

A publication of ISCA*:

International Society for Computers
and Their Applications

INTERNATIONAL JOURNAL OF

COMPUTERS AND THEIR
APPLICATIONS

TABLE OF CONTENTS
 Page

Guest Editorial: Special Issue from ISCA Fall – 2019 CAINE Conference 55
 Gongzhu Hu, Yan Shi, and Quan Yuan

Evaluating the Microservice Architecture Style for Manufacturing Cell
 Controller Software. 56

 Christoph Wunck and Jonas Kallisch

Mutual Fund Portfolio Management Using LSTM . 65
 Achyuit Ghosh, Soumik Bose, Soumya Sen, Giridhar Maji, and

Narayan C. Debnath

Generalization of RC-Based Low Diameter Hierarchical Structured P2P
 Network Architecture . 74

 Swathi Kaluvakuri, Koushik Maddali, Nick Rahimi, Bidyut Gupta, and
Narayan Debnath

A Detailed Comparison of the Effects of Code Refactoring Techniques in

Different Mobile Applications . 84
 Osama Barack and LiGuo Huang

* “International Journal of Computers and Their Applications is abstracted and indexed in INSPECT and
Scopus.”

Volume 27, No. 2, June 2020 ISSN 1076-5204

International Journal of Computers and Their Applications

ISCA Headquarters…•…278 Mankato Ave, #220, Winona, MN 55987…•…Phone: (507) 458-4517
E-mail: isca@ipass.net • URL: http://www.isca-hq.org

Copyright © 2020 by the International Society for Computers and Their Applications (ISCA)

All rights reserved. Reproduction in any form without the written consent of ISCA is prohibited.

A publication of the International Society for Computers and Their Applications

EDITOR-IN-CHIEF

Dr. Ziping Liu, Professor
Department of Computer Science
One University Plaza, MS 5950

Southeast Missouri State University
Cape Girardeau, MO 63701

Email: zliu@semo.edu

ASSOCIATE EDITORS

Dr. Hisham Al-Mubaid
University of Houston
Clear Lake, USA
hisham@uhcl.edu

Dr. Antoine Bossard
Advanced Institute of Industrial
Technology
Tokyo, Japan
abossard@aiit.ac.jp

Dr. Mark Burgin
University of California,
Los Angeles, USA
mburgin@math.ucla.edu

Dr. Sergiu Dascalu
University of Nevada
Reno, USA
dascalus@cse.unr.edu

Dr. Sami Fadali
University of Nevada, USA
fadali@ieee.org

Dr. Vic Grout
Glyndŵr University
v.grout@glyndwr.ac.uk

Dr. Yi Maggie Guo
University of Michigan,
Dearborn, USA
hongpeng@brandeis.edu

Dr. Wen-Chi Hou
Southern Illinois University, USA
hou@cs.siu.edu

Dr. Ramesh K. Karne
Towson University, USA
rkarne@towson.edu

Dr. Bruce M. McMillin
Missouri University of Science
and Technology, USA
ff@mst.edu

Dr. Muhanna Muhanna
Princess Sumaya University
for Technology
Amman, Jordan
m.muhanna@psut.edu.jo

Dr. Mehdi O. Owrang
The American University, USA
owrang@american.edu

Dr. Xing Qiu
University of Rochester, USA
xqiu@bst.rochester.edu

Dr. Juan C. Quiroz
Sunway University, Malaysia
juanq@sunway.edu.my

Dr. Abdelmounaam Rezgui
New Mexico Tech, USA
rezgui@cs.nmt.edu

Dr. James E. Smith
West Virginia University, USA
James.Smith@mail.wvu.edu

Dr. Shamik Sural
Indian Institute of Technology
Kharagpur, India
shamik@cse.iitkgp.ernet.in

Dr. Ramalingam Sridhar
The State University of New York
at Buffalo, USA
rsridhar@buffalo.edu

Dr. Junping Sun
Nova Southeastern University,
USA
jps@nsu.nova.edu

Dr. Jianwu Wang
University of California,
San Diego, USA
jianwu@sdsc.edu

Dr. Yiu-Kwong Wong
Hong Kong Polytechnic University,
Hong Kong
eeykwong@polyu.edu.hk

Dr. Rong Zhao
The State University of New York
 at Stony Brook, USA
rong.zhao@stonybrook.edu

http://www.isca-hq.org/
mailto:rkarne@towson.edu

IJCA, Vol. 27, No. 2, June 2020 55

Guest Editorial:

Special Issue from ISCA Fall-2019 CAINE Conference

This special issue of IJCA is a collection of four refereed papers, three selected from The 33rd International Conference on
Computer Applications in Industry and Engineering (CAINE 2020) and one from The 36th International Conference on Computers
and Their Applications (CATA 2020). Each paper is an extension of one of the best papers submitted to the conferences. Both the
conference paper and extended journal papers were reviewed by multiple reviewers, judging the originality, technical contribution,
significance, and quality of presentation.

