

A publication of ISCA*:

International Society for Computers
and Their Applications

INTERNATIONAL JOURNAL OF

COMPUTERS AND THEIR
APPLICATIONS

TABLE OF CONTENTS

 Page

Guest Editorial: Selected Papers from CATA 2018 . 103

Gordon Lee and Les Miller

Labeling Methods Using EEG to Predict Drowsy Driving with Facial

Expression Recognition Technology . 104
Daichi Naito, Ryo Hatano, and Hiroyuki Nishiyama

LMS Performance Issues: A Case Study of D2L . 113

 Sourish Roy, Carey Williamson, and Rachel McLean

An Evaluation of the Performance of Join Core and Join Indices
Query Processing Methods . 123

 Reham M. Almutairi, Mohammed Hamdi, Feng Yu, and Wen-Chi Hou

Novel Low Latency Load Shared Multicore Multicasting schemes – An

Extension to Core Migation . 132
 Bidyut Gupta, Ashraf Alyanbaawi, Nick Rahimi, Koushik Sinha, and Ziping Liu

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPEC and
Scopus.”

Volume 25, No. 3, Sept. 2018 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…P. O. Box 1124, Winona, MN 55987 USA…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca@isca-hq.org.

Copyright © 2018 by the International Society for Computers and Their Applications (ISCA)

All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Frederick C. Harris, Jr., Professor
Department of Computer Science and Engineering

University of Nevada, Reno, NV 89557, USA
Phone: 775-784-6571, Fax: 775-784-1877

Email: Fred.Harris@cse.unr.edu, Web: http://www.cse.unr.edu/~fredh

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid
University of Houston-Clear Lake,
USA
hisham@uhcl.edu

Dr. Antoine Bossard
Advanced Institute of Industrial
Technology, Tokyo, Japan
abossard@aiit.ac.jp

Dr. Mark Burgin
University of California,
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University,
Wrexham, UK
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan,
Dearborn, USA
magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science and
Technology, USA
ff@mst.edu

Dr. Muhanna Muhanna
Princess Sumaya University for
Technology, Amman, Jordan
m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York at
Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University, USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California
San Diego, USA
jianwu@sdsc.edu

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University,
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
 at Stony Brook, USA
rong.zhao@stonybrook.edu

http://www.isca@isca-hq.org
mailto:qzhu@umich.edu

IJCA, Vol. 25, No. 2, Sept. 2018 103

ISCA Copyright© 2018

Guest Editorial: Selected Papers from CATA 2018

CATA (Computers and their Applications) is one of the flagship conferences for the International Society of
Computers and their Applications. The intent of this conference has been to blend theory and practice as a means of
stimulating researchers from both research dimensions. The papers for this special issue are extensions of their
conference version and illustrate the spectrum of the 38 papers presented at the CATA 2018 conference.

Paper 1: Labeling Method Using EEG to Predict Drowsy Driving with Facial Expression Recognition Technology.
Authors: Daichi Naito, Ryo Hatano and Hiroyuki Nishiyama. In this paper, the authors develop a non-contact
method for predicting a driver’s drowsiness based on a set of classifiers that make use of a combination of EEG
readings and facial expression capture for the same time period. They use a 3D camera and employ several machine
learning methods as well as automated labeling for prediction. The Gaussian kernel SVM method gave the best
performance and results show that their approach provides a viable and efficient approach for predicting a driver’s
drowsiness.

Paper 2: LMS Performance Issues: A Case Study of D2L. Authors: Sourish Roy, Carey Williamson, and Rachel
McLean. The paper focuses on a particular network, the Learning Management System at the University of
Calgary, and the authors perform a study of the traffic flow, identify the causes for traffic congestion, offer several
solutions to the congestion problem, and present a web cache simulation study to show that this simple solution
alleviates traffic problems.

Paper 3: Performance Evaluations of Two Fast Join Query Processing Methods: Join Core and Join Indices.
Authors: Reham M. Almutairi, Mohammed Hamdi, Feng Yu, and Wen-Chi Hou. An evaluation of the performance
of the relational database model is provided in this paper. In particular, the authors compared the performance of the
Jive-join algorithm, the Join Core algorithm and the MySQL implementation. It is shown that the join core
performs faster that the join indices, although both methods perform well for TCP-H benchmark datasets.

Paper 4: Novel Low Latency Load Shared Multicore Multicasting Schemes – An Extension to Core Migration.
Authors: Bidyut Gupta, Ashraf Alyanbaawi, Koushik Sinha, and Nick Rahimi. The authors present four schemes
for load shared multicasting using static networks. Two of the methods consider load sharing as the performance
metric, while the other two also focus on low latency multicasting. Further, the authors discuss the feasibility of
these strategies.

Gordon Lee (Program Chair, CATA 2018) and Les Miller (General Chair, CATA 2018)

104 IJCA, Vol. 25, No. 2, Sept. 2018

ISCA Copyright© 2018

Labeling Method Using EEG to Predict Drowsy Driving
with Facial Expression Recognition Technology

Daichi Naito*, Ryo Hatano*, and Hiroyuki Nishiyama*
Tokyo University of Science, Yamazaki 2641, Noda-shi, CHIBA, 278-8510, JAPAN

Abstract

Accidental death caused by driver negligence is a serious

problem, and the most common cause of such accidents is
careless driving, in particular, driving while drowsy. Drowsy
driving can be caused by overwork and may lead to serious
accidents. Studies have proposed using an
electroencephalogram (EEG), pulse, and facial expressions to
predict drowsy driving. Predicting drowsy driving using an
EEG or pulse, however, may require the driver to wear
cumbersome devices, which is likely to disturb their
concentration while driving. We therefore aim to predict
drowsy driving from a driver's facial expressions in a non-
contact manner. In particular, we record facial expressions
with a 3D camera, and predict drowsy driving using machine
learning. This, however, requires visually checking the
driver’s state, to label the data, which is time consuming and
makes it difficult to prepare sufficient labeled data for machine
learning. In this study, we propose an automated method for
labeling, using a machine learning technique based on EEG data.
Evaluation of the proposed method is conducted, based on
accuracy and the F-value, for unknown data prediction.

Key Words: Drowsy, driving, machine learning, labeling,
EEG, facial expressions.

1 Introduction

Deaths caused by accidents resulting from driver negligence

have become a serious problem in recent years. Figure 1
shows the yearly trend in causes of fatal accidents due to driver
negligence in Japan [7]. The Metropolitan Police Department
Transportation Bureau reports that the most common cause of
accidental death from driver negligence is careless driving. It
is therefore seen as being greatly beneficial if the rate of careless
driving could be reduced.

“Careless driving” refers to situations in which the driver is
unable to concentrate on driving – such as driving when drowsy.
As drowsy driving can cause significant traffic accidents, we

* Department of Industrial Administration, Faculty of Science and
Technology. Email: 7417615@ed.tus.ac.jp.

focus on predicting its occurrence. Much of the literature on
drowsy driving prediction deals with the driver’s pulse,
electroencephalogram (EEG), and facial expressions, among
other indicators [3]. To predict drowsy driving using an EEG
or pulse, it is necessary to attach a device to the driver’s body,
and this may disturb their concentration while driving, making
the use of such attachable devices to predict drowsy driving
impractical or undesirable.

We therefore aim to predict drowsy driving with a non-contact
approach. To that end, we record drivers’ facial expressions
using a 3D camera, and predict drowsy driving with machine
learning. However, developing an effective machine learning
model requires a considerable amount of time and effort, as it is
necessary for humans to watch many videos of drivers to
categorize (label) the training data. This makes it difficult to
prepare enough training data to obtain a generalized prediction
model, an issue which is probably also similar for other studies
that employ an approach similar to ours. To tackle this
problem, we propose a new labeling approach, using EEG data
to shorten the time required for labeling, as it is known that an
EEG is helpful for determining the level of sleepiness [1, 6].

We organize the rest of this paper as follows: Section 2
summarizes several studies with respect to sleeping and drowsy
driving; Section 3 presents an overview of our method and the
principles of machine learning; Section 4 shows the
experimental environment and the analysis of our results; and
Section 5 concludes this paper with further remarks.

2 Related Works

Nishiyama et al. [5] proposed a method to predict drowsy

driving using drivers’ facial expression data, obtained with a 3D
camera. They applied inductive logic programming to the data,
and obtained a set of rules that could be interpreted as
corresponding formulas of first-order logic. The obtained
rules involved expressions that allowed for prediction of drowsy
driving 10 s before its occurrence. Nevertheless, they faced
the aforementioned problem of collecting enough training data,
owing to the time required to label videos. For this reason,
there was a risk of overfitting such a model, and increasing the
size of the training dataset was viewed as imperative.

mailto:7417615@ed.tus.ac.jp

IJCA, Vol. 25, No. 3, Sept. 2018 105

Figure 1: Trend in the number of fatal accidents by law violation

Tarek et al. [2] classified the sleep stage of a person with a

support vector machine (SVM) using EEG, electrooculogram
(EOG), and electromyogram (EMG) data. This study involved
classification of whether a subject was sleeping throughout the
night, and hence this approach could not be directly applied for
classification of drowsy driving. Moreover, the device used
appeared to be too large to attach to subjects, for our purpose.

To predict drowsy driving precisely, using facial expressions
occurring while driving, a large training set is required. In this
study, we propose a labeling method using EEGs to construct
such a training set efficiently.

3 A Method for Automatic Data Labeling

3.1 Overview of our Method

Our method is roughly divided into two phases, as shown in

Figure 2, and in this method, the experiment is performed twice.
Firstly, we record the EEG during driving (Experiment 1), and
then secondly, we record both the EEG and facial expressions

(Experiment 2). In both Experiments 1 and 2, we video the
driver to verify their driving behavior after the experiments.
The EEGs are recorded by an electroencephalograph, and the
driver's facial expressions are recorded with a 3D camera. To
make a classification in Phase 1, we use the recorded video to
label the state of the driver manually, for the EEG dataset
acquired in Experiment 1. In Phase 2, we apply the EEG
dataset acquired in Experiment 2 to the classifier obtained from
Phase 1; the classification results are then used to label the facial
expression dataset acquired in Experiment 2. Once we obtain
the classifier from Phase 1, we can automatically obtain a
labeled dataset using the classifier in Phase 2.

3.2 Creating a Dataset

In this study, we define labels for two states - awake and

drowsy. In general, EEGs are divided into five types at each
range of frequencies - α, β, γ, δ, and θ waves. The
amount of EEG activity is also thought to change depending on
the actions of the brain [8]. In this study, we categorize each

https://ejje.weblio.jp/content/moreover

106 IJCA, Vol. 25, No. 3, Sept. 2018

Figure 2: Proposed Method Flow

EEG into one of eight types (see also Table 2): α1, α2, β1,
β2, γ1, γ2, δ, and θ waves. The definition of these types is
based on the specification of the electroencephalograph used in
this study [4]. Here, we define the set E = {α1, α2, β1, β2,
γ1, γ2, δ, and θ} of EEG types for convenience. The
electroencephalograph used in this study can acquire the power
spectral density for the range of each of the above eight types of
EEG, every second.

As we deal with time series data, it is necessary to extract the
feature quantity as one window every few seconds, and it is also
important to be able to determine features in real time. For this
reason, we extract the features using a sliding window (the size
of a window is 5 s) that shifts every second. The sliding
window technique is often used for time series data, and shifting
the window every second means that prediction can be
performed with 5 s of data every second, which allows us to
construct a rich dataset for the training data. Each window of

5 s was labeled as either “drowsy”, or “awake”, according to the
following conditions:

・ Drowsy: a driver is drowsy for more than 3 s.
・ Awake: a driver remains awake for more than 5 s.

We excluded instances of drowsy driving lasting 1–2 s, since

the status of a person in this case seemed ambiguous.
From each of the acquired EEG types, we extract features of

the sliding window defined above. In Table 1, we present all
features used in this study, where e ∈ E , and Per(e) is the
average percentage of the EEG for 5 s, as defined in Formula
(1).

 𝐏𝐏𝐏𝐏𝐏𝐏(𝐞𝐞) = 𝟏𝟏
𝟓𝟓
∑ � 𝒆𝒆𝒕𝒕

∑ (𝒅𝒅𝒕𝒕)𝒅𝒅∈𝑬𝑬
�𝟓𝟓

𝒕𝒕=𝟏𝟏 (1)

Table 1: Features

Feature Name Corresponding Formula Description

f1～f8 Ave(e) Average Value of e ∈ E for 5 s

f9～f16 Var(e) Variance of e ∈ E for 5 s

f17～f24 Max(e) Maximum Value of e ∈ E for 5 s

f25～f32 Min(e) Minimum Value of e ∈ E for 5 s

f33～f40 Per(e) Average Value of Percentage of e ∈ E for 5 s

IJCA, Vol. 25, No. 3, Sept. 2018 107

4 Experiment

4.1 Environment

The subjects taking part in the experiment were four students

in their twenties. They drove for about 5 hours each, with short
breaks. For the electroencephalograph, we used NeuroSky's
Mind Wave Mobile, which can send EEG data to a computer,
via Bluetooth. The EEG frequencies obtained by Mind Wave
Mobile were divided into eight types as shown in Table 2.
Figure 3 provides an illustration of a person wearing the Mind
Wave Mobile and the data obtained from it. By attaching the
electrodes to the forehead and the earlobe, we obtained a power
spectral density for each type of EEG every second. The
acquired data was saved as a CSV file, in which rows are the
time series data, and columns represent different EEG types.

To obtain the driver’s facial expression, we used Intel’s
RealSense SR300 as a 3D camera.

Figure 4 shows an example of a facial state captured by the
camera, and the 3D coordinates of the acquired points. By
using infrared ray data, the camera outputs the 3D coordinates
of 78 points on a face at almost 30 fps. Besides these data, we
recorded movies with RealSense to judge visually whether
subjects were drowsy, for future studies, and we will label these
coordinates with the phase 2 proposed method. We emphasize
that, in this paper, we labelled these coordinates using EEG data
only.

Table 2: EEG types
EEG Type Frequency

γ2 41~50 Hz
γ1 31~40 Hz
β2 18~30 Hz
β1 13~17 Hz
α1 10~12 Hz
α2 8~9 Hz
θ 4~7 Hz
δ 1~3 Hz

We used a driving simulator, so as to observe the subjects’

driving without putting them at risk when they became drowsy.
Specifically, we reproduced a driving environment by
projecting the PlayStation 2 Shutoko Battle (also known as
“Tokyo Xtreme Racer” in the US, and “Tokyo Highway
Challenge” in Europe) on a screen wit a projector. To simulate
the driving environment more precisely, we employed
Logicool’s GT FORCE for the pedals, and a steering wheel,
thereby allowing operation of the simulated cars with steering
wheels and pedals, instead of gamepad controllers. Our
equipment was arranged as shown in Figure 5, and the
experiments were conducted in a dark room to encourage
sleepiness in the driver.

Figure 3: Example of EEG data obtained from Mind Wave Mobile

108 IJCA, Vol. 25, No. 3, Sept. 2018

Figure 4: Example of the 78 points recorded in a facial expression

Figure 5: Experimental environment

IJCA, Vol. 25, No. 3, Sept. 2018 109

4.2 Preliminary Experiment

To select an appropriate supervised learning model for

classification of the EEG data, we compared the following
classifiers: k-nearest neighbors (KNN), SVM, linear
discriminant analysis, and a random forest. For SVM, we
tested both a linear kernel, and a Gaussian kernel, with certain
parameters. We verified the performance of each trained
classifier by 10-fold cross validation, using data from a driver
whose drowsy driving was observed for an hour. The

breakdown of this dataset was 1,010 instances of drowsy state,
and 1,649 instances of awake state. Figure 6 is a scatter
diagram of Ave(α1) versus Ave(θ), calculated from the raw
data, i.e., the recorded CSV file. As shown in Figure 6, one
can observe a large difference between the portion where the
positive data and the negative data overlap, and the maximum
value of the negative data. To capture possible boundaries in
these data more effectively, we computed the common
logarithm of the raw data. Figure 7 is a scatter diagram of
Ave(α1) versus Ave(θ), generated with common logarithm

Figure 6: Scatter diagram of average values of raw data

Figure 7: Scatter diagram of average values of the common logarithm of the data

110 IJCA, Vol. 25, No. 3, Sept. 2018

values, and it can be seen that this technique allowed the
boundary between the positive and negative data to be
distinguished more easily.

As usual, we evaluated each learning model by its accuracy
and F-value, which were defined as follows.

 𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀𝐀: = 𝐓𝐓𝐓𝐓+𝐓𝐓𝐓𝐓

𝐓𝐓𝐓𝐓+𝐓𝐓𝐓𝐓+𝐅𝐅𝐅𝐅+𝐅𝐅𝐅𝐅
 (2)

 𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏: = 𝐓𝐓𝐓𝐓
𝐓𝐓𝐓𝐓+𝐅𝐅𝐅𝐅

 (3)

 𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑: = 𝐓𝐓𝐓𝐓
𝐓𝐓𝐓𝐓+𝐅𝐅𝐅𝐅

 (4)

 𝐅𝐅 − 𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯𝐯: = 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐・𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏
𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑𝐑+𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏𝐏

 (5)

In these equations, TP, FP, TN, and FN are defined as follows:

• TP: Total count for which a drowsy state was judged as

drowsy
• FP: Total count for which an awake state was wrongly

judged as drowsy
• TN: Total count for which an awake state was judged as

awake
• FN: Total count for which a drowsy state was wrongly

judged as awake.

