

A publication of ISCA*:

International Society for Computers
and Their Applications

INTERNATIONAL JOURNAL OF

COMPUTERS AND THEIR
APPLICATIONS

TABLE OF CONTENTS

 Page

Guest Editorial Preface: Special Issue from ISCA CAINE 2018 . 39

Yan Shi and Gongzhu Hu

Response Time Minimization and Fairness in Distributed Systems with
Central-Server Node Model Using Dynamic Load Balancing 40

 Satish Penmatsa and Gurdeep S. Hura

A Declarative Modeling and an Inference Engine to Generate Non-emotional

Head-based Conversational Gestures for Human-humanoid Interactions 49
 Aditi Singh and Arvind K. Bansal

Generation of Audiovisual Materials - Considering Semantic and Impressive

Harmony Based on Time Change of Music . 67
 Yuto Shinjo, Teruhisa Hochin, and Hiroki Nomiya

QoS of Cloud Computing – Application of the JPManager in a Cloud Service 74

 Jiang Guo and Yuehong Liao

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPEC and
Scopus.”

Volume 26, No. 2, June 2019 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA …•…278 Mankato Ave, #220, Winona, MN 55987 USA…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca@isca-hq.org.

Copyright © 2019 by the International Society for Computers and Their Applications (ISCA)

All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Gordon Lee, Professor Emeritus
Department of Electrical & Computer Engineering

5500 Campanile Drive
San Diego State University

San Diego, CA 92182-1326, USA
Email: glee@sdsu.edu

CO-EDITOR-IN-CHIEF

Dr. Ziping Liu, Professor
Department of Computer Science
One University Plaza, MS 5950

Southeast Missouri State University
Cape Girardeau, MO 63701

Email: zliu@semo.edu

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid
University of Houston-
Clear Lake, USA
hisham@uhcl.edu

Dr. Antoine Bossard
Advanced Institute of Industrial
Technology
Tokyo, Japan
abossard@aiit.ac.jp

Dr. Mark Burgin
University of California
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada,
Reno, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada,
Reno, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University,
Wrexham, UK
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan
Dearborn, USA
magyiguo@umich.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science
and Technology, USA
ff@mst.edu

Dr. Muhanna Muhanna
Princess Sumaya University for
Technology
Amman, Jordan
m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Juan C. Quiroz
Sunway University, Malaysia
juanq@sunway.edu.my

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York
at Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University, USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California
San Diego, USA
jianwu@sdsc.edu

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
at Sony Brook, USA
rong.zhao@stonybrook.edu

http://www.isca@isca-hq.org
mailto:glee@sdsu.edu
mailto:zliu@semo.edu
mailto:magyiguo@umich.edu
mailto:rkarne@towson.edu
mailto:ssharma@bowiestate.edu
mailto:shiy@uwplatt.edu

IJCA, Vol. 26, No. 2, June 2019 39

ISCA Copyright© 2019

Guest Editorial Preface
Special Issue from ISCA CAINE 2018

This Special Issue of IJCA is a collection of four refereed papers, three of which were selected from the 31st International Conference
on Computer Applications in Industry and Engineering (CAINE 2018), and the fourth paper was specially solicited for the Special
Issue.

Each paper submitted to the conference was reviewed by at least two members of the International Program Committee and additional
reviewers judging the originality, technical contribution, significance and quality of presentation. After the conference, a number of
high-quality papers were recommended by the Program Chair to be considered for publication in this Special Issue of IJCA. The
authors were invited to submit a revised version of their papers. After extensive revisions and a second round of review, three papers
from the CAINE 2018 conference and an additional paper were accepted for publication in this issue of the journal.

The papers in this special issue cover a wide range of research interests in areas of computers and applications. The topics and main
contributions of the papers are briefly summarized below.

Satish Penmatsa of Framingham State University, USA, and Gurdeep S. Hura of University of Maryland Eastern Shore, USA, in
their paper “Response Time Minimization and Fairness In Distributed Systems With Central-Server Node Model Using Dynamic
Load Balancing” presented a dynamic load balancing scheme whose objectives are to minimize the execution time of jobs in the
system and to provide fairness to the users of jobs. Simulations are conducted with various heterogeneous system configurations to
evaluate the performance of the presented dynamic load balancing scheme.

Aditi Singh and Arvind K. Bansal of Kent State University, USA, presented a method for declarative modeling a head-based gestures
for non-emotional human-robot interaction in their paper “A Declarative Model and an Inference Engine to Generate Non-emotional
Head-based Conversational Gestures for Human-humanoid Interactions.” The proposed technique declares gestures as a nested-
group of coordinated organ-movements and translates organ-movements to a low-level generic library of routines. The paper
described 34 gestures and related algorithms with implementation.

Yuto Shinjo, Teruhisa Hochin, and Hiroki Nomiya of Kyoto Institute of Technology, Japan, presented a method to detect change
points of the impression of a music piece in the paper “Generation of Audiovisual Materials Considering Semantic and Impressive
Harmony Based on Time Change of Music.” The method deals with repeatedly changing of the impression of music pieces to improve
multimedia data retrieval based on impressions. A trial experiment using the proposed method showed that the accuracy of change
point detection of impression of music piece was improved.

Jiang Guo and Yuehong Liao of California State University Los Angeles, in their paper “QoS of Cloud Computing - Application of
the JPManager in a Cloud Service,” proposed an approach to collect the metrics information of the performance of the Java-based
cloud computing services by using Java instrumentation and find the bottlenecks. An agent-based architecture was used to maximize
the automation of the bottleneck detection, run time data collection and performance analysis. The Java instrumentation approach
was to insert the probe codes at byte code level, that work well for user-developed Java source code, as well as for thirty party byte
code.

We hope you enjoy this special issue of the IJCA and we look forward to seeing you at future ISCA conferences. More information
about ISCA society can be found at http://www.isca-hq.org.

Guest Editors:

Yan Shi, University of Wisconsin-Platteville, USA, CAINE 2018 Program Chair.
Gongzhu Hu, Central Michigan University, USA, CAINE 2018 Conference Chair.

May 2019

http://www.isca-hq.org/

40 IJCA, Vol. 26, No. 2, June 2019

ISCA Copyright© 2019

Response Time Minimization and Fairness in Distributed Systems with
Central-Server Node Model Using Dynamic Load Balancing

Satish Penmatsa*
Framingham State University, Framingham, MA, USA

Gurdeep S. Hura†
University of Maryland Eastern Shore, Princess Anne, MD, USA

Abstract

Distributed computing systems are often comprised of
heterogeneous computing resources with varying service rates
and workloads, and heterogeneous communications resources
with varying bandwidth and network traffic. The performance
of these systems can be improved by proper load balancing of
the jobs in the system among the computing resources by
considering the heterogeneity. In this paper, we present a
dynamic load balancing scheme whose objectives are to
minimize the execution time of jobs in the system and to
provide fairness to the users of jobs. The computing resources
are modeled as central-server nodes with one processor and
one or more input/output devices. Simulations are conducted
with various heterogeneous system configurations to evaluate
the performance of the presented dynamic load balancing
scheme.

Key Words: Distributed computing; heterogeneous
systems; fairness; dynamic load balancing; response time.

1 Introduction

With the ever-increasing complexity of computing
applications, distributed computing systems can be an effective
alternative over centralized systems. Distributed computing
systems comprise of software components spread over
multiple computers for improving the efficiency and
performance of applications. These distributed systems
provide several benefits compared to centralized systems such
as scalability and improved availability of services. Since the
distributed computing systems may comprise of heterogeneous
computing resources with varying service rates and workloads,
and heterogeneous communications resources with varying
bandwidth and network traffic, the performance of these
systems can be impacted if proper load balancing of jobs is not
performed. Given a large number of jobs, the load balancing
schemes try to find an allocation of jobs to computers in the
system optimizing an objective function (e.g. total execution
time of jobs).

Load balancing schemes can be categorized as being static

* Department of Computer Science. Email: spenmatsa@framingham.edu.
† Department of Math. & Computer Science. Email: gshura@umes.edu.

or dynamic. Static schemes base their allocation decisions on
collected statistical information about the system (e.g. average
arrival rate of jobs into the system), whereas, the dynamic
(adaptive) schemes base their decision on the current state of
the system (e.g. number of jobs waiting in the queue to be
processed at a computer) [18]. Also, a load balancing scheme
may regard all jobs as one group (class) to provide a system-
optimal solution, or may regard each job being independent to
provide a job-optimal solution, or may classify the jobs into
multiple groups (classes) to provide a class-optimal solution
[11].

1.1 Related Work

Kameda et al. studied static load balancing in distributed
systems considering various network configurations (e.g.
single channel and star network configurations) [7, 16].
Algorithms were devised for providing system-optimal, job-
optimal, and class-optimal solutions. Heuristic techniques for
static resource allocation in heterogeneous computing
environments with tasks having dependencies, priorities, and
deadlines were studied in [1]. A study and comparison of job
scheduling techniques in a cluster that could be part of a
computational grid were made in [19] and a distributed load
balancing model for grid computing systems for minimizing
the job execution and communication costs was presented in
[9].

Zheng et al. studied dynamic load balancing for grid
computing systems considering communication delays [21]. A
grid architecture with computers belonging to dispersed
administrative domains or groups connected with
heterogeneous communication bandwidths was considered.
Dynamic load balancing policies considering single-channel
network configuration with central-server node model have
been presented in [20]. All jobs in the system were regarded to
belong to one group (e.g. one user/class). In central-server
model, each node consists of one processor and one or more
input/output (I/O) devices. Static and dynamic load balancing
schemes with the objective of providing a system-optimal
solution for multi-class (multi-user) jobs considering a central-
server node model were studied in [14] and references there-in.

Fairness of allocation is an important factor in modern
distributed systems and we can say that a load balancing

mailto:spenmatsa@framingham.edu
mailto:gshura@umes.edu

IJCA, Vol. 26, No. 2, June 2019 41

scheme is fair if all the users in the system have approximately
the same expected response time independent of the computers
allocated for the execution of their jobs (of approximately the
same size). In [13], we studied dynamic load balancing for
minimizing execution costs of user jobs and for providing
fairness to users in grid systems. The nodes were modeled as
M/M/1 queuing systems [5] where the job inter-arrival times
and service times are exponentially distributed and arrive in a
single queue to a single computing resource. Static load
balancing schemes for providing fairness considering a central-
server node model have been presented in [10, 12]. Load
balancing schemes based on game theory for providing
fairness to users and their jobs have been presented in [2, 8, 3].

A classification of some of the most used load balancing
algorithms in distributed systems (including cloud technology,
cluster systems, and grid systems) is presented in [4]. Another
survey of task allocation and load balancing in distributed
systems with respect to aspects such as control models,
resource optimization methods, and coordination mechanisms
among heterogeneous nodes has been provided in [6]. In [17],
performance analysis of greedy load balancing algorithms in
heterogeneous distributed computing systems has been made.

1.2 Contribution

In this paper, we present a dynamic load balancing scheme

whose objectives are to minimize the execution time of user
jobs and to provide fairness to the users in a multi-user
heterogeneous distributed system. The computing resources
are modeled as central-server nodes with one processor and
one or more I/O devices. Simulations are conducted with
various heterogeneous system configurations to evaluate the
performance of the presented dynamic load balancing scheme.
Related preliminary results were presented in [15].

1.3 Organization

The rest of the paper is organized as follows. In Section 2,
the system and node models used are presented. In Section 3,
the proposed dynamic load balancing scheme is presented. In
Section 4, performance analysis of the proposed scheme is
made using experimental results. Conclusions are drawn in
Section 5.

2 System and Node Models

In this section, we present the distributed system model and

the node model used and the assumptions made for the study.
We consider a heterogeneous distributed system as shown in
Figure 1 with 𝑛𝑛 computers (nodes) connected by a
communications network. Each node is modeled as a central-
server node (as shown in Figure 1) which consists of one
processor and one or more input/output (I/O) devices. Jobs
arriving to each node may belong to 𝑚𝑚 different users (classes)
(similar to [14, 12]). We assume that 𝜇𝜇𝑖𝑖 denotes the service
rate of node 𝑖𝑖 and 𝜙𝜙𝑖𝑖

𝑗𝑗 denotes the external job arrival rate of
user 𝑗𝑗 to node 𝑖𝑖. The total external job arrival rate of user 𝑗𝑗 is
denoted by 𝜙𝜙𝑗𝑗 (where 𝜙𝜙𝑗𝑗 = ∑ 𝜙𝜙𝑖𝑖

𝑗𝑗𝑛𝑛
𝑖𝑖=1) and the total external

job arrival rate into the system is denoted by Φ (where Φ =
 ∑ 𝜙𝜙𝑗𝑗𝑚𝑚

𝑗𝑗=1).
We assume that 𝑝𝑝0 denotes the probability that a job after

departing from the processor finishes and 𝑝𝑝1 denotes the
probability that a job after departing from the processor
requests I/O service. Therefore, 𝑝𝑝1

𝑝𝑝0
 denotes the average number

of I/O requests per job. The job flow rate of user 𝑗𝑗 from node
𝑟𝑟 to node 𝑠𝑠 is denoted by 𝑥𝑥𝑟𝑟𝑟𝑟

𝑗𝑗 . The nodes and the
communications network are assumed to have an exponential

Figure 1: System and node models

42 IJCA, Vol. 26, No. 2, June 2019

service-time distribution and that the job arrivals follow a
Poisson distribution [5] (to simulate random, mutually
independent job arrivals).

Let 𝛽𝛽𝑖𝑖
𝑗𝑗denote the job processing rate (load) of user 𝑗𝑗 at node

𝑖𝑖 and 𝑡𝑡𝐼𝐼𝐼𝐼 denote the service time of an I/O device. Based on
the above assumptions, the expected (average) response time
(node delay) of a user 𝑗𝑗 job processed at node 𝑖𝑖 is given by [5]:

𝐹𝐹𝑖𝑖
𝑗𝑗(𝛽𝛽𝑖𝑖) = 1

(𝜇𝜇𝑖𝑖− ∑ 𝛽𝛽𝑖𝑖
𝑘𝑘𝑚𝑚

𝑘𝑘=1)
+ 𝑝𝑝1

𝑝𝑝0
 𝑡𝑡𝐼𝐼𝐼𝐼 (1)

where 𝛽𝛽𝑖𝑖 = [𝛽𝛽𝑖𝑖1,𝛽𝛽𝑖𝑖2, … ,𝛽𝛽𝑖𝑖𝑚𝑚] 𝑇𝑇.

Let 𝜆𝜆𝑗𝑗 denote the job traffic through the network of user 𝑗𝑗
and 𝑡𝑡 denote the mean communication time for sending or
receiving a job from one node to another for any user. The
expected communication delay of a user 𝑗𝑗 job is given by [5]:

𝐺𝐺𝑗𝑗(𝜆𝜆) = 𝑡𝑡
(1−𝑡𝑡 ∑ 𝜆𝜆𝑘𝑘)𝑚𝑚

𝑘𝑘=1
 , ∑ 𝜆𝜆𝑘𝑘 < 1

𝑡𝑡
𝑚𝑚
𝑘𝑘=1 (2)

In the above, it is assumed that 𝐺𝐺𝑗𝑗(𝜆𝜆) is independent of the
source-destination pair (𝑟𝑟, 𝑠𝑠) but may depend on the total
traffic through the network, 𝜆𝜆 where 𝜆𝜆 = ∑ 𝜆𝜆𝑗𝑗𝑚𝑚

𝑗𝑗=1 .
Hence, the overall average response time of user 𝑗𝑗 is given

by:

𝑇𝑇𝑗𝑗(𝛽𝛽, 𝜆𝜆) = 1
𝜙𝜙𝑗𝑗

 ∑ 𝛽𝛽𝑖𝑖
𝑗𝑗𝐹𝐹𝑖𝑖

𝑗𝑗(𝛽𝛽𝑖𝑖) + 𝜆𝜆
𝑗𝑗

𝜙𝜙𝑗𝑗
 𝐺𝐺𝑗𝑗(𝜆𝜆)𝑛𝑛

𝑖𝑖=1 (3)

3 Dynamic Load Balancing

In this section, we present a dynamic load balancing scheme
(named DNCOOPC-CS) whose objectives are to dynamically
minimize the execution time (response time) of users (jobs) in
the system and to provide fairness to all the users. We note
that an allocation (of jobs) is said to be fair if all the users
experience approximately the same expected response time for
the execution of their jobs which are approximately of the
same size independent of the computers allocated for their
execution. Dynamic load balancing schemes base their
decision on the current state of the system.

The DNCOOPC-CS scheme is based on the static job
allocation scheme NCOOPC-CS presented in [12] whose
objective is to improve the performance of E-commerce
systems by minimizing the response time of user jobs (or
transactions) and by providing fairness to all the users.
NCOOPC-CS is based on non-cooperative economic game
theory and it was shown that an (Nash) equilibrium solution
provides an allocation which is fair to all the users. The
following marginal node and marginal communication delay
functions are defined in [12] for finding a solution
implemented by NCOOPC-CS job allocation scheme.

𝑓𝑓𝑖𝑖
𝑗𝑗(𝛽𝛽𝑖𝑖) = 𝜕𝜕

𝜕𝜕𝛽𝛽𝑖𝑖
𝑗𝑗 �𝛽𝛽𝑖𝑖

𝑗𝑗𝐹𝐹𝑖𝑖
𝑗𝑗(𝛽𝛽𝑖𝑖)� = 𝜇𝜇𝑖𝑖

𝑗𝑗

(𝜇𝜇𝑖𝑖
𝑗𝑗− 𝛽𝛽𝑖𝑖

𝑗𝑗)2
+ 𝑝𝑝1

𝑝𝑝0
 𝑡𝑡𝐼𝐼𝐼𝐼 (4)

where 𝜇𝜇𝑖𝑖
𝑗𝑗 = 𝜇𝜇𝑖𝑖 − ∑ 𝛽𝛽𝑖𝑖𝑘𝑘𝑚𝑚

𝑘𝑘=1,𝑘𝑘≠𝑗𝑗 .

𝑔𝑔𝑗𝑗(𝜆𝜆) = 𝜕𝜕
𝜕𝜕𝜆𝜆𝑗𝑗

[𝜆𝜆𝑗𝑗𝐺𝐺𝑗𝑗(𝜆𝜆)] =
𝑡𝑡𝑔𝑔−𝑗𝑗

(𝑔𝑔−𝑗𝑗−𝑡𝑡𝜆𝜆𝑗𝑗)2
(5)

where 𝑔𝑔−𝑗𝑗 = (1 − 𝑡𝑡 ∑ 𝜆𝜆𝑘𝑘𝑚𝑚
𝑘𝑘=1,𝑘𝑘 ≠𝑗𝑗).

(𝑓𝑓𝑖𝑖
𝑗𝑗)−1 �𝛽𝛽𝑖𝑖|𝛽𝛽𝑖𝑖

𝑗𝑗=𝑥𝑥� =

⎩
⎪
⎨

⎪
⎧

�𝜇𝜇𝑖𝑖
𝑗𝑗 − �

𝜇𝜇𝑖𝑖
𝑗𝑗

𝑥𝑥− 𝑝𝑝1𝑝𝑝0
 𝑡𝑡𝐼𝐼𝐼𝐼
� , 𝑖𝑖𝑓𝑓 𝑥𝑥 > 1

𝜇𝜇𝑖𝑖
𝑗𝑗 + 𝑝𝑝1

𝑝𝑝0
 𝑡𝑡𝐼𝐼𝐼𝐼

0, 𝑖𝑖𝑓𝑓 𝑥𝑥 ≤ 1
𝜇𝜇𝑖𝑖
𝑗𝑗 + 𝑝𝑝1

𝑝𝑝0
 𝑡𝑡𝐼𝐼𝐼𝐼

(6)

The state information that DNCOOPC-CS uses is the
number of jobs waiting in queue to be processed (queue
length) at the nodes. Each node 𝑖𝑖 (𝑖𝑖 = 1, … ,𝑛𝑛) broadcasts the
number of jobs of user 𝑗𝑗 (𝑗𝑗 = 1, … ,𝑚𝑚) in its queue to all the
other nodes. This state information exchange is done
periodically, say every 𝑃𝑃 time units. Expressions for marginal
node and communication delays in terms of current state
information (instantaneous variables) are derived below
(similar to [14, 13]).

Let 𝑟𝑟𝑖𝑖 (𝑖𝑖 = 1, … ,𝑛𝑛) denote the mean service time of a job at
node 𝑖𝑖, 𝑁𝑁𝑖𝑖

𝑗𝑗 (𝑖𝑖 = 1, … ,𝑛𝑛; 𝑗𝑗 = 1, … ,𝑚𝑚) denote the mean number
of jobs of user 𝑗𝑗 at node 𝑖𝑖, 𝜌𝜌 denote the utilization of the com-
munications network (where 𝜌𝜌 = 𝑡𝑡 ∑ 𝜆𝜆𝑘𝑘𝑚𝑚

𝑘𝑘=1), and 𝜌𝜌𝑗𝑗 denote
the utilization of the communications network by user 𝑗𝑗.

Using the relation 𝑟𝑟𝑖𝑖 = 1
𝜇𝜇𝑖𝑖

 [5] and Little's law (∑ 𝑁𝑁𝑖𝑖𝑘𝑘 =𝑚𝑚
𝑘𝑘=1

∑ 𝛽𝛽𝑖𝑖𝑘𝑘𝐹𝐹𝑖𝑖
𝑗𝑗(𝛽𝛽𝑖𝑖

𝑗𝑗)𝑚𝑚
𝑘𝑘=1) [5], the marginal node delay of a user 𝑗𝑗 job at

node 𝑖𝑖 (i.e. 𝑓𝑓𝑖𝑖
𝑗𝑗 in eq. (4)) can be expressed in terms of 𝑟𝑟𝑖𝑖 and

𝑁𝑁𝑖𝑖
𝑗𝑗 as:

𝑓𝑓𝑖𝑖
𝑗𝑗(𝛽𝛽𝑖𝑖) = 𝑟𝑟𝑖𝑖

𝑗𝑗(1 + ∑ 𝑁𝑁𝑖𝑖𝑘𝑘)2𝑚𝑚
𝑘𝑘=1 + 𝑝𝑝1

𝑝𝑝0
 𝑡𝑡𝐼𝐼𝐼𝐼 (7)

where 𝑟𝑟𝑖𝑖
𝑗𝑗 = 𝑟𝑟𝑖𝑖 − ∑ 𝛽𝛽𝑖𝑖𝑘𝑘𝑚𝑚

𝑘𝑘=1,𝑘𝑘≠𝑗𝑗 .

Rewriting eq. (5) in terms of 𝜌𝜌, we have

𝑔𝑔𝑗𝑗(𝜆𝜆) = 𝑡𝑡 �1− 𝜌𝜌+ 𝜌𝜌𝑗𝑗�
(1− 𝜌𝜌)2

, 𝜌𝜌 < 1,𝜌𝜌𝑗𝑗 < 1 (8)

Let 𝑛𝑛𝑖𝑖
𝑗𝑗 denote the number of jobs of user 𝑗𝑗 at node 𝑖𝑖 at a

given instant, 𝜌𝜌′ denote the utilization of the communications
network at a given instant, and 𝜌𝜌𝑗𝑗′ denote the utilization of the
communications network by user 𝑗𝑗 at a given instant.

Expressing 𝑓𝑓𝑖𝑖
𝑗𝑗 in eq. (7) and 𝑔𝑔𝑗𝑗 in eq. (8) which use the

mean estimates of the system parameters in terms of
instantaneous variables, we have, the marginal virtual node
delay for user 𝑗𝑗 at node 𝑖𝑖 as:

IJCA, Vol. 26, No. 2, June 2019 43

𝑓𝑓𝑖𝑖
𝑗𝑗 = 𝑟𝑟𝑖𝑖

𝑗𝑗(1 + ∑ 𝑛𝑛𝑖𝑖𝑘𝑘)2𝑚𝑚
𝑘𝑘=1 + 𝑝𝑝1

𝑝𝑝0
 𝑡𝑡𝐼𝐼𝐼𝐼 (9)

and the marginal virtual communication delay for user 𝑗𝑗 jobs
as:

𝑔𝑔𝑗𝑗 = 𝑡𝑡 (1− 𝜌𝜌′+ 𝜌𝜌𝑗𝑗
′
)

(1− 𝜌𝜌′)2
, 𝜌𝜌′ < 1,𝜌𝜌𝑗𝑗′ < 1 (10)

While NCOOPC-CS tries to balance the marginal node
delays of each user at all the nodes statically, DNCOOPC-CS
tries to balance the marginal virtual node delay of each user at
all the nodes dynamically. For a user 𝑢𝑢 job arriving at node 𝑖𝑖
that is eligible to transfer, each potential destination node 𝑗𝑗
(𝑗𝑗 = 1, … ,𝑛𝑛; 𝑗𝑗 ≠ 𝑖𝑖) is compared with node 𝑖𝑖.