The papers in this special issue discussed a broad range of research topics in computer applications in industry and engineering.
In the paper “Evaluating the Microservice Architecture Style for Manufacturing Cell Controller Software”, the authors
surveyed several traditional architectures for information systems in manufacturing and pointed out Service-Oriented Architecture
(SOA) and Reference Architecture Model Industry 4.0 are the future trend for the modern manufacturing. In addition, microservice
architecture style was discussed to conquer the disadvantages of traditional SOA solution. Authors of the paper “Mutual Fund
Portfolio Management Using LSTM” proposed a framework to apply Long Short-Term Memory networks on mutual fund
portfolio. The proposed framework can be used to work with any number of business section and any number of shares for that
particular sector. In an effort to make the traditional Distributed Hash Table(DHT)-based peer-to-peer (P2P) network more generic,
the paper “Generalization of RC-Based Low Diameter Hierarchical Structured P2P Network Architecture” discussed how to
use a modular arithmetic based mathematical model to design a two-level structured architecture. Lastly, in the paper “A Detailed
Comparison of the Effects of Code Refactoring Techniques in Different Mobile Applications”, the authors provided a detailed
evaluation of the impact of code refactoring techniques for energy efficiency and performance in mobile environments using GPS-
UP metrics.

We would like to express our sincere appreciation to the contributions of all authors and reviewers to this special issue. We hope

you will enjoy the special issue and look forward to seeing you at future ISCA conferences. More information about ISCA society
can be found at http://www.isca-hq.org.

Guest Editors:

Gongzhu Hu, Central Michigan University
Yan Shi, University of Wisconsin-Platteville
Quan Yuan, University of Texas-Permian Basin

http://www.isca-hq.org/

56 IJCA, Vol. 27, No. 2, June 2020

ISCA Copyright© 2020

Evaluating the Microservice Architecture Style
for Manufacturing Cell Controller Software

Christoph Wunck*

Emden/Leer University of Applied Sciences, Emden, GERMANY
Iowa State University, Ames, IOWA, USA

OFFIS Institute for Information Technology, Oldenburg, GERMANY

Jonas Kallisch†
Emden/Leer University of Applied Sciences, Emden, GERMANY

Abstract

This study elaborates on the advantages of migrating legacy

IT systems for manufacturing operations to a microservice
architecture, which is an important step towards a platform-
based ecosystem. Traditional architecture models for
manufacturing operations from the literature are evaluated. The
different models’ strengths are combined towards a common
architecture for the factory of the future. Microservices are
introduced as a new architectural style for manufacturing
operations software.

1 Introduction

Manufacturers all over the world experience constant pressure

in four areas: market-related pressure (e.g., customized
products, market saturation), economy-related pressure (e.g.,
globalization of manufacturing, migration towards low cost
economies), technology-related pressure (e.g., 3D printing, new
materials, big data, security) and environment-related pressure
(e.g., energy efficiency, sustainability, product life cycle) [1].
Many manufacturers are small or medium enterprises. For these
smaller firms it is difficult to keep pace with the recent
developments in Industrie 4.0 and Smart Manufacturing, which
are geared towards flexible manufacturing IT systems that can
adapt easily to changing environments. They find it difficult to
migrate to new technologies like cyber-physical production
systems, machine-to-machine communication, or
manufacturing execution and intelligence systems (MES) while
sustaining their day-to-day manufacturing business.

Cyber-physical systems (CPS) have their origins in the area
of embedded systems. A CPS may be defined as a computer
system tightly bound to a mechanical system or physical
process. An important application area of cyber-physical
systems is smart manufacturing, where cyber-physical
production systems (CPPS) cooperate across all levels of

* Department of Computer Science. E-mail: christoph.wunck@offis.de.
† E-mail: jonas.kallisch @hs-emden-leer.de.

production. CPPS acquire information from their environment,
act autonomously, connect to other systems or human operators
and respond to internal and external changes. CPS and CPPS
are expected to facilitate the creation of new business models
and new services [16].

Figure 1 illustrates the functionality of manufacturing
operations within a vertical stack of system levels. This layered
architecture has been standardized by the international standard
IEC 62264, also known as ISA-95. Manufacturing execution
systems (MES) and other systems targeted to support
manufacturing operations reside above the shop floor (level 0,
1, and 2) and beneath the enterprise resource planning level
(ERP at level 4). The standard defines several categories of
information models for the manufacturing operations
management layer at level 3.

According to [14], MES will play a central role in
manufacturing enterprises’ path towards Industrie 4.0. On the
other hand, MES has not been a widely explored concept in
academic research. A migration path towards Industrie 4.0 for
small and medium manufacturers must be both attractive
regarding business opportunities and feasible regarding
technological challenges. Investing in new technology is a
business decision in the first place, and many of today’s smart
manufacturing technologies lack demonstrating a business case.
The recent emergence of platforms and business ecosystems [9,
22], will have a major impact on manufacturing enterprises, as
the MES seems to be a suitable candidate for the transition from
a monolithic software system into a service- and platform-based
ecosystem [25].

This paper elaborates on the advantages of migrating legacy
IT systems for manufacturing operations to a microservice
architecture, which is an important step towards a platform-
based ecosystem. Section 2 evaluates traditional architecture
models for manufacturing operations from the literature.
Section 3 discusses how the different models may be combined
towards a common architecture for the factory of the future.
Section 4 introduces microservices as a new architectural style
for manufacturing operations software. Section 5 describes a
cyber-physical factory testbed utilizing Industrie 4.0
components, assets administrations shells and microservices.

mailto:christoph.wunck@offis.de

IJCA, Vol. 27, No 2,. June 2020 57

Figure 1: Vertical integration in the multi-level functional hierarchy of IEC 62264 [7]

Section 6 wraps up the conclusions.