The accuracy and F-value of each learning model are shown

in Table 3, and from these results, we can observe that KNN, the
random forest, and the Gaussian kernel SVM were appropriate
for classifying our dataset. Results obtained using the
common logarithm were also better than those from the raw data.
We therefore used features based on the common logarithm in
what follows, except for per(e), and the reason that we did not
use this method for per(e) is because if we computed its
common logarithm, it became very close to the value for each
type of EEG data (cf. Figure 7). Hence, we calculated per(e)
directly from the raw data.

4.3 Evaluation of our Proposed Method

We evaluated the proposed method based on prediction results

for unknown data with respect to the created classifiers. We
created each classifier with a training set consisting of an hour
of data for the driver that was used in the preliminary
experiment, and then evaluated the classifiers based on
prediction results for two hours of test data from the same driver.
We used KNN, a Random Forest, and a Gaussian Kernel SVM,
based on the results of our preliminary experiment.

Figure 8 shows the accuracy and F-value for each learning
model, illustrating that SVM was best in terms of both accuracy
and the F-value. Using SVM, we can classify unknown data
from the same subject with high accuracy, and a high F-value.
KNN achieved the best results in the preliminary experiment,
whereas it performed worst in this experiment. In summary, it
seems best to use the Gaussian Kernel SVM as the classifier for
our proposed method, with a certain parameter.

4.4 Verification of the Influence of the Size of the Training

Dataset

We reviewed whether the size of our dataset affected the

prediction results. We divided our dataset, which contained
three hours of data, into three equal parts, and used k ∈ {1,2}
hours as training data, and 3 - k hours as test data for each.
Table 4 shows the accuracy and F-values for each setting.
Based on these results, we can obtain reasonable accuracy and
F-values with a single hour of training data, while two hours of
training data led to a better outcome, in terms of F-value.

5 Conclusion

In this study we wanted to predict drowsy driving, while

keeping the driving environment realistically comfortable.
For this reason, we employed a method to predict drowsy
driving using facial expressions only. From a driver's facial
expression data acquired by a 3D camera, we are able to predict
whether the driver is drowsy or not with machine learning.
However, to classify the data for such purposes, we have to
visually check the state of the driver – as drowsy or awake - and

Table 3: Results of the preliminary experiment
 Learning Model

KNN Linear
Discriminant
Analysis

Random
Forest

Gaussian
Kernel
SVM

Linear Kernel
SVM

Raw
Data

Accuracy 89.0% 80.2% 89.4% 85.5% 82.1%
F-Value 91.6% 66.2% 90.3% 88.3% 84.3%

Common
Logarithm
Data

Accuracy 94.4% 87.3% 91.5% 93.1% 89.1%

F-Value 95.3% 85.7% 91.3% 92.6% 85.8%

IJCA, Vol. 25, No. 3, Sept. 2018 111

Figure 8: Evaluation results

Table 4: Results for different amounts of training data
Amount of Training Data Accuracy F-Value
One Hour 87.4% 73.7%
Two Hours 90.7% 82.1%

manually label the dataset, which takes considerable time and
effort. For this reason, preparing enough training data has
been a problem, and to resolve this, we proposed a new labeling
method, using EEG data. We used the power spectral density
for each type of EEG acquired from the electroencephalograph,
and then from each of the acquired EEG types, we extracted
features for each 5 s window, created with a sliding window.

In a preliminary experiment, we examined learning models
suitable for our method, and found that SVM, KNN, and random
forest performed best. In addition, to help clarify our results,
we extracted features using the common logarithm of the raw
data. Next, we evaluated our method on new data from the
same subject, and in this evaluation, the Gaussian kernel SVM
achieved the highest accuracy, at 91.6%, and an F-value of
80.1%, indicating that SVM technique was the most suitable for
our method.

Labeling unknown data from the same person seems possible,
although we have not verified its benefit against other test
subjects. In the future, we hope to add drowsy driving data
from other drivers, and confirm that our classifier system works
as well with them. Moreover, for this study, we labeled facial

expressions using EEG data, however in future work, we would
review correlation between EEGs and facial expressions with
the intention of confirming that use of facial expression alone
would allow prediction of drowsy driving. So, while we need
to test our results with more subjects and different age groups,
as in this experiment we only used test subjects in their twenties,
our current work indicates that, from the correlation, it might be
possible to estimate brain state – and therefore predict drowsy
driving - using detailed analysis of facial expression alone.

References

[1] American Academy of Sleep Medicine, “The AASM

Manual for the Scoring of Sleep and Associated Events:
Rules”, Terminology and Technical Specifications.
Westchester: AASM, 2007.

[2] Tarek Lajnef, Sahbi Chaibi, Perrine Ruby, Pierre-
Emmanuel Aguera, Jean-Baptiste Eichenlaub, Mounir
Samet, Abdennaceur Kachouri, and Karim Jerbi, “Learning
Machines and Sleeping Brains: Automatic Sleep Stage
Classification using Decision-Tree Multi-Class Support
Vector Machines”, Journal of Neuroscience Methods,
250:94-105, 2015.

[3] Boon-Giin Lee, Boon-Leng Lee, and Wan-Young Chung,
“Wristband-Type Driver Vigilance Monitoring System
using Smartwatch”, IEEE Sensors Journal, 15(10):5624-
5633, 2015.

112 IJCA, Vol. 25, No. 3, Sept. 2018

[4] “Neurosky Support Site; What are the Different EEG Band
Frequencies?” http://support.neurosky.com/kb/science/eeg
-band-frequencies, August 2009, (visited: 29th June 2018).

[5] Hiroyuki Nishiyama, Yusuke Saito, and Hayato Ohwada,
“Machine Learning to Detect Drowsy Driving by Inductive
Logic Programming using a 3D Camera”, Proc. of the 2016
International Symposium on Semiconductor
Manufacturing Intelligence, ID 42, 6 pp., 2016.

[6] Allan Rechtschaffen and Anthony Kales, A Manual of
Standardized Terminology, Techniques, and Scoring
Systems for Sleep Stages of Human Subjects, 1968.

[7] Tokyo Metropolitan Police Department Transit Authority,
“About Traffic Death Accident in 2016”,
https://www.npa.go.jp/toukei/koutuu48/H28_jiko.pdf,
February 2017, (visited: 21st November 2017).

[8] Madoka Yamazaki and Masato Sugiura, “The EEG of
Adults and Elderly People”, (in Japanese), Clinical
Neurophysiology, 42(6):387-392, 2014.

Daichi Naito is a master’s student at
Tokyo University of Science. He
received a B.S. from Tokyo University
of Science in 2017. He majors in
Industrial Administration and is
interested in data science and machine
learning. His e-mail address is
7417615@ed.tus.ac.jp.

Ryo Hatano is an Assistant Professor at
Tokyo University of Science.
 He obtained his Ph.D. from Japan
Advanced Institute of Science and
Technology in 2017.
 His research interests span both
mathematical logic and machine learning
for artificial intelligence. Most of his
work has been on developing reasoning
system and linear algebraic semantics in

dynamic epistemic logic. E-mail address: r-
hatano@rs.tus.ac.jp.

Hiroyuki Nishiyama is a Professor at
Tokyo University of Science. He
obtained his Ph.D. from Tokyo
University of Science in 2000. He is
interested in the study of designing
human-machine cooperative system,
user interface, multi-agent system and
network security based on Artificial
Intelligence. He is a member of IEEE
and ACM. His e-mail address is

hiroyuki@rs.noda.tus.ac.jp.

http://support.neurosky.com/kb/science/eeg%20-band-frequencies
http://support.neurosky.com/kb/science/eeg%20-band-frequencies
mailto:7417615@ed.tus.ac.jp

IJCA, Vol. 25, No. 3, Sept. 2018 113

ISCA Copyright© 2018

LMS Performance Issues: A Case Study of D2L

Sourish Roy*, Carey Williamson*, and Rachel McLean*
University of Calgary, Calgary, AB, CANADA T2N 1N4

Abstract

In this article, we present a network traffic measurement study

of the Learning Management System (LMS) used by the
University of Calgary, which is called Desire2Learn (D2L).
The motivation for our study comes from anecdotal reports of
sluggish D2L performance, particularly for file uploads. Using
a combination of active and passive network measurement
techniques, we are able to identify the root causes of the poor
D2L performance. The main issues identified are: (1) excessive
HTTP redirections in our university’s D2L setup; (2) non-
negligible round-trip times (RTTs) to the server hosting the D2L
content; and (3) default TCP window size settings that limit the
maximum end-to-end throughput. We discuss these issues, and
identify potential solutions, including improved protocol
configurations, and the use of Web proxy caching. Our discrete-
event simulation results indicate that a simple Web proxy cache
at our university could reduce D2L request traffic by 50-70%,
which would substantially improve user-perceived D2L
performance.

Key Words: Learning management system (LMS), network
traffic measurement, user-perceived performance, web-based
systems, TCP, throughput, response time.

1 Introduction

A Learning Management System (LMS) is an important part

of the IT infrastructure at many universities to help support their
educational mandate. LMS technology augments classroom
learning with support for online learning, by providing a single
repository for all course content, and providing a unified
environment for teaching-learning interactions between faculty
and students. It provides instructors with tools to create,
manage, and deliver course content, while providing students
with access to content at their own pace, to support onsite,
remote, or asynchronous learning. An LMS also allows
instructors to check student participation and engagement in the
course curriculum, and assess student performance on
assignments, quizzes, and exams.

The concept of e-learning has been around for many years, but
it is only relatively recently that the deployment of Web-based
LMS software has become ubiquitous at educational

* Department of Computer Science, Email: {sourish.roy, cwill,
rarmclea}@ucalgary.ca.

institutions. Commercial LMS solutions today include
Blackboard, Canvas, D2L, and others, as well as open-source
solutions such as Moodle. Prior to Internet deployment, most
LMS solutions were closed, proprietary, or custom systems
within individual institutions.

One popular LMS is Brightspace by D2L (Desire2Learn),
which we refer to as “D2L” in this paper [7]. D2L is a Canadian
company headquartered in Kitchener, Ontario, Canada. They
have more than 800 employees around the world, including
Canada, Australia, Brazil, Singapore, UK, and the USA. D2L
was started by John Baker in 1999 as a system to manage
courses and student learning. A particular feature in D2L is the
tracking and modeling of student learning activities, and making
this information available to instructors. D2L also facilitates the
uploading, grading, and return of assignments to students with
appropriate feedback.

In 2014, the University of Calgary selected D2L as its new
LMS as a replacement for Blackboard. Since then, every
instructor and student has been given access to D2L, and more
and more courses are now available within D2L. There are tens
of thousands of on-campus users who use D2L each day to
create/view course content, record/watch lectures, and
enter/view grades. These LMS activities generate a lot of traffic
on our campus network, using thousands of TCP connections,
from many IP addresses, and multiple heterogeneous devices.

Knowledge of the D2L traffic patterns can help us understand
its impact on the learning environment at the University of
Calgary. Thus, the primary motivation for our work is a
workload characterization study of D2L usage on our campus
[17]. A secondary motivation for our work is user-perceived
D2L performance. Specifically, anecdotal reports from faculty
and students at the University of Calgary indicate that D2L is
“slow”. This problem has existed since 2014, but has not yet
been resolved.

One underlying reason for the sluggishness of D2L is that the
content is hosted remotely in Ontario, approximately 3200 km
from Calgary, and thus has a non-negligible network round-trip
time (RTT) for access. Indeed, our network measurements
confirm that this network latency is an important contributing
factor. However, we also find other technical issues with the
D2L configuration that hamper its user-perceived performance.
For example, file uploads for content producers (i.e.,
faculty/staff) are much slower than file downloads for content
consumers (i.e., students).

An analysis of D2L traffic can provide insights into the

mailto:rarmclea%7d@ucalgary.ca

114 IJCA, Vol. 25, No. 3, Sept. 2018

reasons for its slow performance. In computer networking,
traffic measurement and analysis are crucial to the design,
operation, and maintenance of local and wide-area networks.
This area of research [11] is used extensively in both academia
and industry. By collecting network traffic measurement data,
we can assess the usage of a network, develop improved
communication protocols, and improve the design of future
networks. For example, one common technique is to use content
caching in a network, to reduce traffic volumes and lower the
network latency for popular content. As part of our work, we
explore the applicability of content caching on campus to reduce
requests for remote D2L content.

The rest of this paper is organized as follows. Section 2
provides some background on network traffic measurement, and
prior research literature. Section 3 describes the research
methods used for our work. Section 4 presents the results from
our study, focusing on HTTP redirection, network latency, and
TCP throughput. Section 5 presents more recent measurement
results to further investigate D2L performance, including
caching. Section 6 concludes the paper.

2 Background and Related Work

Network traffic measurement is a well-established technique

to analyze network usage and understand network application
performance. Over the years, a lot of prior research has focused
on the characterization of Internet traffic, starting from the early
1990’s [9], and continuing to the present [11] (e.g., Web traffic
[3, 6, 13, 15], peer-to-peer file sharing [4], YouTube [10, 12],
online social networks [5], Netflix [1, 14]).

Network traffic measurement studies such as these are useful
not only for workload characterization, but also for network
troubleshooting, protocol debugging, and performance
evaluation. Below, we discuss several influential prior works
on Web-based and education-oriented systems, which provide
background context for our own work.

In 1996, Arlitt, et al. [3] characterized Web server workloads
by analyzing access logs recorded at Web servers. These logs
record requests for Web site URLs, including time of request,
client IP address, content accessed, and document size. They
used 6 different data sets in their study: three from universities,
two from research organizations, and one from a commercial
Internet provider. They identified common workload
characteristics, such as Zipf-like object popularities and heavy-
tailed file size distributions. In addition to the broad
understanding of Web server workloads, this paper also
discussed the importance of Web object caching. Based on their
findings, they proposed improved Web caching systems with
frequency-based cache management policies.

In 1999, Breslau, et al. [6] conducted a detailed study of Web
caching performance. In particular, they identified the presence
of power-law structures in Web object referencing, which is
often referred to as a Zipf or a Zipf-like distribution. They used
mathematical models to relate the Zipf characteristics to the
effectiveness of Web caching. Their study provides guidelines
on the achievable performance for Web caches in the presence
of different workload characteristics.

In 2001, Almeida, et al. [2] analyzed server log data for
educational media servers at two major US universities
(University of Wisconsin, and University of California,
Berkeley). Their paper focused on the eTeach system and BIBS
(Berkeley International Broadcasting System), which delivered
high quality media content. Their study provides a benchmark
against which future media server workloads can be compared.

Newton, et al. [15] conducted a long-term Web traffic
measurement study to see how this traffic has changed over
time. They used the TCP/IP packet headers (1999-2012) in
packet traces collected on the Internet link for the University of
North Carolina. They performed an in-depth analysis of HTTP
request sizes and responses, identifying growth in the size and
complexity of Web pages, and increased use of cookies.

Two common themes throughout these prior works are the
importance of knowing the workload characteristics for a given
network application, and the importance of caching to improve
the performance of any network-based system. Our paper builds
upon the methods and insights from these prior works, and
focuses on the network performance of D2L, as an example of
an LMS. We are particularly interested in a workload
characterization of D2L, identifying its performance
bottlenecks, and exploring the use of local content caching to
improve D2L performance.

3 Methodology

Network traffic measurement refers to a set of well-

established techniques to collect and analyze empirical data
from an operational network [11, 20]. In general, these
techniques can be classified based on the type of network
monitor used (e.g., hardware or software), where the network
monitor is placed (e.g., edge or core), and by the data collection
approach (e.g., passive or active). In our work, we use a
combination of passive and active measurements on our edge
network.

In passive network measurements, data is gathered by
listening to ambient network traffic, without generating any
additional traffic that might interfere with this flow, or affect the
measurements themselves. In our study, we use specialized
networking hardware to collect information about all campus-
level traffic on our edge network. Our network monitor records
information about the inbound/outbound network traffic passing
through the university’s edge routers. This collection takes
place through a mirrored stream of all packet-level Internet
traffic entering/leaving the University of Calgary network.

Our network monitor is a Dell server, which processes the
mirrored traffic stream. It is equipped with two Intel Xeon E5-
2690 CPUs (32 logical cores @2.9 GHz), 64 GB RAM, and 5.5
TB of local hard disk storage for the logs. The operating system
(OS) on this server is CentOS 6.6 x64. The monitor utilizes an
Endace DAG 8.1SX for capturing the traffic and filtering it. It
was designed for 10 Gbps Ethernet, and uses several
programmable functions in the hardware to boost the
performance of packet processing. The primary use of the
Endace DAG card is to split the incoming traffic into streams
for processing by the Bro logging system.

IJCA, Vol. 25, No. 3, Sept. 2018 115

Bro is an open-source framework for network analysis and
security [8, 16]. In our work, the Bro logging system monitors
all packet-level network activities, and produces connection-
level logs summarizing all the traffic. Our primary interest is in
the connection, HTTP, and SSL logs. The connection logs
provide data regarding each observed connection, such as start
time, end time, bytes transferred (inbound/outbound data),
duration, and termination state. The HTTP log helps us identify
the source/destination IPs, HTTP methods, hosts, URIs, referer
URLs, and user agents. Finally, the SSL logs show us HTTPS
connections, with fields like timestamps, TLS/SSL encryption
methods, plus source/destination ports.

Bro collects and generates logs on an hourly basis, which we
aggregate together to provide a semester-long view of D2L
traffic. We collect and analyze data from the HTTP, SSL, and
connection logs to produce the results reported in this paper.