If
 𝑓𝑓𝑖𝑖𝑢𝑢 > 𝑓𝑓𝑗𝑗𝑢𝑢 + 𝑔𝑔𝑢𝑢 (11)

then node 𝑖𝑖 is said to be more heavily loaded than node 𝑗𝑗 for a
user 𝑢𝑢 job. A user 𝑗𝑗 job arriving at node 𝑖𝑖 will be eligible to
transfer when the number of jobs of user 𝑗𝑗 at node 𝑖𝑖 is greater
than some threshold denoted by 𝑇𝑇𝑖𝑖

𝑗𝑗. Else, the job will be
processed locally. The optimal loads computed by the static
NCOOPC-CS are used to determine the thresholds. These
thresholds can be recomputed periodically based on the
frequency of variation of the arrival rates to each node.

In order to avoid the scenario where a job will be continually
transferred to remote nodes without being processed, we keep
track of the number of times that a user 𝑗𝑗 job has been
transferred (say, 𝑐𝑐). If 𝜔𝜔 (0 < 𝜔𝜔 ≤ 1) is a weighting factor to
prevent a job from being transferred continuously and Δ (Δ >
0) is a bias to protect the system from instability (by
forbidding the load balancing policy to react to small load
distinctions between the nodes), then the job of user 𝑗𝑗 at node 𝑖𝑖
will be transferred to a remote node only if (𝜔𝜔)𝑐𝑐𝛿𝛿𝑖𝑖

𝑗𝑗 > Δ.
Here, 𝛿𝛿𝑖𝑖

𝑗𝑗 is a measure which quantifies the maximum
difference between the job queue length at the current node
and the job queue lengths at all the remote nodes. If (𝜔𝜔)𝑐𝑐𝛿𝛿𝑖𝑖

𝑗𝑗 ≤
Δ, the job will be processed locally.

4 Experimental Results

In the following, we present the experimental results
comparing the performance of the proposed DNCOOPC-CS
load balancing scheme with that of other existing schemes.
We simulated a 32-node heterogeneous system with 20 users
to evaluate the performance of DNCOOPC-CS (similar to [14,
13]). The system configuration is shown in Table 1 and
presents the service rate of the computers (nodes) (𝜇𝜇𝑖𝑖,𝑖𝑖 =
1, … , 32), their relative service rates, and the number of
computers of each type. The service rate of the fastest
computers is 10 times that of the slowest computers.

 Table 1: System configuration
Service rate (jobs/sec) 10 30 60 100
Relative service rate 1 3 6 10
Number of computers 8 8 8 8

For comparison, the following load balancing schemes were
also implemented: NCOOPC-CS [12] - a static scheme with
the objective of minimizing the total execution time of users
jobs and provide fairness to the users; DynamicGOS [14] - a
dynamic load balancing scheme with the objective of
providing a system optimal solution (but not fairness).

The total job arrival rate into the system is determined by the
system utilization (load) and the total service rate of the
system. System utilization (𝜓𝜓) represents the amount of load
on the system. It is defined as the ratio of the total arrival rate
to the aggregate service rate of the system:

 𝜓𝜓 = Φ
∑ 𝜇𝜇𝑖𝑖
𝑛𝑛
𝑖𝑖=1

 (12)

The total job arrival rate into the system is divided among
the 20 users unevenly to simulate heterogeneous user job
arrival rates. The mean service time of each computer 𝑖𝑖, 𝑖𝑖 =
1, … , 32 and the mean inter-arrival time of a job of each user 𝑗𝑗,
𝑗𝑗 = 1, … , 20 to each computer 𝑖𝑖 are calculated from the mean
service rate of each computer 𝑖𝑖 and the mean arrival rate of a
job of each user 𝑗𝑗 to each computer 𝑖𝑖 respectively. The mean
communication time is assumed to 1 millisecond. The
overhead (OV) for job transfer we use in the following is
defined as the percentage of service time that a computer has
to spend to send or receive a job.

4.1 Effect of System Utilization:

The average response times for executing the jobs of all
users in the system for system utilizations (system loads)
ranging from 10% to 90% are presented in Figure 2. We
assume that there is no overhead for job transfer in this case.
The bias for job transfer (Δ) is set to 0.4 and the weighting
factor for job transfer (ω) is set to 0.9 for both DNCOOPC-CS
and DynamicGOS. It can be observed that the average
response time achieved by all the schemes is close for low
system utilizations. As the system load increases, the average

 Figure 2: Average response time vs system utilization
(OV = 0)

44 IJCA, Vol. 26, No. 2, June 2019

response time increases, and the average response times
achieved by the dynamic schemes, which use the instantaneous
state information, are substantially lower (by at least about
40%) than that of the static NCOOPC-CS. DynamicGOS,
whose objective is to provide a system optimal solution
achieves a lower response time compared to DNCOOPC-CS,
whose objective is not only to reduce the response time of jobs
but also provide fairness to the users.

We use Fairness Index (FI) [5] as the metric to quantify the
fairness of the load balancing schemes. If all the users have
the same average response time, then FI = 1 and the system is
100% fair to all users and it is load-balanced. If FI decreases,
then the load balancing scheme favors only some users. The

Fairness Index (FI) of the load balancing schemes under
consideration is presented in Figure 3 for various system
utilizations. It can be observed that the FI of DynamicGOS
falls from 1 at low system loads to about 0.93 at high system
loads while the FI of DNCOOPC-CS is in the range {0.98, 1}.

Figure 4 presents the average response times achieved by the
load balancing schemes when the overhead for sending and
receiving a job is set to 5% of the mean job service time at a
node. It can be observed that the response times of
DNCOOPC-CS are substantially lower than that of the static
NCOOPC-CS for medium and high system loads. This is
because of the use of current job queue lengths at the nodes by
the dynamic scheme compared with the use of average state

Figure 3: Fairness index vs system utilization (OV = 0)

Figure 4: Average response time vs system utilization (OV = 5%)

IJCA, Vol. 26, No. 2, June 2019 45

information by the static scheme. DynamicGOS again achieves
a lower response time (at high system loads) than DNCOOPC-
CS due to its allocation in order to achieve a near optimal
solution. Figure 5 presents the Fairness Index (FI) achieved by
the schemes when the overhead for sending and receiving a job
is 5% of the mean job service time at a node. It can be
observed that the Fairness Index of DNCOOPC-CS is in the
range {0.97, 1} and the Fairness Index of DynamicGOS is in
the range {0.92, 0.99}. This is because the allocation computed
by DNCOOPC-CS is not only to lower the response time of

jobs but also to provide a fair solution.
Figure 6 presents the average response times achieved by the

load balancing schemes when the overhead for job transfer is
10%. Although the response times increase considerably, it
can be again observed that the response times of DNCOOPC-
CS are lower than that of the static NCOOPC-CS for medium
and high system loads. Figure 7 presents the Fairness Index
(FI) when the overhead for job transfer is 10%. It can be
observed that the FI of DNCOOPC-CS is in the range {0.97,
1} and the FI of DynamicGOS is in the range {0.89, 0.99}.

Figure 5: Fairness index vs system utilization (OV = 5%)

Figure 6: Average response time vs system utilization (OV = 10%)

46 IJCA, Vol. 26, No. 2, June 2019

Figure 7: Fairness index vs system utilization (OV = 10%)

4.2 Effect of Bias (𝚫𝚫)

In the following, we present the effect of bias (Δ, (Δ > 0))
on DNCOOPC-CS which is used to protect the system from
instability by forbidding the load balancing scheme to react to
small load distinctions between the nodes. Figure 8 presents
the variation of average response time with system utilization
of DNCOOPC-CS for various biases. The overhead is
assumed to be 5% and the other parameters are fixed as in
Figure 2. It can be observed that as the bias decreases, the
average response time of DNCOOPC-CS decreases. This is

because, as the bias goes lower, it will be relatively easy for
the load balancing scheme to find a remote node with a value
of 𝛿𝛿𝑖𝑖

𝑗𝑗 that satisfies (𝜔𝜔)𝑐𝑐𝛿𝛿𝑖𝑖
𝑗𝑗 > Δ (see Section 3) for remote

processing. When such a remote node is not found, the job
will be forced to be processed locally, which can lead to load
imbalancing.

Figure 9 presents the variation of Fairness Index (FI) with
system utilization of DNCOOPC-CS for various biases. When
the bias is set to 0.8, the FI of DNCOOPC-CS falls from 0.99
at low system loads to about 0.94 at high system loads and
when the bias is set to 0.6, the FI of DNCOOPC-CS falls from

Figure 8: Average response time vs system utilization for various biases of DNCOOPC-CS (OV = 5%)

IJCA, Vol. 26, No. 2, June 2019 47

Figure 9: Fairness index vs system utilization for various biases of DNCOOPC-CS (OV = 5%)

1 at low system loads to about 0.96 at high system loads. As
the bias reduces to 0.4, the FI of DNCOOPC-CS at high
system loads is about 0.98.

Based on the above results, it can be observed that the
performance of DNCOOPC-CS is not only close to that of
DynamicGOS in terms of the average response time but also
provides fairness to all the users (in terms of their experienced
response times).

5 Conclusions

In this paper, a dynamic load balancing scheme
(DNCOOPC-CS) for heterogeneous distributed systems is
presented. The objectives of DNCOOPC-CS are to minimize
the average response time of users jobs and to provide fairness
to the users. The computers were modeled as central-server
nodes. Based on experimental results with various system
loads, it was observed that the Fairness Index achieved by
DNCOOPC-CS is close to 1 and the average response times
achieved by it were considerably lower than its static
counterpart and comparable to a system-optimal dynamic
scheme.

In future work, we plan to evaluate the performance of
DNCOOPC-CS by varying the heterogeneity and the size of
the distributed system.

References

[1] T. D. Braun, H. J. Siegel, A. A. Maciejewski, and Y.
Hong, “Static Resource Allocation for Heterogeneous
Computing Environments with Tasks having
Dependencies, Priorities, Deadlines, and Multiple
Versions,” Journal of Parallel and Distributed

Computing, 68(11):1504-1516, Nov. 2008.
[2] D. Grosu and A. T. Chronopoulos, “Noncooperative

Load Balancing in Distributed Systems,” Journal of
Parallel and Distributed Computing, 65(9):1022-1034,
Sep. 2005.

[3] D. Grosu, A. T. Chronopoulos, and M.Y. Leung, “Load
Balancing in Distributed Systems: An Approach using
Cooperative Games,” Proc. of the 16th IEEE Intl.
Parallel and Distributed Processing Symposium, Fort
Lauderdale, Florida, USA, pp 501-510, April 14-15,
2002.

[4] I. N. Ivanisenko and T. A. Radivilova, “Survey of Major
Load Balancing Algorithms in Distributed System,”
Information Technologies in Innovation Business
Conference (ITIB), pp 89-92, 2015.

[5] R. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design,
Measurement, Simulation, and Modeling, Wiley-
Interscience, 1991.

[6] Y. Jiang, “A Survey of Task Allocation and Load
Balancing in Distributed Systems,” IEEE Transactions
on Parallel and Distributed Systems, 27(2):585-599,
2016.

[7] H. Kameda, J. Li, C. Kim, and Y. Zhang, Optimal Load
Balancing in Distributed Computer Systems, Springer
Verlag, London, 1997.

[8] S. Nouri and S. Parsa, “A Non-Cooperative Approach for
Load Balancing in heterogeneous Distributed Computing
Platform,” Proceedings of the 4th International
Conference on Computer Sciences and Convergence
Information Technology, pp 756-761, 2009.

[9] J. C. Patni and M. S. Aswal, “Distributed Load Balancing
Model for Grid Computing Environment,” Proc. of the

48 IJCA, Vol. 26, No. 2, June 2019

International Conference on Next Generation Computing
Technologies, pp 123-126, 2015.

[10] S. Penmatsa, “Load Balancing for Providing Fairness in
Utility Computing Systems with Central-Server Model,”
Proceedings of the 30th International Conference on
Computers and their Applications, pp 387-392, March 9-
11, 2015.

[11] S. Penmatsa and A. T. Chronopoulos, “Game-Theoretic
Static Load Balancing for Distributed Systems,” Journal
of Parallel and Distributed Computing, 71(4):537-555,
2011.

[12] S. Penmatsa and G. S. Hura, “Job Allocation in e-
Commerce Systems Involving Self-Interested Agents,”
Journal of Global Information Technology, 5(1):1-11,
2010.

[13] S. Penmatsa and G. S. Hura, “Adaptive Cost
Optimization and Fair Resource Allocation in
Computational Grid Systems,” Proceedings of the 29th

International Conference on Computer Applications in
Industry and Engineering, pp 79-84, 2016.

[14] S. Penmatsa and G. S. Hura, “Performance Evaluation of
System Optimal Load Balancing Schemes for Multi-User
Job Distributed Systems,” Proceedings of the 23rd

International Conference on Parallel and Distributed
Processing Techniques and Applications, pp 68-73,
2017.

[15] S. Penmatsa and G. S. Hura, “Dynamic Load Balancing
in Heterogeneous Computing Systems with Central-

Satish Penmatsa received his M.S. and
Ph.D. in Computer Science from the
University of Texas at San Antonio in
2003 and 2007, respectively. He is
currently with the Department of
Computer Science at Framingham State
University, Framingham, Mas-
sachusetts. His research interests are in
the areas of parallel and distributed

systems, high performance computing, grid computing,
wireless networks, game theory, science and engineering
applications. He is a member of IEEE, IEEE Computer
Society, ISCA, and the ACM.

Server Node Model,” Proc. of the 31st International
Conference on Computer Applications in Industry and
Engineering, pp 14-19, 2018.

[16] K. W. Ross and D. D. Yao, “Optimal Load Balancing
and Scheduling in a Distributed Computer System,”
Journal of the ACM, 38(3):676-690, July 1991.

[17] B. Sahoo, D. Kumar, and S. K. Jena, “Performance
Analysis of Greedy Load Balancing Algorithms in
Heterogeneous Distributed Computing System,” Proc. of
the International Conference on High Performance
Computing and Applications, pp 1-7, 2014.

[18] N. G. Shivaratri, P. Krueger, and M. Singhal, “Load
Distributing for Locally Distributed Systems,” Comput.,
25(12): 33-44, 1992.

[19] K. Skenteridou and H. D. Karatza, “Job Scheduling in a
Grid Cluster,” Proc. of the International Conference on
Computer, Information and Telecommunication Systems,
pp 1-5, 2015.

[20] Y. Zhang, H. Kameda, and S. L. Hung, “Comparison of
Dynamic and Static Load-Balancing Strategies in
Heterogeneous Distributed Systems,” IEE Proc.
Computers and Digital Techniques, 144(2):100-106,
March 1997.

[21] Q. Zheng, C-K. Tham, and B. Veeravalli, “Dynamic
Load Balancing and Pricing in Grid Computing with
Communication Delay,” Journal of Grid Computing,
6(3):239-253, Sept. 2008.

Gurdeep S. Hura received his M. E.
and Ph.D. in Computer Science from
the University of Roorkee (India) in
1975 and 1984 respectively. He is
currently with the Department of
Mathematics and Computer Science at
the University of Maryland Eastern
Shore, Princess Anne, Maryland. His
research interests include petri nets,
performance modeling and analysis,
and cyber security. He is a senior
member of IEEE, a Fellow of Society

for Design and Process Science, and a CAC ABET National
and International Program evaluator.

IJCA, Vol. 26, No. 2, March 2019 49

ISCA Copyright© 2019

A Declarative Modeling and an Inference Engine to Generate Non-emotional
Head-based Conversational Gestures for Human-humanoid Interactions

Aditi Singh* and Arvind K. Bansal*
Kent State University, Kent, Ohio, 44240, USA

Abstract

This paper describes an approach for declarative modeling and
an implementation of a major subset of head-based gestures for
non-emotional conversational interactions. Conversational
interaction between human and robot includes verbal and non-
verbal communication. Non-verbal conversations depend on
gestures. Gestures require postures, head-motions, hand-
motions, jaw-motions and eye-motion, including gaze, and the
coordination of various movements. The proposed technique
declares gestures as a nested-group of coordinated organ-
movements and translates organ-movements to a low-level
generic library of routines for the programmatically coordinated
rotations of stepper and servo motors. The library of gestures is
easily adaptable to individuals’ variability and speech variability
due to declarative modeling. We describe declarations for 34
gestures, and describer algorithms for an inference engine. We
have implemented the approach on an artificial human skeleton
using Python programming language, Adafruit driver-library and
speech rendering software running on a Raspberry PI 3B.

Key Words: Human-robot interaction; conversational
gesture; gesture generation; robotics; social robotics;
declarative modeling.

1 Introduction

The human-robot interaction has multiple expected

applications in the medical industry, education and entertainment
industry [6, 11]. Humanoid robots will act like a companion of
people because of the aging population and the lack of
availability of caretakers and educators [5, 15, 31, 43]. However,
a major concern goes to the physical body of a robot. The focus
is towards making robot anthropomorphic.

Anthropomorphism has roots in the Greek words “Anthropos”
for “human” and “morph” for “form/shape/structure”.
Anthropomorphism attributes human-traits to objects to make
social robots human-friendly and acceptable by mimicking form
factor and behavioral characteristics of humans. In robotics,
“anthropomorphic design” refers to three parts: a robot’s
structure, conduct, and interaction with the human [13]. In the
last few years, researchers have developed many android models
with limited interaction capabilities [17, 34, 38].

*Department of Computer Science. Email: asingh37@kent.edu and
akbansal@kent.edu.

Gesture is a non-verbal communication language that uses
postures and coordinated motions of mainly upper body parts
[21, 24]. Gestures are essential for interaction and
communication to convey the intent [2]. Conversational gesture
is an important aspect of human-robot interactions [42]. Robots’
interactions with humans are non-emotional. However, robot
should be able to exhibit human-traits such as acceptance,
affirmation, encouragement, agreement, subordination,
backchanneling, along with a meaningful speech for better
acceptability and improved communication functionality.

A non-emotional conversational gesture is generated using a
coordinated combination of posture and motion mainly
involving head, eyes, jaw, hands and shoulders. Human muscles
involved in gesture generations have four major functions: 1)
movement of organs associated with gestures; 2) graceful
dampening of motions; 3) smoothen jerky motion of the organs;
and 4) stabilization of the organs involved in the movement in
specific postures.

This research describes a declarative and scalable modeling
technique and an implementation of a prototype using an
artificial human skeleton for generating non-emotional
conversational gestures. The implemented gestures involve
postures and coordinated movements of head-motion, jaw
movements and eyes-movements. This research will augment
robot-human conversational interaction efforts [17, 34, 38] that
have limited conversational gesture generation capabilities.
Although, our scheme has been demonstrated for head-based
gestures, it can be extended to more gestures involving hand and
body postures [4, 34].

The major contributions in this research are:

1. Development of a scalable declarative model of specifying

conversational gestures that are interpreted and actuated
using a common engine;

2. Modeling the generation of non-emotional conversational
gestures based upon behavioral psychology research [2-3,
16, 35];

3. Gesture-time is automatically scaled to match the speech-
time of a phrase using a syllable dictionary for better
synchronization between speech-phrase and the associated
gesture.

The overall paper is organized as follows. Section 2 describes

the related works. Section 3 described a modeling of the postures
and coordinated movements using stepper and servo motors.

mailto:akbansal@kent.edu

50 IJCA, Vol. 26, No. 2, March 2019

Section 4 describes the modeling of non-emotional
conversational gestures using coordinated movements. Section
5 describes the algorithms. Section 6 describes the
implementation. Section 7 describes the limitations and future
work.

2 Related Works

Studies [12] have shown the role of physical embodiment in

human-robot interaction. The term embodiment refers to the
physical existence of an entity, i.e. a robot in a physical
environment. A robot represents a physical body with actuators
and sensors, perception, cognitive and interactive capabilities.
There is a huge impact on human perception, reaction and
behavior based upon robot-size, human-like behavior, and
interaction style towards human-humanoid interactions [41].
Along with human-like appearance, studies [2-3, 12, 32] show
the significance of head-motion, speech, gaze and other human-
like conversational gestures in human-robot interaction. Studies
[9, 16, 27] have also shown the importance of timed gaze during
conversation, turn-taking, intent, role-playing, submissions and
dominance. Researchers in social robotics have shown a limited
amount of gestures in virtual agents (avatars) using 2D or 3D
simulations of human behavior [20, 30] and humanoid [10, 17,
19, 34, 38].

Researchers have studied the maximum likelihood of specific
body-postures and gestures for different personality types using
Bayesian model [4]. Production and synchronization of speech
and gesture during a conversation are important for humanoid-
human interactions [37]. Researchers have also analyzed rela-
tionships between dialogue data and hand gestures [25].

In recent years, researchers have developed many humanoids
with limited interaction capabilities with humans. Most notables
are ERICA [19], HUBO [34], Nao [7, 29], and Sophia [38].
Roman [23] and Nao [7, 29] exhibit limited built-in gestures, and
focus on behavior patterns to interact with the surrounding.

Nao, a humanoid robot, imitates the human arm gesture by
capturing the skeleton position data and translating to angle data
for motor-movements [17]. A behavior-oriented software
framework has been developed that uses: 1) similarity-based
color-matching of surrounding entities; and 2) behavior
templates based upon a psychological classification of non-
verbal part of human behavior. However, conversational
gestures such as agreement, encouragement, and rejection,
subordination, backchanneling (see Subsection 4.1 for the
complete list) have not been addressed. In comparison, our
research is about modeling conversational gestures.

ERICA [19] and Sophia [38] model conversational
interactions. ERICA supports 44 degrees of freedom, speech
synthesis, jaw movement, limited facial expressions, limited lip-
movements, limited lip-syncing, blinking and breathing. It also
provides limited speech response capability. However, only a set
of eighteen gestures has been coded. Sophia [38] supports the
features of ERICA, and mimics 62 human facial expressions due
to the use of the material frubber [22] − a layered combination
of EAP (Electro Active Polymer) that simulates human-skin.
Both the androids have limited natural language processing

capabilities besides limited vision processing and directional
speech recognition capabilities. A texture-changing skin has
been designed for expressive social robots [24] to express fear or
excitement. Researchers have also captured segmented gestures
and have performed the feature-extraction of gesture-motions
during human-robot interaction in a social setting [40].

Compared to ERICA and Sophia, we have implemented 34
gestures (see Subsection 4.1). Our gestures are declarative and
are interpreted using a general-purpose engine. Our definition of
gestures is influenced by the research of behavior psychologists
[2-3, 16, 35]. Modeling a gesture in our platform requires
declaration as described in Figure 3 (see Section 4.3) that avoids
coding. We can model combinations of complex gestures with
ease by combining the declared gestures stored in a library. Our
focus in this research is to provide a new method and capability
for automatically generating modifiable and learnable gestures
by the humanoids.

We are interested in creating a platform where complex
conversational interactions are automatically learnt and
mimicked by observing human gestures. Our system combines
a sequence of declared conversational gestures and archived
human phrases. We believe that our methodology will augment
other efforts of modeling conversational interaction. Our
implementation lacks human-like facial expressions, lip
movement independent of jaw movement, tongue movement and
blinking, which has been partially achieved using elastomers-
based frubber in Sophia [22, 38].

3 Postures and Movements

A posture is modeled as a tuple of rotational angles of organs.

Forward looking position with the horizontally leveled face is
the neutral position. Rotational angles are measured with
respect to the neutral position as a reference. A gesture is
generated using a combination of coordinated organ-
movements that are sequential, concurrent without
synchronization, synchronized at the motion-beginnings and/or
at the motion-endings, or one motion occurring during another
motion.

A motor-rotation is used to model an organ movement
µ −

−
organ rotation
motion type . An organ-rotation is a head-tilt; a head-nod; a

head-shake; jaw-open; jaw-close; vergence and tracking
generated using synchronized movement of eyes; and their
combinations. A rotation can occur in both positive and
negative directions. We express left and downward rotations as
negative motion; right and upward rotations as positive motions.
Vergence requires synchronized motions of eye-motors in the
opposite directions, and tracking requires synchronized motions
of eyes in the same direction.

We abbreviate head-tilt as tilt, head-nod as nod, neck-rotate
as a shake; jaw motion as jaw; left-eye-rotation as le and right-
eye-rotation as re. Negative direction rotation such as lowering
the head is denoted by “− nod”; tilt on the left-hand side is
denoted by “− tilt”; shake in the left direction is denoted by “−
shake”; and downwards jaw motion (opening a jaw) is denoted
by “− jaw”. Positive-direction motion such as upward jaw

IJCA, Vol. 26, No. 2, March 2019 51

motion (closing a jaw) is denoted by “+ jaw”. Positive-direction
motions are usually not prefixed by ‘+’ unless the motion
includes a combination of positive and negative motions. A
positive motion preceded by a negative motion is denoted by
“+−”, and a negative motion preceded by a positive motion is
denoted by “−+”. The motion in either direction is denoted by
‘±’.

