<When−openi,s >

When−openi
Exist(Condi)

<When−openi,s >→<Condi,s >

When−openi
!Exist(Condi)

<When−openi,s >→<Condi+1,s >

Cond−openi
true

<Cond−openi,s >→<Cond− valuei,s >

Cond− valuei
true

<Cond− valuei,s >→<Cond− closei,

params[Condi] = s.currentParam >

Cond− closei
Exist(Exec−openi)

<Cond− closei,s >→< Exec−openi,

s = params[Condi]>

Cond− closei
!Exist(Exec−openi)

<Cond− closei,s >→<Case− close,
s = params[Condi]>

Exec−openi
s.b = true

< Exec−openi,s >→< Exec− valuei,s >

Exec−openi
s.b = f alseExist(Otherwisei)

< Exec−openi,s >→< Otherwisei,s >

Exec−openi
s.b = f alse!Exist(Otherwisei)

< Exec−openi,s >→<Casei+1,s >

Exec− valuei
true

< Exec− valuei,s >→< Exec− closei,

params[Execi] = s.currentParam >

Exec− closei
true

< Exec− closei,s >→<Case− closei,

s = params[Execi]>

Otherwise−openi
s.b = f alse

< Otherwise−openi,s >→< Otherwise− valuei,s >

Otherwise− valuei
true

< Otherwise−openi,s >→< Otherwise− closei,

params[Otherwisei] = s.currentParam >

Otherwise− close
true

< Otherwise− closei,s >→<Case− closei,

s = params[Otherwisei]>

Case− close
true

<Case− closei,s >→<Case−Exit,
sParentStatus.currentParam = s >

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(51)

(52)

(53)

(54)

Figure 15: Small-Step case statement specifications

fundamental executional constructs of the language. The same
approach can be applied to all the CMML tags in the language.

7 Conclusion and Future Work

In this paper, a unified cloud metering framework was
presented based on a data modeling approach. An extensible
data representation is demonstrated through an object oriented
extensible Cloud Metering Markup Language (CMML), which
contributed to the highly shareable characteristics of the model.
The proposed framework is programmable and extensible,
enabling the metering of cloud resources at various levels
of abstractions with ease through the flexibility of writing
code. The key design decision adopted is to deal with
metering objects rather than flat passive data. The introduction

of autonomous mobile CMOs and object receptors unlocked
a lot of desired features whereby the metering data are
coupled with their corresponding operations. The framework
is capable of presenting the underlying deployment metering
architecture dynamically through the object receptors definition.
The main contribution of this paper is presenting a formal
specifications for the CMML language through a Structural
Operations Semantics SOS approach based on the Big-Step
and the Small-Step methodologies. Moreover, a prototype of
the overall framework was built and tested through a factorial
ANOVA/GLM experiments and presented in [25].

Our future work will be concentrating on designing a virtual
bare metal deployment mechanism that utilizes virtual resources
for CMML metering engines deployment. The new approach
aims at reducing the waste of resources used in the framework
deployment targeting higher Return on Investment ROI, lower
probe effect, and better performance.
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