In addition to the Endace/Bro data collection described above,
we also use Wireshark [21] to collect packet-level details on
several D2L test sessions from our own desktop computers.
Wireshark captures packets in real time, and displays them in a
human-readable format. Using Wireshark, we can explore the
details of D2L interactions for our own test sessions.

Unlike passive approaches, active measurements generate
extra packets on the network as part of their data collection
process. These can be used to measure the time taken to reach
a target destination, the capacity available for a network path, or
the response time for an application. Since this category of
measurement generates additional traffic, we have performed
active measurements selectively, using basic active
measurement tools like ping and traceroute that have minimal
impact on the network. Where appropriate, we have also
generated some small test sessions in D2L, in order to assess the
impacts of different file sizes, browsers, and configuration
settings. These sessions constitute a very small proportion of
the overall D2L traffic observed.

4 Measurement Results

4.1 D2L Traffic Overview

Figure 1 provides a high-level overview of the D2L traffic

observed on our campus network during the Winter 2016
semester (January-April 2016). Note that D2L traffic occurs
over both HTTP (for initiation/termination of D2L sessions) and

HTTPS (for actual D2L interactions), and that there is a strong
correlation between the two types of traffic.

Our measurements illustrate the traffic volume, data volume,
response time, and throughput for all D2L users during the
Winter 2016 semester. When lectures began on January 11, the
D2L traffic increased. The D2L traffic pattern varies throughout
the semester, with a dip during Reading Week break in
February, and a sharp decline after final exams in April.

The D2L traffic shows strong daily and weekly patterns, with
weekday traffic far exceeding that on weekends. On a typical
weekday, we observe about 16,000 HTTP requests to D2L from
the University of Calgary network, and about 500,000 HTTPS
requests to D2L. The 30-fold difference between HTTP and
HTTPS indicates that most D2L interactions occur via HTTPS.
The HTTP traffic is primarily for session initiation/termination.

4.2 HTTP Redirection Issue

The first D2L performance issue that we have identified is

related to how D2L is configured to operate within the
University of Calgary IT infrastructure. In particular, session
initiation involves user authentication. This step actually
involves several HTTP redirections to the Central
Authentication Service (CAS) at the University of Calgary.
These interactions are complex, and add noticeable latency to
the D2L experience.

Figure 2 shows a schematic illustration of a D2L test session
that we conducted. This session lasts about 10 minutes, and
involves several steps. First, the initial attempt to contact D2L
via HTTP is redirected to use HTTPS instead. Second, the
request is redirected from D2L to CAS at the University of
Calgary for user authentication. Third, the Web browser uses
multiple TCP connections in parallel to load the CAS login page
(i.e., CSS file, logo, background, Javascript). Fourth, once the
user logs in successfully, another HTTPS redirection occurs to
re-connect with D2L. The Web browser then launches multiple
TCP connections to retrieve the different components of the
D2L landing page, including colour template, university logo,
menu buttons, and course home page. The user is now ready to
begin their D2L session. In this test session, the user browses
several course pages, viewing slides from the course content,
and uploading and downloading a few files. Finally, the user
logs out.

During logout, another series of HTTP redirections occur.

 (a) HTTP requests per day (b) HTTPS requests per day

Figure 1: D2L Traffic Profile for Winter 2016

116 IJCA, Vol. 25, No. 3, Sept. 2018

Figure 2: Example of D2L Browsing Session (IIS 10.0)

The first of these is from D2L to an e-learning server hosted by
the Taylor Institute for Teaching and Learning (TITL) at the
University of Calgary. Next, the Web browser uses parallel
TCP connections to load the different components of the session
logout page. Finally, there is a superfluous HTTP redirection
from the TITL server to itself, to change the URL from “logout”
to “logout/”.

4.3 Network Latency Issue

The second D2L performance problem relates to how far

away the D2L server is from the University of Calgary. In
particular, the network round-trip-time (RTT) is about 40 ms,
which is non-negligible. Figure 3 shows how an on-campus
user accesses D2L. In this figure, the campus network is
enclosed within a triangle, while the D2L hosted service in
Ontario is indicated by the oval on the right. We are interested

in characterizing the Internet path between the two.
Figure 4 shows the traceroute results, which indicate that the

Figure 3: Network Path for D2L Users on Campus

IJCA, Vol. 25, No. 3, Sept. 2018 117

D2L hosted service (i.e., desire2learn.ip4.torontointernet
exchange.net) is located at a data center in Toronto. The
network path has 17 hops with a total RTT of 37 ms.

A recurring theme in our study is the adverse impact of
network latency on user-perceived performance in D2L. The
performance of D2L is affected by these high RTT values.
Users spend time waiting for responses from a distant data
center in Toronto. This hinders the responsiveness of the D2L
Web site, particularly when multiple HTTP/HTTPS redirections
occur. Furthermore, the network bandwidth is not well utilized
during TCP slow start, and D2L performance suffers.

4.4 TCP Throughput Issue

The third problem with D2L at our university is the TCP

throughput, which is an important factor that affects network
application performance. Using our empirical measurement

data, we calculated the Average Data Rate (ADR) for D2L data
transfers, which is the size of a transferred file divided by the
elapsed time duration. This metric indicates the average
throughput for D2L connections, in bits per second (bps).

Figure 5 shows a Log-Log Complementary Distribution
(LLCD) plot of the ADR from some of our empirical data. The
average ADR is 500 Kbps, with some data points up to 5 Mbps
for inbound connections. A much lower ADR is seen for
outbound connections, with the average being 50 Kbps, and a
maximum ADR of around 350 Kbps. Note that these
throughput values represent only the average, and not the
instantaneous throughput. Specifically, they are calculated from
the byte counts and the durations reported in the connection
logs, and the duration includes all the TCP connection
handshaking, slow start effects, and any timeouts used for
persistent connections.

There are two intriguing observations in Figure 5. First, the

$ traceroute d2l.ucalgary.ca
traceroute to d2l.ucalgary.ca (199.30.181.42), 30 hops max, 60 byte packets
1 deptNFSgate (172.17.10.1) 0.233 ms 0.217 ms 0.302 ms
2 * * *
3 10.58.48.1 (10.58.48.1) 0.367 ms 0.370 ms 0.363 ms
4 * * *
5 10.16.18.1 (10.16.18.1) 0.433 ms 0.404 ms 0.401 ms
6 10.16.18.4 (10.16.18.4) 0.302 ms 0.246 ms 0.237 ms
7 10.16.17.1 (10.16.17.1) 0.438 ms 0.403 ms 0.432 ms
8 10.59.226.26 (10.59.226.26) 0.334 ms 0.324 ms 0.333 ms
9 h74.gpvpn.ucalgary.ca (136.159.199.74) 3.296 ms 3.333 ms 3.471 ms
10 h66-244-233-17.bigpipeinc.com (66.244.233.17) 0.744 ms 0.633 ms 0.624 ms
11 h208-118-103-166.bigpipeinc.com (208.118.103.166) 0.880 ms 0.869 ms 0.836 ms
12 clgr2rtr2.canarie.ca (199.212.24.66) 0.721 ms 0.755 ms 0.726 ms
13 wnpg1rtr2.canarie.ca (205.189.33.199) 36.400 ms 36.180 ms 36.307 ms
14 canariecds.ip4.torontointernetxchange.net (206.108.34.170) 36.543 ms 36.514 ms 36.368 ms
15 desire2learn.ip4.torontointernetxchange.net (206.108.34.184) 36.668 ms 36.511 ms 36.484 ms
16 * * *
17 ucalgary.desire2learn.com (199.30.181.42) 36.727 ms 36.810 ms 36.770 ms

Figure 4: Traceroute Results for d2l.ucalgary.ca

Figure 5: LLCD Plot of D2L Throughput

throughput values are very low (i.e., much lower than expected
on CANARIE’s fast national network). Second, the average
throughput differs for uploads and downloads, almost by a
factor of two.

To further investigate this issue, we conducted some D2L test
sessions involving uploads and downloads for a single 3.2 MB
data file. Table 1 summarizes the results of our experiment,
which confirms the asymmetric performance for uploads and
downloads. The highest throughput achieved for downloads
was 14 Mbps, while that for uploads was 7 Mbps. These results
were consistent across all test scenarios considered.

We used Wireshark and some active measurements to learn
more about the TCP version and settings used by D2L data
transfers. Wireshark provides information such as TCP options,
maximum segment size (MSS), slow start, window size,
sequence number analysis, and others. OS fingerprinting allows

118 IJCA, Vol. 25, No. 3, Sept. 2018

Table 1: TCP Throughput for D2L Transfers (3.2 MB)
Scenario Device OS Download Upload
On campus, wired Desktop Windows 8 14 Mbps 7 Mbps
On campus, wireless Laptop Mac OS X 14 Mbps 7 Mbps
Off campus, wireless Laptop Mac OS X 14 Mbps 7 Mbps

us to infer the operating system (Windows 2008 R2) and TCP
version (Compound TCP [18, 19]) used by the D2L server,
which is running Microsoft’s Internet Information Server (IIS
version 7.5)

Figure 6 and Figure 7 illustrate the dynamics observed on a
large file upload. Figure 6 shows a TCP sequence number plot
of how the data is transferred over time. This graph shows
several irregularities in the data transfer process. Figure 7
illustrates the TCP receiver window size advertised by the D2L
server during a file upload. The first observation is that the
maximum advertised window size is 64 KB, which is the default
socket buffer size for Compound TCP. This is a very small
window size to use on networks with a large delay-bandwidth
product, such as our scenario. The second observation is that
the advertised window size fluctuates a lot, indicating that the
server is slow in processing the arriving data packets. There are
a half-dozen occurrences of small windows where the data
transfer is inhibited. There is even a window stall event between
11 and 12 seconds, where the receiver window is almost zero
(395 bytes, too small for the uploader to send another MSS).

These results demonstrate that the D2L data transfer
performance is window-limited. Even if data transfers were
perfect, with 64 KB of data exchanged every 40 ms, the
maximum throughput would be 14 Mbps, which is what we
observed in our download experiments. A larger window size
of approximately 1 MB would be required to better exploit the
network path between Calgary and Toronto.

Understanding why upload performance (7 Mbps) is worse
than downloads (14 Mbps) requires even further investigation.
To obtain insight into this problem, we conducted our own
active measurement experiment on a D2L test session using
special software called mitmproxy, which acts as a man-in-the-
middle (mitm) proxy. This software intercepts the traffic
between a client and a server, and can report all the
HTTP/HTTPS traffic requests made by the user.

With mitmproxy in place, we can view the details of our D2L
test sessions, including HTTP requests/responses, file
names/sizes, and response times. These experiments showed
that downloads use the GET method, while uploads use the
POST method. However, the file uploads involve many POST
requests, each with a small transfer size. Furthermore, D2L
internally updates a file directory structure on uploads, as
indicated by UpdateTreeBrowser in one of its URLs. In
addition, there is an activity feed popup right after the new
content is uploaded into D2L, as a notification for the user.
These activities all increase the delay for D2L file uploads.

5 Additional Results

In May 2018, we repeated our D2L traffic measurements to

see what, if anything, had changed from our earlier
measurements in Winter 2016. Our additional results focus on
D2L server performance, recent upgrades, and potential Web
proxy cache performance.

5.1 D2L Server

The first observation from our May 2018 measurements is that

the server-side infrastructure for D2L has changed since Winter
2016. In particular, the HTTP response headers now show that
the D2L Web server is running IIS 10.0, rather than IIS 7.5. The
server hardware and operating system have also been upgraded.

This upgrade has improved the performance for D2L file
uploads, as shown in Figure 8. In this example of a 2.1 MB file
upload, the TCP sequence number plot shows that the data
transfer is completed in about 1.7 seconds, for an average
throughput of 14 Mbps. Furthermore, Figure 9 shows that the
server has no problem keeping up with the data, since the
receiver advertised window for TCP is almost always 64 KB.
To be specific, the initial advertised window is about 12 KB, but

Figure 6: File Upload with D2L’s IIS 10.0 Server Figure 7: TCP Receive Window for D2L File Upload

IJCA, Vol. 25, No. 3, Sept. 2018 119

Figure 8: TCP Seqnum Plot for D2L File Upload Figure 9: TCP Window during File Upload (IIS 10.00)

this window is dynamically resized by TCP until it reaches the
maximum of 64 KB, and stays at that value for the rest of the
transfer. The good news here is that uploads are now just as fast
as downloads; the bad news is that uploads and downloads are
both still window-limited. The TCP sequence number plot in
Figure 8 still shows bursts of 64 KB at a time, with an ensuing
wait of about 40 ms for the window’s worth of
acknowledgements to return. As a result, the average
throughput never exceeds 14 Mbps, despite the multi-Gbps
network path between the client and the server. TCP window
scaling would be required to better utilize this network path.

5.2 D2L User Interface

On May 4, 2018, our university launched a new version of

D2L with an improved user interface. The intent of the new
release was to improve the user experience, with a new design
layout, easier navigation, and mobile-friendly content. We
collected detailed measurements both before and after the new
release, in order to understand the differences. Importantly, this
“upgrade” was only to the user interface, and did not address
any of the fundamental network performance issues identified
earlier.

While the new design is aesthetically pleasing, there are two
new problems with the D2L deployment at our university. One
problem is that the D2L home page is much larger and more
complicated than it was before. Another problem is that D2L
seems to have made almost all content uncacheable. We
comment on these two issues next.

Table 2 provides a comparison of D2L Web pages both before
and after the user interface upgrade. These are examples of

pages in a D2L browsing session for a computer science student
registered in the CPSC 413 course on Complexity Theory. The
most striking observation is that the D2L home page, which all
students visit by default upon login, has approximately doubled
in size (KB) and complexity (number of objects). This results
in slower Web browsing performance than before the upgrade.
The other example pages are comparable to or smaller than they
were before.

The second issue relates to content caching. Based on the
analysis of HTTP response headers in Wireshark, most D2L
content is now marked as uncacheable (i.e., “private, max-
age=0”), unlike the previous version of D2L which allowed
caching of static content (i.e., “public, max-age=3600”). Such
content was typically cacheable for one hour (3600 seconds).

The underlying reason for making content uncacheable is not
clear. We speculate that it is to enable full tracking of student
learning activities, with all Web requests coming to the origin
server. Another possibility is that it reflects the new General
Data Protection Regulation (GDPR) policy enacted by the
European Union in April 2016, which became effective on May
25, 2018. In simple terms, this privacy regulation states that no
user data should be stored and used without the consent and
knowledge of the user. However, one drawback of this
regulation, if naively applied, is that it could compromise
network performance.

The downside of uncacheable content is that the content must
be retrieved repeatedly from the origin server far away. The
most glaring example in our experiments was the user profile
image (21 KB), which was downloaded 61 times during a 10-
minute browsing session. If the content is hosted far away, then
these repeated transfers will affect the user-perceived Web

Table 2: Comparison of D2L Web Page Complexity

Type of
Web Page

Before Update After Update
Objects Size Objects Size

D2L Home Page 21 638 KB 45 1,239 KB
Course Home Page 27 466 KB 11 567 KB

Course Content Page 21 219 KB 17 173 KB
View Content Page 19 44 KB 16 52 KB

120 IJCA, Vol. 25, No. 3, Sept. 2018

browsing performance.
As with our earlier work, we have shared these results with

the University of Calgary Information Technologies (UCIT)
team at our university. They are in touch with D2L to find better
technical solutions for our D2L performance problems. One
obvious solution would be to host all D2L content on campus,
or provide a CDN node on campus that stores this private
information locally, rather than in the cloud. Another solution
might be to ensure that private information is always stored and
accessed in encrypted form.

5.3 Web Caching

Our final result relates to the potential benefits of Web proxy

caching to improve D2L performance at our university. We use
trace-driven simulation for this analysis, with an arbitrarily
chosen D2L workload trace from February 14, 2018. There
were approximately 402,000 Web object transfers on that day.

Our discrete-event simulation models a simple Web proxy
cache on campus, which stores and remembers previously seen
static Web objects. Since the cache has a finite size, a cache
replacement policy is used to manage the cache, and remove
previous items when more space is needed to store a new item.
We use this caching simulator to estimate the potential savings
in D2L requests with a Web proxy cache.

We consider several different replacement policies to manage
the cache. RAND (Random) removes a randomly-chosen object
when more space is needed. FIFO (First In First Out) removes
the oldest object in the cache. LRU (Least Recently Used)
removes objects that have not been used recently. SIZE
removes large objects, while keeping small objects. LFU (Least
Frequently Used) removes objects that have not been used often.
We consider two variants of the latter: In-Cache LFU (CLFU)
only tracks the popularity of objects that are in the cache,
resetting the popularity of an object to zero when it leaves the
cache, while Global LFU (GLFU) always remembers the
cumulative popularity of an object, whether it is still in the cache
or not.

Figure 10 shows the results from our Web proxy cache
simulations. On this graph, the horizontal axis shows the cache

Figure 10: Simulation results for web proxy cache

size in Megabytes (MB) on a logarithmic scale, while the
vertical axis shows the Document Hit Ratio (DHR) on a linear
scale. Higher values of DHR are better, since they represent
more objects being retrieved from the local proxy cache on
campus, and fewer requests going all the way to the D2L server.

In general, the results in Figure 10 show very good potential
for Web proxy caching. Even a modest size cache (10 MB) can
provide a hit ratio of over 50%, reducing by half the number of
requests to the origin server. With a cache size of 1 GB, the
DHR would be approximately 70%. Figure 10 also shows that
there are notable performance differences among the
replacement policies used to manage the cache. The best policy
is SIZE, which focuses on caching a large number of small
objects, such as the icons, sprites, and logos used on many of
the D2L pages. The frequency-based policies also perform well,
with GLFU always outperforming CLFU (as expected). The
LRU policy is next best. FIFO and RAND are poor cache
management policies, as expected.