A motion-type is: 1) absolute (denoted as ‘abs’) with respect
to the neutral position; 2) relative (denoted as 'rel’) with respect
to the current position; 3) move to the neutral (or previous)
position using the knowledge of the absolute current position (or
the last absolute position); or 4) kernel motor-movements as
described in Table 2 in Section 4.3. For example, an absolute
motor-movement corresponding to left-eye is denoted as le

absµ ; a

relative motor-movement for head-tilt is denoted as tilt
relµ ; a

motor-movement for neck rotation to the neutral position is
denoted as µ shake

neutral . A kernel motor-movement that is applicable
to all organ-rotations, and motion-types are denoted as μi.

3.1 Synchronized Movements

Two or more movements in one or more threads are

synchronized if the start, and the end of the thread are associated
with temporal constraints to satisfy a barrier that cannot be
violated [1]. For example, motor movements μi and μj are
sequential if μj is always executed after μi ends.

Out of Allen’s [1] thirteen synchronization types, we have
used five types to generate various gestures: 1) sequential: motor
movements μi and μj are sequential if μj is executed after μi ends;
2) start-synchronized: motor movements μi and μj start at the
same time; 3) end-synchronized: motor movements μi and μj end
at the same time; 4) strictly synchronized: satisfies start-
synchronization and end-synchronization; 5) during: remaining
movements occur during the interval of the first movement.

The conditions for synchronization are summarized in Table
1. The functions start, end, and ready are intuitively clear. The
symbol ‘||’ denotes concurrent execution. The symbol ‘’
denotes implication. The function succ(μi) denotes the task
executed after the movement μi. Sequential motion is denoted as

‘⤳’ where the left-hand-side event precedes the right-hand-side
event. Start-synchronization is denoted as ||ss. End-
synchronization is denoted as ||es. Strict synchronization is
denoted as ||sync. Inclusion of one or more events during the
execution of the first movement is denoted as ||during.

Limited implicit synchronized motion can be achieved by
relatively expensive motors such as Dynamixel series [14] using
low-level instruction broadcast to multiple connected motors.
However, our scheme is a general-purpose scheme, and works
on any shape and size of motors − an important constraint in
availability of limited space in the eyeballs.

The software-based synchronization of multiple motor
movements, involving different threads, is done using locks.
However, synchronization at the thread level does not ensure the
synchronized movements of motors due to 1) larger time-
periodicity of PWM (Pulse Width Modulation) signals that
control the motor movements; 2) lack of positional feedback in
stepper and servo-motors; 3) inherent inertia between the start
and the stop of consecutive movements in the same servo-motor.
To overcome these limitations, small delays are introduced
before and after every motor movement. A simple motor
movement is a triple of the form < 𝛿𝛿𝑖𝑖

𝑠𝑠 , μi, 𝛿𝛿𝑖𝑖
𝑒𝑒 > where 𝛿𝛿𝑖𝑖

𝑠𝑠 is the
delay before the motor-movement starts, μi is the rotation, and
 𝛿𝛿𝑖𝑖

𝑒𝑒 is the delay after the motor-movement ends.

Example 1: Modeling synchronized eye motion: An

example of the synchronized movement is vergence or tracking
which are modeled as (sync, [(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
+𝑙𝑙𝑒𝑒 , 𝛿𝛿1

𝑒𝑒), (𝛿𝛿2
𝑠𝑠, 𝜇𝜇𝑗𝑗

−𝑟𝑟𝑒𝑒 , 𝛿𝛿2
𝑒𝑒)])

where sync denotes the strict synchronization of motor actions
 𝜇𝜇𝑖𝑖

+𝑙𝑙𝑒𝑒 (left-eye motor moving to right) and 𝜇𝜇𝑖𝑖
−𝑟𝑟𝑒𝑒 (right-eye

motor moving to the left). This is realized using a lock that
checks the values of Boolean variables: startLeftEye and
startRightEye to be true. After the two Boolean flags become
true, the parent thread uses another lock to wait until the values
of the Boolean variables endLeftEye and endRightEye become
true before moving to the next activity. Without this
synchronization, uncoordinated eye-motions will cause
perceptual inconsistency for humans interacting with the robot;
eye movement will look unnatural, and images acquired by the
robot-cameras will be inconsistent.

Table 1: Synchronization types

Type Abbreviation Denotation Logical Description Temporal Model

Sequential seq ⤳ end(μi) start(μj)

 no synchronization conc ||conc start(μi) ⋁ start(μj)

Start synchronization startsync ||ss (ready(μi) ⋀ ready(μj)) start(μi || μj)

End synchronization endsync ||es (end(μi) ⋀ end(μj)) start(succ(μi) || succ(μj)) ⋁
start(μk)

Strict synchronization sync ||sync (ready(μi) ⋀ ready(μj) start(μi || μj) (end(μi) ⋀
end(μj)) start(succ(μi) ||x succ(μj)) ⋁ start(μk)

During during ||during (start(μi) start(μj) end(μj) end(μi)

52 IJCA, Vol. 26, No. 2, March 2019

3.2 Postures and Movements Declaration

During a conversation, a humanoid takes a posture for a

limited time before making the next movement. These limited-
time postures are included in the end-delay in the last
coordinated movement. We model head-gestures as a nested
group of coordinated movements. These group motions (or
tasks) are sequential or concurrent, including synchronized
tasks as described in Subsection 3.1. Speech rendering involves
synchronization of jaw movement with syllables and words in
speech. Group-motions are declared as a quadruple of the form
(synchronization-type, start-delay, a set of coordinated
movements, end-delay) where start-delay for the ith group is
denoted by 𝛿𝛿𝑖𝑖

𝑠𝑠𝑠𝑠 , and the corresponding end-delay is denoted
by 𝛿𝛿𝑖𝑖

𝑒𝑒𝑠𝑠 . In case of a sequential motion-group, a set of
coordinated movements is represented as a sequence of
movements.

The gesture-time depends on the sentence being uttered
during the gesture. Uttered sentence dilates the gesture-delays
accordingly. Scale-ratio is derived as the ratio of time taken to
generate and render the speech, and the sum of default delays in
the coordinated movements involved in a gesture action. The
scale-ratio dilates the default gesture-delays based upon the
time taken by the corresponding sentence being spoken during
a gesture. Gesture-time is derived as a product of scale-ratio
and the sum of default delays.

Vergence requires both the eyes to focus by moving the pupil
in opposite directions: right-eye moving to left-direction and
left-eye moving to the right-direction in strict synchronization.
Vergence is modeled as (sync, [(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
+𝑙𝑙𝑒𝑒 , 𝛿𝛿1

𝑒𝑒), (𝛿𝛿2
𝑠𝑠, 𝜇𝜇𝑗𝑗

−𝑟𝑟𝑒𝑒 , 𝛿𝛿2
𝑒𝑒

)]). Divergence is the inverse of vergence and is denoted as “ –
vergence”. During divergence, right-eye rotates right, and left-
eye rotates left. Divergence is modeled as (sync, [(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
−𝑙𝑙𝑒𝑒 , 𝛿𝛿1

𝑒𝑒
), (𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
+𝑟𝑟𝑒𝑒 , 𝛿𝛿1

𝑒𝑒)]). In some gestures, vergence is followed by
divergence after a user-defined delay δ, and is denoted by
vergence-then-divergence. To simplify the notions, we will
denote vergence as (𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
+𝑣𝑣𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑣𝑣𝑣𝑣𝑒𝑒 , 𝛿𝛿1

𝑒𝑒), divergence as
(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
−𝑣𝑣𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑣𝑣𝑣𝑣𝑒𝑒 , 𝛿𝛿1

𝑒𝑒) and vergence-then-divergence by
(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
− +𝑣𝑣𝑒𝑒𝑟𝑟𝑠𝑠𝑒𝑒𝑣𝑣𝑣𝑣𝑒𝑒 , 𝛿𝛿1

𝑒𝑒). Tracking is another coordinated eye-
motion where both the eyes move in the same direction.
Tracking is modeled as (sync, [(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
±𝑙𝑙𝑒𝑒 , 𝛿𝛿1

𝑒𝑒),
(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
±𝑟𝑟𝑒𝑒 , 𝛿𝛿1

𝑒𝑒)]). We denote tracking in the right direction as
(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
+𝑡𝑡𝑟𝑟𝑡𝑡𝑣𝑣𝑡𝑡𝑖𝑖𝑣𝑣𝑠𝑠 , 𝛿𝛿1

𝑒𝑒) and tracking in the left direction as
(𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
−𝑡𝑡𝑟𝑟𝑡𝑡𝑣𝑣𝑡𝑡𝑖𝑖𝑣𝑣𝑠𝑠 , 𝛿𝛿1

𝑒𝑒). Tracking in either direction or continuous
tracking is denoted as (𝛿𝛿1

𝑠𝑠, 𝜇𝜇𝑖𝑖
±𝑡𝑡𝑟𝑟𝑡𝑡𝑣𝑣𝑡𝑡𝑖𝑖𝑣𝑣𝑠𝑠 , 𝛿𝛿1

𝑒𝑒). Gaze is defined as
wait(𝛿𝛿) combined with vergence and gesture-specific user-
defined delay.

Besides intentional motion, one or more organs are involved
in random motions when a person is relaxed or during some
gestures such as being unsure (see Figure 3). We denote such
motions by prefixing the movement by the word “random” such
as random-nod, random-shake, and random-eye. For a small
amount of motion, we prefix the motion by the fuzzy-word
“slight” such as slight-nod, slight-tilt, slight-shake, slight-
vergence.

An utterance or speaking a phrase is strictly synchronized
with the jaw motion. In the neutral position, jaw is slightly
open, and lips are closed. A jaw opens when a person starts
speaking, and returns to the normal relaxed state (slightly open)
after the speech is over. A speech is modeled as (𝜇𝜇𝑖𝑖

−𝑗𝑗𝑡𝑡𝑗𝑗 ||sync

render_speech(<phrase_file>) ⤳ 𝜇𝜇𝑣𝑣𝑒𝑒𝑛𝑛𝑡𝑡𝑟𝑟𝑡𝑡𝑙𝑙
𝑗𝑗𝑡𝑡𝑗𝑗 . For the

convenience, we abbreviate the whole action as speak-phrase
(<phrase>).

3.3 Motion Parameterization

A motion is modeled using five types of parameters: angle,

speed, delay, dampening-factor, and dampening-count. Delay is
used to coordinate and synchronize two motor movements.
Dampening-factor (0.0 < dampening-factor ≤ 1.0) is a
multiplicative factor to express a repeating organ movement with
progressive reduction of displacements in every iteration.
Dampening-count (≥ 1) is the number of times a motion repeats
back-and-forth before stops. A repeated movement of the same
organ is modeled as a sequence <θ, ηθ, η2θ, …, ηmθ> where 𝜃𝜃 is
the initial angle of rotation, 𝜂𝜂 is the dampening-factor, and m is
the dampening-count. The value of an angle can be positive or
negative and is limited by the extent an organ can move in either
direction.

The parameters are given as a combination of fuzzy values and
concrete values for the convenience to an application
programmer while modeling a complex gesture or a sequence of
gestures. The fuzzy parameters are defuzzified into concrete
values based on the motor’s actual allowed ranges and body
movement constraints before storing the corresponding concrete
values into a dynamic parameter dictionary 𝔻𝔻P.

4 Non-Emotional Interactions

Non-emotional interactions exhibit intentions, reactions,

attitude, roles (possibly dynamic) of the two actors involved in
a conversation [32]. They express reaction to other parties’
actions without exhibiting intensity variations of an emotional
interaction.

4.1 Gestures

Conversational gestures are acceptance, admiration,

agreement, affirmation, appreciation, argument, avoidance,
backchannel, confidence, confusion, discourage, defensive,
defiance, denial, depression, dominate, disagreement,
encouragement, expectation, frustrated, greet, inclusion,
interested, interject, interrogate, permit, persuade, plead,
question, reject, relaxed, request, ridicule, seek-attention,
submit, unsure, and veiled disagreement.

During a non-emotional conversation, nodding the head is
inferred as acceptance. Humans show admiration when they like
to listen to the speaker. The gesture involves tilt and jaw-
movement to the neutral position. Agreement/Affirmation is
confirmation to convey ‘yes’ or ‘no’. It involves one or more
nods. Appreciation varies from individual to individual. One
such variation of appreciation is tilt followed by a speak-phrase

IJCA, Vol. 26, No. 2, March 2019 53

followed by return to the neutral position.
Humans argue when they want to prove they are right. The

motion involves vergence with multiple speak-phrases.
Avoidance involves the head down with a slight tilt. Backchannel
shows listening with acceptance or agreement. It involves
periodic nodding of head and gaze to show the participation in a
conversation.

Humans show confidence by moving the head up and gaze. A
person shows confusion when they cannot understand
something. This is modeled by random eye-motions and shaking
the head. Discourage is shown by an authority to their
subordinate by moving the head up and maintaining eye-contact.
An individual shows defensiveness to protect himself through
argumentation when found guilty or trying to prove his/her point.
It involves repeated combinations of head shakes and speak-
phrase.

Defiance is a form of daring or bold resistance to authority or
to any opposing force. Disagreement is expressed by a repeated
head-shake. Denial is disagreement where a speak-phrase occurs
during the shake. Depression is expressed by lowering the head
for a long time. Rejection is denial associated with an utterance
“no” and a speak-phrase. Ridicule (making fun of others) is
exhibited by concurrently tilting and slightly lowering the head
followed by a speak-phrase.

Domination is a dynamic role that may change between
conversing actors depending upon the context of the
conversation. It is modeled by moving the head up with a slight
head-rotation, a slight tilt and eye-contact accompanied by
vergence and a possible speak-phrase. Encourage is shown by
an actor to another conversing actor by moving up the head and
maintaining eye contact. A person shows an expectation by
slightly tilting the head and tracking. Frustration is an active
reaction that comes with irritation when a person is not
interested. In such a situation, the head shakes, and eyes track
randomly.

Greeting is culture specific. In eastern cultures, greeting
involves lowering of the head associated with greeting word. In
contrast, greeting an equal or friend as in western culture is
associated with head moving up slightly associated with a
greeting-word. Inclusion is a behavior shown by a person to do
something together. The person tilts the head moderately to
either direction with one or more nod. Interest is shown by a
conversing actor to show active participation by nodding one or
more times and tilt head while maintaining an eye-contact.
Interjection is an interruption during a communication. A person
interjects by moving up the head associated speak-phrase and
eye-contact. A person shows permission by bending the head
down slightly along with an utterance.

Persuasion shows that a person is attentive and earnestly
encouraging a person to take up a task. He/she tilts and moves
up the head slightly along with an appropriate speak-phrase.
Pleading is requisition when requesting a person is not in control
over the situation and wants something desperately. A person
pleads by moving the head down along with an associated speak-
phrase. Request is associated with lowered and tilted head along
with a speak-phrase. An actor may ask a question, possibly
interrupting another actor(s) during a conversation, by tilting or

moving the head slightly up along with the speak-phrase.
Relaxed is shown by after a gesture or after a speech. Relaxation
is random head nod, shake and eye tracking.

In seeking attention gesture, the speaker exhibits varying head
orientation and gaze fixed to the listener. Submission is exhibited
by lowering the head associated with a speak-phrase. Unsure
gesture is exhibited by a slight tilt in either direction, gaze or jaw
closing. Veiled disagreement is not openly expressed [28], and
is exhibited by slight head-tilt and jaw-closing.

An actor exhibits the conversational gestures in one of the
three roles: listener, speaker or short intermittent conversation.
Many gestures are not accompanied by any speech-phrase. For
example, arrogance, confusion, depression, disagreement,
dominance, denial, interested, relaxed and veiled disagreement
mode require no speech. At most, they are associated short
phrase or a single word utterance. Speech along with voice
modulation reduces the ambiguity. The gestures acceptance,
admiration, affirmation, agreement, avoidance, backchannel
involve short speech-phrases. The gestures argument,
confidence, encouragement, greet, permission, persuade, plead,
request, ridicule (including sarcasm) and seek-attention are
usually accompanied with a longer speech-phrases. All gestures
associated with attention such as backchannel, interest, plead,
request and seeking attention requires gaze. Various motions to
generate gestures are summarized in Figure 3 under Section 4.3.

4.2 Kernel Movements

The gesture motions are mapped to eleven categories of kernel

movements for each organ. These kernel movements are
combined to form complex motions to model the gestures. The
kernel movements are implemented using basic motor actions:
1) absolute rotation; 2) relative rotation; 3) returning to the
previous or neutral position; and 4) performing repeated motions
for a finite time with dampening. The eleven kernel movements
are: 1) rot_abs (denotation μabs) − rotation by an absolute user-
defined angle; 2) rot_rel (denotation μrel) − rotation by a relative
user-defined angle; 3) rot_neutral (denotation μneutral) − rotate
to the neutral position from the current position; 4)
rot_abs_return (denotation μ1) − rotate to an absolute user-
defined angle and return to original position after some gesture-
specific time-delay; 5) rot_rel_return (denotation μ2) − rotate by
a relative user-defined angle with respect to current position and
return to the original position after some gesture-specific delay;
6) rot_abs_neutral (denotation μ3) rotate to an absolute user-
defined angle, and return to the neutral position; 7)
rot_rel_neutral (denotation μ4) − rotate relative to the current
position and return to the neutral position; 8) rot_abs_bi
(denotation μ5) − rotate sideways by absolute user-defined
angles on both directions, and return to the original position; 9)
rot_rel_bi (denotation μ6) − rotate sideways by absolute user-
defined angles on both directions, and return to the original
position; 10) rep_rot_abs_bi_neutral (denotation μ7) −
repeatedly perform the motor-action rot_abs_bi and then return
to the neutral position; 11) rep_rot_rel_bi_neutral (denotation
μ8) − repeatedly perform the motor-action μ5 and return to the
original position. Dampening-factor η is associated with the

54 IJCA, Vol. 26, No. 2, March 2019

motion’s rep_rot_abs_bi_neutral and rep_rot_rel_bi_neutral.
The kernel motions are padded with delays on both sides. The

notation ‘•’ describes the composition of motions. Y•X denotes
X followed by Y. Table 2 describes the kernel movements as a
composition of simpler kernel movements and their applications
in modeling sample gestures and interaction scenarios.

4.3 Abstract Grammar for Movement Generation

An abstract grammar (represented in an extended BNF form)

for the modeling gestures is described in Figure 1. The bold
symbols are terminal symbols; a pair of the angular brackets
contains non-terminal symbols. A gesture is a simple-motion, or
a motion-group associated with zero or more speech-files. A
simple-motion is a triple of the form (start-delay, motionTuple,
end-delay).

Each organ motion can be: 1) a single motion; 2) a group of
simple-motions; 3) a nested group of motions. A motion-tuple
is a 4-tuple of the form (kernel-motion, motion-type, direction,
extent). A motion-type is an element of the set {nod, shake, tilt,
jaw, vergence, tracking}. A direction is an element of the set
{‘+’, ‘−’, ‘+ −’, ‘− +’, ‘±’}; the extent is a fuzzy value, or a
concrete value constrained between −60° − +60°. A fuzzy value
is an element in the set {‘− high’, ‘− moderate’ ‘− slight’,
‘neutral’ ‘slight’, ‘moderate’, ‘high’}.

At least one movement in a nested group-of-motion is a
group-of-motions. A motion-group is a group of concurrent
(or sequential) motions with five types of synchronization.
Synchronization-type is an element of the abbreviated set {seq,
conc, ss, es, sync, during}. A motion within a motion-group can
be a simple-motion or a motion-group. The delays can be of
multiple types: simple-motion start-delay denoted as s

iδ ; simple-

motion end-delay denoted as e
iδ ; motion-group start-delay

denoted as sg
iδ , motion-group end-delay denoted as eg

iδ . A
motion-group can have embedded optional speak-phrases.

Figure 2 describes a schematic to compute the time taken to
utter a phrase. The scheme comprises two associated
dictionaries: word syllable-list and syllable timing.
Summing up the syllable-timings gives the times taken to utter a
word. Time taken to utter a phrase is derived by summing the
time taken to utter the included words and silence-time between
the words. For example, the word “hello” has two syllables: ‘hel’
and ‘lö’ with utterance time of 0.8 and 1.2 seconds, and a
cumulative time of 2.0 seconds.

4.4 Gesture Modeling and Generation

Figure 3 shows organ movements and the corresponding
motor movements encoding for 34 implemented gestures (see
Subsection 4.1). A Kernel-motion is one of the eleven motions
described in Table 2. A motion-group is modeled as
(synchronization-type, initial-delay, [<set of motions>], final
delay). As described earlier. Vergence, tracking., and speak-
phrase are coordinated group-actions with synchronization.
However, they have been labeled like an atomic motion for
convenience. Speak-phrases are user-defined, or a default file

associated with the gestures. Default-files for gestures are stored
in a database and are automatically picked in the absence of a
user-defined file.

A motion-group is executed based upon the synchronization
type. For the sequential group, the movements are executed left
to right. With the nested group of motion, the descendant group
is executed before the parent-group. The last group of motions
in many gestures returns the organs to the neutral positions
either sequentially or in a synchronized manner depending upon
the gesture. If a motion is a nested group motion, the nesting
level is incremented by one.

Example 2: Let us take the gesture of defiance encoding in
Figure 3. The corresponding motion is modeled as
synchronized head tilt and vergence, followed by raising the
head slightly followed by speaking a phrase such as “No, I will
not do it” followed by head returning to neutral position.
Vergence and speak-phrase form a composite synchronized
group-motion. The motion is described as [head-tilt ||sync
vergence] ⤳ raise the head slightly ⤳ speak phrase ⤳ return
head to the neutral position concurrently performing the motor
actions.

5 Gesture Interpretation Engine

The major algorithms involved in the implementation are: 1)

translating conversation gestures as nested concurrent move-
ments invoked by concurrent threads; and 2) implementing
synchronization using locks. The intermediate steps require 1)
defuzzification of parameters, 2) storing and retrieving the
parameter-values in a dynamic parameter dictionary 𝔻𝔻P, 3)
spawning concurrent threads based upon the associated syn-
chronization type in a group-motion, 4) updating the dynamic
dictionary after every motor movement, and 5) translation of
complex motor instructions to basic Adafruit motor rotations.

5.1 Dictionaries

The dictionaries are: 1) a gesture-dictionary 𝔻𝔻G, 2) organ-

motions 𝔻𝔻M, 3) a dynamic parameter-dictionary 𝔻𝔻P. and 4) a
dynamic execution-environment dictionary 𝔻𝔻E. Each tuple of
the gesture-dictionary 𝔻𝔻G contains three types of information: a)
gesture-name, b) a gesture encoding as described in Figure 3,
and c) associated speech-files. A tuple in the organ-motions
dictionary 𝔻𝔻M carries the three types of information: 1) organ-
motion name, and 2) the set of associated constraint, and 3) the
set of default parameter values associated to the motion. The
parameter-dictionary 𝔻𝔻P carries information such as current
position, speed, delay, dampening-factor, and damp-count for
each motor.

The dynamic execution-environment dictionary 𝔻𝔻E contains
two types of information: environment-dump and Boolean flags
for the synchronization of motions in a motion-group. Each
environment-tuple of 𝔻𝔻E carries three information: 1) nested-
path of the parent, 2) the index of the task in the current
coordinated-movement, and 3) number of sibling motions
concurrent. Boolean flags are used to test various

IJCA, Vol. 26, No. 2, March 2019 55

synchronization conditions for synchronization types and set up
spin-lock to block the parent-threads until the conditions needed
for synchronization of child-tasks are satisfied.

5.2 Fuzzification/Defuzzification

The user-defined parameters for the motor movement are a

combination of actual values and fuzzy values. The concept of
fuzzy logic is important to model a gesture. The initial step is
to set up the fuzzy values for the organs. The algorithm requires
the inputs: organ name; motor attributes; and fuzzy values. The
fuzzy set contains values in both the directions (positive and
negative) with the relaxed position as the neutral position. The
fuzzy set is defined as {‘−high’, ‘− moderate’, ‘−slight’,

‘neutral’, ‘slight’, ‘moderate’, ‘high’}. The defuzzification of
fuzzy values is done using a linear scale before actuating a
motor movement. It is mapped to the range of human allowable
angles for different motions.

5.3 Notations

The variable names suggest their roles in the algorithm.