2 Reference Architectures and Implementations

Manufacturing operations encompass a large set of activities

like detailed scheduling, recipe management, resource
management, production execution, work in progress
management, production history or quality management, among
others. Many manufacturers support their operations using a
multitude of customized special-purpose applications and
spreadsheet files [19].

Manufacturing Execution Systems (MES) are a type of
application software designed specifically to support
manufacturing operations. Typically these software systems are
huge monoliths developed and marketed by a single vendor. It
is difficult or costly for a manufacturer to have custom
functions, algorithms or interfaces implemented if these are not
contained in the standard set of MES functions.

Industrie 4.0 scenarios assume both smaller lot sizes to
manufacture and less stable market conditions that
manufacturers need to adapt to. A couple of software
architecture patterns and implementations have been proposed
by various authors or standardization bodies to accommodate
the requirements of flexibility in manufacturing operations.
This section discusses the most influential architectures known
from the literature.

2.1 IEC 62264 / ISA-95

IEC 62264 is an international standard for enterprise-control
system integration, based upon ANSI/ISA-95, which is a
standard by the International Society of Automation (ISA). IEC
62264 reflects the hierarchical organization of enterprises by
categorizing operations and activities in five levels. This level
structure has its roots in the Purdue Enterprise Reference
Architecture, developed in the early 1990s by Theodore J.
Williams. Level 3 defines manufacturing operations in four
areas, namely production, maintenance, quality test, and
inventory. For each area of operations, four types of models,
based on best practices, are defined [7]:

• Activity models describe what has to be done at the

manufacturing level.
• Information models determine what types of entities are

active at the manufacturing level, e.g., machines, workers,
schedules. Models are elaborated as UML class diagrams.

• Data flow models show what types of data are exchanged
during activities at the manufacturing level.

• Data structure models reveal how the internal structure of
data looks like.

The definitions from IEC 62264 can be used to standardize

the interfaces between ERP and MES systems, to improve

58 IJCA, Vol. 27, No 2,. June 2020

communication in MES projects, and to develop interoperable
software [19]. An XML implementation of the IEC 62264
models is given by the Business to Manufacturing Markup
Language (B2MML). B2MML consists of a set of XML
schemas that implement the data models in the standard. It is
maintained by the Manufacturing Enterprise Solutions
Association (MESA) XML Committee [15].

2.2 Holonic Manufacturing Systems

The concept of Holon was developed in the context of social
organizations and living organisms to describe a whole-part-
relationship between real-life objects. Holons are both self-
contained entities to their subordinated parts, and dependent
parts when seen from the inverse direction. H. Van Brussel, P.
Valckenaer and others [23] adapted the concept of holons to
manufacturing to attain benefits like stability during
disturbances, adaptability and flexibility in changing
environments, and efficient use of available resources.
According to the authors, a Holonic Manufacturing System
(HMS) preserves the stability of a hierarchical organization
while providing the flexibility of a heterarchy. A holon in a
manufacturing system is an autonomous and co-operative
building block for transforming, storing, or validating
information and physical objects. Therefore, a holon consists of
an information processing part and often a physical processing
part. A holon can be part of another holon. Holons can be
modelled by UML objects and class diagrams. They can be part
of a generalization hierarchy.

The authors of [23] proposed the HMS reference architecture
PROSA (Product-Resource-Order-Staff Architecture). The
acronym refers to the four types of holons:

• Product holons encapsulate knowledge about products and

processes, e.g. bill of materials, process plans, or quality
assurance procedures.

• Resource holons are abstractions of industrial assets, e.g.
factory, machines, tools.

• Order holons represent tasks in the manufacturing system.
They manage the physical product, its state and logistical
information, e.g. customer orders, make-to-stock orders,
orders to maintain and repair.

• Staff holons assist the aforementioned basic holons in
performing their work. While basic holons are responsible
for delivering their results and making their own decisions,
the staff holons hand out advice. The concept of staff holons
facilitates centralized functionality within the system, e.g.
production schedules.

Figure 2 shows the three basic holons and their interaction.

They exchange process knowledge on how to perform
operations on resources, production knowledge on how to
produce products, and process execution knowledge on how to
execute process instances for certain customers.

Ongoing research on Holonic Manufacturing Systems targets
areas of application and technical implementations. A
Manufacturing Execution System based on PROSA was
introduced in [21]. The research prototypes have been
implemented as multi-agent systems.

The authors of [13] present an adaptive holonic control
architecture (ADACOR) with four manufacturing holon classes:
product holons, task holons, operational holons, and supervisor
holons. The prototype was implemented as a multi-agent
system based on the Java Agent Development Framework
(JADE). An implementation of eye-tracking technology in
Holonic Manufacturing Systems is described in [18].

2.3 Multi-Agent Systems

Multi-agent systems have been proposed as the preferred

architecture for integrated manufacturing since the late 1990s
[24]. A comprehensive summary of agent-based systems for

Figure 2: Basic building blocks of a Holonic Manufacturing System [23]

IJCA, Vol. 27, No 2,. June 2020 59

manufacturing is given in [17]. An agent is defined as a
computational system that is situated in a dynamic environment
and is capable of exhibiting autonomous and intelligent
behavior.