The main takeaway message from these experiments is that
for D2L, a very simple and modest-sized Web proxy cache on
campus would be highly effective in reducing D2L requests to
the remote server. This cache would improve the user-perceived
latency for accessing D2L content, and reduce repeated transfers
of the same content across the Internet. Furthermore, in addition
to the on-demand caching described above, there should be very
good potential for doing pre-fetching (i.e., prediction) of D2L
content requests, based on the browsing patterns of students.

Two caveats apply to these Web proxy caching results. First,
these results assume that all D2L objects are static Web content,
and eligible for caching. This assumption may not hold for
dynamic content, or for uncacheable requests that D2L uses to
track student learning behavior. Second, our caching study
ignores the issue of end-to-end encryption, which D2L uses to
protect user privacy. Any practical caching solution for D2L,
such as a Web proxy cache or a CDN node, would have to
consider these two practical issues.

6 Conclusions

In this paper, we presented an empirical measurement study

of the Desire2Learn (D2L) Learning Management System
(LMS) adopted for use at the University of Calgary. The
motivation for our study was to gain a better understanding of
the system configuration, and its performance limitations.

While studying an LMS such as D2L is complex, there are
three main technical issues that emerge from our study as root
causes for the poor performance of D2L. The first issue is the
excessive use of HTTP redirection at the University of Calgary
to manage login/logout for D2L sessions. The second issue is
the network RTT latency for D2L users in Calgary to access
course content that is remotely hosted in Ontario. Finally, the
TCP configuration on the D2L server has a maximum window
size of 64 KB, which limits data transfer throughput.

The main conclusion from our study is that D2L is slow, and
unnecessarily so. Fortunately, the observed performance
problems are all fixable, as follows. First, we observed over one

IJCA, Vol. 25, No. 3, Sept. 2018 121

million HTTP redirects during the Winter 2016 term, which
could be eliminated to minimize network round-trips and reduce
server load. Second, there is a 40 ms RTT latency for University
of Calgary users to access D2L content. Using a content
delivery network (CDN), or placing a CDN node locally on
campus, could greatly accelerate content delivery. Our
simulation-based study suggests that a simple Web proxy cache,
properly managed, could reduce D2L content requests by 50-
70%. Finally, the TCP window size used by D2L is small, and
does not scale dynamically based on the observed characteristics
of the network path. An expanded TCP window size would
solve this problem, improving throughput for both uploads and
downloads. We hope that the insights from our study will
improve future deployments of the D2L LMS, both at our
university and elsewhere.

Acknowledgements

Financial support for this research was provided by NSERC.

The authors thank D’Arcy Norman at TITL for his detailed
knowledge of D2L, and the CATA 2018 reviewers for their
feedback and suggestions on an earlier version of this paper.

References

[1] V. Adhikari, Y. Guo, F. Hao, V. Hilt, Z-L. Zhang, M.

Varvello, and M. Steiner, “Measurement Study of
Netflix, Hulu, and a Tale of Three CDNs”, IEEE/ACM
Transactions on Networking, 23(6):1984-1997,
December 2015.

[2] J. Almeida, J. Krueger, D. Eager, and M. Vernon,
“Analysis of Educational Media Server Workloads”,
Proceedings of ACM NOSSDAV, Port Jefferson, NY, pp.
21-30, January 2001.

[3] M. Arlitt and C. Williamson, “Internet Web Servers:
Workload Characterization and Performance
Implications”, IEEE/ACM Trans. on Networking,
5(5):631-645, Oct. 1997.

[4] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and
M. Arlitt, “A Comparative Analysis of Web and Peer-to-
Peer Traffic”, Proceedings of WWW, Beijing, China, pp.
287-296, April 2008.

[5] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida,
“Characterizing User Behavior in Online Social
Networks”, Proceedings of ACM IMC, Chicago, IL, pp.
49-62, November 2009.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web Caching and Zipf-like Distributions: Evidence and
Implications”, Proceedings of IEEE INFOCOM, New
York, NY, pp. 126-134, March 1999.

[7] Brightspace By D2L, The Brightspace Cloud Content
Delivery Network. https://community.
brightspace.com/resources, Aug 2017.

[8] Bro, The Bro Network Security
Monitor,https://www.bro.org, Jan 2018.

[9] R. Caceres, P. Danzig, S. Jamin, and D. Mitzel,
“Characteristics of Wide-area TCP/IP Conversations”,

Proceedings of ACM SIGCOMM, Zurich, Switzerland,
pp. 101-112, August 1991.

[10] M. Cha, H. Kwak, P. Rodriguez, Y. Ahn, and S. Moon,
“I Tube, You Tube, Everybody Tubes: Analyzing the
World’s Largest User-Generated Content Video
System”, Proceedings of ACM IMC, San Diego, CA, pp.
1-14, November 2007.

[11] M. Crovella and B. Krishnamurthy, Internet
Measurement: Infrastructure, Traffic and Applications,
John Wiley & Sons, 2006.

[12] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube
Traffic: A View from the Edge”, Proceedings of ACM
IMC, San Diego, CA, pp. 15-28, November 2007.

[13] F. Hernandez-Campos, K. Jeffay, and F. Smith,
“Tracking the Evolution of Web Traffic: 1995-2003”,
Proceedings of IEEE MASCOTS, Orlando, FL, pp. 16-
25, October 2003.

[14] M. Laterman, M. Arlitt, and C. Williamson, “A Campus-
Level View of Netflix and Twitch: Characterization and
Performance Implications”, Proceedings of SCS
SPECTS, Seattle, WA, pp. 15-28, July 2017.

[15] B. Newton, K. Jeffay, and J. Aikat, “The Continued
Evolution of Web Traffic”, Proceedings of IEEE
MASCOTS, San Francisco, CA, pp. 80-89, August 2013.

[16] V. Paxson, “Bro: A System for Detecting Network
Intruders in Real-Time”, Computer Networks,
31(23):2435-2463, December 1999.

[17] S. Roy, Characterizing D2L Usage at the U of C, MSc
Thesis, University of Calgary, August 2017.

[18] K. Tan and J. Song, “Compound TCP: A Scalable and
TCP-friendly Congestion Control for Highspeed
Networks”, Proceedings of 4th International Workshop
on Protocols for Fast Long-Distance Networks, Nara,
Japan, 8 pages, February 2006.

[19] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A
Compound TCP Approach for High-Speed and Long-
Distance Networks”, Proceedings of IEEE INFOCOM,
Barcelona, Spain, pp. 1217-1228, April 2009.

[20] C. Williamson, “Internet Traffic Measurement”, IEEE
Internet Computing, 5(6):70-74, November/December
2001.

[21] Wireshark. www.wireshark.org, Jan 2018.

Sourish Roy completed his B.Tech. in
Computer Science and Engineering from
St. Thomas College of Engineering and
Technology in Kolkata, India, and his
M.Sc. in Computer Science from the
University of Calgary in Calgary, Alberta,
Canada. His interests include computer
networks, Software Defined Networking,
and big data analytics. He is currently
employed as a Big Data Engineer at Index
Exchange in Toronto, Ontario, Canada.

122 IJCA, Vol. 25, No. 3, Sept. 2018

Carey Williamson is a Professor in the
Department of Computer Science at the
University of Calgary. He holds a BSc
(Honours) in Computer Science from the
University of Saskatchewan, and a PhD
in Computer Science from Stanford
University. His research interests include
computer networks, internet protocols,
network traffic measurement, simulation,
and Web performance.

Rachel McLean is an undergraduate
student at the University of Calgary. She
is in her final year of study towards a BSc
in Computer Science with a
concentration in game design. In Spring
2018, she received a Canadian NSERC
Undergraduate Student Research Award,
allowing her to participate in network
research under Dr. Carey Williamson.

IJCA, Vol. 25, No. 3, Sept. 2018 123

An Evaluation of the Performance of Join Core and
Join Indices Query Processing Methods

Reham M. Almutairi*, Mohammed Hamdi*
Southern Illinois University, Carbondale, IL, USA

Feng Yu†

Youngstown State University, Youngstown, OH, USA

Wen-Chi Hou*
Southern Illinois University, Carbondale, IL, USA

Abstract

Over the last few decades, much research has been devoted
to designing and evaluating efficient join algorithms. The
focus of this paper is a comparison of the two fastest join
methods: Join indices and Join Core. Join indices generate
index tables that contain tuples identifiers for matching tuples.
Joins can be performed by scanning each input relation only
once. On the other hand, Join Core is a data structure that
stores join relationships to facilitate join query processing.
With Join Core, join queries can be answered without having
to perform costly join operations. Both methods have been
implemented and we have performed extensive experiments on
TPC-H benchmark datasets and queries. Results show that
while both methods are much faster than conventional
systems, such as MySQL, the Join Core approach is the fastest
query processing method for the datasets studied.

Key Words: Query processing, join queries, equi-join, join
indices, decision support systems.

1 Introduction

A database is a gathering of data, depicting the activities of
at least one related association. Questions are posted by
normal customers and applications constantly. Reacting to the
asked for data from an enormous measure of information is a
fundamental piece of database management systems [19].

The join operations consolidate data from no less than two
relations [16], and are seemingly the most important
operations in query processing. Since a client is holding up for
the database to respond with an answer, the time for delivering
results is exceptionally critical. Consequently, much research
has been dedicated to designing efficient join algorithms over
the most recent couple of decades [1-2, 6-7, 11, 13-14, 21-22,
17].

*Dep ar tment o f Co mputer Scien ce. Emai l :
reham.mutlaq@hotmail.com, {mhamdi, hou}@cs.siu.edu.
†Department of Computer Science and Information Systems. Email:
fyu@ysu.edu.

The objective of this paper is to compare the performance of
two of the most efficient join algorithms: Join Core and Join
indices. Join indices [3, 4, 15, 18, 24] use indices to perform
join operations. It has been reported that Join indices had
better performance than traditional join methods. On the other
hand, Join Core [8] had also reported superior performance to
traditional systems, e.g., MySQL, as it can answer a wide
variety of queries without performing joins, including equi-,
outer-, and anti-joins. In this paper, we shall conduct extensive
experiments to compare the performance of these two join
methods.

The rest of the paper is organized as follows. In Section 2,
we give a review of the traditional join algorithms. Section 3
explains in detail the multi-way Jive-join using Join Indices.
Join Core is described in Section 4. Experimental results are
reported in Section 5. Section 6 is the conclusions and the
future work.

2 Traditional Join Algorithms

Traditional join algorithms generally can be categorized into
three types: hash-based joins, sort-merge joins, and nested-
loop joins. Here, we briefly review these methods:

2.1 Nested-Loop Joins

The nested-loop join is the simplest among the three
traditional joins. Two relations that participate in the join
operation are named: the outer relation (or the source relation)
and the inner relation (or the target relation). Nested-loop
joins algorithms are one-and-half passes because for each
variation, it scans each tuple in the outer relation once and for
the inner relation, it is repeatedly scanned. Nested-loop joins
does not require that relations fit into memory, any size of a
relation can be used in these joins [6]. Nested-loop join is
most appropriate for smaller relations.

2.2 Sort-Merge Joins

The fundamental idea of the sort-merge join is sorting both
relations on the join attribute using one of many sorting
methods (e.g., n-way merge), and then searching for qualifying

ISCA Copyright© 2018

mailto:hou%7d@cs.siu.edu

124 IJCA, Vol. 25, No. 3, Sept. 2018

tuples from both relations by basically combining two
relations [5].
2.3 Hash-Based Joins

The main idea behind the hash-based (partition) joins is to
use hashing to partition the relations and match tuples in
respective partitions.

Tuples in the outer relation, called the build relation, is
partitioned into smaller files so that each partition can fit into
memory. Tuples in the inner relation, called the probe
relation, is partitioned using the same hash function. Then,
each partition of the build relation is read into memory to build
a hash table for tuples in the corresponding partition of the
probe relation to find matches. Hash-based joins are generally
very efficient in traditional methods [20].

3 Join Core

This section we briefly describe the Join Core technique [8].

3.1 Basis

Join Core is a data structure created to facilitate complex
join queries processing. It is a gathering of equi -join
relationships of tuples. The join relationships are stored in a
set of tuples based on the equi-joins they satisfy. It intends to
answer join queries without the need to perform expensive
joins. It has been shown that it can answer a wide variety of
join queries that include arbitrary (legitimate) combinations of
equi-, semi-, outer, and anti-joins.

3.2 Structure

A join graph is commonly used to describe the equi-join
relationships between pairs of relations.

Join Graph of a Database. Let D be a database with n
relations R1 , R2 , …, Rn , and G (V, E) be the join graph of D,
where V is a set of nodes that represents the set of relations in
D, i.e., V = {R1, R2, R3, ..., Rn}, and E = {(Ri, Rj) | Ri, Rj ∈ V,
ij}, is a set of edges, in which each represents an equi-join
relationship that has been defined between Ri and Rj, i ≠ j.

Figure 1 shows the join graph of a database. Relations are
connected by the (equi-)join edges. Each edge, e.g., <R1, R2>,
specifies the equality requirements for a pair of tuples from the
two relations, R1 and R2, must satisfy to generate a result tuple
in the equi-join. Each join or edge is assigned a number as its
ID. For example, the join between R1 and R2 or <R1, R2> is
given an ID 4.

R1 R3

4 5
R2

Figure 1: Join graph

Figure 2 shows an example of a database with the join graph
shown in Figure 1. The edge between tuples, e.g., S and W,
indicates that S and W have the same join attribute values for
the join 4.

S
 4

W

5

L

B

Q

J T N

R1 R2 R3

Figure 2: Matching of join attributes

[8] introduces the concept of trivial (equi-)joins with join
predicates: Ri.key = Ri.key, 1 ≤ i ≤ 3. Consequently, each
tuple in relation Ri would automatically satisfy the trivial join
i. Notice that all join edges in the join graph are non-trivial
joins (or regular equi-joins), e.g. 4, 5. Join 1, 2, and 3 are
reserved for trivial joins, which are not displayed in Figure 1.

Maximally Extended Match Tuple. Given a database D =
{R1, …, Rn} and its join graph G, an extended match tuple (tk,
…, tl), where 1≤ k, ..., l ≤ n, tk ∈ Rk, …, tl ∈ Rl, and Rk, …,Rl
are all distinct relations, represents a set of tuples {tk, …, tl}
that generates a result tuple in {tk} ⋈ …⋈ {tl}. A maximally
extended match tuple (tk, …, tl), is an extended match tuple if
no tuple tm in Rm (∉ {Rk, …, Rl}) matches any of the tuples tk,
…, tl in join attribute values.

Example. The join relationships of tuples are captured in the
maximally extended match format [8], namely, (S, W), (B), (J,
Q, L), (T, N). These join relationships are stored in different
tables based on joins, both trivial and non -trivial ones, they
satisfy. For example, (S, W) satisfies join 4 and trivial joins
1 and 2. Therefore, it is stored in a table called J1,2,4. B is a
tuple in R1, but it does not satisfy any non-trivial join, and
thus is stored in J1. These tables form the Join Core, as shown
in Figure 3.

 1 2 1
 S W B

 J1,2,4 J1

 1 2 3 2 3
 J Q L T N

J1,2,3,4,5 J2,3,5

Figure 3: Join core structure

IJCA, Vol. 25, No. 3, Sept. 2018

3.3 Join Core Construction

The Join Core can be constructed easily by first
consecutively performing an outer -join for each join edge in
the join graph, and then assigning the resulting tuples to Join
Core tables based on the joins, both trivial and non-trivial
ones, they have satisfied.

3.4 Answering Join Queries

Answering a join query is to look for tables whose names
contain the join edge specified in the query without having to
perform joins. For example, to answer a join query: R2 R3,
the algorithm looks for join core tables whose names contain
the numbers 2, 3 and 5. Only tables J 1,2,3,4,5 and J2,3,5 meet
the search criteria, and they are returned as answers, after
some simple processing, such as removing unwanted
attributes. Consequently, join queries can be answered rapidly.

It has been shown that Join Core can be directly applied to
queries with arbitrary legitimate combinations of equi-, semi-,
outer- and anti-joins.

4 Jive-Join

This section presents the Jive-join technology. It explains
the terminology and the basic structure of Jive-join algorithm.

4.1 Basis

In this algorithm, only one sequential passes through each
input relation, one sequential passes through the join index,
and two sequential passes through a temporary file that its size
is half of the join index size are needed. To reduce the use of
main memory, the algorithm stores the intermediate and final
results vertically on disks. The Jive-join algorithm helps to
join relations that are much larger than the main memory [11].

4.2 Structure

In Jive-join method, the join index has a tuple-id column for
every input relation. It will be a set of tuple -ids (t1, t2, t3, …,
ti) from relations R1, R2, R3,…., Ri. The algorithm divides
relations R2,…Rr into ranges. Then, Ri tuple-ids will be
divided into K i ranges, for r=2, …, i. Every tuple (t2, …, tr)
from tuple -ids can belong to one of Y=K2K3…Kr partitions.
After that, the algorithm processes each partition separately
[9].

We use an example of a database with two relations, Student
and Activity, are shown in Figure 4.

The join index table, namely, J, contains tuple-ids for each
relation for only matched tuples. Firstly, the algorithm divides
the join index table into two partitions as shown in Figure 5.
Every partition has an associated output file buffer and
associated temporary file buffer. When these buffers are full,
each of them will flush its contents to a corresponding output
file and temporary file on the disk.