Tuples are denoted using a pair of parentheses. The selection
of the ith field of a tuple τ is denoted by the symbol Πi(τ). For
example, Π2((4, μabs, 6)) derives μabs. Union of two sets is
denoted by ‘⋃’; membership in a set is tested by the Greek
symbol ‘∈’; complement of a predicate is denoted by the

Table 2: Kernel motions and their application in modeling gestures

Motion-name/Denotation Description and Applications

rot_abs

μabs Operation: rotate by an absolute angle.
 Application: It is a basic rotation used in other kernel-movements. Used in many
gestures such as accept; admiration; agreement; affirmation; appreciate; avoid;
discourage; defensive; defiance; depressed; frustrated; interject; persuade; plead;
question; request; ridicule; seek-attention; submit.

rot_rel μrel Operation: rotate by a relative angle denoted by Orel.
 Application: It is a basic rotation used in other kernel-movements

rot_neutral

μneutral Operation: rotate to the neutral position.
 Application: It is a basic rotation used in other kernel-movements. Used in many
gestures to return the organs back to the relaxed position such as backchannel;
confident; confusion; discourage; defiance; denial; dominate; encourage; greet; include;
interested; permit; persuade; plead; question; reject; request; ridicule; seek attention;
and submit.

rot_abs_return

μ1 Operation: store the current position ϕ in the parameter dictionary 𝔻𝔻P as the
previous_position. Rotate by the user-defined absolute angle θ. Wait for the gesture-
specific delay τ. Retrieve the previously stored angle ϕ from the dictionary 𝔻𝔻P and perform
the operation rotate_abs(ϕ).
rotate_abs(ϕ) • retrieve(prev, 𝔻𝔻P, ϕ) • wait(δ) • rotate_abs(θ) • store(prev, 𝔻𝔻P,
cur_pos(𝔻𝔻P))

Application: Used in gestures such as backchannel; confusion; defiance; dominate;
persuade; unsure.

rot_rel_return
μ2 Operation: rot_rel(−θ)• wait(δ) • rot_rel(θ)

Application: shifting attention; gaze in a multi-party conversation

rot_abs_neutral
μ3 Operation: rot_neutral • wait(δ) • rot_abs(θ).

Application: avoid; confident; defiance; defensive; denial; frustrated; veiled disagreement;
unsure

rot_rel_neutral
μ4 Operation: rot_neutral• wait(δ) • rot_rel(θ).

Application: open and close a jaw during speak-phrase.

rot_abs_bi
μ5 Operation: rotate_abs(ϕ) • retrieve(prev, 𝔻𝔻P, ϕ) • wait(δ) • rot_abs(−θ) • wait(δ) •

rot_abs(θ) • store(prev, 𝔻𝔻P, cur_pos(𝔻𝔻P))
Application: soft agreement; denial.

rot_rel_bi μ6 Operation: rot_rel(θ) • wait(δ) • rot_rel(−2θ) • delay(τ) • rot_rel(θ).
Application: It is used in multi-party interaction.

rep_rot_abs_bi_neutral
μ7 Operation: It repeatedly rotates a motor n times, and returns to the neutral position.

rot_neutral • wait(δ) • (rot_abs_bi)n.
Application: It is used for strong agreement and denial with single person.

rep_rot_rel_bi_neutral

μ8 Operation: It repeatedly rotates a motor n times, and returns to the neutral position.
(rot_rel_bi)n.
Application: It is used in multi-party interaction. accept; admiration; agreement;
affirmation; argument; for strong agreement; greet; denial; reject; request; relax

56 IJCA, Vol. 26, No. 2, March 2019

Figure 1: Phrase-time lookup dictionary

Figure 2: A schematic for computing speech-duration

symbol ‘¬’, insertion in a set or a dictionary is denoted using
an overloaded symbol (‘+’), insertion in a sequence using the
symbol ‘+’, a sequence is denoted within a pair of angular
brackets < … >, and a set or dictionary is denoted using a pair
of curly brackets { … }.

5.4 Algorithms for Gesture Execution

To execute a gesture, a user specifies the gesture along with

the user-defined parameters that can be current, previous and
default values of angle, speed, delay, dampening-factor, and
dampening-count for each motion. We select the default
speech-file from the gesture-dictionary DG.

The execution of a gesture is modeled as a motion-tree (see
Figure 4). The execution pattern is obtained using the
gesture-name from the dictionary DG. Execution pattern
includes a gesture-tuple gestureTuple that contains the
information about gesture-encoding gestureEncoding and
defuzzified user-defined parameters along with the user-
defined speech-file. In the absence of user-defined speech-
file, we select randomly a default speech-file from the gesture
dictionary DG. Two indices, nestingLevel and motionIndex
uniquely identify the current motion. The variable
nestingLevel stores the depth of the motion-tree, and the
variable motionIndex identifies the position of a motion
within the same group. Every time a new motion-group is
started the current environment env = (syncType, motionPath,
motionCount) is stored in the environment dictionary DE.

The variable syncType describes the synchronization type
of the motion-group, and the variable motionCount describes
the total number of motions in the motion-group. The
variable motionPath is a sequence of the pair (nestingLevel,
motionIndex), and uniquely identifies any motion or motion-
group within a gesture.

A gesture can invoke a simple motion as in the depression
or a motion-group. A simple motion actuation requires two
parameters: gestureTuple to invoke the motion and the
corresponding speech-phrase. The motion-group activation
requires two additional parameters: gestureEncoding and
motionPath to extract the current motion-group. We describe
an algorithm in Figure 5.

A simple motion is executed by creating and spawning a
thread with the motion-tuple motionTuple and corresponding
motion-parameters. The motionTuple for a simple motion is
a triple of the form (motionType, motionName, extent) where
motionType is one of the eleven kernel motions described in
Table 2, motionName is an element of the set (nod, tilt, shake,
jaw, left-eye, right-eye, jaw, vergence, tracking}, and extent
is the magnitude of the angle. We describe an algorithm in
Figure 6.

We describe an algorithm for executing motion-groups in
Figure 7. A motion-group uses DE to store the dump of previous
environments (synchronization-type, motionPath,
motionCount), builds a new environment by incrementing the
nestingLevel by one, resetting the motionIndex to 1, and
resetting the motionCount to the number of motions in the

<interaction> :: {<gesture>}+
<gesture> :: ‘(’ (< simple-motion >|<motion-group>) ‘,’ (<speechFile>|‘*’|ϵ)* ‘)’
<motion-group > :: ‘(’<sync-type> ‘,’<delay> ‘, ’{(motion-group >| <motion> | <speak-phrase>)}+ ‘, ’ <delay> ‘)’
<simple-motion> :: ‘(’ <delay>‘,’ <motion-tuple>‘,’ <delay> ‘)’
<motion-tuple> :: ‘(’ <kernel-motion>‘,’ <motion-type>‘,’<direction>‘,’ <extent>‘)’
<extent> :: <concrete-value> | <fuzzy-value>
<sync-type> :: (seq | conc | ss | es | sync | during)
<kernel-motion> :: (𝛍𝛍abs | 𝛍𝛍rel | 𝛍𝛍neutral | 𝛍𝛍1 | … | 𝛍𝛍8)
<motion-type> :: (nod | shake | tilt | jaw | vergence | tracking)
<direction> :: (‘+’|‘−’| ‘+ −’|‘− +’|‘±’)
<fuzzy-value> :: (− high| − moderate | − slight | neutral | slight | moderate | high)

Words Syllables

Word 1 list 1

Word N list N

Syllable Time

syllable 1 time 1

syllable N time N

IJCA, Vol. 26, No. 2, March 2019 57

Accept/Admiration/Agreement/Affirmation

Motion: head tilt ⤳ [nod ||ss speak-phrase] ⤳ return to original position
Encoding: () () ()() () ()0 1 1 1 2 8 2 1 3 3 4 4 0(, ,[, , , , , [, , ,], , , , , , ,],)sg s tilt e sg s nod e eg s nod e s tilt e eg

abs abs absseq ss speakphrase phraseδ δ µ δ δ δ µ δ δ δ µ δ δ µ δ δ− + −< >

Appreciate
Motion: head tilt ⤳ speak-phrase ⤳ return to original position
Encoding: () () ()()0 1 1 2 2 0, ,[, , , , , ,],sg s tilt e s tilt e eg

abs absseq speakphrase phraseδ δ µ δ δ µ δ δ+ −< >

Argument
Motion: focus ⤳ [nod ||ss speak-phrase] ⤳ tilt ⤳ [nod ||ss speak-phrase]+ ⤳ return head

Encoding:
() () ()() ()

() ()() ()
1 1 2 3 2 3 30 1 1

2 8 2 4 41 1 0

, ,[, , , , ,[, , ,], , , , ,

, ,[, , ,], *, , ,],)
(δ δ µ δ δ δ µ δ δ δ µ δ

δ δ µ δ δ δ µ δ δ

− −

− −

 < >
 < >

sg s vergence e sg s nod e eg s tilt e
absabs

sg s nod e eg s nod e eg
neutral

seq ss speakphrase utterance

ss speakphrase utterance

Avoid
Motion: [lower head (negative) ||ss rotate head in either direction]
Encoding: () ()()1 1 2 20 3 0, ,[, , , , ,],δ δ µ δ δ µ δ δ− −sg s nod e s vergence e eg

absss

Backchannel
Motion: vergence ⤳ (listen ⤳ [nod ||ss speak-phrase])+ ⤳ diverge to neutral position ⤳ return head to neutral position

Encoding:
() () ()()

() ()
1 1 2 3 20 1 1 1

3 3 4 4 0

(, ,[, , ,(, , ,[, , ,],) ,

, , , , ,],)

δ δ µ δ δ δ µ δ δ

δ µ δ δ µ δ δ

+

− −

 < >

sg s vergence e sg s nod e eg

s vergence e s nod e eg
neutralneutral

seq listen ss speakphrase phrase

Confident
Motion: vergence ⤳ [head-nod slightly ||ss vergence] ⤳ speak-phrase ⤳ [return jaw to neutral ||ss return head to neutral
position]

Encoding:
() ()() ()

() ()()
2 3 2 3 30 1 1 1

4 4 5 52 2 0

(, , , ,[, , , , ,], , ,

, ,[, , , , ,],],)

δ δ δ µ δ δ µ δ δ

δ δ µ δ δ µ δ δ δ− −

 < >

sg sg s nod e s vergence e eg

sg s jaw e s nod e eg eg
neutralneutral

seq ss speakphrase phrase

ss

Confusion
Motion description: vergence ⤳ (listen ⤳ [shake head ||ss speak-phrase])+ ⤳ diverge to neutral position ⤳ return head to
neutral position

Encoding: () () ()()
() ()

1 1 2 8 20 1 1 1

3 3 4 4 0

(, ,[, , , ,(, ,[, , ,],) ,

, , , , ,],)

δ δ µ δ δ δ µ δ δ

δ µ δ δ µ δ δ

+

− −

 < >

sg s vergence e sg s shake e eg

s vergence e s shake e eg
neutralneutral

seq listen ss speakphrase phrase

Discourage
Motion: vergence ⤳ [head-shake ||ss speak-phrase] ⤳ return head to neutral

Encoding: () () ()() ()()1 1 2 8 2 3 30 1 1 0, ,[, , , , ,[, , ,], , , ,],δ δ µ δ δ δ µ δ δ δ µ δ δ−< >sg s vergence e sg s shake e eg s shake e eg
neutralabsseq ss speakphrase phrase

Disagreement
Motion: head-shake ⤳ return to upright position
Encoding: () ()()1 8 1 2 20 0, , [, , , , ,],sg s shake e s shake e eg

neutralseq δ δ µ δ δ µ δ δ−

Defensive
Motion: vergence ⤳ [head-shake ||ss speak-phrase] ⤳return head

Encoding:
() () ()()

()()
1 1 2 3 20 1 1

3 3 3 32 2 0

(, ,[, , , , ,[, , ,], ,

(, ,[, , , , ,],)

δ δ µ δ δ δ µ δ δ

δ δ µ δ δ µ δ δ δ− −

 < >

sg s vergence e sg s shake e eg
abs

sg s vergence e s shake e eg eg
neutralneutral

seq ss speakphrase phrase

ss

Defiance
Motion: [head-tilt ||sync vergence] ⤳ raise head slightly ⤳ speak-phrase ⤳ return to neutral position

Encoding: () ()() () ()
() ()

1 3 1 2 2 3 30 1 1 1

5 5 6 64 0

(, ,[, ,[, , , , ,], , , , , ,

(, ,[, , , , ,]),)

δ δ δ µ δ δ µ δ δ δ µ δ

δ δ µ δ δ µ δ δ− −

 < >

sg sg s tilt e s vergence e eg s nod e
abs

sg s nod e s tilt e eg
neutral neutral

seq sync speakphrase phrase

ss

58 IJCA, Vol. 26, No. 2, March 2019

Denial
Motion: head-shake ⤳ speak-phrase ⤳ return to upright position
Encoding: () () ()()2 8 2 3 30 1 1 0, , [(, ,[, , ,],), , ,],δ δ δ µ δ δ δ µ δ δ−< >sg sg s shake e sg s shake e eg

neutralseq during speakphrase phrase

Depressed
Motion: Lowering the head for a longer period
Encoding: ()1 1, ,δ µ δ−s nod e

abs

Dominate
Motion: head-tilt ⤳ (head-nod ||ss vergence) ⤳ speak-phrase ⤳ return to upright position

Encoding: () () ()() ()
() ()

1 3 1 2 3 2 3 30 1 1 1

5 5 6 64 4 0

(, ,[, , , , ,[, , , , ,], , ,

(, ,[, , , , ,],),)

δ δ µ δ δ δ µ δ δ µ δ δ

δ δ µ δ δ µ δ δ δ− −

 < >

sg s tilt e sg s nod e s vergence e eg

sg s nod e s tilt e eg eg
neutral neutral

seq ss speakphrase phrase

ss

Encourage
Motion: (head-nod ||include vergence) ⤳ speak-phrase ⤳ return to upright position ⤳ diverge eyes to neutral position

Encoding: () ()() ()
() ()

1 3 1 2 20 1 1 1

3 3 2 2 0

(, , , ,[, , , , ,], , ,

, , , , , ,)

δ δ δ µ δ δ µ δ δ

δ µ δ δ µ δ δ− −

 < >

sg sg s nod e s vergence e eg

s nod e s vergence e eg
neutral neutral

seq during speakphrase phrase

Expect
Motion: head-tilt ||ss track

 Encoding: () ()()1 3 1 2 8 20 0, ,[, , , , ,],δ δ µ δ δ µ δ δ±sg s tilt e s track e egss

Frustrated
Motion: (head-shake randomly ||ss vergence) ⤳ open mouth slightly
Encoding: () () ()()_

2 2 3 3 3 30 1 8 1 3 0, ,(, ,[, , , , ,],), , , ,δ δ δ µ δ δ µ δ δ δ µ δ δ−sg sg s random shake e s vergence e sg s jaw e eg
absseq ss

Greet
Motion: head-tilt slightly ⤳ (head-nod ||ss speak-phrase) ⤳ return to neutral position

Encoding: () () ()() ()
() () ()

1 3 1 2 3 2 3 30 1 1

5 5 6 6 7 74 4 0

(, ,[, , , , ,[, , , , ,], , ,

(, , [, , , , ,],), , ,],)

δ δ µ δ δ δ µ δ δ µ δ δ

δ δ µ δ δ µ δ δ δ µ δ δ− − −

 < >

sg s tilt e sg s nod e s vergence e eg
abs

sg s vergence e s nod e eg s tilt e eg
neutral neutralneutral

seq ss speakphrase phrase

ss

Include
Motion: head-tilt ⤳ (head-nod ||ss speak-phrase) ⤳ return to upright position

Encoding: () () ()() ()
() ()

1 3 1 2 3 2 3 30 1 1 1

4 4 5 5 0

(, ,[, , , , ,[, , , , ,], , ,

, , , , ,],)

δ δ µ δ δ δ µ δ δ µ δ δ

δ µ δ δ µ δ δ

−

+ −

 < >

sg s tilt e sg s nod e s vergence e eg

s nod e s tilt e eg
neutral neutral

seq ss speakphrase phrase

Interested
Motion: head-tilt ⤳ (head-up ||sync speak-phrase) ⤳ return to upright position

Encoding: () () ()() ()
()

1 3 1 2 3 2 3 30 1 1

4 4 0

(, ,[, , , , ,[, , ,], , , , ,

, ,],)

δ δ µ δ δ δ µ δ δ δ µ δ

δ µ δ δ

− +

−

 < >

sg s tilt e sg s nod e eg s nod e
neutral

s tilt e eg
neutral

seq sync speakphrase phrase

Interject
Motion: head-up ⤳ speak-phrase ⤳ return to upright position
Encoding: () () ()()1 1 2 20 0, ,[, , , , , ,],δ δ µ δ δ µ δ δ−< >sg s nod e s nod e eg

abs neutralseq speakphrase phrase

Interrogate
Motion: head-tilt ⤳ (head-nod ||ss speak-phrase) ⤳ return to upright position

Encoding: () () ()()
() ()

1 3 1 2 3 20 1 1

3 3 4 4 0

(, ,[, , , , ,[, , ,], ,

, , , , ,],)

δ δ µ δ δ δ µ δ δ

δ µ δ δ µ δ δ− −

 < >

sg s tilt e sg s nod e eg

s nod e s tilt e eg
neutral neutral

seq ss speakphrase phrase

IJCA, Vol. 26, No. 2, March 2019 59

Figure 3: Declarative encoding of 34 gestures

Permit
Motion: (slight lowering head ||ss speak-phrase) ⤳ return to upright position

Encoding: () ()() ()()2 3 2 3 30 1 1 0, ,[, ,[, , ,], , , ,],δ δ δ µ δ δ δ µ δ δ−< >sg sg s nod e eg s nod e eg
neutralseq ss speakphrase phrase

Persuade
Motion: (head-tilt ||sync vergence) ⤳ (head-nod ||ss speak-phrase) ⤳ return to neutral position

Encoding: () ()() ()
() () ()

2 3 2 3 3 5 50 1 1 1 4

5 5 6 64 0

(, ,[, ,[, , , , ,], ,(, ,[, , ,

],), , , , , ,],)

δ δ δ µ δ δ µ δ δ δ δ µ δ

δ δ µ δ δ µ δ δ− −

 < >

sg sg s tilt e s vergence e eg sg s nod e
abs

eg s nod e s tilt e eg
neutral neutral

seq sync ss

speakphrase phrase

Plead
Motion: (head-lowered ||ss speak-phrase) ⤳ return to neutral position
Encoding: () () ()()1 1 2 20 1 1 0, ,[(, ,[, , ,],), , ,],δ δ δ µ δ δ δ µ δ δ− +< >sg sg s nod e eg s nod e eg

abs neutralseq ss speakphrase phrase

Question
Motion: head-tilt ⤳ (head-nod ||ss speak-phrase) ⤳ return to upright position

Encoding: () () ()()
() ()

1 1 3 30 2 1

5 5 6 64 4 0

(, ,[, , , , ,[, , ,], ,

(, , [, , , , ,],)],)

δ δ µ δ δ δ µ δ δ

δ δ µ δ δ µ δ δ δ− −

 < >

sg s tilt e sg s nod e eg
abs abs

sg s nod e s tilt e sg eg
neutral neutral

seq ss speakphrase phrase

ss

Reject
Motion: (repeated head-shake ||during speak-phrase)
Encoding: () ()()1 8 10 0, ,[, , ,],δ δ µ δ δ< >sg s shake e egduring speakphrase phrase

Relax
Motion: (random head-nod ||conc random head-shake ||conc random-eyes)
Encoding: () ()()()1 8 1 2 8 2 3 30 8 0, ,[, , , , , , , ,δ δ µ δ δ µ δ δ µ δ δ− − −sg s random nod e s random shake e s random eyes e egconc

Request
Motion: head-tilt ⤳ (repeated dampened nod ||sync speak-phrase) ⤳ return to upright position
Encoding () () ()() ()()1 1 3 8 3 4 40 2 2 0, ,[, , , , ,[, , ,], , , ,],δ δ µ δ δ δ µ δ δ δ µ δ δ−< >sg s tilt e sg s nod e eg s tilt e eg

abs neutralseq sync speakphrase phrase

Ridicule
Motion: (head-tilt ⤳ (repeated dampened nod ||ss speak-phrase) ⤳ return head to upright position)

Encoding: () () ()() ()()0 1 1 2 3 8 3 2 4 4 0, ,[, , , , ,[, , ,], , , ,],sg s tilt e sg s nod e eg s tilt e eg
abs neutralseq ss speakphrase phraseδ δ µ δ δ δ µ δ δ δ µ δ δ−< >

Seek attention
Motion: (slight vergence ||ss speak-phrase) ⤳ return to neutral position

Encoding:
() ()() ()

()
2 2 4 40 1 1 3

5 5 3 0

(, ,[, ,[, , ,], , (ss, ,[, , ,

, ,],),)

δ δ δ µ δ δ δ δ µ δ

δ µ δ δ δ

−

−

 < >

sg sg s vergence e eg sg s vergence e
abs neutral

s nod e sg eg
neutral

seq ss speakphrase phrase

Submit
Motion: head-lowered ⤳ speak-phrase ⤳ return to neutral position
Encoding: () () ()()0 1 1 2 2 0, ,[, , , , , ,],sg s nod e s nod e eg

abs neutralseq speakphrase phraseδ δ µ δ δ µ δ δ−< >

Unsure
Motion: head-tilt ⤳ (random eyes ||conc open jaw slightly)

Encoding: () () ()()()0 1 3 1 1 2 1 2 3 1 3 1 0, ,[, , , , ,[, , , , ,],],sg s tilt e sg s random eye e s jaw e eg egseq concδ δ µ δ δ δ µ δ δ µ δ δ δ− −

Veiled disagreement
Motion: (head-tilt ||ss head-down) ⤳ close jaw

Encoding: () ()() ()()1 3 1 2 3 2 3 30 1 1 3 0, ,[, ,[, , , , ,], , , ,],δ δ δ µ δ δ µ δ δ δ µ δ δ− −sg sg s tilt e s nod e eg s jaw e egseq ss

60 IJCA, Vol. 26, No. 2, March 2019

Figure 4: An illustration of a motion-tree for a gesture

newly actuated motion-group. The children threads are
invoked based upon the synchronization-type. The parent
thread is suspended using a spin-lock. The count of currently
spawned children is kept in the dictionary DE. Every time a
child-thread is spawned, the corresponding count is
incremented. The control returns to the parent-thread after all
the children-threads have ended.

An algorithm for synchronization of motions is described
in Figure 8. We achieve the synchronization of motions using
semaphore locks. Each thread has the following Boolean
flags: startedMotion, endedMotion, duringEnded,
startedFirst, startedRest, endedFirst, and endedRest. The

suffix “First” denotes the first motion and the suffix “Rest”
denotes the other motions in the group. Otherwise, the names
are intuitive.

The motion flags are stored in the DE using the key (flag,
MotionPath). Initially, all the flags are set to false. The
startedMotion flag is set to true after spawning the corre-
sponding child-thread. To check that every thread spawning
different motion has started, the values of the startedMotion
flags are logically-ANDed under a critical section using the
lock. To check that all the children threads have success-fully
terminated, the endedMotion flags of children-threads are
logically-ANDed under a critical section using a lock.

Figure 5: Top level algorithm to actuate a gesture motion

Algorithm execute_gesture;
Input: 1. A gesture G = (gestureName, gestureTuple, speechFileName)
Global: 1. A static dictionary DG containing (gesture name, (gesture encoding, default speech files));
 2. A static dictionary DM containing (motionName, (set of constraints, default values));
 3. A dynamic execution environment dictionary DE;

4. A dynamic parameter dictionary DP of the form (motion-name, motionPath, parameter-values);
5. A speech-file SpeechFile;

 6. A lock threadLock for executing atomic operations among concurrently threads;

{ DE = { }; nestingLevel = 0; motionIndex = 1; motionCount = 1; syncType = null ;
env = [(syncType, nestingLevel, motionIndex, motionCount)]; % initialize the environment
gestureEncoding = Π1(DG(gestureName)) % get the gesture encoding from the dictionary of gestures
if (speechFileName= ‘default’) speechFileName = pick_randomly(π2(DG(G)); % pick default speech file
cumulativeDelay = add_delays(gestureEncoding); speechTime = add_speech-delays(speechFile);
scaleRatio = speechTime/ cumulativeDelay;
gestureTuple = update_delays(gestureTuple, scaleRatio);
/* start processing the gesture motions */
If (length(gestureTuple) == 3)
 actuate_simple_motion(gestureTuple, gestureEncoding, motionPath, speechFile)
elseif (length(gestureTuple) == 4) {
 push_env(env, DE); actuate_group_motion(gestureTuple, gestureEncoding, motionPath, speechFile);}
else return failure % there is error in the gesture declaration;

}

Simple
motion

Simple
group-motion

Nested
group-motion

Delay

Nesting level 1

Nesting level 2

Nesting level 3

Nested motion-group 1.1

Simple
motion 2.1

Simple
motion-group 2.2

Simple
motion 2.3

Simple
motion 3.1

Legends

Simple
motion 3.2

IJCA, Vol. 26, No. 2, March 2019 61

Figure 6: An algorithm to execute simple motion

6 Implementation

A prototype has been implemented on an upper body-part of

an artificial human skeleton using Python language and Adafruit
motor-drivers running on a Raspberry Pi 3B. Head-movements
have been realized using a combination of stepper and servo
motors as illustrated in Figures 9 and 10.