An agent may have an environment that includes other agents.
The community of interacting agents, as a whole, operates as a
multi-agent system (MAS). Agent technologies target problems
like agent behavior and decisions, interaction, organization,
division of labor, coordination, and supervision. Holonic
Manufacturing Systems are viewed as a special kind of MAS.

Many academic implementers use the Java Agent
Development Framework (JADE) as their middleware platform.
The software architecture is based on cooperating Java Virtual
Machines. The communication between agents relies on Java
Remote Method Invocation (RMI) and IIOP [2]. Agent services
can be exposed as web services (WSDL). In-depth
technological and architectural details about this framework are
presented in [3].

A multi-agent implementation based on JADE for the holonic
control of a manufacturing cell is presented in [10]. The authors
conclude that MAS is a useful approach for the implementation
of holonic architectures, as software agents and holons share
several similarities. The authors of [12] focus on the
comparison of multi-agent systems and IEC 61499 function
blocks.

2.4 Service-oriented Architectures

Service-oriented architectures for industrial applications have

been proposed by [10] in the context of the European Union FP7
project IMC-AESOP. The authors envision the factory of the
future as a composition of services of varying complexity, and
composed by other (potentially cross-layer) services. Services
may be hosted either on field devices, local/edge servers or in
the cloud.

The flat information-based architecture of the future coexists
with the traditional hierarchical view from IEC 62264. Next
generation industrial applications can rapidly be composed by
selecting and combining new information and capabilities
offered as services in the cloud. The collection of cloud services
is targeted towards supporting IEC 62264 operations and
activities.

The authors of [10] have elaborated several important
requirements that need to be observed when implementing a
service-oriented IT system for manufacturing operations
support. In reference to architectural considerations, the
following non-functional requirements are of particular interest:

• Backward and forward compatibility: Evolving

infrastructure must not break existing functionality.
• Combinability of services and tools: Software applications

will be created by a reuse-based software process
according to [20].

• Dynamic service discovery: New devices or services
announce their presence, while other components get
aware of new capabilities.

• Real-time interaction: Technologies must meet the

performance requirements of real-time interactions. Soft
real-time essentially means low latency in the processing
pipelines.

• Technology-agnostic infrastructure evolution: Future
systems need to be updated to evolving technologies and
simultaneously maintain their functionality.

• Interoperability and open exchange formats: Systems and
services will have to communicate vertically and
horizontally between systems at remote sites.

• Mobility support: Future systems need to be accessed via
mobile devices, must support mobile assets in
manufacturing and facilitate the migration of services.

• Infrastructure Services: Service developers should rely on
a comprehensive middleware stack to not have to code
software from scratch.

• Scalability: It should be easy to scale the system to new
usage profiles, balance loads or deliver a defined quality
of service.

Details regarding the implementation of the service-oriented

architecture can be drawn from the IMC-AESOP project
website [5], e.g., services are implemented as web services
using technologies like HTTP, XML, SOAP, and WSDL.

2.5 Reference Architecture Model Industrie 4.0 (RAMI 4.0)

RAMI 4.0 was developed in Germany by the Platform

Industrie 4.0 consortium and standardized internationally in
2017 [6]. RAMI 4.0 references a couple of preexisting
standards and enforces their application. The standard focuses
on the cooperation and collaboration of technical assets. An
asset is defined as any tangible or intangible item possessing a
value for an organization. Assets can be as small as a screw and
as extensive as an MES or ERP system. Assets have a life cycle
and must be described in three different views or dimensions.

An architectural view describes the structure of an asset in
terms of layers, similar to stacked layers of software systems.
Interactions occur between adjacent layers. The top layer
describes the asset’s business context, the bottom layer
corresponds to the real physical asset.

A life cycle view describes an asset from design, creation,
usage and value generation, until phase-out and disposal.

A hierarchy view describes an asset’s function in the context
of a manufacturing site. The hierarchy is modeled after IEC
62264 and extended downwards to include the product itself as
a value-adding part in the manufacturing value chain and
upwards to include the connected world with cooperation
between factories.

The standard illustrates the three views in the form of a three-
dimensional layered cube, as depicted in Figure 3. The scope of
manufacturing operations corresponding to IEC 62264 level 3
is indicated by red dotted lines.

The RAMI architecture model envisions manufacturing sites
as a collection of so-called Industrie 4.0 Components. These are
worldwide uniquely identifiable entities made of an asset and a
software representation called administration shell. Industrie
4.0 components can be composed from other components and

60 IJCA, Vol. 27, No 2,. June 2020

Figure 3: Scope of manufacturing (level 3) operations within RAMI [6]

can themselves be used to form more complex components. A
component’s attributes and state may be queried via software
interfaces in the administration shell.

RAMI is designed to resolve basic interoperability issues in
manufacturing and thus lays the foundation for the development
of complex cyber-physical production systems (CPPS) that
autonomously exchange information, trigger actions, and
control each other independently [16]. The authors of [8]
elaborate on the concept of an adaptive MES querying the
administration shell of relevant assets in order to collect enough
information about the manufacturing environment to adapt itself
to changes.