In the second step, the algorithm scans J and R1 sequentially,
and discovers the partition that this tuple belongs to, based on
the R2 tuple-ids in J. Then, it executes two operations: write

 125

Student Activity Activity Code Student Activity

tuple-id tuple-id

Smith

Swimming

 Swimming 084

1

1

Bloggs

Golf

 Squash 182

2

4

John

Squash

 Tennis 219

3

2

Davis

Football

 Golf 100

5

3

Mark

Tennis

 R2: Relation Activity

R1: Relation Student Join Index (J)

 Figure 4: Database

 (a) Id < 3 (b) Id >= 3

 Smith 1 Bloggs 4

 John 2 Mark 3

 Temp (a) JR1 (a) Temp (b) JR1 (b)

Figure 5: Partitioning J

the attribute for R1 to the output file buffer for the partition,
and write R2 tuple-ids to a corresponding temporary file buffer
for the partition, as shown in Figure 5.

In step 3, for each partition, the algorithm reads in and sorts
the temporary file with duplicates eliminated, by keeping the
original version of the temporary file. Next, it scans the
relation R2 by reading only tuples that are mentioned in the
temporary file, and retrieves tuples in order. After that, tuples
are written to the output file JR2 in the order of the original
temporary files, as shown in Figure 6.

 (a) Id < 3
1 1 Swimming 084
2 2 Squash182

Swimming 084
Squash 182

JR2 (a)

Figure 6(a): Output file (JR2): partition (a)

 (b) Id >= 3
4 3 Tennis 219
3 4 Golf 100

Golf 100
Tennis 219

JR2 (b)

Figure 6(b): Output file (JR2): partition (b)

126 IJCA, Vol. 25, No. 3, Sept. 2018

A vertically partitioned data structure, which is called a

transposed file, is used to store the final join result [11]. The
partitions of each relation are linked together into a single file
JRi separately from other partitions of another relation such
that, the first row in each of the files corresponds to the first
join result tuple, the second rows to the second join result
tuple, and so on. Noted that, attributes that are shared by more
than one relation are placed arbitrarily in one of the vertical
partitions, as shown in Figure 7.

 Student Activity Code

Smith

JR1 (a)
 Swimming 084

JR2 (a)

John
Squash 182

Bloggs

JR1 (b)
 Golf 100

JR2 (b)
Mark

Tennis 219

Figure 7: Final join result

4.3 Multi-Way Jive-Join

The structure of multi-way Jive-join is not much different
from the case of the two joins. In multi-way Jive-join, the join
index has a tuple -id column for every input relation. It will be
a set of tuple-ids (t1, t2, t3, …, ti) from relations R1, R2, R3,….,
Ri. The algorithm divides relations R2,…Rr into ranges. Then,
Ri tuple-ids will be divided into Ki ranges, for r=2, …, i.
Every tuple (t2, …, tr) from tuple-ides can belong to one of
Y=K2K3…Kr partitions. After that, the algorithm processes
each partition separately [10].

We use an example of a database with three relations,
Student, Course, Instructor and Room, are shown in Figure 8.

In the second step, the algorithm scans J, in Table 1, and R1
sequentially, and discovers the partition that this tuple belongs
to, based on the R2, R3, and R4 tuple-ids in J. Then, it executes
two operations: write the attribute for R1 to the output file
buffer for the partition, and write R2, R3, R4 tuple-ids to a
corresponding temporary file buffer for the partition [11], as
shown in Figure 9.

Table 1: Join index(J)
Student Course Time Room

2 9 8 4
3 4 3 5
4 2 2 2
5 5 4 1
6 6 5 6
7 2 2 2
8 3 1 8

Student Course
Smith1 101
Smith2 109
Davis1 102
Davis2 105
Davis3 106
Brown 102
Black 103
Frick 107

Student (R1)

Instructor Time
Green 3:00

Yellow 10:00
White 11:00
Evans 8:00
Albert 2:00
Red 1:00
Grey 12:00

Course Instructor

101 Green

102 Yellow

103 Green

104 White

105 Evans

106 Albert

107 Beige

108 Red

109 Grey

Course (R2)

Room Course

C300 105

C301 102

C302 108

C303 109

C304 104

C305 106

C309 103

Figure 9: Partitioning J

After finishing step 2, the part of the output, namely JR1,
have been generated. The partitions of JR1 will be linked
together into a single file, which is JR1, as shown in Figure 10.
Also, as shown in Figure 11, we have been generating several
temporary files that are used in step 3 to generate the other
parts of the output: JR2, JR3, JR4.

For each relation R2, R3, and R4, tuple-ids in temporary files
for all partitions for this relation are copied into one large
array, namely H1, H2, H 3 corresponding to relations R2, R3, R4
respectively. Then each array is sorted in ascending order with
rejecting duplicates. Next, it scans each relation and the

Instructor (R3) Room (R4)

Figure 8: Database

corresponding array, and retrieves tuples in order. After that,
the tuples are written to the output files JR2, JR3, JR4 in the
order of the original temporary files, as shown in Figure 12.

R4: Part

R5: Partsupp

R6: Supplier

R7: Nation R2: Orders R1: Customer

R3: Lineitem

R8: Region

Figure 14: TPC-H Schema

Eliminating
duplicates

Sorting and

H1 H1 JR2

Sorting and

Eliminating
duplicates

JR3 H2 H2

Sorting and

Eliminating
duplicates

JR4 H3 H3

IJCA, Vol. 25, No. 3, Sept. 2018

Figure 11: Temporary files

Figure 10: Partitions of JR1

Vertically partitioned data structured, which is called a
transposed file, is used to store the final join result [12]. The
partitions of each relation are linked together into a single file
JRi separately from other partitions of another relation. In the
way that, the first row in each of the files corresponds to the
first join result tuple, the second rows correspond to the second
join result tuple, and so on. Figure 13 shows the final output
of this join. Noted that, attributes that are shared by more than
one relation are placed arbitrarily in one of the vertical
partitions. For example, the column for Course number is

 127

common in R1 and R2, which are Student relation and Course
relation respectively, will be placed arbitrarily in only one
vertical file: JR1 or JR2.

5 Experimental Results

In this section, we report the experimental results on the

multi- way Jive-join and Join Core by measuring their time and
space consumptions. We have implemented multi-way Jive-join
and Join Core using the JAVA programming language. Many
factors, such as the number of CPUs, disks (and types of disks,
magnetic or SSD), etc., can affect the performance of query
processing. In this preliminary study, we will use only the
simplest set up to see how the proposed method alone can
improve query processing, leaving other performance improving
factors to future work. All experiments are performed on a
laptop computer with 1.80 GHz CPU, 4 GB RAM, and 930 GB
hard drive.

5.1 Datasets

We generate TPC-H benchmark datasets with three sizes
1GB, 4GB, and 10GB, respectively. The datasets have eight
separate tables. Figure 14 shows the TPC-H Schema. The
arrows specify the direction of many-to-one relationships
between tables.

5.2 Space Consumption

In the TPC-H benchmark dataset, Lineitem table is the
largest one while Region is the smallest one. For the 1GB
dataset, Line item has 6,001,215 tuples, Orders has 1,500,000
tuples, and Customer has 150,000 tuples. For the 4GB dataset,
Lineitem table has 23,996,604 tuples, Orders has 6,000,000
tuples, and Customer has 600,000 tuples. For 10GB dataset,

2
2
5
9
6
4
3

2
3
4
5
6
9

102 Yellow
103 Green
104 White
105 Evans
106 Albert
109 Grey

2
2
4
8
5
3
1

1
2
3
4
5
8

3:00
10:00
11:00
8:00
2:00
12:00

2
2
1
4
6
5
8

1
2
4
5
6
8

C300
C301
C303
C304
C305
C309

Davis1
Brown
Davis2
Smith2
Davis3
Jones
Black

102 Yellow
102 Yellow
105 Evans
109 Grey
106 Albert
104 White
103 Green

102 Yellow
102 Yellow
105 Evans
109 Grey
106 Albert
104 White
103 Green

C301
C301
C300
C303
C305
C304
C309

Figure 12: Output files JR2, JR3, and JR4

Figure 13: Final Result

128 IJCA, Vol. 25, No. 3, Sept. 2018

Lineitem has 42,297,504 tuples, Orders has 15,000,000
tuples,and Customer has 1500,000 tuples. However, in all
three datasets, Nation has 25 tuples and Region has only five
tuples.

Table 2 shows index tables’ size for each query for our
datasets. We can notice that even though the size of the
dataset is large, the size of index tables are small because the
index table includes tuples identifiers instead of tuples’ values.

On the other hand, the full Join Core sizes, without applying
any space reduction methods, are 4, 13.8, and 39.7 GB for the
1, 4, and 10 GB TPC-H datasets, respectively in Table 3. The
larger sizes of the Join Cores are mainly due to the replications
of tuples of smaller relations. In addition, there are several
cycles, each of which introduces an additional alias relation in
the graph. After removing Region, Nation, and Supplier,
noted as “Reduced 1”, is shown in Table 3. “Reduced 2”, in
Table 3, is the resulting graph after further removing the
Customer relation from “Reduced 1” [8]. Consequently,
Multi-way Jive-join method has better memory utilization than
Join Core.

Table 2: Index tables’ size
Query 1GB 4GB 10GB

Dataset Dataset Dataset

Q12 / Q4 :
89.7 MB 118 MB 374 MB

{R2, R3}

Q14 / Q19:
87.3 MB 121 MB 367 MB

{R3, R4}

Q16: {R4,
11 MB 53 MB 102 MB

R5}

Q3/ Q18:
91.6 MB 394 MB 715 MB

{R1, R2, R3}

Q10: {R1, R2,
97 MB 406 MB 802 MB

R3, R7}

Q2: {R4, R5,
24.8 MB 92 MB 135 MB

R6, R7, R8}

Q5: {R1, R2,
104.8 MB 472 MB 844 MB

R3, R6, R7, R8}

Table 3: Join core size [8]

Join Core Datasets
Size 1GB 4GB 10GB
Full 4 GB 13.8 GB 39.7 GB

Reduced 1 2.3 GB 7.1 GB 20.1 GB
Reduced 2 1.7 GB 5.4 GB 15.8 GB

5.3 Time Consumption

We have applied test queries that come with TPC-H
benchmark datasets. We have removed any grouping,
aggregation, and ordering functions from the test queries so
that we can focus only on the join operation. We included
"distinct" for the queries to generate distinct result tuples.
A multi-way jive-join algorithm reads the tables from the
disk into main memory to perform the join operation, then
writes the result tuples to the disk. The time from the
beginning to the time when the first result tuple is written to
the disk is called the response time, while the time from the

beginning until all result tuples are written to the disk is the
elapsed time. For each query, we have measured the elapsed
time for all the three datasets 1, 4, and 10 GB.

Table 4 shows the query processing time for Multi-way
Jive-join and full Join Core tables. The first column identifies
the ID of the TPC-H query followed by the relations that
participate in this query. Relations are numbered as shown in
the TPC-H dataset graph (Figure 8). The second column is the
elapsed time in Join Core for 1, 4, and 10 GB datasets. The
next two columns are Multi-way Jive-join elapsed time and
MySQL elapsed time, respectively, for 1, 4, and 10 GB
datasets. The final column is the result tuples for the queries.
All the times are measured in seconds. We ignored queries
that took more than 4 hours, which equals to 14,400 seconds,
as showed by –‘s in the table.

As we see in Table 4, the queries processed with MySQL
took longer time than both Multi-way Jive-join and Join Core
methods. For example, to process query 16 for 1 GB dataset
using MySQL, it took 107.32 seconds. On the other hand,
processing the same query took 47.030 seconds with Multi-
way Jive-join, and took 0.812 seconds with Join Core, which
both are much less than the processing time with MySQL.

 Table 4: Time consumption

Query
Join Core

Elapsed

1/4/10GB

Multi-way

Jive Join
Elapsed

1/4/10GB

MySQL
Elapsed

1/4/10GB

Result

Tuples

12: ⋈ {R2, R3}

5.456 48.219 403.21 38,928

22.409 161.532 817.02 155,585

56.023 382.157 2,714 388,058

14: ⋈ {R3, R4}

0.502 36.453 465.10 1,717

1.865 203.187 1,422 6,718

3.865 477.594 2,203 16,943

19: ⋈ {R3, R4}

0.012 68.093 308.75 200

0.041 277.704 971.14 864

0.103 604.438 1,705 2,096

4: ⋈ {R2, R3}

0.397 34.297 336.40 3,040

1.518 124.547 911.38 11,889

3.625 302.969 2,488 29,447

16: ⋈ {R4, R5}

0.812 47.030 107.32 3,795

3.005 269.782 446.21 15,208

9.686 721.328 901.74 38,195

3: ⋈ {R1, R2, R3}

1.579 51.688 7,256 11,620

8.016 155.563 10,342 45,395

17.455 941.687 - 114,003

18: ⋈ {R1, R2,

R3}

0.010 36.234 57.516 6

0.012 154.156 163.65 11

0.013 412.047 427.14 22

10: ⋈ {R1, R2,
R3, R7}

1.706 36.594 2,816 3,773

5.667 248.625 5,516 14,800

14.560 325.484 8,341 36,975

2: ⋈ {R4, R5, R6,
R7, R8}

1.890 26.313 691.38 3,162

7.005 401.875 2,810 12,723

18.609 811.406 6,447 31,871

5: ⋈ {R1, R2, R3,
R6, R7, R8}

1.760 38.031 9,471 15,196

6.809 218.469 - 60,798

16.355 398.359 - 152,102

IJCA, Vol. 25, No. 3, Sept. 2018 129

Additionally, from Table 4, we also notice that the query
processing time with Multi-way Jive-join is larger than the
time with Join Core algorithm. This is because Multi- way
Jive-join needs to generate temporary files and output files JRi.
On the other hand, for the Join Core algorithm, there is no
need to generate any intermediate results or perform expensive
join operations. Therefore, queries are answered instantly.
For example, for process query 2 for 1 GB dataset, it took
26.313 seconds in Multi- way Jive-join, but in the Join Core, it
took only 1.890 seconds.

As observed from Table 4, the query processing time is
generally increased as the size of datasets are increased for all
the methods. For example, for query 19, it took 68.093,
277.704, and 604.438 seconds for the Multi-way Jive-join for
1, 4, and 10 GB datasets, respectively. This is because the
larger datasets have a larger number of partitions, thus,
generating larger output files and temporary files. Thus, larger
datasets require more time to read and write.

It is pointed out that the sizes of the query results determine
the query processing time for the Join Core method. For
example, consider query 4 and query 18. Query 4 has one join
and generates a larger number of result tuples. On the other
hand, query 18 has two joins, including the join of the query 4,
but generates a smaller number of result tuples. Consequently,
the processing time for query 4 is larger than the processing
time for query 18. As shown in Table 4, to process query 4, it
took 0.397, 1.518, and 3.635 seconds for 1, 4, and 10 GB
datasets, respectively, but it took 0.010, 0.012, and 0.013
seconds for 1, 4, 10 GB datasets respectively to process Query
18.

On the other hand, for Multi-way Jive -join, the complexity,
the number of joins, of the query largely determines the query
processing time, as illustrated by the elapsed time of queries 4
and 18. Even though the query 4 generates a larger number of
results, it took less time than query 18 since it has only one
join. Query 18 generates a smaller number of results, but it
took longer to complete because it has two joins. As shown in
the table, it took 34.297, 124.547, and 302.969 seconds to
process the query 4 for 1, 4, and 10 GB datasets, respectively,
and it took 36.234, 154.156, and 412.047 seconds to process
query 18 for 1, 4, and 10 GB datasets, respectively. Hence, the
complexity of the query, not the result size, determines the
query processing time in Multi-way Jive-join.

Our experimental results show that Multi-way Jive-join has
less space consumption than Join Core. Mostly, the main
memory is used by more than one task. So, by consuming less
memory for the join operation in Multi-way Jive-join, it helps
other tasks to use the main memory at the same time. Also,
our result shows that processing query with Multi-way Jive-
join algorithm is faster than with MySQL. However, Multi-
way Jive-join takes a longer time to process queries than Join
Core strategy. This is because Multi -way Jive-join requires
generating output files and temporary files before generating
the final results. On the other hand, Join Core algorithm has
instant response.

In addition, our result shows that processing query with
Multi-way Jive-join algorithm is faster than with MySQL.
However, Multi-way Jive-join takes a longer time to process

queries than the Join Core. This is because Multi-way Jive-
join requires generating output files and temporary files before
generating the final results. On the other hand, Join Core
algorithm does not perform joins or generate intermediate
results; it also generates instant responses.

6 Conclusions

In this paper, we have implemented a version of Join
Indices, which is the Multi-way Jive-join, to contrast its
performance with the most recent join algorithm: Join Core.
Join indices produce index tables that contain tuples identifiers
for coordinated tuples. It scans each input relation just once,
the join index once, and scans temporary files twice. on the
other hand, Join Core is a data structure created to facilitate
complex join queries promptly. With the Join Core, join
queries can be dealt with rapidly without performing costly
join operations. Also, no intermediate results should be made
or recovered during the process. Therefore, join queries can
be handled quickly. We have produced TPC-H benchmark
datasets with three sizes 1GB, 4GB, and 10GB, as an
experiment. Our test result demonstrates that Multi-way Jive-
join method has better memory usage over Join Core.
Moreover, processing queries with Multi-way Jive -join is
quicker than with MySQL. In any case, our results
demonstrate that Multi-way Jive-join method has longer
processing time than Join Core technique.