The reduction in jerky motions of motors and the stability
of the organs’ postures has been realized using additional
coiled springs inspired by deep muscles in a neck, jaws and
back of the head, and are illustrated in Figure 11. Table 3
shows the correspondence between springs and human
muscles along with their functions. We have used coiled
springs to 1) achieve graceful dampening effect to minimize
jerky motion, and 2) simulate the function of the deep neck
muscles to stabilize the head. The following muscles of a
human body [28, 33] were emulated to achieve the
movements: 1) sternocleidomastoids to balance a head during
tilt using the springs S1 and S2; 2) semispinalis capitis to pull
the head back during neutral position using springs S3 and S4;
3) sub occipitals to extend and rotate the head emulated by the
spring S5; 4) masseters to move the jaw during talking or
chewing using the springs S6 and S7.

The placement of eyes in the eye-sockets is shown in Figure
12(a). The schematics for servo motor-placement needed for the
synchronized eye-movements is shown in Figure 12(b). The
motors are fixed to the skull such that the eyes rotate around the
x-axis in the sockets. Eye-balls were connected from motor-stem
using a small coiled spring to get realistic flexible movements as

shown in Figure 12(b). Rolling of the eyes, a minor movement
around the y-axis, is not provided due to limited space in the
socket. However, it will be emulated using flexinol in the future.

We generate speech using a Python library function for
Raspberry Pi that renders a .wav file. The .wav files are indexed
on the speech file name given in the gestures. In the absence of
any specific speech file, a default file associated with the
corresponding gesture is picked randomly and rendered.

7 Future Work

We are extending our system to integrate: 1) gestures based

upon coordinated movements of hand, torso and spine; and 2)
automated prediction of gestures and head-motion based upon
speech data and dialog response. We are also developing
machine learning tools for a humanoid to fine-tune archived
gesture timings and actions by observing a human repeating the
gestures.

References

[1] J. F. Allen, “Maintaining Knowledge About Temporal

Intervals,” Communications of the ACM, 26(11):832-843,
November 1983.

[2] S. Andrist, X. Z. Tan, M. Gleicher and B. Mutlu,
“Conversational Gaze Aversion for Humanlike Robots,”
Proceedings of the 9th ACM/IEEE International
Conference on Human-Robot Interaction (HRI),
Bielefeld, Germany, pp 25-32, March 2014.

function actuate_simple_motion % executes one organ motion with initial and final delays
Input: 1. motionTuple; 2. gestureEncoding; 3. motionPath; 4. speechFile
{ initialDelay = Π1(motionTuple) ; motionName = Π2(motionTuple); finalDelay = Π3(motionTuple);

motionParameters = build_parameters(motionTuple, gestureEncoding, motionPath);
sleep(initialDelay);
thread motionThread = build_thread(motionName, motionPath, motionParameters); % build a thread
spawn_thread(motionThread); % start the motion
sleep(finalDelay);
update_parameters(motionParameters, DP);

}
function build_parameters
input: 1. motionTuple; 2. gestureEncoding; 3. motionPath
output: motionParameters
{ userParameters = get_parameters(motionTuple, gestureEncoding, motionPath);

 defuzziedParameters = defuzzify(userParameters); % defuzzify the parameters
 motionName = Π2(motionTuple);
 defaultParameters = get_parameters(motionName, DM); % extract the default parameters
 motionParameters= defuzziedParameters ∪ defaultParameters;
 return(motionParameters)
 }

62 IJCA, Vol. 26, No. 2, March 2019

Figure 7: An algorithm for executing a motion-group

function actuate_group_motion
Input: 1. motionTuple; 2. gestureEncoding; 3. groupPath; 4. speechFile;

{ syncType = Π1(MotionTuple); initialDelay = Π2(motionTuple) ; motionGroup = Π3(motionTuple);
finalDelay = Π4(motionTuple); motionCount = length(motionGroup); endedMotions = false;
nestingLevel = Π1(first(groupPath)); % extract the nested level from the first element of the path
motionIndex = Π2(first(groupPath)); % get the motion-index of the current motion
sleep(initialDelay); % sleep for initial motion-group delay
acquire(threadLock); nestingLevel = nestingLevel + 1; release(threadLock);
If (syncType ∈ {sync, ss, es, conc}) % execute threads concurrently

{ threadList = < >; index = 0;
 while (index < motionCount){
 motionPath = concatenate((nestingLevel, index), groupPath);

 if (Π3(motionTuple[index])== 3){ % if it is a simple motion
 motionParameters = buiid_parameters(motionName, gestureEncoding, motionPath);
 thread newThread = build_motion_thread(motionTuple, motionParameters);

 acquire(threadLock)
 threadList = threadList + newThread; index += 1; store_thread(DE, newThread);
 release (threadLock);

 else { % the motion is an embedded motion-group
 newMotionTuple = Π3(motionTuple)[index];

 acquire(threadLock) {
 env = (syncType, nestingLevel, index, motionCount);

 push_env(DE, env); % dump the current environment in execution-environment dictionary
 release(threadLock);}

 actuate_motion_group(newMotionTuple, motionPath, gestureEncoding, speechFile);}
 actuate_synchronized_concurrent_movements(syncType, groupPath, threadList); %

 if (syncType ∈ {sync, ss}) while(¬ started_all_threads(groupPath)) snooze() % spinlock parent
 if (syncType ∈ {sync, es}) while (¬ ended_all_threads(groupPath)) snooze() % spinlock parent

 if (syncType ∈ {during}) {
 while (¬ ended_included_threads(groupPath)) snooze(snoozeTime); % spinlock for first thread
 while(¬ ended_first_thread(groupPath)) snooze(snoozeTime);} % spinlock for the parent-thread

 acquire(threadLock) pop_env(DE, env); release(threadLock);}
 else {% execute threads sequentially

 forall (index < motionCount) {
 newMotionTuple = Π3(motionTuple)[index];

 if (length(motionTuple) == 3){ % if it is a simple motion
 motionParameters = buiid_parameters(motionName, gestureTuple, motionPath);
 thread motionThread = build_motion_thread(motionTuple, motionParameters);
 spawn(motionThread);}

else{ push_env(DE, env);
 actuate_motion_group(newMotionTuple, env, gestureTuple, speechFile);
 (syncType, nestingLevel, index, motionCount) = pop_env(DE);} }}

 acquire(threadLock); endedMotionFlag[(nestingLevel, motionIndex)] = True; release(threadLock); }
sleep(finalDelay);}

IJCA, Vol. 26, No. 2, March 2019 63

Figure 8: Algorithm for spawning synchronized motions

[3] O. Aran, H. Hung, and D. Gatica-Perez, “A Multimodal
Corpus for Studying Dominance in Small Group
Conversations,” Proceedings of the Workshop on
Multimedia Corpora: Advances in Capturing, Coding and
Analyzing Multimodality, Valetta, Malta, pp 22 -26, May
2010.

[4] G. Ball and J. Breese, “Relating Personality and Behavior:
Posture and Gestures,” Proceedings of the International
Workshop on Affective Interactions (IWAI 1999), (Editor:
A. Paiva), Springer, Heidelberg, Germany, LNCS

1814:196-203, 2000.
[5] A. Bartl, S. Bosch, M. Brandt, M. Dittrich, and B. Lugrin,

“The Influence of a Social Robot’s Persona on How it is
Perceived and Accepted by Elderly Users,” Proceedings
of the 8th International Conference on Social Robotics,
Kansas City, MO, USA, pp 681-691, November 2016.

[6] C. Breazeal, "Social Robots: From Research to
Commercialization,” Proceedings of the 12th ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), Vienna, Austria, pp 1, March 2017.

function actuate_synchronized_concurrent_movements
Input: 1. Synchronization type syncType; 2. threadPairList as a list of pairs (motionPath, motionThread);
{ i = 1; n = length(threadList); startedMotions = false; endedMotions = false;
 duringEnded = True; startedFirst = false; startedRest = false; endedFirst = false; endedRest = false;
 snoozeTime = 1 millisecond;
 acquire(threadLock); forall (1 ≤ i ≤ n) {motionStartedFlags[i] = false; motionEndedFlags[i] = false;
 release(threadLock);
 i = 1;
 while (¬ empty(threadInfoList)) {
 nextThreadPair = get_next_pair(threadPairList); motionPath = Π1(nextThread);
 curThread = Π1(nextThread); threadInfoList = rest(motionList);
 if ((i ==1) ⋁ ((syncType == ‘during’) ⋀ startedFirst) ⋁ (syncType ∈ { ss, es, sync}){
 spawn_thread(curThread);
 acquire(threadLock)
 set_startedMotionFlag(MotionPath, True); % set the startedmotionFlag in DE as true
 if (i == 1) startedFirst = true;

 release(threadLock);} }
 if (syncType ∈ {‘ss’, ‘sync’}) {
 while (¬ startFlags){ % spinlock checking for started threads to be true
 acquire(threadLock)
 startedFlags = false; startedFlags = and_flags(started, groupPath);
 release(threadLock);
 snooze(snoozeTime); } % snooze before starting again
 if (syncType == ‘ss’) return;
 if (syncType ∈ {‘es, ‘sync’}) {
 while (¬ endedFlags) {
 acquire(threadLock)
 endedFlags = false; endedFlags = and_flags(started, groupPath);
 release(threadLock)
 snooze(snoozeTime) ;} % snooze before starting again
 return ;}
 if (syncType == ‘during’ ⋀ startedFirst)
 while (¬ startedRest) {% spinlock checking for started threads to be true
 acquire(threadLock)
 startedRest = false; startedRest = and_flags(during, groupPath) ;}
 release(threadLock);
 snooze(snoozeTime);} % snooze before checking again
 while (¬ endedRest){ % spinlock checking for started threads to be true
 acquire(threadLock)
 endedRest = false; startedRest = and_flags(during, groupPath);
 release(threadLock)
 snooze(snoozeTime);} % snooze before checking again
 while (¬ endedfirst) snooze(snoozeTime); % snooze before checking again
 return;
}

64 IJCA, Vol. 26, No. 2, March 2019

Figure 9: A schematic of head-motion

Figure 11: Implementation of head motion

Table 3: Muscles emulated for head and jaw movement and stability

[7] V. Berenz, F. Tanaka, K. Suzuki and M. Herink, “TDM:
A Software Framework for Elegant and Rapid
Development of Autonomous Behaviors for Humanoid
Robots,” Proceedings of the 11th IEEE-RAS International
Conference on Humanoid Robots, Bled, Slovenia, pp 179-
186, October 2011.

[8] P. Bremner, A. Pipe, C. Melhuish, M. Fraser, and S.
Subramanian, “Conversational Gestures in Human-Robot

Interaction,” Proceedings of the 2009 IEEE International
Conference on Systems, Man, and Cybernetics, San
Antonio, TX, USA, pp 1645-1649, October 2009.

[9] F. Broz and H. Lehmann, “A Gaze Controller for
Coordinating Mutual Gaze during Conversational Turn-
taking in Human-Robot Interaction,” Extended Abstracts
in ACM Conference on Human Robot Interaction (HRI),
Portland, Oregon, USA, pp 131-132, March 2015.

Spring id Muscle Function

S1 and S2 sternocleidomastoid Stabilizes tilt movement. Rotates head to the opposite side
S3 and S4 semispinalis capitis Pulls head back. Rotates head in the same direction

S5 sub occipitals Extending and rotating the head
S6 and S7 masseter Moves jaw for talking or chewing

Rotation around
Z-axis (shake)

Rotation around
X-axis (tilt)

Skull-top layer

Rotation around
Y-axis (head-nod)

Rotating disc

Fastener

Servo motor

Servo motor

Fastener Fastener

Jaw starts here

Neck
Level

Stepper motor

Stationary base

Rotating disc

Stabilizing
coil springs

Coil springs to
resist jerky head
motions

Coil springs to
stabilize head based
upon deep muscles

Base of the neck

Skull top

Figure 10: Implementation of head motion

Frontal view of face

S1 S2

Back view of face

S3 S4

S7

Jaw

S5

S6

IJCA, Vol. 26, No. 2, March 2019 65

Figure 12: Implementation of eye motion

[10] J. Cabibihan, W. So and S. Pramanik, “Human-

Recognizable Robotic Gestures,” IEEE Transactions on
utonomous Mental Development, 4(4):305-314,
December 2012.

[11] B. Chandrasekaran and J. M. Conrad, “Human-Robot
Collaboration: A Survey,” Proceedings of the Southeast
Con, Fort Lauderdale, FL, USA, pp 1-8, April 2015.

[12] C. F. DiSalvo, F. Gemperle, J. Forlizzi, and S. Kiesler,
“All Robots are not Created Equal: the Design and
Perception of Humanoid Robot Heads,” Proceedings of
the 4th ACM Conference on Designing Interactive
Systems: Processes, Practices, Methods, and Techniques,
London, UK, pp 321-326, June 2002.

[13] B. R. Duffy, “Anthropomorphism and the Social Robot,”
In Robotics and Autonomous Systems, 42(3/4):177-190,
March 2003.

[14] Dynamixel Servo motor, http://www.Trossen
robotics.com/c/robotis-dynamixel-robotservos.aspx,
2018, last accessed March 13, 2019.

[15] K. Erdoğan, H. Kömür, A. Durdu and R. Ceylan, “Human
Robot Interaction to Guide a Person,” Proceedings of the
2nd International Symposium on Multidisciplinary
Studies and Innovative Technologies (ISMSIT), Ankara,
Turkey, pp 1-4, October 2018.

[16] N. Esteve-Gibert, J. Borràs-Comes, E. Asor, M. Swerts,
and P. Prieto, “The Timing of Head Move-ments: the Role
of Prosodic Heads and Edges,” Journal of Acoustics
Society of America, 141(6):4727-4739, June 2017.

[17] H. Fadli, C. Machbub, and E. Hidayat, “Human Gesture
Imitation on NAO Humanoid Robot using Kinect based
on Inverse Kinematics Method,” Proceedings of the
International Conference on Advanced Mechatronics,
Intelligent Manufacture, and Industrial Automation
(ICAMIMIA), Surabaya, Indonesia, pp 116-120, October
2017.

[18] M. Ghayoumi, M. Thafar, and A. K. Bansal, “Towards
Formal Multimodal Analysis of Emotions for Affective
Computing,” Proceedings of the International
Conference on Distributed Multimedia Systems, Salerno,
Italy, pp 48-54, November 2016.

[19] D. F. Glas, T. Minato, C. T. Ishi, T. Kawahara, and H.
Ishiguro, “ERICA: The ERATO Intelligent
Conversational Android,” Proceedings of the 25th IEEE
International Symposium on Robot and Human
Interactive Communication (RO-MAN), New York, NY,
USA, pp 22-29, August 2016.

[20] B. Goertzel, J. Mossbridge, E. Monroe, D. Hanson, and
G. Yu, “Loving AI: Humanoid Robots as Agents of
Human Consciousness Expansion,” available at
https://arxiv.org/pdf/1709.07791.pdf, last accessed March
7, 2019.

[21] S. Goldin-Meadow, Hearing Gesture: How our Hands
Help us Think, Harvard University Press, Boston, MA,
USA, 2005.

[22] D. Hanson, “Progress Toward EAP Actuators for
Biomimetic Social Robots,” Proceedings of the SPIE
8687, Electroactive Polymer Actuators and Devices
(EAPAD), San Diego, CA, USA, DOI: doi:
10.1117/12.2014238, April 2013.

[23] J. Hirth and K. Berns, “Concept for behavior generation
for the Humanoid Robot Head ROMAN Based on Habits
of Interaction,” 2007 7th IEEE-RAS International
Conference on Humanoid Robots, Pittsburgh, PA, pp.
360-365, 2007.

[24] Y. Hu, Z. Zhao, A. Vimal and G. Hoffman, “Soft Skin
Texture Modulation for Social Robotics,” Proceedings of
the IEEE International Conference on Soft Robotics
(RoboSoft), Livorno, Italy, pp 182-187, April 2018.

[25] C. T. Ishi, C. Liu, H. Ishiguro and N. Hagita, “Head
Motion during Dialogue, Speech and Nod Timing Control
in Humanoid Robots,” Proceedings of the 5th ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), Osaka, Japan, pp 293-300, March 2010.

[26] C. T. Ishi, D. Machiyashiki, R. Mikata and H. Ishiguro,
“A Speech-Driven Hand Gesture Generation Method and
Evaluation in Android Robots,” Proceedings of the IEEE
Robotics and Automation Letters, 3(4):3757-3764,
October 2018.

[27] M. Johansson, T. Hori, G. Skantze, A. Höthker, and J.
Gustafson, “Making Turn-Taking Decisions for an Active

Brain cavity base

Servo
motor

Glued eye-sockets with embedded camera

Soft spring

(a) Skull with eye-motor (b) Motor placement schematic

66 IJCA, Vol. 26, No. 2, March 2019

Listening Robot for Memory Training,” Proceedings of
the 8th International Conference on Social Robotics,
Kansas City, MO, USA, pp 940-949, November 2016.

[28] A. Kendon, Gesture: Visible Action as Utterance,
Cambridge University Press, Cambridge, UK, 2004.

[29] A. Kim, H. Kum, O. Roh, S. You and S. Lee, “Robot
Gesture and User Acceptance of Information in Human-
robot Interaction,” Proceedings of the 7th ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), MA, USA, pp 279-280, March 2012.

[30] M. Kipp, M. Neff, K. H. Kipp, and I. Albrecht, “Towards
Natural Gesture Synthesis: Evaluating Gesture Units in a
Data-driven Approach to Gesture Synthesis,”
Proceedings of the 7th International Working Conference
on Intelligent Virtual Agents, Paris, France, Springer,
Berlin, Heidelberg, LNCS 4722:15-28, September 2007.

[31] D. Kragic, “Acting, Interacting, Collaborative Robots,”
Proceedings of the 12th ACM/IEEE International
Conference on Human-Robot Interaction (HRI)”, Vienna,
Austria, pp 293-293, March 2017.

[32] C. Liu, C. T. Ishi, H. Ishiguro and N. Hagita, “Generation
of Nodding, Head-tilting and Eye gazing for Human-robot
Dialogue Interaction,” Proceedings of the 7th ACM/IEEE
International Conference on Human-Robot Interaction
(HRI), Boston, MA, USA, pp 285-292, March 2012.

[33] D. McNeill, Hand and Mind: What Gestures Reveal about
Thought, The University of Chicago Press, Chicago, IL,
USA, 1992.

[34] J. Oh, D. Hanson, W. Kim, Y. Han, J. Kim and I. Park,
“Design of Android Type Humanoid Robot Albert
HUBO,” Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Beijing,
China, pp 1428-1433, October 2006.

[35] I. Poggi, F. D'Errico, L. Vincze, “Types of Nods. The
Polysemy of a Social Signal,” Proceedings of the
International Conference on Language Resources and
Evaluation (LREC), Malta, pp 2570-2576, May 2010.

[36] A. Roberts, The Complete Human Body: The Definitive
Visual Guide, 2nd Edition, Dorling Kindersley Publishing,
New York, NY, USA, 2016.

[37] M. Salem, S. Kopp, I. Wachsmuth, and F. Joublin,
“Towards Meaningful Robot Gesture,” Human Centered
Robot Systems: Cognitive Systems Monographs, H. Ritter,
G. Sagerer, R. Dillmann, and M. Buss (eds.), Springer,
Berlin, Germany, 6:173-182, 2009.

[38] Sophia-Hanson Robotics Latest Humanoid, http://
www.hansonrobotics.com/robot/sophia/, 2018, last
accessed March 13, 2019.

[39] L. Stecco, Atlas of Physiology of the Muscular Fascia,
Piccin Publications, Padua, Italy, September 2016.

[40] J. Stolzenwald and P. Bremner, “Gesture Mimicry in
Social Human-Robot Interaction,” Proceedings of the
26th IEEE International Symposium on Robot and Human
Interactive Communication (RO-MAN), Lisbon, Portugal,
pp 430-436, August/September 2017.

[41] F. Vannucci, G. Di Cesare, F. Rea, G. Sandini and A.
Sciutti, “A Robot with Style: Can Robotic Attitudes
Influence Human Actions?,” Proceedings of the IEEE-
RAS 18th International Conference on Humanoid Robots
(Humanoids), Beijing, China, pp 1-6, November 2018.

[42] J. Wainer, D. J. Feil-seifer, D. A. Shell and M. J. Mataric,
“The Role of Physical Embodiment in Human-Robot
Interaction,” Proceedings of the 15th IEEE International
Symposium on Robot and Human Interactive
Communication, Hatfield, UK, pp 117-122, September
2006.

[43] Y. Wu, R. Wang, Y. L. Tay and C. J. Wong,
“Investigation on the Roles of Human and Robot in
Collaborative Storytelling,” Proceedings of the Asia-
Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA ASC), Kuala
Lumpur, Malaysia, pp 63-68, December 2017.

Aditi Singh is a doctoral student and a
graduate assistant in the Department of
Computer Science at Kent State
University. Aditi completed M.S. in
Computer Science from Kent State
University in 2017. Her thesis area was
“gesture generation in humanoids”. Her
doctoral research interest is in social

robotics, human-humanoid interactions, and speech-gesture
correlation. Aditi is a member of IEEE and is very active in
ACM activities within the department.

Arvind Bansal is a full Professor in the
Department of Computer Science at Kent
State University, Kent, Ohio, USA. He did
his B. Tech (Electrical Engineering) and M.
Tech (Computer Science) from Indian
Institute of Technology, Kanpur, India in
1979 and 1983 respectively. He finished
his Ph.D. in Computer Science from Case
Western Reserve University in 1988. He is

a member of IEEE and ACM. He has contributed in multiple
research areas such as fault-tolerant multiagent systems
genomics, proteomics, parallel and associative logic
programming, machine learning, massive parallel knowledge
bases multimedia systems, programming languages for
multimedia systems, ECG analysis, health informatics and
social robotics including facial-expression analysis, gesture
analysis and gesture generation. He has been active in a large
number of program committees in these research areas and has
written a textbook for design concepts in programming
languages.

IJCA, Vol. 26, No. 2, June 2019 67

ISCA Copyright© 2019

Generation of Audiovisual Materials
Considering Semantic and Impressive Harmony Based on Time Change of Music

Yuto Shinjo, Teruhisa Hochin* and Hiroki Nomiya*
Kyoto Institute of Technology, Kyoto-Shi, Kyoto, 606-8585 JAPAN

Abstract

A method to detect change points of the impression of a music

piece has been proposed for retrieving pictures having the
impression similar to that of a music piece. This method can
detect the change points of the impression. However, when the
change repeatedly occurred continuously, and when the
impression was felt as a group, there was sometimes a change
point in a place that the change of impression could not be felt.
We aim at slideshow generation which copes with this subject
point and considers semantic and impressive harmony based on
time changes of music impression. This paper proposes a
method to cope with the cases when impression changes occur
repeatedly, a method to generate an HTML file in which the
slideshow is displayed by acquiring images matching each
impression of the music pieces when entering the music piece,
and a method of measuring semantic similarity between
slideshow images. The proposed methods use factor scores of
the impression of images and music pieces. It is shown that the
proposed method can improve the accuracy of the change point
detection and the operation of the current system.

Key Words: Change of pictures, impression of music,
impression change, slideshow, meaning of image, multiple
regression analysis, factor score, image recognition, word
similarity.

1 Introduction

In recent years, due to the development of multimedia

technology, multimedia data such as images, music pieces and
videos are used in various fields. In order to effectively and
efficiently prepare multimedia works, a mechanism for
searching harmonized images and music pieces is required.
Various researches have been conducted to the mutual retrieval
of multimedia data based on impressions [4-5, 12-16], to the
retrieval of image data based on impressions [2-3, 6, 8, 11], and
to the retrieval of audio data based on impressions [7, 9-10]. In
the mutual retrieval of multimedia data based on impression, for
example, pictures are retrieved by specifying a music piece as a
retrieved key. The retrieved pictures have impressions similar
to that of the music piece specified.

Here, there are many music pieces whose impression changes

* Information and Human Sciences. Email: m7622020@edu.kit.ac.jp, {hochin,
nomiya}@kit.ac.jp

in time, but mutual retrieval system based on the impression for
the multimedia data on the Web does not consider temporal
change of the impression of a music piece. In order to be able
to take that into consideration, research is being conducted to
detect temporal changes in the impression of music piece [13].
However, in the detection method of the change point of the
impression of the music piece, there were improvement points
such as the same change repeated and the impression was
detected as a change point at a place where the impression was
felt as a group. In addition, when displaying an image that
matches the impression of a music piece that changes over time,
a method of using a slideshow that presents an image while
reproducing the music piece is conceivable, and it is necessary
to consider whether the images used in the slideshow are in
harmony with each other.