3 Discussion of Traditional Architectures

The previous section presented short summaries of different

architecture models for manufacturing operations from the
literature. This chapter elaborates on how the respective
strengths of these models can be combined to complement each
other.

IEC 62264 partitions the application domain of
manufacturing operations into smaller blocks, thus supporting
the definition and validation of software requirements by
domain specialists. The hierarchical model of IEC 62264 maps
the division of labor prevalent in many successful enterprises.
The level system has demonstrated its usefulness for more than
20 years and will be a part of coming solutions for the factory
of the future, due to being one of the major dimensions of the
RAMI 4.0 model. RAMI 4.0 is the foundation standard to ensure

interoperability between assets. It will have a profound
influence on the software landscape in industrial automation.
However, many aspects important to smart manufacturing
applications are not addressed by this very basic standard and
still left to the decision of implementers.

The service-oriented architecture (SOA) proposed by [10] is
an important step towards more architectural flexibility.
Though the authors primarily focus on cloud-based services, the
concept of SOA can easily be applied to local services on
premises. The services offered might correspond to parts of an
administration shell to access Industrie 4.0 components. The
flexibility to design applications and to run them on a variety of
software platforms will probably be a major incentive for
manufacturers to abandon their customized legacy software and
migrate to service-oriented architectures. The technology to
implement SOAs varies in the course of time. Web services
based on XML, SOAP and WSDL recently have lost some
acceptance in the software engineering community due to low
performance and high complexity in favor of microservices [4].

Service-oriented architectures are a technical requirement to
create economic platform ecosystems. These will create
completely new business opportunities for startups, small and
medium enterprises both from manufacturing and ICT. A
platform owner provides the infrastructure and rules for a
marketplace that brings together producers and consumers of
services [22]. Providers grant access to a platform via
interfaces. In the manufacturing industry, machines, operators,
or management might be both producers and consumers of
services, depending on their respective role within the

IJCA, Vol. 27, No 2,. June 2020 61

processes. Providers might be retrofitting devices, mobile
phones, or networking interfaces like OPC UA. Platform
owners might be today’s vendors of MES, newcomers from
related industries, or open source solutions without explicit
ownership.

Holonic manufacturing systems (HMS) and multi-agent
systems (MAS) have much in common. As mentioned before,
many existing HMS implementations use an MAS approach.
MAS oftentimes are implemented using the JADE middleware.
Holonic manufacturing strives for highly autonomous modes of
operation, which might collide with regulations in
manufacturing regarding quality certification, safety procedures
or legislation. HMS/MAS however might contribute to
factories of the future in certain unregulated areas, where better
alternatives to human decisions are welcome. In the context of
a service-oriented architecture, HMS/MAS might even provide
sophisticated services like planning and analytics, without
interfering with highly regulated processes. Many technical
implementations of MAS are bound to the JADE middleware,
which is described by its maintainers as a niche technology far
from mainstream software engineering [3]. This might be one
of the obstacles that keeps small and medium manufacturing
enterprises away. However, as the JADE runtime can be
embedded into a hosting Java application, MAS applications
based on JADE could be easily integrated into an SOA
landscape.

4 Microservice Architecture

Microservices are the second generation of service-oriented

architectures. They emphasize the development of highly
maintainable and scalable software by decomposing large
systems into sets of independent services with distinct business
capabilities [4]. While the first generation of web services
focused on complex technologies like syntactic service
descriptions, discoverability and message contracts using XML
Schema and Web Service Description Language (WSDL), the
second generation aims to remove complexity in favor of simple
functionalities. N. Dragoni, et al. [4] gives an in-depth overview
of the evolution of distributed and service-oriented computing
from an academic viewpoint.

The authors of [4] define a monolith as a software application
whose modules cannot be executed independently, while a
microservice is considered a cohesive, independent process
interacting via messages. They confront six major issues of
monoliths with corresponding microservice solutions:

1. Evolution: Large monoliths are difficult to adapt to new

requirements. Microservices implement a limited
functionality with a small codebase, keeping maintenance
costs low.

2. Dependencies: Monoliths depend on numerous external
libraries spread over different places by the operating
systems. These dependencies may lead to versioning
conflicts. Microservices can gradually evolve to a new
version, while a previous version of the same service
remains available as long as required.

3. Deployment: Deploying small changes in a monolith
requires restarting the whole application. Microservices
require only themselves to be restarted, resulting in short
redeployment times.

4. Runtime environment: Deployment environments for
monoliths cannot allow for all requirements of all modules
equally. Microservices are run from containers providing
an environment optimally tailored to the microservice’s
task.

5. Scaling out: Increasing load on a monolith is compensated
by distributing the load among multiple instances of the
whole monolith, which might not address the load
problem efficiently. Multiple instances of microservices
can address an increasing load in finer detail.

6. Technology lock-in: Evolution of a monolith is bound to
the original language and technology. Microservices can
migrate to new technologies any time during evolution, as
long as the communication interfaces remain stable.