References

[1] Mihaela A Bornea, Vasilis Vassalos, Yannis Kotidis,

and Antonios Deligiannakis, “Double Index Nested-
Loop Reactive Join for Result Rate Optimization”,
IEEE 25th International Conference on Data
Engineering, ICDE'09, IEEE, pp. 481-492, 2009.

[2] Shumo Chu, Magdalena Balazinska, and Dan Suciu,
“From Theory to Practice: Efficient Join Query
Evaluation in a Parallel Database System”, Proceedings
of the 2015 ACM SIGMOD International Conference on
Management of Data, ACM, pp. 63-78, 2015.

[3] Joseph Vinish D’silva, Bettina Kemme, Richard
Grondin, and Evgueni Fadeitchev, “Powering Archive
Store Query Processing via Join Indices”, Proc. 20th
International Conference on Extending Data Base
Technology (EDBT), pp. 644-655, March 21-24, 2017.

[4] Bipin C Desai, “Performance of a Composite Attribute
and Join Index,” IEEE Transactions on Software
Engineering, 15(2):142-152, 1989.

[5] Jost Enderle, Matthias Hampel, and Thomas Seidl,
“Joining Interval Data in Relational Databases,”
Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, ACM, pp. 683-
694, 2004.

[6] Goetz Graefe, “New Algorithms for Join and Grouping
Operations,” Computer Science-Research and
DevelopmentI, 27(1):3-27, 2012.

[7] Gunasekaran Hemalatha and ThanushkodiKeppana
Gowder, “New Bucket Join Algorithm for Faster Join

130 IJCA, Vol. 25, No. 3, Sept. 2018

Query Results.,” International Arab Journal of
Information Technology (IAJIT), 12(6A):701-707,
2015.

[8] Mohammed Hamdi, Feng Yu, Sarah Alswedani, and
Wen-Chi Hou, “Storing Join Relationships for Fast Join
Query Processing,” International Conference on
Database and Expert Systems Applications, Springer,
Cham, pp. 167-177, 2017.

[9] Ralph Kimball and Kevin Strehlo, “Why Decision
Support Fails and How to Fix It,” Acm Sigmod Record,
24(3):92-97, 1995.

[10] Ramon Lawrence, “Early Hash Join: A Configurable
Algorithm for the Efficient and Early Production of Join
Results,” Proceedings of the 31st International
Conference on Very Large Data Bases, VLDB
Endowment, pp. 841-852, 2005.

[11] Zhe Li and Kenneth A. Ross, ‘Fast Joins using Join
Indices,” The VLDB Journal—The International
Journal on Very Large Data Bases, 8(1):1-24, 1999.

[12] Stefan Manegold, Peter A. Boncz, and Martin L.
Kersten, “What Happens During a Join? Dissecting
CPU and Memory Optimization Effects,” Proceedings
of the 26th International Conference on Very Large
Data Bases, Morgan Kaufmann Publishers Inc., pp.
339-350, 2000.

[13] Stefan Manegold, Peter Boncz, Niels Nes, and Martin
Kersten, “Cache-Conscious Radix-Decluster
Projections,” Proceedings of the Thirtieth International
Conference on Very Large Data BasesI, VLDB
Endowment, 30:684-695, 2004.

[14] Mohamed F. Mokbel, Ming Lu, and Walid G. Aref,
“Hash-Merge Join: A Non-Blocking Join Algorithm for
Producing Fast and Early Join Results,” Proceedings
20th International Conference on Data Engineering,
IEEE, pp. 251-262, 2004.

[15] Hung Q Ngo, Ely Porat, Christopher Ré, and Atri
Rudra, “Worst-Case Optimal Join Algorithms,”
Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, ACM,
pp. 37-48, 2012.

[16] Hung Q. Ngo, Christopher Ré, and Atri Rudra, “Skew
Strikes Back: New Developments in the Theory of Join
Algorithms,” ACM SIGMOD Record, 42(4):5-16, 2014.

[17] Patrick O'Neil and Goetz Graefe, “Multi-Table Joins
through Bitmapped Join Indices,” ACM SIGMOD
Record, 24(3):8-11, 1995.

[18] Raghu Ramakrishnan and Johannes Gehrke, Database
Management Systems, (3rd ed). McGraw Hill, 2003.

[19] Michael L. Rupley Jr., Introduction to Query
Processing and Optimization, technical_reports/TR-
20080105-1.pdf, Indiana University, 2008, International
Journal of Computer Applications, 2011.

[20] Ronald Sam Lightstone, Guy Lohman, Ippokratis
Pandis, Vijayshankar Raman, Richard Sidle, G.
Attaluri, Naresh Chainani, Barber, and David Sharpe,
“Memory-Efficient Hash Joins,” Proceedings of the
VLDB Endowment, 8(4):353-364, 2014.

[21] Dong Keun Shin and Arnold Charles Meltzer, “A New

Join Algorithm,” ACM SIGMOD Record, 23(4): 13-20,
1994.

[22] TPC-H http://www.tpc.org:80/information/bench marks
.asp, 2015.

[23] Patrick Valduriez, “Join Indices,” ACM Transactions on
Database Systems (TODS), 12(2): 218-246, 1987.

Reham Almutairi received her B.S in
2011 from University of Dammam in
Saudi Arabia. In 2014, Reham got a
scholarship from her government to
study in the US. In 2017, she received
her M.S. from Southern Illinois
University in Carbondale. Studying in a
different country with students from
different cultures taught her that people
have to be confident and continue to

overcome their setbacks to adapt to a new culture! Her main
research interests are databases, data mining, and big data. She
can be contacted at reham.mutlaq@hotmail.com.

Mohammed Hamdi is an Assistant
Professor in the Department of
Computer Science at Najran
University- KSA. He received his
master’s & PhD degrees in Computer
Science from Southern Illinois
University-Carbondale in 2013 and
2018. His main research interests are
databases, query optimization, data

mining, and big data.

Feng “George” Yu is an Associate
Professor of Computer Science and
Information Systems at Youngstown
State University. He conducts a research
lab called Data Lab focusing on Data-
Oriented Sciences. His primary research
interests include database management
systems, big data, and cloud computing.
He developed a new storage framework

to speed up the data processing on a next-generation database
called column-store database. He leads multiple cloud
computing projects at YSU including the STEM Cloud. As a
campus champion of NSF XSEDE, a powerful collection of
supercomputing centers, Dr. Yu has organized at YSU multiple
nationwide educational workshops on high-performance
computing and big data.

http://www.tpc.org/information/bench%20marks.asp
http://www.tpc.org/information/bench%20marks.asp

IJCA, Vol. 25, No. 3, Sept. 2018 131

Wen-Chi Hou received the MS and
PhD degrees in Computer Science
and Engineering from Case Western
Reserve University, 1989, respect-
tively. He is presently a Professor of
Computer Science at Southern
Illinois University at Carbondale.

His interests include statistical databases, query optimization,
concurrency control, XML databases

132 IJCA, Vol. 25, No. 3, Sept. 2018

ISCA Copyright© 2018

Novel Low Latency Load Shared Multicore Multicasting
Schemes – An Extension to Core Migration

Bidyut Gupta*, Ashraf Alyanbaawi*
Southern Illinois University, Carbondale, USA

Nick Rahimi*

Southeast Missouri State University, Cape Girardeau, USA

Koushik Sinha*
Southern Illinois University, Carbondale, USA

Ziping Liu*

Southeast Missouri State University, Cape Girardeau, USA

Abstract

Shared tree multicast approach is preferred over source-based

tree multicast because in the latter construction of minimum cost
tree per source is needed unlike a single shared tree in the former
approach. However, in shared tree approach a single core is
needed to handle the entire traffic load resulting in degraded
multicast performance. In addition, it also suffers from ‘single
point failure’. In this paper, we have presented four novel and
efficient schemes for load shared multicore multicasting for
static networks. While the first two schemes emphasize load
sharing, the last two schemes aim at achieving low latency
multicasting along with load sharing for delay sensitive
multicast applications. We have presented a unique approach
for core migration, which uses two very important parameters,
namely, depth of a core tree and pseudo diameter of a core. One
noteworthy point from the viewpoint of fault tolerance is that
the degree of fault- tolerance can be enhanced from covering
single point-failure to any number of core failures.

Key Words: Core selection, pseudo diameter, multicore
multicasting, load sharing, core migration.

1 Introduction

Multicast communication in the Internet [3] uses either the

idea of source-based trees [1, 21, 26] or the idea of core-based
trees (CBT) [2]. One major problem of the source-based-tree
multicasting approach is that each router in the tree has to keep
the pair information (source, group) and it is a one tree per
source. In reality, the Internet is a complex heterogeneous
environment and it potentially has to support many thousands of
simultaneously active multicast groups, the majority of which
are usually sparsely distributed. Therefore, this technique
clearly does not scale well. It has been observed that shared

* Department of Computer Science.

tree-based approaches such as CBT [2, 17] and protocol
independent multicasting – sparse mode (PIM-SM) [8] offer an
improvement in scalability by a factor of the number of active
sources.

In the core-based tree/shared tree approach [2] the tree
branches are made up of other routers, the so-called non-core
routers, which form a shortest path between a member-host’s
directly attached router and the core. A core need not be
topologically centered, because multicasts vary in nature and the
geographical locations of the receivers (member-hosts) can be
anywhere in the Internet; therefore, the structure of a core-based
tree can vary [2] as well. CBT is attractive compared to source-
based tree because of its key architectural features like scaling,
tree creation, and unicast routing separation. The major
concerns of shared tree approach are: core selection and core as
a single point failure. Core selection [2, 10] is the problem of
appropriate placement of a core or cores in a network for the
purpose of improving the performance of the tree(s) constructed
around these core(s).

In static networks, any core selection scheme depends on the
knowledge of the entire network topology. It involves all
routers in the network. There exist several important works [12,
21, 24-25] which take-into-account network topology while
selecting a core. Maximum Path Count (MPC) core selection
method [12] needs to know complete topology to calculate the
shortest paths for all pairs. The nodes are then sorted in
descending order of their path counts. The first nodes are
selected to be the candidate cores. In Delay Variant Multicast
Algorithm (DVMA) it is assumed that the complete topology is
available at each node [21]. It works on the principle of k-
shortest paths to the group of destination nodes concerned. If
these paths do not satisfy a delay constraint, then it may find a
longer path, which is a shortfall of DVMA. Optimal Cost Based
Tree (OCBT) [23-25] approach calculates the cost of the tree
rooted at each router in the network and selects the one which
gives the lowest maximum delay over all other roots with lowest
cost. It needs knowledge of the whole topology.

IJCA, Vol. 25, No. 3, Sept. 2018 133

1.1 Related Works

In the case of a single core-tree based multicast, the core has

to handle all traffic load. It degrades the performance. To
overcome the problem, shared tree multicast using multiple
cores is the only solution. It distributes the total traffic load on
the cores resulting in improved load balancing and thereby
causing improved multicast performance. There exist in the
literature some important contributions in this area of multicore-
based multicasting [11, 23-25, 27]. The goal of these works is
to achieve load balancing. In [11], Jia et al. have presented a
Multiple Shared-Trees (MST) based approach to multicast
routing. In their approach, the tree roots are formed into an
anycast group so that the multicast packets can be anycast to the
nearest node at one of the shared trees. However, load balancing
is at the level of each source choosing the best core closest to it
rather than attempting to utilize all the candidate cores
simultaneously. This may lead to congestion in a core if
multiple sources choose that core based on their shortest delay
metric.

In [23], a unique tree consisting of multiple cores is
maintained with one of the cores being the root. The objective
of the work is to develop a loop free multi-core based tree by
assigning level numbers to the cores and the nodes to join the
tree to help maintain the tree structure. The cores need to
coordinate with one another for their operations.

Zappala et.al. [27] have considered two different approaches
for multicore load shared multicasting. The first one is senders-
to-many scheme; it partitions the receivers of a group among the
trees rooted at different cores so that each receiver is exactly on
one core tree at a time. Therefore, one core tree spans some of
the group members only. Even though it offers less routing
state, yet it has the complex task to take care of newly arriving
group members, i.e., partition them appropriately to the different
core trees. In their second scheme, each core tree spans over the
entire receiver group. To transmit data, different senders in a
multicast group can use different trees with respect to the
proximity of the source to the tree; it helps in balancing the
traffic load and improve performance. The trees are maintained
independently unlike the work in [23]. The core distribution
method follows the hash-based scheme of [5]. Note that a
different kind of load sharing (not load balancing) approach
exists for splitting the load over Equal Cost Multipath (ECMP).
Multicast traffic from different sources or from different sources
and groups are load split across equal-cost paths provided such
equal cost paths exist and are recognized as well [18].

The idea of core-based multicasting has been extended to
allow migration of cores [4]. When the performance at an
alternate core is ‘reasonably’ better than that at the current core,
migration takes place to the alternate core. It helps in
controlling multicast latency and load sharing.

It may be noted that there exist several important
contributions [9, 19, 22], which have attempted to solve the
problem of core selection with varied levels of complexity for
delay and delay-variation constrained multicasting in static
networks. These works aim mainly at reducing delay in
communication to satisfy the delay specifications of

applications; these works do not consider load sharing among
multiple cores, which is a problem of immense importance in
multicasting particularly when considering simultaneous
presence of many different multicast sessions.

1.2 Our Contribution

In this paper, we have considered shared tree multicast with

multiple cores. The motivation of the work is to improve
multicast performance via load sharing. We prefer the term
‘sharing’ to ‘balancing’ because the objective of the work is to
engage all cores whenever possible and more so because it is
neither possible to know a priori the duration of different
multicast sessions running at a given time, nor it is possible to
know a priori the number of possible senders per multicast
group. In this paper, we have adopted the multiple core-
selection scheme reported in [7] to design the proposed various
load-sharing algorithms. In this context, note that finding an
optimal placement for multiple cores is more complex than for
a single core. This problem can be viewed as given the
maximum distance d from a node to a core, determines the
smallest number of cores that satisfy this criterion. This
minimum d-dominating set problem is NP-hard [6]. To avoid
such complexity in the core selection process, in [7] a practical
approach for multiple core selection has been considered with
complexity O(n2).

A brief sketch of the proposed work is as follows. The core
selection process in [20] is different from the ones in [5] and
[27] and uses the idea of pseudo diameter [13-15]. Cores are
determined statically using the routing information of all routers
in the network. It is independent of any underlying unicast
protocol active in the domain. The metric used in the
determination is the one used in the unicast routing tables of the
routers. The best core, i.e., the core with the minimum pseudo
diameter is the primary core. We have proposed four novel load
sharing schemes and a core migration scheme. The first two
load sharing schemes neither partition the receivers among the
different core-trees nor they build a unique tree consisting of
multiple cores [23, 27]. In the first one, a primary core-based
tree spans over all groups while each of the other core trees span
over all members of an existing group only. However, a non-
primary core tree may span over multiple groups based on the
number of active groups and the number of selected cores. In
the second scheme, a single core tree will never span over all
groups. In our approaches, a sender does not decide which core
to send packets to unlike in [27]; rather any source must send its
first packet to the primary core and the primary core then
decides if the sender needs to send the rest of its packets to any
other core. We have discussed their relative merits.

The third and the fourth schemes have considered low latency
load shared schemes for delay-sensitive applications. We have
considered maximum path (depth) of a core-based tree as a
parameter in addition to the pseudo diameter to achieve low
latency load share in multicasting. To the best of our
knowledge, there does not exist any work in this direction that
considers the above two parameters together. The major
difference between these two with the first two schemes is that

134 IJCA, Vol. 25, No. 3, Sept. 2018

in these two schemes a sender selects a core for multicasting its
packets unlike in the first two; different senders belonging to the
same group or not may select different cores. Therefore, from
load sharing viewpoint the last two schemes may outperform the
first two; however, these last two schemes have the extra
overheads in that every core tree must span over all groups.
Finally, we have presented a simple yet efficient core migration
scheme which is based on both depth and pseudo diameter.

The organization of the paper is as follows. In Section 2, we
state briefly the existing concept of pseudo diameter [13–15].
We also state the multicore selection scheme [7] used in this
paper for a better understanding of the proposed load sharing
schemes. In Section 3, we present the proposed multi-core
group-based load-sharing multicast schemes. In Section 4, we
present the two low latency schemes along with brief
comparisons of all the four multicast schemes. In Section 5, we
present the core migration scheme. Finally, Section 6 draws the
conclusion.

2 Preliminaries

Two widely used unicast routing protocols are distance vector

routing (DVR) and link state routing (LSR). In the former one,
routers do not have the knowledge of network topology,
whereas in the later routers have this knowledge. The concept
of pseudo diameter is independent of the underlying unicast
routing protocol. We denote the unicast routing table by UCTi
for some router ri; it can be either the DVR table or the LSR
table of the router depending on the unicast protocol used.
Pseudo diameter of a router ri denoted as Pd(ri) is defined as
follows [13-15].

In words, pseudo diameter of router ri denoted as Pd(ri), is the
maximum value among the costs (as present in its routing table
UCTi) to reach from ri all other routers in a network. The
implication of pseudo-diameter is that any other router is
reachable from router ri within the distance (i.e., no. of
hops/delay etc.) equal to the pseudo diameter Pd (ri) of router ri,,
It thus directly relates to the physical location of router ri.
Pseudo diameter is not the actual diameter of the network,
because it depends on the location of router ri in the network.
So different routers in the network may have different values for
their respective pseudo diameters. Therefore, pseudo diameter
Pd is always less than or equal to the actual diameter of a
network.

As an example, consider the network shown in Figure. 1.
Without any loss of generality, we have considered DVR
protocol as the underlying unicast protocol used in the network.
The respective DVR tables of the routers appear in Figure. 2.