This paper proposes a method to cope with the cases when
impression repeatedly change, a method to generate an HTML
file, in which slideshow is displayed by acquiring images
matching each impression of the music pieces when entering the
music piece, and a method of measuring semantic similarity
between slideshow images. The proposed methods use factor
scores of the impression of audio materials and images. This
paper shows that the accuracy of the change point detection is
improved subjectively by the proposed method, and describes
the operation of the current system.

The remainder of the paper is organized as follows. Section 2
describes a mutual retrieval system based on impressions [15].
Section 3 describes a method of detecting the change points of
the impressions of a music piece [13]. Section 4 proposes a
method that does not detect consecutively repeated changes as
change points and a method of retrieving images matching each
section, and a method of automatically generating a slideshow
and a method to measure semantic similarity between images.
Section 5 shows a system execution result. Finally, Section 6
concludes the paper.

2 Mutual Retrieval of Visual and Audio Materials Based on

Impression

In the previous study [15], a mutual retrieval system based on

the impression for the multimedia data on the Web is realized.
This system consists of the information collecting subsystem
and the mutual retrieval subsystem. In the information
collecting subsystem, the information of the multimedia data on
the Web is analyzed and is stored into a database. The mutual

mailto:nomiya%7d@kit.ac.jp

68 IJCA, Vol. 26, No. 2, June 2019

retrieval subsystem uses this information for the retrieval of
heterogeneous media data with similar impression.

In this research, mutual retrieval with similar impressions is
performed for images and music pieces. Brightness, potency,
activity, naturalness, and sharpness are used as factors of the
image, while naturalness, brightness, potency, and sharpness are
used as factors of the music piece. The Euclidean distance of
the factor scores of each factor is used as dissimilarity. Here,
since the factor of activity in the image does not exist in the
music piece, the smaller Euclidean distance between the factor
scores of the image’s potency and activity, and the factor score
of the music piece’s potency is taken as dissimilarity. In the
database, information such as the URL, feature values, factor
scores, etc. of each piece of multimedia data is stored.

In addition, factor scores are estimated from the feature
values of multimedia data by using the multiple regression
analysis. The explanatory variables of the estimation formula
of the factor score of the image are the feature values of the HSV
system closely related to the human sense. In the feature value
extraction, classification of value, saturation, and hue is
performed for each pixel, and the feature value is obtained by
calculating the ratios of the number of the pixels of each value,
saturation, and hue to that of the whole pixels.

The explanatory variables of the estimation formula of the
factor score of the music piece relate to the average and the
standard deviation values of spectrum information and Mel
frequency cepstrum coefficient (MFCC), the ratio of low energy
in the whole audio file and the frequency spectrum, and the peak
calculated on the basis of frequency spectrum. In the feature
value extraction, average values of respective spectrum
information are calculated for every 512 sampling points, and
the mean value and the standard deviation of them are obtained.

A general flow of the mutual retrieval system is as follows.
First, feature value extraction and factor score estimation are
performed on a piece of multimedia data which is a retrieval key
specified by the user. Then, dissimilarities of the factor scores
of the data specified and the data stored in the database are
obtained. Heterogeneous multimedia data which become
retrieval results are stored in the ascending order of dissimilarity,
and their URLs are returned.

3 Detecting Changes of Music Impressions

In the previous study [13], in order to be able to take into
account the temporal change when searching images from songs
whose impressions change with time, change points of
impressions of the songs were detected. It was subjectively
shown that a change in impression was felt at the detected
change point.

In this study, factor scores of songs similar to the previous
study [15] are used. The songs are divided into sections. After
the MFCC mean and standard deviation for each section are
obtained, factor scores are estimated in each section.

The change of the impression of a music piece is decided by
using the Euclidean distance between factor scores estimated in

each section. Here, the following two points were used.

・ Distance between the factor scores in the current and the

next sections
・ Distance between the factor score at the starting point of

the current impression and the factor score in each
subsequent section

The latter is to make it possible to cope with a music piece
whose impression gradually changes.

As a concrete example, change point detection for classic
music “Marriage of Figaro” overture was reported [13]. A 60
second music piece is divided into sections of 2.5 seconds, and
change points are detected based on the distances of factor score
values in each section. Here, the threshold value of the
Euclidean distance used in detecting the impression change is
set to 8.

When examining the change points detected when
reproducing the music pieces, the impression change was felt at
the point where the change point was detected. However, there
were cases where no change was felt at the place where the
change point of the impression was continuously detected.
Changes were felt at the first change point of consecutive ones,
but the subsequent impression was felt as a collective
impression and no change was felt.

4 Proposed Method

4.1 Consideration of Impressive Harmony

4.1.1 Deletion Method of Continuous Detection Part:
From the previous study [13], when comparing only within the
section judged by the program, a difference in impression was
felt. It is thought that the same change was repeated when
playing through music, and it felt like a group. Therefore, we
propose a method of judging that impressions are repeated, and
deleting the change points if they are continuously detected and
have similar impressions before and after the change [14]. In
the range search performed at the mutual retrieval, it is assumed
that the impression is similar if the value of each factor score is
within the range of -4 to 4. For this reason, if the range is within
the range of -4 to 4, the impressions appearing before and after
the change are determined that they are similar to each other.

4.1.2 Retrieval of Pictures Matching Each Section: Next,
for each impression section divided by the change point of
impression obtained, search for images with matching
impressions. The initial section of each impression is
provisionally set as the score of the impression of the section.
We perform a search using the distance between that score and
the factor score of the picture in the database. For the score and
the search method used for the search, the same method as in
the previous study [15] is used. This method retains the factor
scores of each impression while detecting change points and
performs a retrieval after completion of detection.

IJCA, Vol. 26, No. 2, June 2019 69

4.2 Consideration of Semantic Harmony

4.2.1 Getting Meaning of Image: The factor score of the
image is estimated from the color information of the image. The
meaning part of the image such as “what is reflected in the
image” is not considered. Therefore, by using image
recognition, what is reflected in the image is acquired as a word,
and it is considered as the meaning of the image. For that
purpose, execute “classify_image.py” according to Tensorflows
tutorial [17] to perform image recognition. This can be done by
downloading a trained model from tensorflow.org at the first
execution and specifying an image to be recognized as a
parameter. Here, the words obtained are in English.

4.2.2 Similarity Measurement between Words: If the
obtained images are semantically similar, the slideshow is
considered to have semantic harmony. Therefore, it is possible
to determine how semantically the slideshow is harmonized by
measuring the similarity between the acquired words and
performing image recognition on each of the obtained images.
For that purpose, the similarity between words is calculated by
specifying the words in “model.similarity” of word2vec using
the published learned vector “GoogleNews-vectors-
negative300.bin” [1].

4.3 Automatic Generation of Slideshow

This system creates an HTML file to display search results. It
acquires the list of music piece names and search results used
for the search and writes them in the file together with the fixed
form sentences. It is an implementation that acquires the
playing time of a music piece and changes the URL of the
picture each time when the time passes the time of changing
point. A file is generated continuously following change point
detection/file search.

5 Example of System Operation

5.1 Detecting Change Point of Impression

We performed with the classical music piece titled "Le cygne"
used in the previous study [15]. First, we describe improvement
of accuracy of change point detection. Table 1 shows the
transition of factor scores of this music piece and the detection
points of change points. The length of the music piece is 60
seconds. Here, a section has 430 spectrum calculation points.
One calculation point corresponds to 512 sample points. The
value of the factor score in each section represents the
impression in about 2.5 seconds. The threshold of the Euclidean
distance of change point detection is eight as in the previous
study [13].

The distance between the section numbers 7 and 8 shown in
Table 1 is the square root of the sum of the squares of the factor
score differences in the preceding and the following sections,
which is 13.29. Since it exceeded the threshold value, it was
detected as a change point. The same applies to the change point
between section numbers 18 and 19. In addition, since the
Euclidean distance between section number 8, which is the

beginning of the second impression section, and the section
number 19 also exceeds eight, this change point satisfies both of
the two conditions.

There are other places where the Euclidean distance of the two
conditions exceeds eight, but they are not detected as change
points. This is based on the proposed method. For example, the
Euclidean distance between the factor scores between the
section numbers 8 and 9 is 11.00. At this time, the Euclidean
distance between the section numbers 7 and 8 also exceeds the
threshold value, and the impression continuously changes. Here,
when the impression before the last change (section number 7)
and the impression after the current change (section number 9)
are similar, it is judged that it is a group of impressions and the
current change (the change between the section numbers 8 and
9) is not detected as a change point. In the same way, although
the Euclidean distance continuously exceeds the threshold value
between the section numbers 9 and 10 to between the section
numbers 12 and 13, similar impressions appear repeatedly in the
section numbers 8 and 10, the section numbers 9 and 11, it is
judged as a collective impression, and it is not detected as a
change point.

When we examine the detected change points by playing the
music piece, we can feel the change of impression around the
time when the change points are detected. Regarding the
deleted continuous change part, it was a collective impression
and we felt little change, so it was confirmed that the proposed
method works well.

5.2 System Operation

Next, we describe the operation of the system when searching,
using the song described in 5.1. This system is a modification
of the are mutual search system created in the previous study
[15]. Figure 1 shows the system screen after selecting the music
file and pressing the search button.

Since we are dealing with searching for images from music
pieces this time, the radio button “Image retrieval” is pressed for
“Select Retrieval Type.” By clicking the “Browse” button, we
can select the file and the selected file will be displayed in the
text box at the top of the "Browse" button. In this example, an
audio file 06.wav (classical song titled “Le cygnet”) is selected.
When the "Retrieve File" button is pressed, search is executed.
In this case, the change point detection of the impression is
performed on the selected music piece first, and the search is
executed for each impression section delimited by the detected
change point. Since two change points are detected, there are
three impression sections, and three images matching each of
them are obtained as search results. When the result is displayed,
the URL of the image matching the first impression section of
the music piece is displayed in the combo box under “Retrieval
Results,” and the image is displayed in “Selected Image” on the
right of the screen. Also, pressing the pull-down button will also
display the URLs of the images matching the second and
subsequent impression sections in order. And, the image of the
selected URL is displayed in “Selected Image. “Retrieval Num”
at the upper center of the screen can determine the number of
search result candidates. However, since this time we have

70 IJCA, Vol. 26, No. 2, June 2019

Table 1: Factor scores and change points

Figure 1: System screen at search execution

acquired only one that was judged to be the best match to create
a slide show, this value does not affect the operation.

5.3 Generated Slideshow

Next, we describe the generated slideshow. The HTML file

that displays the slideshow is generated at the same time when
search is executed by pressing the "Retrieve File" button of the
system. The slideshow screen automatically generated at this
time is shown in Figure 2. In the slide show, the input audio file
name and the impression section number (the number of display
images) of the music piece are displayed. Music pieces can be
played and stopped with the “play” and the “stop” buttons, and
the playback time of the music piece is displayed in “audio now”.
The image matching the first impression section is displayed at
the bottom before playing the music piece, and after playing the
music piece, the image is changed (the URL of the image is
changed) each time the playback time of the music piece
exceeds the time of the impression change.

The image transition of the slideshow is shown in Figure 3.
In this case, from Table 1, the first impression section is the
section numbers 1 to 7, which is from 0 seconds to 17.5 seconds
of the music piece. The second impression section is the section
numbers 8 to 18, which is from 17.5 seconds to 45.0 seconds of
music piece. The last impression section is the section numbers
19 to 24, which is from 45.0 seconds to 60.0 seconds of the
music piece. Image data similar to impression of the section
numbers 1, 8 and 19 which is the start section of each impression

Section
number Naturalness Brightness Potency Sharpness Distance

1 -1.72 0.17 0.02 -0.92

2 -2.21 1.80 -3.22 -0.29

3 -0.71 3.86 -4.69 -1.20

4 -0.44 -2.16 -1.40 -0.78

5 0.61 -3.48 -2.29 -3.51

6 0.05 2.31 -3.80 -1.99

7 -2.04 5.28 -2.47 0.40

Change
point 13.29

8 -1.11 -5.48 0.39 -6.79

9 -1.75 3.34 -4.27 -2.19

10 -1.43 -9.26 3.10 -6.68

11 -1.46 1.53 -1.86 -1.47

12 -2.28 -6.27 0.97 -6.30

13 -1.01 2.26 -4.04 -1.62

14 -0.62 -0.64 -1.96 -1.42

15 0.64 -1.04 -1.50 -2.06

16 -1.97 -4.03 -1.11 -4.57

17 -0.17 -6.39 1.79 -5.25

18 -1.61 -4.92 0.20 -3.80

Change
point 8.11

19 -2.08 2.07 -1.99 -0.35

20 -3.47 -6.46 1.29 -2.95

21 -0.11 -2.92 -0.10 -4.09

22 -1.55 0.58 -0.64 -2.05

23 -1.74 0.38 -0.47 -2.24

24 -1.43 -3.25 -0.83 -3.71

IJCA, Vol. 26, No. 2, June 2019 71

Figure 2: Slideshow screen

Figure 3: Image transition of a slideshow

sections are obtained as a search result, and the image is
switched at the timing of impression change point of 17.5
seconds, 45.0 seconds.

It was a somewhat calm music piece, and the impression was
not far from all the pictures. The switch from the second to the
third was also easy to understand on the music piece side. It was
a bright impression from the dark impression, and we felt
similar about the result image. However, we felt that switching
from the first to the second was felt on the music piece side, but
it was not reflected on the image side.

The image data stored in the database to be searched this time
is a part of the image data used in the previous study [15]. The
number of image data is 16,387. Improvement in accuracy can
be seen by increasing the number of image data.

5.4 Similarity Measurement between Images

Tables 2 to 4 show the results of image recognition for the
search results. Those for which multiple results are obtained are
synonymous with each other. Focusing on the result with the
highest estimation rate, the first image is estimated to be snow
leopard, and there is no problem in recognition. The second
image is presumed to be birdhouse. Although there is no such
thing in the image, it cannot be said that it is a perfect estimation,
but the relation with “tree” is seen. The third image is presumed
to be nail, but it is considered to be a false recognition. And in
each recognition result, Table 5 shows the similarity between
the words estimated to have the highest possibility. This time,

“snow leopard” is a word consisting of multiple words, so
“leopard” is used. In addition, for the second and third images,
Table 6 shows the similarity when “tree” and “leaf” are used as
words judged from the subjectivity separately from the
recognition results.

Table 2: Recognition result of the first image

 Table 3: Recognition result of the second image

 Table 4: Recognition result of the third image

 Table 5: Similarity between words of recognition result

Table 6: Similarity between words when determining

words by subjectivity

6 Consideration

Looking at the picture obtained as the retrieval result, the third

image includes white leaves, and the proportion of white
occupying the picture is high and the impression which is
brighter than the second picture is felt. In fact, the brightness of
the section number 8 (the second impression section) is lower
than the brightness of the section number 19 (the third
impression section). Therefore, it seems that switching from the
second picture to the third one was consistent with the switching

Word1 Word2 Similarity
leopard birdhouse 0.19916947
leopard nail 0.16623408

birdhouse nail 0.12244315

Acquisition word Estimated
rate

snow leopard, ounce, Panthera uncia 0.82735
leopard, Panthera pardus 0.08432
jaguar, panther, Panthera onca, Felis onca 0.00664

tiger cat 0.00132
cheetah, chetah, Acinonyx jubatus 0.00114

Acquisition word Estimated rate
birdhouse 0.20035

buckeye, horse chestnut, conker 0.06871
park bench 0.05759
mushroom 0.05494

bolete 0.05452

Acquisition word Estimated rate
nail 0.85775

screw 0.01485
hock, claw 0.01441

plunger, plumber’s helper 0.00697
knot 0.00680

Word1 Word2 Similarity
leopard tree 0.21785429
leopard leaf 0.17773704
tree leaf 0.48228538

72 IJCA, Vol. 26, No. 2, June 2019

from the dark impression to the bright impression in the music
piece. Also, the brightness of the section number 8 (the second
impression section) is lower than the brightness of the section
number 1 (the first impression section). Although the second
image may feel the brightness more than the first image, the
impression of the image is estimated from the color information
and its occupying ratio. Therefore, it is considered that the
second image occupied by the trunk portion of the tree has a
lower level of clarity than the first image.

In this time, concerning the switching part of the music piece,
a great discomfort was not felt on the music piece side.
However, since it cannot be determined as a change point only
in the 2.5 second break of a music piece, it is considered that a
slight discomfort is generated.

About the semantic similarity of the image, the word was
acquired by image recognition, but misrecognition existed
obviously. Since the accuracy of this image recognition greatly
influences the determination of semantic similarity, it is
considered necessary to improve the image recognition
accuracy. Looking at the results of word similarity, Table 5
shows that the images are not semantically similar. Focusing
only on the images, the relationship between “the plant” is felt
between the second image and the third image, but such
irrelevant words are selected by misrecognition. From Table 6,
when the word is determined by subjectivity, the similarity
between the second image (tree) and the third image (leaf) has
a higher value than the others, and the relationship is shown.

7 Conclusion

Various researches for retrieving multimedia data based on
impressions are being conducted. Consideration of the
temporal change of the impression of a music piece was one
of the problems in the mutual retrieval system of the previous
study [15]. In order to be able to take that into consideration,
research is being conducted to detect temporal changes in the
impression of a music piece [13]. However, in the detection
method of the change point of the impression of the music
pieces, there were improvement points such as the same
change repeated and the impression was detected as a change
point at a place where the impression was felt as a group. In
addition, when displaying an image that matches the
impression of a music piece that changes over time, a method
of using a slideshow that presents an image while reproducing
the music pieces is conceivable, and it is necessary to consider
whether the images used in the slideshow are in harmony with
each other. This paper proposed a method to cope with the
cases when an impression repeatedly changed, a method to
generate an HTML file, in which the slideshow is displayed by
acquiring images matching each impression of the music
pieces when specifying the music piece, and a method of
measuring semantic similarity between slideshow images.

We conducted a trial experiment of the proposed method and
showed that the deletion of the part where the impression is
perceived as a unit and the repeated changes is successful. The
proposed method can improve the accuracy of change point
detection of impression of music piece. The change point

detection was performed at the time of the operation of the
search system, and the search in consideration of the change in
the impression of the music was made possible. By using the
slideshow, the search result is presented at the same time as the
change part more easily. Although we did not detect anything
other than the classical music piece this time, we are planning
that the proposed method will perform the change point
detection which can be executed regardless of the genre of
music piece.

Currently, in this system, only one set of slide-show that is
judged to be most suitable for each impression can be created
by presenting multiple candidates for each impression and
changing the combination. The image data to be searched this
time is a part of the data automatically collected from the Web
and stored in the database in the previous study [15]. Since the
image data are managed by the URL, image data that would not
be desirable as a search result are also included. In addition, the
prepared image data are not sufficient, image data such as icons
whose impressions do not coincide with music pieces may be
obtained as retrieval results in some cases. This is because the
impression of the image data is estimated only from the color
information and it is determined that they are similar. In
addition to deleting unfavorable image data, it is conceivable to
modify it so as not to collect undesirable data when collecting
data from the Web in the system of the previous study [15]. As
for the estimation of the impression of the image data,
combinations other than the color information may be combined
to make it difficult to obtain undesirable results as the search
result.

It is required to designate the number of searches and to
present candidates with similarities up to that number for each
impression section. As a result, by automatically performing
image recognition and inter-word similarity measurement, it is
possible to automatically generate a slideshow with a
combination of high semantic harmony. Also, a slideshow can
be created by using an image selected by the user from among a
plurality of candidates. This is to prevent a sense of
incompatibility from occurring when presented as a slide show,
even though it most closely matches each impression section. In
addition, there are individual differences among users in the
impression felt from the image, so multiple presentations are
necessary.

In addition, it is necessary to perform a subject experiment
such as detection of the change part of the impression and
whether the presented slideshow is not only partially but also
entirely matched with the impression.

Acknowledgment

This work was partially supported by JSPS KAKENHI Grant
Number 16K00370.

References

[1] Google Code | Archive / Projects / word2vec, from

https://code.google.com/archive/p/word2vec/, Retrieved
January 22, 2019.

https://code.google.com/archive/p/word2vec/

IJCA, Vol. 26, No. 2, June 2019 73

[2] K. Hachimura, and S. Eiho, “Retrieval of Paintings based
on Color Distribution and Impression Words,” IPSJ
SIGCH, 95-CH-27, (in Japanese), 95(91):37-44, 1995.

[3] S. Harada, Y. Itoh, and H. Nakatani, “Interactive Image
Retrieval by Natural Language,” Optical Engineering,
Vol. 36, No. 12, pp 3281-3287, 1997.

[4] T. Hochin and T. Tsuji, “Mutual Multimedia Access Using
Kansei Factors,” Kansei Engineering International,
2(4):9-18, 2001.

[5] T. Hochin, K. Yamada, and T. Tsuji, “Multimedia Data
Access Based on the Sensitivity Factors,” Proc. of the
2000 International Database Engineering & Applications
Symposium, pp 319-326, 2000.

[6] W. Hsu, T. S. Chua, and H. K. Pung, “An Integrated Color-
Spatial Approach to Content-based Image Retrieval,” Proc.
of 3rd ACM Int'l Multimedia Conf. and Exhibition
(MULTIMEDIA'95), pp 305-313, 1995.

[7] T. Kitagawa, T. Nakanishi, and Y. Kiyoki, “An
Implementation Method of Automatic Metadata
Extraction Method for Music Data and Its Application to
Semantic Associative Search,” System and Computers in
Japan, 35(6):59-78, 2004.

[8] Y. Kiyoki, T. Kitagawa, and T. Hayama, “A Meta-
Database System for Semantic Image Search by a
Mathematical Model of Meaning,” SIGMOD RECORD,
23(4):34-41, 1994.

[9] T. Kumamoto, Design and Implementation of Natural
Language Interface for Impression-based Music-retrieval
Systems, Lecture Notes in Artificial Intelligence, Springer-
Verlag, Berlin Heidelbelg New York 3214:139-147, 2004.

[10] T. Kumamoto, and K. Ohta, “Design and Development of
Natural Language Interface for an Impression-based Music
Retrieval System,” Technical Report of IPS of Japan,
2003-NL-153(13):97-104, 2003.

[11] H. Lu, B.-C. Ooi, and K.-L. Tan, “Efficient Image
Retrieval by Color Contents,” Proc. of 1st Int'l Conf. on
Applications of Databases, pp 95-108, 1994.

[12] T. Nakanishi, T. Kitagawa, Y. Kiyoki, “An
Implementation Method of Associative Search for
Heterogeneous Media Data Utilizing the Mathematical
Model of Meaning and Its Application to Image Data and
Facial Expression,” Proc. of 2003 IEEE Pacific Rim
Conference on Communications Computers and Signal
Processing, pp 613-618, 2003.

[13] Y. Shinjo, T. Hochin, and H. Nomiya, “Detecting
Changes of Music Impressions for Changing Pictures,”
Proc. of 18th IEEE/ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing (SNPD2017), pp 537-
542, 2017.

[14] Y. Shinjo, T. Hochin, and H. Nomiya, “Improvement of
Similar Image Retrieval Considering Temporal Changes of
Music Impression,” Proc. of 31st International Conference
on Computer Applications in Industry and Engineering
(CAINE2018), pp 189-194, 2018.

[15] Y. Takahashi, T. Hochin, and H. Nomiya, “Improvement
of Mutual Retrieval of Visual and Audio Materials Based
on Impression,” Proc. of 4th International Conference on
Applied Computing & Information Technology (ACIT
2016), pp 117-122, 2016.

[16] Y. Takahashi, T. Hochin, and H. Nomiya, “Mutual
Retrieval of Pictures and Sounds on the Web Based on
Impression,” Proc. of 2015 International Conference on
Computer Application Technologies (CCATS 2015), pp
80-85, 2015.

[17] TensorFlow – Develop – TUTORIALS - Image
Recognition, Retrieved January 22, 2019, from
https://www.tensorflow.org/tutorials/images/image_recog
nition.

Yuto Shinjo works at OMRON
SOFTWARE. He received his B.S. and
M.S. degrees from Kyoto Institute of
Technology in 2017 and 2019,
respectively. His research interests
include multimedia engineering.

Teruhisa Hochin is a Professor in the
Faculty of Information and Human
Sciences at Kyoto Institute of
Technology. He received his B.S., M.S.,
and Ph.D. degrees from Nagoya Institute
of Technology in 1982, 1984, and 1994,
respectively. His research interests
include affective engineering, Kansei
information retrieval, multimedia

databases, graph-based databases, scientific and flexible
databases, and extensible database management system.