The services proposed by [5] as well as the service export

mechanism of the JADE middleware belong to the first
generation of web services requiring monolithic application
servers for their execution. Due to their advantages over first-
generation web services the authors of this study envision that
microservices will be the technological foundation of service-
oriented architectures for manufacturing operations. The
requirements posed in Section 2.4 on SOA in manufacturing
settings can be met by microservice implementations:

• Backward and forward compatibility: Microservices are

designed to smoothly support both evolution of
implementations and interfaces.

• Combinability of services and tools: This is a general
property of SOA and therefore applies to microservice
architectures alike.

• Dynamic service discovery: Service discovery as such is not
part of microservice technology, but is supplied by
middleware stacks like Vert.x, Spring Boot, and others.

• Real-time interaction: Microservices are designed for low
latency.

• Technology-agnostic infrastructure evolution: Micro-
services avoid technology lock-in and allow easy migration
to technological innovations.

• Interoperability and open exchange formats: Message
exchange is based on open protocols and formats like
Hypertext Transfer Protocol (HTTP), XML and JSON.

• Mobility support: Current patterns for mobile application
development expect microservices at the backend.
Microservices are mainstream technology for this kind of
software.

• Infrastructure Services: A choice of middleware stacks is
available.

• Scalability: Microservices have been designed explicitly
with respect to scalability.

Thus, the microservice architecture style combines the

advantages of traditional service-oriented architectures with

62 IJCA, Vol. 27, No 2,. June 2020

modern principles of software engineering geared towards rapid
evolution and deployment cycles.

5 Case Study

The following case study from OFFIS Institute for

Information Technology in Oldenburg, Germany, utilizes a
microservice architecture to manufacture a variety of
individualized products within a cyber-physical factory testbed.
Figure 4 shows a schematic diagram and a photograph. The
manufacturing cell comprises a 3D printer, laser cutter,
collaborative robots, conveyor belts, and a manual assembly
station.

The cell architecture conforms to the RAMI 4.0 framework.
Each manufacturing device is represented as an Industrie 4.0
component and encapsulated by an asset administration shell
(AAS). Each asset’s functionality can be accessed by a
corresponding microservice. Assets may be composed of
subordinate assets to increase adaptability and maintainability.
For example, the laser cutter device comprises the door, the
extractor fan, and the cutter, each of which are represented by
an AAS of its own. The subcomponents’ microservices are
orchestrated by a higher-level component.

As each microservice runs in a separate operating system
process, services can be updated or replaced without stopping
the complete system. The overall state of a microservice is
described by a finite state machine. Figure 5 illustrates details
of a sample interaction between a high-level orchestrating
component and several subordinate components. The “Laser-
Cutter-Service” on the left represents a higher level,
orchestrating component, while the “Laser Cutter” in the middle
depicts the cutter subcomponent of the laser cutter. The
components’ functions can be accessed via skills, which are
implemented as microservices. Skills are comprised of methods

(white boxes), which can be invoked via OPC-UA.
The manufacturing process is started by the higher level

“Laser-Cutter-Service”. This service has a skill called “Cutting-
Skill”, the current state of which is “Cutting”. The service also
has an “Engraving-Skill”, which is not shown in Figure 5. After
receiving the manufacturing order, the “Laser-Cutter-Service”,
i.e., the orchestrator, sends a message to the “Laser-Cutter”
subcomponent to have it open the door. The subcomponent’s
state changes to “Open”. Then the orchestrator instructs the
“Industrial Robot” component to fill material into the working
area of the laser cutter. Following this, the state of the “Laser-
Cutter” subcomponent switches to “Filled” and the door is
closed. Subsequently, the “Cut Skill” of the “Laser-Cutter”
component is invoked. Finally, the orchestrator triggers the
opening of the cutter device and initiates the evacuation of the
finished part by invoking the appropriate skill of the “Industrial
Robot” component.

6 Conclusions

This study examined several traditional architectures for

information systems in manufacturing: Hierarchical Enterprise
and Control Systems, Holonic Manufacturing Systems, Multi-
Agent Systems, Service-Oriented Architecture (SOA), and
Reference Architecture Model Industrie 4.0. The respective
strengths of each architecture was acknowledged. It was shown
that an SOA will likely be the foundation for the factory of the
future, and aspects of each architecture under consideration
could be accommodated within an SOA. The microservice
architecture style was shown to remedy various deficiencies of
earlier SOA middleware implementations. Future work will be
directed to evaluate a use case based on the injection molding
monitoring application presented in [24].

Figure 4: Cyber-physical factory testbed at OFFIS

IJCA, Vol. 27, No 2,. June 2020 63

©

Figure 5: Example microservice architecture

References

[1] M. Abramovici, F. Bellalouna and J. C. Boebel, “Towards

Adaptable Industrial Product-Service Systems,”
Proceedings of the 2nd CIRP IPS2 Conference 2010,
Linköping, Sweden, pp. 467-474, 2010.

[2] F. Bellifemine, G. Caire, G. Rimassa, A. Poggi, F.
Bergenti, T. Trucco, D. Gotta, E. Cortese, F. Quarta, and
G. Vitaglione, “General Questions about Jade,” [Online].
Available: https://jade.tilab.com/support/faq/. [Accessed:
July 07, 2019].

[3] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa,
“JADE: A Software Framework for Developing Multi-
Agent Applications,” Information and Software
Technology, 50:10-21, 2008.