Note that the diameter of the network is 90. From router A’s
table, its pseudo diameter is 90, which is equal to the network
diameter; whereas for router C it is 70 as is seen from C’s DVR
table. It means that if C is the source of a communication, the
maximum cost to reach any other router will be 70, which is less
than the network diameter of 90. In this context, the following
observations [15] are worth mentioning.

2.1 Multicore Selection Scheme

We briefly present a systematic approach [7] to select the cores
to be used for multicore multicasting. Cores are selected
statically using the routing information of all routers in the
underlying unicast domain. This core selection is independent
of any multicast group. For multicore multicast, each router ri
executes the following steps to select the required number of
cores, m.

Remark 1. Every router creates identical sorted list of the m

cores.
Remark 2. Router with minimum Pd is the primary core.
Remark 3. Message complexity of the core selection process

is O(n2).
Remark 4. In the core selection process, a router does not

need to know the entire topology.
Observation 1. For fault-tolerant single-core multicast, there

are (m-1) number of redundant (stand by) cores.
Observation 2a. To guard against any possible core failures

while using the m cores for multicasting, a total of 2m cores can
be selected by the Multicore selection process.

Observation 2b. According to the positions in the sorted list
all odd-numbered cores can be used for multicasting. Every
odd-numbered core will have its standby as the even numbered
core that immediately follows it in the sorted list of the cores;
this standby core selection utilizes the proximity between these
two cores from the viewpoint of their pseudo diameter values.

2.2 An Example

Consider the example network of Figure.1. Primary core, in

our approach, is a router that has the least pseudo diameter value
compared to all other routers in the network. From the DVR

Pd (ri) = max {ci,j}, where ci,j = cost (ri, rj),

 [1 ≤ j ≤ n, j ≠ i] and ci,j ϵ UCTi and

 n = number of routers in the network

Multicore selection process

1. Router ri determines its Pd (ri) from its unicast
routing table.

2. It broadcasts Pd (ri) in the network using pseudo
diameter based broadcasting [15].

3. Router ri receives all Pd (rj) from every other router
rj , 1 ≤ j ≤ n, j ≠ i

4. Router ri creates a list of m routers out of all n
routers, sorted in ascending order based on their Pd
values.
// the first one in the m-router list is the primary
core.

IJCA, Vol. 25, No. 3, Sept. 2018 135

A

30

20

C B

D E F

H G

30 20

20 20

50

20

tables (Figure 2) of the network, pseudo-diameter of all routers
in the network can be obtained. Pseudo diameters of routers A,
B, C, D, E, F, G, and H, are 90, 90, 70, 80, 60, 90, 80, and 80,
respectively.

Each router broadcasts its Pd value to all other routers in the
network. At the end of the broadcast, each router has the same
sorted list of the routers based on their respective pseudo
diameters. It is shown in Figure 3. Observe in the Figure that
there is more than one router with the same Pd value. Routers
D, G, and H have the same Pd value, viz., 80. If this situation
arises, these routers are sorted in descending order of their router
Id’s (IP addresses). Without any loss of generality, we assume
that router H has the highest router Id, followed by routers G
and D respectively. So, router H has the priority to be selected
as a possible candidate core over routers G and D. According
to Figure 3, for the given network in Figure 1, router E is the
primary core as it is the one with the least pseudo-diameter
value, 60. For multicore multicasting, the first few routers from
the list will be selected as needed. To incorporate core
redundancy in case of single core multicast, router C can be
chosen as the secondary core (standby core) as it has the next

least pseudo-diameter. It will make the single-core scheme fault
tolerant. More cores can act as standby for a larger degree of
fault-tolerance.

Figure 1: An 8-router network

Figure 2: DVR tables of the routers

Figure 3: Sorted list based on the pseudo diameters

2.3 Performance

The multicore selection scheme needs only one broadcast

independent of the number of cores to be used for multicasting.
Therefore, the message complexity is O(n2), where n is the total
number of nodes in the network. However, in this approach a
router does not need to have the complete topological
information. Note that to incorporate the effect of any changes
in the network, e.g., router failure, this core selection process
can run periodically. Besides, the core selection scheme is
independent of any multicast groups unlike most existing works
because it is a static core selection approach. A detailed

40

50

136 IJCA, Vol. 25, No. 3, Sept. 2018

discussion of the performance of the presented core selection
method has appeared in [7]. The core selection scheme has been
compared with some important existing core selection
algorithms, mainly Maximum Path Count (MPC) [12], Delay
Variant Multicast Algorithm (DVMA) [21], Minimum Average
Distance (MAD) method, and OptTree method [12]. Results of
the comparisons for randomly generated networks of different
sizes are shown in the following Figures. The superiority of our
approach from the viewpoint of message complexity to these
other approaches is evident from the results. Note that unlike in
OptTree method, in our approach a router does not need to have

Figure 4: 30-router network

Figure 5: 40-router network

Figure 6: 50-router network

the complete topological information. Experimental setup has
used NS2 simulator, BRITE topology generator, and Waxman’s
probability model for interconnection of the nodes.

3 Group-Based Load Shared Multicore Multicoast

In this section, we present two simple and yet very effective

group-based load-shared multicast schemes, GLSM-cast1 and
GLSM-cast2; we have considered distribution of groups to
different cores. Each core tree spans all members of a single
existing group. It may also span over multiple groups based on
the number of active groups and the number of selected cores.
However, a single core tree will never span over all groups.
Cores are determined statically using the routing information of
all routers in the underlying unicast domain [7]. It is
independent of any underlying unicast protocol active in the
domain. The best core, i.e. the core with the minimum pseudo
diameter, is called the primary core. In our approach, a sender
does not decide which core to send packets to unlike in [27];
rather any source must send its first packet to the primary core
and the primary core then decides if the sender needs to send the
rest of its packets to any other core.

We use the following notations in the proposed schemes. We
assume that there are m cores present in the system. C0 denotes
the primary core, and Ci denotes the (i+1)th core; Snew denotes a
new sender for some group. In addition, P denotes the number
of distinct multicast groups at a given time and N is an integer
variable initialized with 0. We assume that the primary core C0
maintains a dynamically growing linear array of integers, say
A[]. At any given time the number of elements in the array is
the number of active multicast groups in the network; A[1] is 0
and it corresponds to the first active group. The kth entry of the
array corresponds to the kth newly active group. Primary core
C0 sets A[k] to (k-1) when it receives the first multicast packet
for the kth newly active group. We present now the two different
schemes.

Let us now estimate the extra traffic load on the primary core.
Without any loss of generality, let the average number of
senders per group be n. So, the total number of senders is nP.
Primary core always has to send the message ‘continue with
core Cj’. So, there are nP unicasts to the sources from the
primary core. In addition, we need to consider the following
different cases as well. Let P = km + n', k is an integer and 0 ≤
k and n' < m.

Observe that for GLSM-Cast-1 to work correctly, only
primary core (C0) tree spans all members of all groups.

In the next, we state the second scheme.
Let us now estimate the extra traffic load on the primary core.

As in GLSM-cast1, primary core always has to send the
message ‘continue with core Cj’. Hence, there are nP unicasts
to the sources from the primary core. In addition, we need to
consider the following as well.

Relative Merits: We now discuss briefly the effect on
bandwidth consumption in the network caused by the two
schemes. We also discuss the load on the primary core caused
by the two schemes. We have shown above that in GLSM-
Cast1, primary core has to execute extra multicasts which is
absent in GLSM-Cast2. Note that total number of multicasts

1

100

10000

1000000

100000000

5 10 15 20 25

M
es

sa
ge

 C
om

pl
ex

ity

Group Members

30 Node Network

MPC / MAD

DVMA

OptTree

Static Core
Selection

1

100

10000

1000000

100000000

5 10 15 20 25

M
es

sa
ge

 C
om

pl
ex

ity

Group Members

40 Node Network

MPC / MAD

DVMA

OptTree

Static Core
Selection

1

100

10000

1000000

100000000

1E+10

5 10 15 20 25M
es

sa
ge

 C
om

pl
ex

ity

Group Members

50 Node Network

MPC / MAD

DVMA

OptTree

Static Core
Selection

IJCA, Vol. 25, No. 3, Sept. 2018 137

remains the same in both methods. Therefore, overall
bandwidth consumption in the network, strictly due to
multicasting, remains the same in both schemes. However, in
GLSM-Cast2 the number of extra unicasts done by C0 compared
to GLSM-Cast1 is [k(m-1)n + (n'-1)n]. Therefore, the overall
bandwidth consumption in the network is more in GLSM-Cast2
than in GLSM-Cast1. However, actual load on C0 in GLSM-
Cast2 is less, as it is not involved in any extra single packet
multicast. In addition, primary core tree does not span over all
groups unlike in the first one.

4 Low-Latency Load Shared Approach

In GLSM-Cast1 and GLSM-Cast2 schemes, the underlying

assumption is that the cost (delay/number of hops etc.) between
the root router (core) and a leaf router (a group member) is the
pseudo diameter of the core. In reality, this assumption may or
may not be true; it depends on the physical locations of the
routers connected to the group members. The above two
schemes have not considered the cost between a source router ri

(i.e., connected to a multicast source) and the core Ci which ri
uses for multicasting its packets. For cost (especially delay)
sensitive applications, this last factor should be considered for
selecting the core to achieve low latency in multicasting, in
addition to the core’s pseudo diameter. In this section, we have
proposed two such schemes in which a sender itself selects a
core for multicasting instead of taking help of the primary core
unlike the schemes presented in the previous section. In fact,
different senders belonging to the same group will select
possibly different cores; the objective is to achieve low latency
in multicasting with load sharing on the cores. Therefore, the
following two approaches are more general in nature and have

GLSM-Cast1

Sender Snew (executed by each new sender)

1. sends the 1st multicast packet to C0
2. receives the message ‘continue with core Cj’
3. sends rest of the packets to Cj

Primary core C0 (executed by the primary core)

1. receives the 1st multicast packet from Snew
2. if corresponding ith group entry exists in A[]

 N = A[i] // A[i] = i-1
 Cj = N mod m // selects the core for Snew
 multicasts the packet in the C0-based tree
 unicasts ‘continue with core Cj’ to Snew
else
 A[i] = i-1 // A[] grows dynamically
 // ith newly active group
 N = A[i]

 Cj = N mod m // selects the core for Snew
 multicasts the packet in the C0-based tree

 unicasts ‘continue with core Cj’ to Snew

Core Cj
1. multicasts the packets received from Snew

Case 1: P ≤ m
 number of extra single-packet multicasts by C0
 is n(P-1)
Case 2: P > m
 number of extra single-packet multicasts by C0 is
 k(m-1)n + (n'-1)n

GLSM-Cast2

Sender Snew (executed by each new sender)

1. sends the 1st multicast packet to C0
2. receives the message ‘continue with core Cj’
3. sends rest of the packets to Cj

Primary core C0 (executed by the primary core)

1. receives the 1st multicast packet from Snew
2. if corresponding ith group entry exists in A[]

 N = A[i] // A[i] = i-1
 Cj = N mod m // selects the core for Snew

 if Cj ≠ C0
 C0 unicasts the packet to Cj
 unicasts ‘continue with core Cj’ to Snew

 else C0 multicasts the packet
 unicasts ‘continue with core Cj’ to Snew

else
 A[i] = i-1 // A[] grows dynamically
 // ith newly active group
 N = A[i]

 Cj = N mod m // selects the core for Snew

 if Cj ≠ C0
 C0 unicasts the packet to Cj

 unicasts ‘continue with core Cj’ to Snew
 else C0 multicasts the packet
 unicasts ‘continue with core Cj’ to Snew

Core Cj

 1. multicasts the packet received from Co
 2. multicasts the packets received from Snew

Case 1: P ≤ m
 number of unicasts by C0 to other cores is n(P-1)
Case 2: P > m
 number of unicasts by C0 to other cores is
 k(m-1)n + (n'-1)n

138 IJCA, Vol. 25, No. 3, Sept. 2018

the potential of outperforming the previous two schemes.
Before we state the proposed approaches, we define the
following.

Definition a. Cost α (Snew, Cj) = Cost (Snew, Cj) + Pd (Cj)
Definition b. Cost β (Snew, Cj) = Cost (Snew, Cj) + dj (Cj)

In the second definition, dj denotes the longest path of the core

tree rooted at Cj; we name dj as the depth of the tree; note that dj
≤ Pd (Cj). We shall elaborate on it further when we present the
second low latency based approach in the next subsection.

We already have established the fact that every router has the
same sorted list of m candidate cores. Let us denote this list as
L

and L = < C0, C1, C2, … , Cm-1 >, such that Pd (Ci) ≥ Pd (Ci-1),

0 ≤ i ≤ m-1.

4.1 Low Latency Approach 1

We assume that Pd (Cj) = dj for each candidate core. The

algorithm is executed by each new source.

LLM-Cast1
 Sender Snew (executed by each new sender)

1. Snew computes Cost α (Snew, Cj) for all Cj in L
2. Snew identifies the core Ci such that Cost α (Snew, Ci)
is minimum
3. Snew unicasts packets to Ci for multicast

4.2 Low Latency Approach 2

In the second approach, we consider the general case, that is,

the depth of a core tree rooted at a core Ci is less than or equal
to the pseudo diameter of the core; that is, Pd (Ci) ≥ di.

We assume that each leaf router rj unicasts a hello packet to
its core Ci. Core Ci then determines Cost (rj, Ci) from its unicast
routing table. It computes max {Cost (rj, Ci)} considering all its
leaf routers. This is its depth di. The proposed second approach
(LLM-Cast2) needs each core to create a list L' and it is done in
the following way.

Each core Ci executes the following algorithm.

1. Ci unicasts its di to all Cj in L, j ≠ i
2. Ci receives each dj
3. Ci creates the list L' = < dr, dr+1, dr+2…, ds >,
 where dr is the depth of core tree rooted at Cr
 and dr ≤ dr+1 ≤ dr+2 ≤ … ≤ ds ; |L'| = m

Remark 5. Every core Ci creates identical sorted list of the

depths (L').

We observe that LLM-Cast2 is likely to offer better low

latency compared to LLM-Cast1; however, in LLM-Cast2, some
extra information/computation is needed to form the list L'.
Relative merits of the above two approaches are stated in more
detail in the following subsection. In subsection 4.4, we have

considered all the four multicast approaches to discuss their
relative merits.

LLM-Cast2

 Sender Snew (executed by each new sender)
 1. Snew unicasts a request packet to Cj to get the list L'

such that Cost (Snew, Cj) is minimum for all Cj in L
 // it can be done via anycast as well

 2. Snew determines the core Ck, such that
 Cost α (Snew, Ck) = min {Cost α (Snew, Cj)} for all Cj

in L
 3. Snew determines Cr, such that
 Cost β (Snew, Cr) = min {Cost β (Snew, Cj)} for all Cj

in L'
 4. if Cost α (Snew, Ck) ≤ Cost β (Snew, Cr)

 Snew unicasts packets to Ck
 else Snew unicasts packets to Cr

4.3 Relative Merits of LLM-Cast1 and LLM-Cast2

In the LLM-Cast1 approach, one underlying assumption is

that there will exist receiver(s) in the core-based tree at a
distance from the core equal to the pseudo diameter of the core.
This assumption may or may not be true; it solely depends on
the geographical locations of the receivers. However, it may
lead to not so accurate computation of the costs. Hence,
multicast communication speed may be negatively affected.

The LLM-Cast2 approach attempts to fine-tune this aspect of
the LLM-Cast1 approach from the viewpoint of achieving more
accurate computation for the costs resulting in speedier
multicast communication than that in the LLM-Cast1 approach.
For this, it needs to determine the depth of each core tree and
therefore, it needs to consider some more unicasts compared to
LLM-Cast1. The number of such unicasts, say Y is computed
as follows.

Y = m(m-1) + 2X, where m is the number of cores and X is
the number of senders (multicast sources).

Assuming that m is given, it is seen that Y varies linearly with
X. It also means that bandwidth consumption also varies
linearly with X. Observe that this is the extra amount of
bandwidth consumption compared to that in LLM-Cast1.

Remark 6. LLM-Cast2 offers more accurate computation of

cost than LLM-Cast1 resulting in speedier multicast
communication than the LLM-Cost1 approach.

Remark 7. LLM-Cast1 is slower but needs more bandwidth
efficient than the LLM-Cast2 approach.

4.4 Relative Merits of the Four Approaches

We consider the following aspects for comparison: load

shared per core, bandwidth consumption, and multicast
communication speed.

Load shared per core: In the LLM-Cast1 and LLM-Cast2

IJCA, Vol. 25, No. 3, Sept. 2018 139

approaches, a source (sender) decides which core it will use for
multicasting independent of any other sender. It adds an
element of randomness in selecting a core for multicasting
which is absent in the GLSM-Cast1 and GLSM-Cast2
approaches; therefore, both LLM-Cast1 and LLM-Cast2
approaches offer better load balancing than both GLSM-Cast1
and GLSM-Cast2 approaches.

Bandwidth consumption: We discuss this aspect from two
viewpoints: number of trees rooted at the same core and number
of unicasts needed in each approach.

(a) We start with the first one. In the GLSM-Cast1 approach,

the primary core spans over all existing groups and all other
cores span over only some subsets of the groups. In the
GLSM-Cast2 approach, all cores including the primary one
span over only some subsets of the groups. In the LLM-
Cast1 and LLM-Cast2 approaches, each core spans over all
existing groups. It causes more bandwidth consumption
than in the two GLSM approaches. Besides, it also causes
a larger number of memory states to be created and
maintained by the routers present in the different trees
compared to the two GLSM approaches.