Hiroki Nomiya is an Associate
Professor in the Faculty of Information
and Human Sciences at Kyoto Institute of
Technology. He received his B.S., M.S.,
and Ph.D. degrees from Kobe University
in 2002, 2004, and 2008, respectively.
His research interests include multimedia
data engineering, facial expression
recognition, and machine learning.

https://www.tensorflow.org/tutorials/images/image_recognition
https://www.tensorflow.org/tutorials/images/image_recognition

74 IJCA, Vol. 26, No. 2, June 2019

ISCA Copyright© 2019

QoS of Cloud Computing - Application of the
JPManager in a Cloud Service

Jiang Guo* and Yuehong Liao*
California State University, Los Angeles, CA USA

Abstract

As Java-based Software as a service is more and more
widely used in developing enterprise-level private cloud-based
applications, the Java based platform plays a very important
role in large scale enterprise level system development.
However, the performance management of Java-based
software services is a challenge to software developers. It is
very difficult for the software developers to evaluate, analyze,
and improve the performance of Java-based software services
without software tools, due to the fact that hundreds of
software services, software components, and application
programming interfaces need to be tracked in real time and
their execution can typically be completed within seconds or
milliseconds. This paper proposes an approach to collect the
performance metrics information of Java-based cloud
computing services by using Java instrumentation to find
improvements such as reducing bottlenecks. A software tool –
JPManager – a Java software service performance
management system, which we developed based on our
approach to monitor, analyze and manage the performance of
Java-based software services, is also discussed.

Key Words: QoS, Java instrumentation; performance
management; software services.

1 Introduction

One of the challenges of cloud applications is Quality-of-
Service (QoS) management [4, 7, 19], which includes
performance, availability and reliability. The improvement of
QoS can reduce the risk management costs and deployment
costs in cloud computing. The QoS data collected by software
tools can improve the quality of integration of existing
software services as well as provide a basis to compare the
cloud services from different vendors. It helps customers
purchase cost-effective cloud computing services [17, 20, 24,
30]. The QoS data also helps developers analyze the QoS
margin and contingency during the cloud service development
and deployment.

Java-based software services are widely used as cloud
computing services. Google’s App Engine, Pivotal Software’s
Cloud Foundry, Red Hat’s OpenShift, and Amazon’s Elastic
Beanstalk all support Java based applications and cloud

* Department of Computer Science. Email: {jguo@calstatela.edu}.

computing services. As more and more Java applications,
J2EE applications, and Mobile Apps are being moved to the
cloud, the QoS of Java-based software services needs to be
improved [3, 13].

To implement performance management of Java-based
software services in real-time production private environments,
software developers and administrators need automatic tools to
monitor and manage the application systems [2, 16]. They
must also monitor the performance of front-end and back-end
technologies in conjunction with Java-based components.

This paper discusses the design, implementation, and
application of our research project JPManager. The goal of
our project is to evaluate and help to improve performance of
the Java-based private cloud computing systems as well as
uncover the bottlenecks of the software services and executing
environments.

To evaluate the performance of each software service
component or each method, we used the Java instrumentation
approach in our research. The strategy of this approach is to
instrument or insert additional Java codes into the application
itself [5, 9, 15, 26]. These extra Java codes are called Java
agents, which can be placed at check points set by the
developers or administrators to collect fine grained
measurements of software service performance [27, 29]. This
approach enables developers to collect the metrics information
at a very deep level of the application structure, including
before and after the method calls.

The Java instrumentation approach that we used in our
project can detect the bottlenecks in the application
components, component methods, and even method lines. The
method also takes measurements from dynamic, real time
execution and developers can collect the performance metrics
information of the execution time of the applications as well as
their executing environments. This paper is an extension of
our previous work in [12].

2 Related Work

QoS is very important for cloud computing [13]. Much
research has been done to improve the QoS for cloud software
services providers [1, 14, 23], such as broker-based QoS
frameworks [32], QoS aware networks [6, 28], extensions of
the UDDI data structure or SOAP to include QoS specific
information, and QoS-enabled cloud computing services [8].

Many researchers have developed and implemented tools to

mailto:jguo@calstatela.edu

IJCA, Vol. 26, No. 2, June 2019 75

manage the performance of Java-based applications [18, 21,
31]. VERITAS Indepth focuses on the bottlenecks between
the middle tier and the database. Quest Central emphasizes
performance tuning and optimization of Java application
codes. JDBInsight aims at simplifying the performance tuning
and testing of applications, which access data through the Java
Database Connectivity (JDBC) API. The Dirig Application
Performance Platform (APP) looks at the business perspective
of multi-tiered applications. DiagnoSys provides users with
detail information about software component performance at
the enterprise level [11].

Marshall provides a list of available tools [22] for QoS. In
his list, most tools focus on CPU, memory, and basic JVM
monitoring, such as the NetBeans Profiler, the VisualVM, the
Eclipse Memory Analyzer, and the JProfiler. The NetBeans
Profiler is part of NetBeans IDE. However, the JProfiler does
not monitor JVM. The VisualVM is based on the NetBeans
platform. It also supports garbage collection monitoring. The
GC Viewer provides visualization of data generated by built-in
Java functions, such as garbage collection. The Eclipse
Memory Analyzer analyzes Java heaps while the Java
Interactive Profiler supports basic profiling. The Profiler4j
focuses CPU and remote profiling and the Java Performance
Analysis Tool (Patty) analyzes method execution and code
coverage, based on memory and CPU usage. Finally, the
JRockit supports JVM profiling and monitoring; it also has
diagnostic features.

Our solution focuses on performance management,
especially overall performance data collection and analysis. It
is quite different from those tools mentioned above. Also, our
solution supports data normalization and analysis. Our data
visualization is based on the UML sequence diagram. It is
easier for developers to notice the red flag issues. Our
approach is based on JVM modification and provides users
more flexibility to control the JVM code instrumentation. In
our solution, the users also can turn on/off the instrumentation.
This approach will not only help developers to find operational
problems in order to improve performance, but also helps
administrators to deploy the application and configure the
system and balance the computing load to reach the best
performance. Some researchers have focused on building
Java-based software service performance tools to evaluate the
performance of large-scale systems to support optimization.
But, many of these tools have some overhead; some tools rely
on existing software; and some tools focus on specific parts of
the applications.

3 The Software Structure of the JPManager

The JPManager is a software tool we designed and

implemented specifically to support the performance
management of Java-based software services. It provides all
the critical support to collect and analyze the performance
information for Java-based private cloud applications.

Performance management can be used at two phases: the
development phase and the production phase. At the
development phase, the performance management tools can

help developers to uncover the root cause of the performance
problems and improve the software development to meet the
customers’ performance requirements. At the production
phase, the performance management tools can help
administrators to configure the software deployment and
hardware configuration and balance the computing power and
computing load among the different cloud software services in
the production environments. The JPManager supports
developers and administrators at both phases. It is a
configurable and unloadable software system. That means that
administrators can unload the system after they tune the
performance as desired and then deploy the cloud-based
software service applications. So, the approach will produce
less overhead to the applications in the production
environment.

The JPManager uses a multi-tier and distributed architecture
to support the performance management needs of Java-based
private cloud applications. It allows developers and
administrators to collect and analyze runtime information of
the applications. It not only helps developers to find out the
bottlenecks automatically, but also allows developer to specify
the performance information they want to collect and analyze
if they have special needs. At the performance collections
level, the developers can easily use a profile file to specify:

(1) The types of methods and classes needed to be

monitored during execution;
(2) The methods and classes needed to be monitored; and
(3) The metrics information needed to be collected for each

method and class.

All components in the JPManager are integrated to complete

the task of performance information collection and analysis.
At the lowest layer are the Data Collection Agents. These
agents are responsible for inserting Java probes into the
application code and collect the performance data as the
software services are executed. Then the Data Collection
Agents forward the performance data to the middle layer, the
JPManager Server, which maintains a database as the
centralized log data system. The JPManager stores and
manages all the performance data to make them ready for
analysis agents to use. The highest level is the Analysis Agent,
which is responsible for analyzing the performance data and
displaying the dynamic analysis and measurement information
to the developers and administrators according to their needs
and configuration.

The JPManager enable users to control the Java
instrumentation easily. The application components and
component structure are automatically discovered according to
the users’ instrumentation profile. Thus, the Data Collection
Agents can monitor the software services and application
execution environment continuously and make adjustments
according to the users’ requirements. Also, the “byte-code”
instrumentation technology used by the JPManager can
perform the instrumentation of the third-party Java
components, which are the classes retrieved from remote sites,
to evaluate the individual component’s performance

76 IJCA, Vol. 26, No. 2, June 2019

consistently and overall system performance seamlessly. The
byte code instrumentation logs specific events of the
application and execution environment during its execution,
such as method calls and object instantiations.

An instrumentation task for a given cloud service includes
two main steps. The first step is to specify the components of
an enterprise level application to be evaluated, such as methods
in a package. The second step is to specify the types of
methods or classes to be instrumented, such as a method’s
entry and exit, and the information will be collected for each
method or class, such as time stamps. A composite
instrumentation task contains several small instrumentation
activities. In this way, the users can collect run time
information from the different components of the tested
application.

The JPManager provides performance data to help
developers and administrators to monitor and analyze the
bottlenecks of the systems accurately and quickly.
Performance data of the components and systems are
visualized for users to identify the performance bottleneck
easily. The JPManager uses an UML sequence diagram-based
display technology to help users to track the interactions
between the objects and the components. This type of time
stamp-based performance information greatly helps developers
and administrators to uncover performance problems and
unearth the exact location of the bottleneck in the applications.

To evaluate the performance and unearth the bottlenecks of
Java-based services, the major function of the Data Collection
Agent (DCA) is to extract the performance information, such
as response time, execution and latency of the components,
objects, and methods, from the services implemented in Java.
A DCA runs on the software services executing platforms (See
Figure 1). The DCA works very well on most available Java-
based platforms, application servers, JDBC APIs and database
servers, such as Apache Web Server, Tomcat Application
Server, JBoss EJB Containers, BEA’s WebLogic, IBM’s
WebSphere, and IBM’s Cloudscape.

4 Our Dynamic Java Instrumentation Approach

A DCA runs in the JVM memory space (Figure 2). The Java
instrumentation can be implemented as either static or
dynamic.

In the static approach, we can read through the program to
be instrumented and generate a properly instrumented program
to implement an instrumentation task, based on the
instrumentation profile. In this approach, the source code of
the Java-based services will be changed before they are
compiled. It is a completely intrusive approach. The probe
codes will be inserted into the source before and after the
method called or before and after the object creations to log the
response time, execution and latency. Then, the instrumented
program can be compiled and executed, and the execution
information will be extracted and logged. Based on the logged
performance data, performance analysis agents can evaluate
the application performance and find the bottlenecks.

However, this static approach has some problems that limit
its applicability. The first issue is the overhead; the execution
time and response time might not be accurate because of the
side-effect of the inserted code. The second issue is the source
code; if the source codes are not available, then this approach
cannot be used. This means we cannot obtain the performance
data of the third-party classes retrieved from the remote site.
We also cannot obtain the performance data in the operating
environment. The third issue is real-time evaluation;
developers and administrators cannot change the
instrumentation profile and the performance monitor tasks at
run time because the application codes need to be inserted and
compiled before the performance data can be logged. Because
of these issues, we cannot obtain the overall and detailed
performance information for the Java-based services with this
approach. Because of these issues we discussed above, we did
not use this approach in our JPManager design and
implementation.

Instead, we use a dynamic approach in our system design for

Data Collection Agent

JPM
anager Server (Perform

ance Data Storage and Analysis)

Data Visualization
Agent

Cloud
Third Party Classes

Cloud
Third Party Classes

Local Class

Local Class Services from
Cloud Classes

Services from
Cloud Classes

Cloud Service Based System

Figure 1: The structure of the JPManager

IJCA, Vol. 26, No. 2, June 2019 77

Data Collection Agent
Classes

Standard Java Virtual Machine

Classloader
Modification

Instrumentation
Configuration

Instrumentation Profile

Services From
Local Classes

Services from
Cloud Classes

Services from
Cloud Classes

Services From
Local Classes

Java Based Solution Execution Environment
(Tomcat, WebLogic...)

Modified Java Virtual Machine

Metrics Information

Figure 2: Two JVM structures of the DCA

the JPManager; the DCA instruments the probe code into the
byte codes (class files) of the Java-based services dynamically
when the byte codes are loaded into the JVM and are executed
(interpreted). This means that when the Java byte codes are
loaded during execution, a specialized ClassLoader will be
used. This dynamic approach is very flexible and convenient
if users change the instrumentation frequently. This approach
completely solves the problems found in the static approach.
Thus, we used this approach in our JPManager.

In our dynamic instrumentation approach, when the Java
Virtual Machine (JVM) loads and executes a Java class of
Java-based services, the DCA uses a profile file to construct an
Instrumenter to capture the data of the software service
performance metrics, such as the timestamp before and after
the execution of a method. When the JVM loads the classes
into the JVM memory space, the probe codes are inserted into
the class byte codes. This task is performed based on the
Metric Provider Class. This class has the information of the
metrics and knows what data the DCA needs to collect. This
class also has a method to make adjustments in the metrics,
based on the instrumentation profile, which is an XML file that
can be changed by the users.

The instrumentation profile is an XML file. It is used for
configuring the instrumentation location, such as packages and
classes. It allows users to configure the instrumentation at
runtime, since the information is only used when the class
loader is changed. Our approach can probe the method calls
specified in the instrumentation profile, based on the users’
requirement, such as entry and exit of a method, before and
after a method call.

To build a new cloud-based enterprise wide system,
developers must decompose the large system into subsystems.
This decomposition process includes functional decomposition
and non-functional decomposition. The timing constraint is a
part of the non-functional decomposition. As the system
architecture is defined, system performance has to be verified.

At the detail design phase, the lower level decomposition is
finished and system performance is allocated to its
components. The timing contingency at the component level
is established. The developers can specify the instrumentation
points and verify that the performance of its components meet
the constraints.

For existing systems, developers can extract dependency
models from the system. Based on dependency analysis, a
critical path can be specified. The instrumentation points on
the critical path can be checked. Based on the data collected at
the instrumentation points, developers can improve algorithms
of the methods and therefore system performance.

The selection of instrumentation points is a challenge. This
depends on experience and intuition. However, dependency
models, statistics, and analysis are always helpful.

When a class is loaded into the JVM space, the DCA parses
its byte codes to determine if the class needs to be monitored.
If it is, the DCA will create an Instrumenter to collect the
metrics of the class.

In our dynamic approach, the third-party classes, such as the
classes retrieved from a remote site, can also be monitored
easily since the probe codes are inserted into byte code instead
of source code. In this approach, the monitoring of classes and
methods can be configured dynamically at run time since the
application classes do not need to be re-compiled. The byte
code instrumentation approach also greatly increases the
performance management power, not only the classes of
applications, but also the classes of the execution environment
can be monitored.

To manage the performance of Java services, we need to
collect different types of dynamic information of the
application program executions, such as execution time of
methods, response time of the APIs, and latency of retrieving
components from remote sites.

In order to discuss our dynamic Java instrumentation, we
need to discuss how the class byte codes are loaded into the

78 IJCA, Vol. 26, No. 2, June 2019

JVM space. The Java Virtual Machine (JVM) has three major
components: Class loaders, Class file verifier, and Execution
engine.

The class loader is one of the three important components in
the JVM. It is also the most important part in our Java
instrumentation approach. From the class loader delegation
architecture, we can see that all of the classes are loaded by the
primary class loader.

This means that we can implement our Java instrumentation
by dynamically modifying the running class loader – the
Primary Class Loader. Thus, we designed an approach to
change the primary class loader. We consider this approach as
class loader modifying. That means that we implement
additional features in the primary class loader after it is loaded
in the memory by the JVM. Therefore, we can implement our
Java instrumentation tasks by changing the Primary Class
Loader; we describe this as Primary Class Loader modifying.

When considering implementing the Java instrumentation,
we need to focus on the Java instrumentation to be performed
to a specific code construct. These code constructs might be
the method calls that are specified by the users in the
instrumentation profile file.

The DCA collects run time information of each class or
method to be monitored. For example, the metrics information
that a method call can be collected includes the information of
the target object and all of the parameters passed to the
invoked method. Also, the time stamps of the method entry
and exit can be logged.

5 Data Collection and Implementation

When the classes are loaded into the JVM space, the DCA
instruments the classes at the byte code level. All the

instrumentation locations are based on an instrumentation
profile file. Figure 3 is a dataflow diagram of a DCA
execution. The DCA uses a dynamically changed class loader
to load the classes to be instrumented and implements the
instrumentation based on a configuration profile file. The
classes that are not to be monitored will be loaded normally.
As the JVM executes the probe codes that are instrumented in
the Java classes, dynamic information, such as time stamps, is
logged and saved into the database. Then, the JPManager
server processes the collected dynamic data.

The dynamic instrumentation of the Java byte code is
implemented in four steps by modifying the Primary Class
Loader (see Figure 4).

The dynamic instrumentation of the Java byte code is
implemented in four steps by modifying the Primary Class
Loader (see Figure 4).

(1) Execute a DCA in a standard JVM. During this step, a
standard JVM is launched. A DCA is loaded and executed in
the JVM memory space.

(2) The DCA uses an XML-based instrumentation profile to
modify the standard ClassLoader. This step is patching the
ClassLoader and instrument code according to the user’s
configuration. At this step, the system takes two actions.

First, the DCA needs to locate the correct class loader – the
primary class loader – to modify. This class loader is an object
that is responsible for loading all the classes in the delegation
architecture of class loaders, as discussed above. In the
delegation architecture, this class loader class searches for
classes and resources in the local paths specified in the system
environment variables or in the network class path specified in
the URLs. It is the virtual machine’s built-in class loader and

Instrumentation
Profile

Data Collection
Agent Classes

JVM Execution
Engine

Performance
Metrics

Information

Third Party Classes
in Cloud

Local Classes

Modified Class
Loader

Java Virtual Machine

Figure 3: Java instrumentation data flow

Execute DCA in a Standard
Java Virtual Machine

Use Instrumentation Profile to
Modify the ClassLoader

Launch another JVM with
Modified ClassLoader and Execute
Java Services in the Modified JVM

Extract Data and Send them
to Database

Figure 4: Implementation of instrumentation by the modifying primary class loader

IJCA, Vol. 26, No. 2, June 2019 79

is the system class loader for all the classes to be instrumented.
The system uses the ClassLoader.getSystem

ClassLoader() to find the right ClassLoader to patch. A
delegation model is used to find the classes and resources. In
this delegation model, each ClassLoader has a parent class
loader. The ClassLoader searches through the delegation
model to find the class or resource requested. The virtual
machine has a standard class loader as the parent of a user-
defined ClassLoader. The Java language provides a method
getSystemClass Loader()to acquire the standard class
loader.

Second, the DCA modifies the primary class loader
according to the user-defined instrumentation profile. After
the modification of the JVM’s built-in class loader, it will
work in the desired way. Here, the most important information
is the instruction list of the class loader. Then, we can employ
the defineClass method. When the JVM loads the classes,
all the classes will go through this defineClass method. In
this method, the DCAs insert a call to invoke our class tracer.
Our tracer will insert the probe byte code into the class byte
codes when they are loaded into the JVM space.

The DCA uses an instrumentation profile to customize the
ClassLoader. The method ClassLoaderPatcher()
is used to change the standard ClassLoader into a
customized loader.

(3) Construct another JVM with the modified class loader
and execute Java-based services in the modified JVM. During
this phase, we use the modified primary class loader and
redefine the class approach to create a new JVM. Then, the
application classes will be loaded and executed in the newly
generated JVM.

The system creates another JVM with the modified
ClassLoader and executes the software service in the changed
JVM. The method vm.redefineClasses() can be used
to launch another JVM. In fact, the JVM memory space is still
the same. It only uses the modified ClassLoader to load the
software service classes.

The interface VirtualMachine can be used to control the
execution of a VM virtual machine. It can be used to retrieve
the global VM attributes and manage the VM execution.
Normally, a system built-in method, Connector, is used to
create a VM object. The system built-in method
redefineClasses provides the ability to replace the
standard ClassLoader with the patched ClassLoader during the
execution of the software services and applications.

Here, we use a Java Platform Debugger Architecture
mechanism to control the execution of a virtual machine. We
use this mechanism to access the attributes of the JVM and
control the execution of the VM. The redefine class approach
allows us to replace a class file dynamically at running time.
This means a class can be updated while it is running. In our
Java instrumentation approach, our DCA uses this approach to
replace the primary class loader definitions with our modified
class loader that we used in Step 2. In this step, the standard

class loader is replaced by our patched class loader during the
execution of the applications. One of the concerns of
substituting a running class is the execution continuity issue.
The good thing is that our dynamic approach does not cause
any initialization. In other words, while redefining a class, the
JVM will continuously execute the class instead of executing it
from the beginning. So, the execution of the class loader will
not be interrupted. Then, our modified class loader loads the
software service and application classes. In this way, the
behaviors of all the classes can be changed and allows the
DCA to instrument the logging code into the byte code of the
Java-based software services and applications.

After the primary class loader is substituted by a user
patched class loader, the new Virtual Machine needs to be
launched. The Virtual Machine Manager can be used for the
VM just created. Then, the launch method is used to load the
classes of software service and application and execute them.

(4) While the software service classes are loaded into the
JVM space, our modified class loader will insert the probe
codes into them. In this way, when the execution engine
executes the classes, the run time information will be logged.
Then, the run time metrics information is stored in the
database. Afterwards, the JPManager Analysis Agent accesses
this information, performs a normalization procedure, and then
locates the bottlenecks of the systems.

6 Dynamic Execution Consistency Analysis

In this section, we summarize our analysis of the Java
instrumentation approach from the dynamic execution
consistency point of view. Our approach will keep the
dynamic execution consistency after the Java instrumentation.

In order to guarantee that our Java Instrumentation keeps the
dynamic execution consistency, we need to exploit the
execution of the Java program, ε(p). ε(p) is an execution
process of a Java program. From the execution point of view,
there should be no side effects. That means that the
instrumentation should have ε(π(p)) = ε(p). Thus, we need an
execution model to explain how to execute programs and
generate outputs. In this execution model, a Java object can be
represented as a relation between Java programs p and its
execution ε(p).

We can verify the program dynamic consistency by
examining the object state space in the Java program, since the
object state change is a result of the method calls.

The program dynamic consistency can be classified as:

• State consistency, which requires that every variable value
should be same before and after the Java instrumentation.

• Method call consistency, which requires that the temporal
relationships between method calls should be the same before
and after the Java instrumentation.

We can use pre-condition and post-condition to verify our
Java instrumentation will not produce a side effect on an object

http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/com/sun/jdi/VirtualMachineManager.html

80 IJCA, Vol. 26, No. 2, June 2019

state. The pre-condition states must be true before the method
is called and post-condition states must be true after the
method is executed.

The Appendix provides the details for our dynamic
execution analysis. It suffices to say that the software tool that
we have developed neither changes the state of any object nor
the order of method calls. That is, from the analysis of the
relative order between the timestamps of method calls, we
know that our Java instrumentation keeps the execution
consistency. That means our dynamic approach does not
change the behavior of the application systems and there is no
side effect to the Java-based software services.

The timestamp based dynamic execution consistency analy-
sis confirms that the software services function consistently
before and after the Java instrumentation, no matter what Java
class code is loaded from a local machine for a third-party
server. That means that our performance management system
will not change the software services execution.

7 Case Study and Experiment

In this section, we discuss the experiment of using the
JPManager to collect and visualize the performance data of a
sample system. In this case study, the JPManager collected the
metrics information of the methods calls in a software service-
based application. This sample system is a cloud-based store
management application. In this application, we use Java
service components. For the execution environment, Apache
Tomcat is used as the web server and BEA’s WebLogic is used
as the application server. For data persistence, IBM’s
Cloudscape is used. It is a pure Java-based database.

In order to test the JPManager, we need to run the DCA and
Analysis Agent. The execution of the Data Visualization
Agent of the JPManager is shown in Figures 5 and 6. In the
view windows, the overview execution of the application is
displayed. The execution information is displayed in two
panes of the Visualization Agent window. The methods that
have already been completed are displayed in the left pane.
Some methods may be called multiple times. When a plus (+)
icon before a method is clicked, the calling number appears
after an icon in the line below. Its value is an integer starting
from zero. A zero indicates that that method is called once.
When that number is clicked, in the right pane, the method
associated with the execution information appears. We use a
UML style sequence diagram to display the information of the
executed methods.