[4] N. Dragoni, S. GiallorenziA. Lluch Lafuente M. Mazzara,
F. Montesi, R. Mustain, and L. Safina, “Microservices:
Yesterday, Today, and Tomorrow.” Present and Ulterior
Software Engineering, pp 195-216, 2017.

[5] IC_AESOG Project, [Online]. Available: http://ww.imc-
aesop.org/index.html. [Accessed: July 07, 2019].

[6] IEC PAS 63088, “Smart Manufacturing - Reference
Architecture Model Industry 4.0 (RAMI 4.0),” 2017.

[7] IEC 62264, “Enterprise-Control System Integration,”
2015.

[8] J. Kallisch and F. Oppenheimer, “Adaptive Manufacturing
Execution Systems (AMES): Best Practices for
Implementations in Small and Medium-Sized
Businesses,” Proceedings of the 10th Annual European
Decision Sciences Conference (EDSI), Nottingham, UK,
pp. 1-12, 2019.

[9] R. Kapoor, “Ecosystems: Broadening the Locus of Value
Creation,” Journal of Organization Design, 7(12):1-16,
2018.

[10] S. Karnouskos, A. W. Colombo, T. Bangemann, K.
Manninen, R. Camp, M. Tilly, P. Stluka, F. Jammes, J.
Delsing, and J. Eliasson, “A SOA-Based Architecture for
Empowering Future Collaborative Cloud-Based Industrial
Automation,” 38th Annual Conference on IEEE Industrial
Electronics Society (IECON), Montreal, Canada, 2012.

[11] K. Kruger and A. Basson, “JADE Multi-Agent System
Holonic Control Implementation,” Feb. 2018. Available:
http://academic.sun.ac.za/mad/Papers/KrugerBasson_Hol
onicControl ImplementationUsingJadeMAS_20180208.
pdf. [Accessed: July 07, 2019].

[12] K. Kruger and A. Basson, “Multi-Agent Systems vs IEC

https://jade.tilab.com/support/faq/

64 IJCA, Vol. 27, No 2,. June 2020

61499 for Holonic Resource Control in Reconfigurable
Systems,” Procedia CIRP, pp. 503-508, July 2013.

[13] P. Leitão and F. Restivo, “ADACOR: A Holonic
Architecture for Agile and Adaptive Manufacturing
Control,” Computers in Industry, pp. 121-130, Feb. 2006.

[14] S. Mantravadi and C. Møller, “An Overview of Next-
Generation Manufacturing Execution Systems: How
Important is MES for Industry 4.0?,” Procedia
Manufacturing, 30:588-595, 2019.

[15] MESA, “Business to Manufacturing Markup Language
(B2MML),” [Online]. Available: http://www.mesa.org/
en/B2MML.asp. [Accessed: July 07, 2019].

[16] L. Monostori, B. Kádár, T. Bauernhansl, S. Kondoh, S.
Kumara, G. Reinhart, O. Sauer, G. Schuh, W. Sihn, and K.
Ueda, “Cyber-Physical Systems in Manufacturing,” CIRP
Annals - Manufacturing Technology, 65:621-641, 2016.

[17] L. Monostori, J. Váncza and S. Kumara, “Agent-Based
Systems for Manufacturing,” CIRP Annals -
Manufacturing Technology, Jan. 2006.

[18] J. Niemann, A. Basson, C. Fussenecker, K. Kruger, M.
Schlosser, S. Turek, H. Umadevi Amarnath,
“Implementation of Eye-Tracking Technology in Holonic
Manufacturing Systems,” Procedia - Social and
Behavioral Sciences, 238:37-45, 2018.

Christoph Wunck is a full professor of
Business Information Systems at
Emden/Leer University of Applied
Sciences. He is an Affiliate Professor in
the Department of Computer Science at
Iowa State University in Ames, Iowa,
USA and serves as a Scientific
Supervisor at OFFIS Institute for
Information Technology in Oldenburg,
Germany. He holds a doctoral degree

from the Faculty of Mechanical Engineering and a master’s
degree (Diplom-Ingenieur) in Electrical Engineering, both from
RWTH Aachen University

[19] B. Scholten, MES Guide for Executives, Research Triangle
Park, NC, USA: International Society of Automation,
2009.

[20] I. Sommerville, Software Engineering, Pearson
Education, 2016.

[21] P. Valckenaers and H. Van Brussel, “Holonic
Manufacturing Execution Systems,” CIRP Annals, pp.
427-432, Jan. 2005.

[22] M. W. Van Alstyne, G. G. Parker, and S. P. Choudary,
“Pipelines, Platforms, and the New Rules of Strategy,”
Harvard Business Review, April 2016.

[23] H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts
and P. Peeters, “Reference Architecture for Holonic
Manufacturing Systems: PROSA,” Computers in
Industry, 37:255-274, 1998.

[24] C. Wunck, “Implementation of Mobile Event Monitoring
Agents for Manufacturing Execution and Intelligence
Systems Using a Domain Specific Language,”
Proceedings of the 2016 IEOM Conference, Kuala
Lumpur, Malaysia, 2016.

[25] C. Wunck and S. Baumann, “Manufacturing Execution
Systems (MES) – The Next Platform Ecosystem,” EDSI
Annual Meeting, Udine, Italy, June 4, 2018.