(b) We now consider the effect on bandwidth consumption due
to unicasts. Let N1, N2, N3, and N4 denote the respective
total number of unicasts in the four approaches, namely
GLSM-Cast1, GLSM-Cast2, LLM-Cast1, and LLM-Cast2.
Then from the four algorithms we observe that

N1 = 2N3 and N2 = 3N3. Also, N4 is approximately the
same as N1 when the number of cores is small and is less
than N2 as long as the number of senders is much larger than
the number of cores, which is usually the case. This simple
analysis suggests that the last two have better bandwidth
utilization; however, the tradeoff is the extra computation
done by every sender to determine the best cost.

Multicast communication speed: Faster communication is

achieved in the LLM-Cast1 and LLM-Cast2 approaches than the
two GLSM approaches, because they consider reduction of
delay in addition to load sharing.

5 Core Migration

We extend the low-latency multicast schemes to allow

migration of the cores. Such migration is needed when the
performance at an alternate core is ‘substantially’ better than
that at the current core. Below, we have stated the working
principle of our proposed core migration approach before its
formal presentation.

The depth di of a core tree with core Ci can change due to new
member(s) joining or existing member(s) leaving. Therefore, to
maintain low latency in multicasting, an existing source, say S*
may need to migrate to a different core if it finds its ‘new cost’
has increased substantially from its ‘current cost’, both
measured with respect to the current core, say Ci. It is
understood that these costs can be either Cost α (S*, Ci) or Cost
β (S*, Ci) as determined by S* (following LLM-Cast2 in
subsection 4.2). To prevent frequent migration, which

otherwise increases delay further in multicasting, a threshold δ
can be set up so that when new_cost – current_cost ≥ δ , source
S* migrates to an alternate core, say Cj, which offers the
minimum cost compared to any other candidate core. For the
proposed core migration algorithm to work correctly, it is
required that every core Ci monitor its depth di; the regularity of
this probing and this threshold value are dictated by both
application behavior and the overhead cost associated with
moving to a different core. We now state the algorithm.

Algorithm Core-Migration
Executed by each core Ci

1. Ci unicasts its new depth di to each Cj in L
 // new_cost – current_cost ≥ δ

2. Ci creates the new list L'
3. Ci unicasts the list L' to S*

 // Ci is the current core for S*

Executed by source S*
1. S* receives the list L'
2. S* determines the core Cl such that

new_cost (Cl) = min {current_cost (Cr)} for any
Cr in L, r ≠ l

 // identical computations as in steps 2 to 4 in
LLM-Cast2
3. S* unicasts packets to Cl for multicasting

 // core migration takes place

It may be noted that joining/leaving of group members may

cause changes in the depths of more than one core
simultaneously. It may take some time for the convergence, i.e.,
when every core will have identical L'. Therefore, we consider
the following in the above algorithm to tackle the problem of
convergence: After building a new L' , a core Ci waits for a
small time interval (∆t) to incorporate any further possible
updating of L' caused by some other cores. After ∆t, the core Ci
unicasts the final list L' to S* (step 3 of the pseudocode Executed
by each core Ci).

6 Conclusion

In this paper, we have used an existing multicore selection

scheme [7] for designing our proposed four novel load shared
approaches. This multicore selection scheme has been the
choice because of its ease of implementation [7]. The proposed
load sharing schemes neither partition the receivers among the
different core-trees nor they build a unique tree consisting of
multiple cores [23-25, 27]. In the first two schemes, a sender
belonging to any group does not decide which core to send
packets to unlike in [27]; rather any source must send its first
packet to the primary core and the primary core then decides if
the sender needs to send the rest of its packets to some other
core. In the other two, we have considered low latency load
shared schemes, which are suitable for delay-sensitive
applications. We have considered maximum path (depth) of a
core-based tree as a parameter in addition to the pseudo
diameter to achieve low latency. To the best of our knowledge,
there does not exist any work in this direction that considers the

140 IJCA, Vol. 25, No. 3, Sept. 2018

above two parameters together. The two low latency load
shared schemes can outperform the first two ones from the
viewpoint of better load sharing since in the last two, any source
can send to any core based on cost; thereby effectively adding
an element of randomness in selecting a core for multicasting;
however, it incurs extra overhead in that every core tree must
span over all groups. Finally, we have extended the low latency
approach to design a simple yet efficient core migration scheme,
which considers both depth of a core tree and pseudo diameter
of the core.

From the viewpoint of fault tolerance, the degree of fault-
tolerance can be enhanced from covering single point-failure to
any number of core failures as is evident from the Observations
1, 2a, and 2b.

References

[1] J. Nicholas Adams, and W. Siadak, “Protocol Independent

Multicast - Dense Mode (PIM-DM)”, Internet
Engineering Task Force (IETF), RFC-3973, January 2005.

[2] Tony A. Ballardie, “Core Based Tree Multicast Routing
Architecture”, Internet Engineering Task Force (IETF),
RFC 2201, September 1997.

[3] S. Deering and D. Cheriton, “Multicast Routing in
Datagram Internetworks and Extended LANs”, ACM
Transactions on Computer Systems (TOCS), 8(2):85-110,
May 1990.

[4] M. Donahoo and E. Zegura, “Core Migration for Dynamic
Multicast Routing”, Int’l Conf. Computer Comm. and
Networks’, June 1996.

[5] D. Estrin, M. Handley, A. Helmy, and P. Huang, “A
Dynamic Bootstrap Mechanism for Rendezvous-Based
Multicast Routing”, Proc. IEEE INFOCOM, pp. 1090-
1098, March 1999.

[6] M. Garey and D. Johnson, Computers and Ins-tractability,
W. H. Freeman and Co., 1999.

[7] B. Gupta, A. Alyanbaawi, S. Rahimi, N. Rahimi, and K.
Sinha, “An Efficient Approach for Load- Shared and
Fault-Tolerant Multicore Shared Tree Multicasting”,
Proc. IEEE INDIN, Emden, Germany, pp. 937-943, July
2017.

[8] M. Handley Fenner, H. Holbrook, and I. Kouvelas,
“Protocol Independent Multicast - Sparse Mode (PIM-
SM)”, Internet Engineering Task Force (IETF), RFC-
4601, August 2006.

[9] H. Harutyunyan and M. Terzian, “A Multi-Core Multicast
Approach for Delay and Delay Variation Multicast
Routing”, Proc. IEEE 19th Int’l Conf. High Performance
Computing and Communications, Bangkok, Thailand, pp.
154-161, December 2017.

[10] W. Jia, W. Zhao, D. Xuan, and G. Xu, “An Efficient Fault-
Tolerant Multicast Routing Protocol with Core-Based
Tree Techniques”, IEEE Trans. on Parallel and
Distributed Systems, 10(10):984-1000, October 1999.

[11] W. Jia, W. Tu, W. Zhao and G. Xu, “Multi-Shared-Trees
Based Multicast Routing Control Protocol Using Anycast
Selection”, The International Journal of Parallel,

Emergent and Distributed Systems, 20(4):69-84, March
2005.

[12] Ayse Karaman and H. Hassanein, “Core Selection
Algorithms in Multicast Routing – Comparative and
Complexity Analysis”, J. Computer Communications,
29(8):998-1014, May 2006.

[13] S. Koneru, B. Gupta, S. Rahimi, and Z. Liu, “Hierarchical
Pruning to Improve Bandwidth Utilization of RPF-Based
Broadcasting”, IEEE Symposium on Computers and
Communications (ISCC), Split, Croatia, pp. 96-100, July
2013.

[14] S. Koneru, B. Gupta, and N. Debnath, “A Novel DVR
Based Multicast Routing Protocol with Hierarchical
Pruning”, International Journal of Computers and Their
Applications (IJCA), 20(3):184-191, September 2013.

[15] S. Koneru, B. Gupta, S. Rahimi, Z. Liu, and N. Debnath,
“A Highly Efficient RPF-Based Broadcast Protocol Using
a New Two-Level Pruning Mechanism”, Journal of
Computational Science (JOCS), 5(3):645-652, March
2014, SpringerLink, Berlin, Heidelberg, 2345:1045-1056,
2002.

[16] H. Lee and C. Youn, “Scalable Multicast Routing
Algorithm for Delay Variation Constrained Minimum
Cost Tree”, Proc. IEEE ICC, New Orleans, LA, USA,
3:1343-1347, June 2000.

[17] H. Lin and S. Lai, “A Simple and Effective Core
Placement Method for the Core Based Tree Multicast
Routing Architecture”, Proc. IEEE Int. Conf.
Performance, Computing, and Communications, Phoenix,
AZ, USA, pp. 215-219, February 2000.

[18] “Load Splitting IP Multicast Traffic over ECMP.” Cisco,
www.cisco.com/c/en/us/td/docs/ios/12_4t/, ip_mcast/con
figuration/guide/mctlsplt.html, Mar 2015.

[19] Adel Ben Mnaouer, M. Aissa, and A. Belghith, “An
Efficient Core Selection Algorithm for Delay and Delay-
Variation Constrained Multicast Tree Design”, Proc.
Second international conference on Global Information
Infrastructure Symposium (IEEE GIIS'09), pp. 281-285,
June 2009.

[20] T. Pusateri, “Distance Vector Multicast Routing
Protocol”, Juniper Networks, Internet Engineering Task
Force (IETF), draft-ietf-idmr-dvmrp-v3-11.txt, October
2003.

[21] G. Rouskas and I. Baldine, “Multicast Routing with End-
to-End Delay and Delay Variation Constraints”, IEEE
Journal on Selected Areas in Communications, 15(3):346-
356, April 1997.

[22] P. Sheu and S. Chen,” A Fast and Efficient Heuristic
Algorithm for the Delay and Delay Variation-Bounded
Multicast Tree Problem”, Computer Communications,
25(8):825-833, May 2002.

[23] C. Shields and J.Garcia-Luna-Acevez, “The Ordered Core
Based Tree Protocol”, Proc. IEEE INFOCOM’97, Kobe,
Japan, pp. 884-891, April 1997.

[24] Y. Shim and S. Kang, “New Center Location Algorithms
for Shared Multicast Trees”, Lecture Notes in Computer
Science, SpringerLink, Berlin, Heidelberg, 2345:1045-

http://www.cisco.com/c/en/us/td/docs/ios/12_4t/

IJCA, Vol. 25, No. 3, Sept. 2018 141

1056, 2002.
[25] D. G. Thaler and C. Ravishankar. “Distributed Center-

Location Algorithms”, IEEE Journal on Selected Areas in
Communication, 15(3):291-303, April 1997.

[26] C. Partridge Waitzman and S. Deering, “Distance Vector
Multicast Routing Protocol (DVMRP)”, Internet
Engineering Task Force (IETF), RFC 1075, November
1988.

[27] D. Zappala, A. Fabbri, and V. Lo, “An Evaluation of
Shared Multicast Trees with Multiple Active Cores”,
Journal of Telecommunication Systems, 19:461-479,
March 2002.

Bidyut Gupta is a Professor at the
Department of Computer Science,
Southern Illinois University at
Carbondale. He is a senior member of the
IEEE. His current research interest
includes fault-tolerant mobile computing,
design of communication protocols,
design of P2P federation architecture, and

network security.

Ashraf Alyanbaawi was born in
Madinah, The Kingdom of Saudi Arabia.
Ashraf is a PhD Candidate in Southern
Illinois University, Carbondale, IL, USA.
After finishing his undergraduate degree
at the University Tenaga Nasional,
Malaysia, he started his career as a

Teaching Assistant at Taibah University, Yanbu, Saudi Arabia.
In 2016, he received his MS degree in Computer Science from
Southern Illinois University. His research focus is in the area of
computer networks.

Nick Rahimi is an Assistant Professor in
the Computer Science Department at
Southeast Missouri State University. His
main research interests revolve around
Computer and Network Security,
Distributed Systems, Peer-to-Peer
Networks and their Privacy, and Data
Communication. He has earned two

Bachelor of Science degrees in Software Engineering and
Information Systems Technologies. Nick obtained his Master
and Ph.D. degrees in Computer Science from Southern Illinois
University.

Koushik Sinha is currently an Assistant
Professor in the Department of Computer
Science at Southern Illinois University,
Carbondale. He is the co-author of the
book Wireless Networks and Mobile
Computing published by CRC Press,
Taylor and Francis Group, USA in 2015.
Prior to joining SIU, he was with the
Social Computing Group of Qatar

Computing Research Institute, Qatar from 2013 to 2015.
Previously, he was a Research Scientist at Hewlett-Packard
Labs. He is a Senior Member of the IEEE. His current research
focus is in the areas of 5G, wireless sensor networks, IoT and
Fog Computing.

Ziping Liu is a Professor in the
Department of Computer Science at
Southeast Missouri State University. Her
research interests include wireless ad hoc
network/sensor network, distributed
computing, cloud computing, wireless
network security, game development,
game AI, mobile computing and web
development.

Instructions For Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration:

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr. Fred.Harris@sce.unr.edu.
2. Illustrations should be high quality (originals unnecessary).
3. Enclose a separate page for (or include in the email message) the preferred author and address for correspondence.

Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be, double-spaced (12 point or larger), single column and single-sided on 8.5 X 11 inch
pages.

2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts:

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS
Word format should be submitted to the Editor-in-chief.

2. The submission may be on a CD/DVD, or as an email attachment(s). The following electronic files
should be included:
• Paper text (required)
• Bios (required for each author). Integrate at the end of the paper.
• Author Photos (jpeg files are required by the printer)
• Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps). title of the paper.

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the
paper.

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that
they are transferring the copyright to ISCA or declaring the work to be government-sponsored work in the
public domain. Also, letters of permission for inclusion of non-original materials are required.

Publication Charges:

After a manuscript has been accepted for publication, the author will be invoiced for publication charges of $50 USD
per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA members, $100 of
publication charges will be waived if requested.

January 2014

ISC
A

 IN
TER

N
A

TIO
N

A
L JO

U
R

N
A

L O
F C

O
M

PU
TER

S A
N

D
 TH

EIR
 A

PPLIC
A

TIO
N

S
V

ol. 25, N
o. 3, Sept. 2018

	International Society for Computers
	TABLE OF CONTENTS
	Sourish Roy, Carey Williamson, and Rachel McLean
	Reham M. Almutairi, Mohammed Hamdi, Feng Yu, and Wen-Chi Hou
	Bidyut Gupta, Ashraf Alyanbaawi, Nick Rahimi, Koushik Sinha, and Ziping Liu

	IJCA Jrnl inside front cover Sept 2018.pdf
	A publication of the International Society for Computers and Their Applications
	EDITOR-IN-CHIEF
	ASSOCIATE EDITORS

	Dr. Hisham Al-Mubaid
	Dr. Antoine Bossard
	Dr. Mark Burgin
	Dr. Sergiu Dascalu
	University of Nevada, USA
	dascalus@cse.unr.edu
	Dr. Sami Fadali

	Dr. Vic Grout
	Glyndŵr University,
	Wrexham, UK
	v.grout@glyndwr.ac.uk
	Dr. Yi Maggie Guo
	University of Michigan,
	Dearborn, USA
	magyiguo@umich.edu
	Dr. Wen-Chi Hou
	Southern Illinois University, USA
	hou@cs.siu.edu
	Dr. Ramesh K. Karne
	Towson University, USA
	rkarne@towson.edu
	Dr. Bruce M. McMillin
	Dr. Muhanna Muhanna

	Dr. Mehdi O. Owrang
	Dr. Xing Qiu

	University of Rochester, USA
	xqiu@bst.rochester.edu
	Dr. Abdelmounaam Rezgui
	Dr. Ramalingam Sridhar
	Dr. Junping Sun

	Dr. Jianwu Wang
	Dr. Yiu-Kwong Wong

	Dr. Rong Zhao

	2 Roy Willamson CLW.pdf
	1 Introduction
	2 Background and Related Work
	3 Methodology
	4 Measurement Results
	4.1 D2L Traffic Overview
	4.2 HTTP Redirection Issue
	(a) HTTP requests per day (b) HTTPS requests per day
	Figure 1: D2L Traffic Profile for Winter 2016

	4.3 Network Latency Issue
	4.4 TCP Throughput Issue
	Figure 4: Traceroute Results for d2l.ucalgary.ca
	Table 1: TCP Throughput for D2L Transfers (3.2 MB)

	Figure 2: Example of D2L Browsing Session (IIS 10.0)
	/
	Figure 5: LLCD Plot of D2L Throughput
	5 Additional Results
	5.1 D2L Server
	5.2 D2L User Interface
	Table 2: Comparison of D2L Web Page Complexity

	5.3 Web Caching
	Figure 10: Simulation results for web proxy cache

	6 Conclusions
	Acknowledgements

	References

	4 Gupta August 1 2018.pdf
	Southern Illinois University, Carbondale, USA
	Southern Illinois University, Carbondale, USA
	Abstract
	1.1 Related Works
	1.2 Our Contribution
	2.1 Multicore Selection Scheme
	2.2 An Example
	Figure 2: DVR tables of the routers
	2.3 Performance
	Figure 4: 30-router network
	Figure 5: 40-router network
	Figure 6: 50-router network
	the complete topological information. Experimental setup has used NS2 simulator, BRITE topology generator, and Waxman’s probability model for interconnection of the nodes.
	[18] “Load Splitting IP Multicast Traffic over ECMP.” Cisco, www.cisco.com/c/en/us/td/docs/ios/12_4t/, ip_mcast/con figuration/guide/mctlsplt.html, Mar 2015.