In the right pane, the sequence diagram shows the logic
control, the method call, and the execution sequence of the
application systems. It displays the information of interaction
and message exchange between software application objects.
In this way, it will help the developers and administrators to
figure out which methods take too much time. The sequential
of execution of the methods is shown along the vertical line,
which is called the time line. The method calls are displayed
as the horizontal arrows, which displays the sending and
receiving messages between the methods. Along the vertical
time line; the red and green thick lines are the methods
involved during the application execution. On the method
execution vertical line, “>” indicates the start point of a
method and “<” indicates the end point. The bold labels show
the method names. If a method execution line is green, it
means the method execution time is within the expectation

Figure 5: Execution of the Java-based software services without bottleneck

IJCA, Vol. 26, No. 2, June 2019 81

Figure 6: Execution of the Java-based software services with bottlenecks

requirements. The red line means the method call uses more
time than expected. It might be a potential bottleneck of the
application. The method should then be examined to improve
its performance.

To implement automatic analysis of bottlenecks precisely,
we not only need to analyze the data collected about the past,
but we also need to analyze the data collected from other
projects, especially the projects that are in the same or similar
application areas. Therefore, our automatic analysis is based
on a historical investigation of past projects [10].

In our system, we use ∆T = τafter(m) - τbefore(m) to represent
timestamp difference. ∆T metrics is the time that is needed for
execution of a specific method. Thus, the ∆T metrics collected
for projects may vary from project to project. Since the ∆T
metrics might be different for different projects, we need to use
a statistic approach for the general and valid trend of ∆T.

We use a graphical technique to estimate if a specific point
is a bottleneck, based on ∆T metrics data, which is called the
control chart [25] [33]. This technique enables us to determine
if ∆T has significant variability, meaning that there might be a
bottleneck. We also can use this technique to determine if ∆T
is in the moving average, compared with other similar projects.
Here, we use the moving range control chart to assess the
metrics data for ∆T.

To illustrate the control chart approach, let us assume the ∆T
metrics data are collected from 12 similar projects, as shown in
Figure 7. In the figure, ∆T varies from a low of 300 for Project
12 to a high of 800 for Project 5.

Since ∆T is the difference of the execution of a certain
method, it is measured in ms, ∆T*1000, making it easier to
display and understand.

Then, we can use Richard Zultner’s approach [25] [33] to
develop a moving range (mR) control chart to determine the
time expected, as follows:

(1) Calculate the differences of ∆T between each pair of
successive data points; then we obtain the moving ranges for
the chart.

mRi = |∆Ti – ∆Ti+1| (i = 1, …n)

(2) Calculate the average value of the moving ranges, and
then we find the mR bar, which is the center line on the chart.

∑= imR
n

mRAvg 1)(

Using the data represented in Figure 7, we have a mR control

82 IJCA, Vol. 26, No. 2, June 2019

Figure 7: ∆T for 12 similar projects

Figure 8: mR control chart

chart shown in Figure 8. The mR bar value for the moving
range data is 2.1. The upper control limit is 6.86.

If the value of ∆T for a project is inside of UCL, then there is
no bottleneck and the performance is acceptable.

∆T < UCL

The goal of using Richard Zultner’s approach to normalize
the data is to analyze the performance data independent of the
project order. The mR bar has no relation with the order of
data points in Figure 7. Therefore, the order of data points
does not affect the analysis results.

For Java programs, we can collect deep level information,

such as method and class level execution information, by
implementing code instrumentation.

Finally, to reiterate, the JPManager is a configurable and
unloadable software system. This implies that administrators
can turn off the Java instrumentation after they tune the
performance of the system and deploy the cloud-based
software service applications. So, this will not affect the
performance of system significantly.

8 Conclusions

The Java-based software service is widely accepted in
industry supported by many large companies such as IBM,

∆T * 1000

IJCA, Vol. 26, No. 2, June 2019 83

Oracle, BEA. This service becomes more and more popular
because of its interoperability, portability, scalability,
availability, and openness. Further, private cloud computing
technologies are used more and more in enterprise level
software development.

However, the potential of software as a service has not been
fully utilized. As Java-based software service applications are
used in more and more different domains and areas, the
performance management of these types of applications will
become more and more important and the performance metrics
that Java-based software service applications must manage will
affect the performance of the entire IT infrastructure
performance. It will also be a key component that needs to be
optimized.

Currently, most commercial Java-based tools focus on
service transactions areas, such as database servers, directory
services, and application servers. Most of them do not support
continuous and deep level monitoring and analysis for the
Java-based software service components and APIs. So, they
do not have the ability to manage the performance of
applications and cannot help developers and administrators to
fix the performance problems or optimize the balance of the
system loads. Our Java instrumentation-based approach
provides a solution to implement the performance management
of Java-based software service applications. Our Java
instrumentation approach is to insert the probe codes at the
byte code level. It works very well not only for users
developed Java source code, but also for third-party byte code,
even the class byte codes retrieved from remote sites.

In our tool, the performance metrics data is visualized in
UML sequence diagrams to help users to detect the
performance bottlenecks in the software services and
application systems. Other features, such as state monitoring
and thread monitoring, are under investigation as future
research.

Acknowledgements

The work was supported in part by the NASA under grant
NNX15AQ06A

References

[1] A. Abdelmabouda, D. Jawawia, I. Ghania, A. Elsafia,
and B. Kitchenhamb, “Quality of Service Approaches in
Cloud Computing: A Systematic Mapping Study,”
Journal of Systems and Software, 101:159-179, March
2015.

[2] T. Ahmed, C. Bezemer, T. Chen, A. Hassan, and W.
Shang, “Studying the Effectiveness of Application
Performance Management (APM) Tools for Detecting
Performance Regressions for Web Applications: An
Experience Report,” Proceedings of the 13th
International Conference on Mining Software
Repositories, Austin, Texas, pp 1-12, May 2016.

[3] Y. Amannejad, D. Krishnamurthy, and B. Far, “Detecting
Performance Interference in Cloud-Based Web

Services,” 2015 IFIP/IEEE International Symposium on
Integrated Network Management (IM), Ottawa, ON,
Canada, May, 2015.

[4] D. Ardagna, G. Casale, M. Ciavotta, J. Pérez, and W.
Wang, "Quality-of-Service in Cloud Computing:
Modeling Techniques and Their Applications,” Journal
of Internet Services and Applications, 5:11, 2014.

[5] W. Binder, P. Moret, É. Tanter, and D. Ansaloni,
"Polymorphic bytecode instrumentation", Software:
Practice and Experience, 46(10):1351-1380, October
2016

[6] D. D’Agostino, A. Galizia, An. Clematis, M. Mangini, I.
Porro, and A. Quarati, “A QoS-Aware Broker for Hybrid
Clouds,” Computing, 95(1):89-109, May 2013.

[7] E. Demin, V. Dubinin, and S. Patil, “Automation
Services Orchestration with Function Blocks: Web-
Service Implementation and Performance Evaluation,”
Service Orientation in Holonic and Multi-Agent
Manufacturing, pp 213-221, March 2016.

[8] A. Eleyan and L. Zhao, “Extending WSDL and UUDI
with Quality Service Selection Criteria,” Proceedings of
the 3rd International Symposium on Web Services, pp 1-
10, April 2010.

[9] J. Frenzel; K. Feldhoff, R. Jaekel, and R. Mueller-
Pfefferkorn, “Tracing of Multi-Threaded Java
Applications in Score-P Using Bytecode
Instrumentation,” 31th International Conference on
Architecture of Computing Systems, ARCS Workshop,
Braunschweig, Germany, April, 2018

[10] J. Guo, “Towards Automatic Analysis of Software
Requirement Stability,” Advances in Information
Sciences and Service Sciences, 2(1):33-42, March 2010.

[11] J. Guo, Y. Liao, and B. Parviz, “A Survey of J2EE
Application Performance Management Systems,”
Proceedings of the 2nd IEEE International Conference
on Web Services, San Diego, California, USA, pp 724-
731, July 2004.

[12] J. Guo; Y. Liao; and B. Parviz, “A Performance
Validation Tool for J2EE applications,” Proceedings of
13th Annual IEEE International Symposium and
Workshop on Engineering of Computer Based Systems,
pp 387-396, March 2006.

[13] I. Gupta, J. Kumar, and P. Rai, “Optimization to Quality-
of-Service-Driven Web Service Composition using
Modified Genetic Algorithm,” 2015 International
Conference on Computer, Communication and Control
(IC4), Indore, India, September, 2015.

[14] P. Hershey, I. Raytheon, S. Rao, C. Silio, and A.
Narayan, “System of Systems for Quality-of-Service
Observation and Response in Cloud Computing
Environments,” IEEE Systems Journal, 9(1):212-222,
January, 2014.

[15] F. Horváth, T. Gergely, Á. Beszédes, D. Tengeri, G.
Balogh, T. and Gyimóthy, “Code Coverage Differences
of Java Bytecode and Source Code Instrumentation
Tools,” Software Quality Journal, 27(1):79-123, March,
2019.

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/l/Liao:Yuehong.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/p/Parviz:Behzad.html

84 IJCA, Vol. 26, No. 2, June 2019

[16] H. Jayathilaka, C. Krintz, and R. Wolski, “Response
Time Service Level Agreements for Cloud-Hosted Web
Applications,” Proceedings of the Sixth ACM Symposium
on Cloud Computing, Hawaii, pp 315-328, August, 2015.

[17] G. Kang, M. Tang, J. Liu, X. Liu, and B. Cao,
“Diversifying Web Service Recommendation Results via
Exploring Service Usage History,” IEEE Transactions on
Services Computing, 9(4):566-579, July, 2016.

[18] S. Kumari and S. Rath, “Performance Comparison of
SOAP and REST Based Web Services for Enterprise
Application Integration,” 2015 International Conference
on Advances in Computing, Communications and
Informatics (ICACCI), Kochi, India, August, 2015.

[19] L. Lee, C. Peng, and C. Fan, “An Empirical Study of
Service Quality: Web Service Business Transformation,
International Journal of Computational Science and
Engineering, 12(1):58-64, February, 2016.

[20] S. Li, J. Wen, F. Luo, M. Gao, J. Zeng, and Z. Dong, “A
New QoS-Aware Web Service Recommendation System
Based on Contextual Feature Recognition at Server-
Side,” IEEE Transactions on Network and Service
Management, 14(2):322-342, June, 2017.

[21] Y. Ma, X. Liu, Y. Liu, Y. Liu, and G. Huang, “A Tale of
Two Fashions: An Empirical Study on the Performance
of Native Apps and Web Apps on Android,” IEEE
Transactions on Mobile Computing, 17(5):990-1003,
September, 2017.

[22] A. Marshall, https://blog.idrsolutions.com/2014/06/java-
performance-tuning-tools/, 2014

[23] V. Nallur and R. Bahsoon, “A Decentralized Self-
Adaptation Mechanism for Service-Based Applications
in the Cloud,” IEEE Transactions on Software
Engineering, 39(5):591-612, 2013.

[24] NASA’S Progress in Adopting Cloud-Computing
Technologies, Report No. IG-13-021 (Assignment No.
A-12-022-00), July 29, 2013.

[25] R. Pressman, Software Engineering: A Practitioner's
Approach, Fifth Edition, McGraw-Hill, 2001.

[26] V. Saini and A. Singh, “Java Byte Code Instrumentation.
International Journal of Advance Research, Ideas and
Innovations in Technology, 4(2):2170-2190, 2018.

[27] M. Sarrab, “Bytecode Instrumentation Mechanism for
Monitoring Mobile Application Information Flow,”
International Journal of Security and Networks,
10(3):191-206, 2015.

[28] M. Tajiki, B. Akbari, and N. Mokari, “Optimal, Qos-
Aware Network Reconfiguration in Software Defined
Cloud Data Centers,” The International Journal of
Computer and Telecommunications Networking,
120(C):71-86, June, 2017.

[29] S. Umatani, T. Ugawa, and M. Yasugi, “Design and
Implementation of a Java Bytecode Manipulation Library
for Clojure,” Journal of Information Processing,
23(5):716-729, 2015.

[30] X. Wang, J. Zhu, Z. Zheng, W. Song, Y. Shen, and M.
Lyu, “A Spatial-Temporal QoS Prediction Approach for
Time-aware Web Service Recommendation,” ACM
Transactions on the Web (TWEB), 10(1):1-25, February,
2016.

[31] F. Yin, D. Dong, S. Li, J. Guo, and K. Chow, “Java
Performance Troubleshooting and Optimization at
Alibaba,” 2018 IEEE/ACM 40th International
Conference on Software Engineering: Software
Engineering in Practice Track (ICSE-SEIP) Date of
Conference, Gothenburg, Sweden, May, 2018.

[32] T. Yu and K. Lin, “A Broker-Based Framework for QoS-
Aware Web Service Composition,” Proceeding of IEEE
International Conference on e-Technology, e- Commerce
and e-Service, Hong Kong, China, pp 22-29, March
2005.

[33] R. Zultner, “What Do Our Metrics Mean?” Cutter IT
Journal, 12(4):11-19, 1999.

Jiang Guo is a Professor of Computer
Science currently at California State
University Los Angeles. Prior to joining
California State University in 2001, he
worked as a Research Associate of the
United States National Research
Council from 1998 to 2000. Dr. Guo's
research areas include software
engineering, context-aware systems, and
data science. He received the best paper
award at the 11th International

Conference on Software Engineering and Knowledge
Engineering. Dr. Guo was selected as a NASA Space Grant
Fellow in 2008 and 2009 and worked at NASA AMES
Research Center, Jet Propulsion Laboratory and Kennedy
Space Center.

Yuehong Liao is a manager of software
engineers at Virtu Financial. She has
more than 20 years of experience in
software development as well as a
Master of Science degree in Computer
Science. Before Virtu Financial, she
held positions as vice president,
software architect, and principal
software engineer at Investment
Technology Group and Arinc.

https://blog.idrsolutions.com/author/alex/
https://blog.idrsolutions.com/2014/06/java-performance-tuning-tools/
https://blog.idrsolutions.com/2014/06/java-performance-tuning-tools/

IJCA, Vol. 26, No. 2, June 2019 85

Appendix

In general, a Java program execution can be described as
execution of a set of objects. So, a program can be described

as: ε(p) =
n

i
io

1=

. Here
n

i
io

1=

are all the objects generated

during the execution of Java program p.
Each object oi can be described by a six-tuple Ω = (S, s0,

Mcall, T, δ), where

(1) Ω is oi life space

(2) S is a finite set of states of object oi, S =
m

i
is

1=
(3) s0 is a single start state of the object s0 , this state is

usually created by new.
(4) Mcall is a set of method calls; the method calls enable the

object transition from one state to another state. In the
meanwhile, the method is executed when the transition
occurs,

Mcall =
m

i

im
1

call
=

.

(5) T is a set of valid timestamps, T =
m

i
i

1=

τ .

(6) δ is a transition: [S×Mcall, T] [S, T]. For example, at
time t0, if the state of an object is s0 and the object
received a message and there is a method call mcall0,
then at time t1, the state of the object will be s1 after the
method execution finishes. We have [s0×mcall

0, τ0]
[s1, τ1]

Object states are identified by their attribute values at a
specific time. Therefore, an object can have one or more states
at a different timestamp τi. So, we can use the state transition
to track the attribute value change of objects in a program. In
this way, we can capture the side effects of our Java
instrumentation, if there are any. If the state changes, the
method calls may produce different results even though the
method static property is not changed by the Java
instrumentation.

Since the interactions between the Java objects are actually
method calls, a Java program can be modeled as a sequence of
method calls. The program execution is a set of ordered
method calls {mcall

1, mcall
2, mcall

3, …, mcall
n} in correspondence

with a set of object states {s1, s2, …, sn}. The program
execution proceeds as follows: an object executes each method
call in the program and produces a corresponding state
transition. This continues until all calls in the program have
been executed and calls are finished, in which case the
execution ceases at that stage.

The state si at position i in the object state sequence
represents the effect that the ith method call will have in the
program sequence before the Java instrumentation and after the
Java instrumentation. We use state-timestamp tuple (si, τi) to
represent an object state is si at time stamp τi. Then, all the
state-timestamp tuples consist of a partially ordered set:

S-T = {(s1, τ1), (s2, τ2), (s3, τ3), …, (sn, τn)}

The object state transition is:

),(),(jj
M

ii ss
i

call ττ →

We define the relation between the two elements of (sx, τx)
 (sy, τy) as τx τy and the timestamp is linear. So, we have

following conditions satisfied in S-T:

• Reflexive: ∀x [x ∈ S-T (sx, τx) (sx, τx)]
• Transitive: ∀x, ∀y, ∀z [(sx, τx) (sy, τy) ^ (sy, τy) (sz, τz)
 (sx, τx) (sz, τz)]

• Antisymmetric: ∀x, ∀y [(sx, τx) (sy, τy) ^ (sy, τy) (sx,
τx) (sx, τx) = (sy, τy)]

In this way, we can verify the program dynamic consistency
by observing the object state space in the Java program; we
note that the object state change is a result of the method calls.

If we use α to represent the pre-condition and β to represent
the post-condition, then we have: {α} mcall

i {β}, where α must
be true before the method call mcall

i is called. It can be used to
detect the violation of the pre-condition, and β must be true
afterwards. It guarantees that the behavior of the method call
mcall

i satisfies an expectation.
If we define the timestamp τ(m) “before” the method call

mcall as τbefore(m) and the timestamp “after” the method call
mcall as τafter(m), then we have Java instrumentation in method
m: π(m) is {α} mcall

i {β} and (τbefore(m) ∧ α} mcall
i {τafter(m) ∧

β} and we also have: {α} (π(m))call
i {β} and (τbefore(π(m)) ∧ α}

(π(m))call
i {τafter(π(m)) ∧ β}

To verify the temporal relationships between the method
calls, we need to collect the method call sequence. The
method calls during an execution of a program is a sequence.
We define it as {mcall

1, mcall
2, mcall

3, … , mcall
n }. If we use

τ(mcall
i) to represent the timestamp of method call mcall

i, then
we have a partially order sequence: τ(mcall

1) τ(mcall
2)

τ(mcall
3) …. τ(mcall

n).
Our Java instrumentation will not change the order of the

method call sequence that must satisfy the condition:

∀i, ∀j [(τ(mcall
i) τ(mcall

j)) (τ(π(mcall
i)) τ(π(mcall

j)))]

Instructions for Authors

The International Journal of Computers and Their Applications is published multiple times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.

A. Procedure for Submission of a Technical Paper for Consideration:

1. Email your manuscript to the Editor-in-Chief, Dr. Fred Harris, Jr. Fred.Harris@sce.unr.edu.
2. Illustrations should be high quality (originals unnecessary).
3. Enclose a separate page for (or include in the email message) the preferred author and address for correspondence.

Also, please include email, telephone, and fax information should further contact be needed.

B. Manuscript Style:

1. The text should be, double-spaced (12 point or larger), single column and single-sided on 8.5 X 11 inch
pages.

2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. Figures should be captioned and referenced.

C. Submission of Accepted Manuscripts:

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS
Word format should be submitted to the Editor-in-chief.

2. The submission may be on a CD/DVD, or as an email attachment(s). The following electronic files
should be included:
• Paper text (required)
• Bios (required for each author). Integrate at the end of the paper.
• Author Photos (jpeg files are required by the printer)
• Figures, Tables, Illustrations. These may be integrated into the paper text file or provided separately

(jpeg, MS Word, PowerPoint, eps). title of the paper.

3. Specify on the CD/DVD label or in the email the word processor and version used, along with the title of the
paper.

4. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that
they are transferring the copyright to ISCA or declaring the work to be government-sponsored work in the
public domain. Also, letters of permission for inclusion of non-original materials are required.

Publication Charges:

After a manuscript has been accepted for publication, the author will be invoiced for publication charges of $50 USD
per page (in the final IJCA two-column format) to cover part of the cost of publication. For ISCA members, $100 of
publication charges will be waived if requested.

January 2014

ISC
A

 IN
TER

N
A

TIO
N

A
L JO

U
R

N
A

L O
F C

O
M

PU
TER

S A
N

D
 TH

EIR
 A

PPLIC
A

TIO
N

S
V

ol. 26, N
o. 2, June 2019

	International Society for Computers
	TABLE OF CONTENTS
	Satish Penmatsa and Gurdeep S. Hura
	Aditi Singh and Arvind K. Bansal
	Jiang Guo and Yuehong Liao

	IJCA Jrnl inside front cover June 2019.pdf
	A publication of the International Society for Computers and Their Applications
	EDITOR-IN-CHIEF
	ASSOCIATE EDITORS

	Dr. Hisham Al-Mubaid
	Dr. Antoine Bossard
	Dr. Sergiu Dascalu
	University of Nevada,
	Reno, USA
	dascalus@cse.unr.edu
	Dr. Sami Fadali

	Dr. Vic Grout
	Glyndŵr University,
	Wrexham, UK
	v.grout@glyndwr.ac.uk
	Dr. Yi Maggie Guo
	University of Michigan
	Dearborn, USA
	magyiguo@umich.edu
	Dr. Wen-Chi Hou
	Southern Illinois University, USA
	hou@cs.siu.edu
	Dr. Ramesh K. Karne
	Towson University, USA
	rkarne@towson.edu
	Dr. Bruce M. McMillin
	Missouri University of Science
	and Technology, USA
	ff@mst.edu
	Dr. Muhanna Muhanna
	Princess Sumaya University for
	Technology
	Amman, Jordan
	m.muhanna@psut.edu.jo
	Dr. Mehdi O. Owrang
	The American University, USA
	owrang@american.edu
	Dr. Xing Qiu
	University of Rochester, USA
	xqiu@bst.rochester.edu
	Dr. Juan C. Quiroz
	Sunway University, Malaysia
	juanq@sunway.edu.my
	Dr. Abdelmounaam Rezgui
	New Mexico Tech, USA
	rezgui@cs.nmt.edu
	Dr. James E. Smith
	Dr. Shamik Sural
	Dr. Junping Sun

	Dr. Jianwu Wang
	University of California
	San Diego, USA
	jianwu@sdsc.edu

	2 Singh-Bansal ISCA Journal.pdf
	1 Introduction
	2 Related Works
	3 Postures and Movements
	3.1 Synchronized Movements
	Example 1: Modeling synchronized eye motion: An example of the synchronized movement is vergence or tracking which are modeled as (sync, [(,𝛿-1-𝑠., , 𝜇-𝑖-+𝑙𝑒., , 𝛿-1-𝑒.), (,𝛿-2-𝑠., , 𝜇-𝑗-−𝑟𝑒., , 𝛿-2-𝑒.)]) where sync denotes the stric...
	3.2 Postures and Movements Declaration
	3.3 Motion Parameterization
	4 Non-Emotional Interactions
	4.1 Gestures
	4.2 Kernel Movements
	5.1 Dictionaries
	5.2 Fuzzification/Defuzzification
	Operation: rotate by an absolute angle.
	μabs
	rot_abs
	Operation: rotate by a relative angle denoted by Orel.
	μrel
	rot_rel
	Operation: rotate to the neutral position.
	μneutral
	rot_neutral
	μ1
	Operation: store the current position ϕ in the parameter dictionary 𝔻P as the previous_position. Rotate by the user-defined absolute angle θ. Wait for the gesture-specific delay τ. Retrieve the previously stored angle ϕ from the dictionary 𝔻P and perform the operation rotate_abs(ϕ).
	rot_abs_return
	Application: Used in gestures such as backchannel; confusion; defiance; dominate; persuade; unsure.
	Operation: rot_rel(−θ)(wait(δ) (rot_rel(θ)
	μ2
	rot_rel_return
	Application: shifting attention; gaze in a multi-party conversation
	μ3
	Operation: rot_neutral (wait(δ) (rot_abs(θ).
	Application: avoid; confident; defiance; defensive; denial; frustrated; veiled disagreement; unsure
	rot_abs_neutral
	Operation: rot_neutral(wait(δ) (rot_rel(θ).
	μ4
	rot_rel_neutral
	Application: open and close a jaw during speak-phrase.
	μ5
	rot_abs_bi
	Application: soft agreement; denial.
	μ6
	Operation: rot_rel(θ) (wait(δ) (rot_rel(−2θ) (delay(τ) (rot_rel(θ).
	rot_rel_bi
	Application: It is used in multi-party interaction.
	Operation: It repeatedly rotates a motor n times, and returns to the neutral position.
	μ7
	rep_rot_abs_bi_neutral
	rot_neutral (wait(δ) ((rot_abs_bi)n.
	Application: It is used for strong agreement and denial with single person.
	Operation: It repeatedly rotates a motor n times, and returns to the neutral position.
	μ8
	(rot_rel_bi)n.
	rep_rot_rel_bi_neutral
	Application: It is used in multi-party interaction. accept; admiration; agreement; affirmation; argument; for strong agreement; greet; denial; reject; request; relax
	5.4 Algorithms for Gesture Execution
	7 Future Work
	References

	4 Guo, Liao IJCA June 2019.pdf
	1 Introduction
	2 Related Work
	3 The Software Structure of the JPManager
	4 Our Dynamic Java Instrumentation Approach
	5 Data Collection and Implementation
	6 Dynamic Execution Consistency Analysis
	7 Case Study and Experiment
	8 Conclusions