Jonas Kallisch is a Research Associate
at Emden/Leer University of Applied
Sciences. He holds a master’s degree in
Engineering & Management and a
bachelor’s degree in Information
Systems, both from Jade University of
Applied Sciences (Wilhelmshaven/
Germany).

http://www.mesa.org/

IJCA, Vol. 27, No. 2, June 2020 65

Mutual Fund Portfolio Management Using LSTM

Achyut Ghosh, Soumik Bose and Soumya Sen *

University of Calcutta, Saltlake, Kolkata, INDIA

Giridhar Maji†

Asansol Polytechnic, Asansol 713302, West Bengal, INDIA

Narayan C. Debnath‡

Eastern International University, Binh Duong, VIETNAM

Abstract

Stock market prediction is one of the most difficult
computations due to the many internal as well as any number
and type of external factors. It is impossible to get the
exact computation hence we look for the method which
gives the computation with less error. Different machine
learning methods are being applied for the computations which
involve many parameters. In this research work we choose
Long Short-Term Memory (LSTM) for the prediction as it is
computationally suitable for these types of data analysis. After
doing the prediction of share price the work is extended to
manage portfolio of the mutual fund. The framework has been
designed in such a way so that the portfolio manager can choose
any number of business sectors as well as any number of shares
belong to this sector. This research work henceforth applicable
for computing individual share price as well as managing a
diversified portfolio.

Key Words: Stock price prediction; LSTM; indian stock
market; hybrid mutual fund; investment portfolio management.

1 Introduction

Data analytics is inevitable in any business applications for
decision making, forecasting and prediction. Starting from
financial sector, banking, share market, retail management,
healthcare, HRMS (Human Resource Management System)
etc. the analytics capability of data processing is explored
for business decision making. Actually, any system which
is complex and where many data parameters are used, data
analytics are applied in the form of machine learning for
decision making. Share market, which is a very important sector
for financial application is an area where many parameters
play crucial roles to predict the share price of a company.
In this domain uncertainity and unpredictability are involved
which makes the computation process challenging, therefore,
analysis is required incorporating many of the parameters
to take the correct decision. Machine Learning Techniques

*A.K. Choudhury School of I.T., Email: achyutghosh06@gmail.com;
1994bolusoumik@gmail.com and iamsoumyasen@gmail.com

†Dept. of Electrical Engineering, Email: giridhar.maji@gmail.com
‡Department of Software Engineering, Email:narayan.debnath@eiu.edu.vn

are suitable for these types of complex analyses involving
many data parameters. Different techniques such as Artificial
Neural Network (ANN), Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN) etc. have been evolved
in the area of Machine Learning for complex data analysis.
Artificial Neural Network (ANN) is capable of learning from the
historical data and helps in decision making. The methods such
as Convolutional Neural Network (CNN), Recurrent Neural
Network (RNN) etc. works great with multivariate time series
data. One remarkable drawback of RNN is the vanishing
gradient problem where with a large number of steps and
backpropagation, the learning becomes negligible. LSTMs
solves the vanishing gradient problem and also support arbitrary
length time steps.

The people with more appetite for higher income often plan
to invest in share market but refrain from investment due to the
risk factors associated with share market. Due to that reason
many such investors choose mutual funds as the alternative way
to invest in the share market. Mutual funds are offered by
banks, NBFC (Non Banking Financial Corporation), brokerage
companies etc. It is being managed by experienced portfolio
managers who have vast experience in the area of the stock
market. These portfolio managers invest in multiple stocks with
some specific goal of return (some with high return expectation
but having high risk, some with lower return but less risk etc.).
Investors instead of investing in specific stocks invest in these
mutual funds. It is being found that right now these retail
investors are investing more in mutual funds than investing in
stocks directly. Therefore managing a mutual fund is the further
extension over predicting the individual stock. In this research
work we extend the previous work [9] of individual share
prediction using LSTM to mutual fund portfolio management.
There are many ways to form mutual funds. The mutual funds
could be diversified where the investments are done in different
sectors (such as banking, finance, retail, auto, auto-ancillary,
manufacturing, FMCG, IT etc.). It could be sector specific
(investors want to invest money in a specific sector only). Along
with this another important factor to consider is time period.
The investor has to specify the period for which he is investing
the money. Portfolio managers will try to maximize the profit
based on the investment period of the investor.This research
work will consider both the types of the mutual funds and the

ISCA Copyright© 2020

66 IJCA, Vol. 27, No. 2, June 2020

time period.

2 Related Studies

Fama in 1970 [20] proposed efficient market hypothesis
which says that in an efficient market (where all events are
known to all stakeholders as when it happens) the effect all
market events are already incorporated in stock prices, hence it
is not possible to predict using past events or prices. But there is
lots of research work in stock market prediction based on either
fundamental analysis of the underlying economic factors or
based on technical analysis that considers the historical prices.
In fundamental analysis many different macro-economic factors
are considered for a long term prediction [21]. In technical
analysis, short term or medium term price predictions are made
using different technical attributes of time series price history.
Some of the attributes are day’s opening price, closing price,
average price, moving average etc. Many statistical data mining
tools have been employed in such kind of prediction such as
linear models like AR, MA, ARIMA, ARMA, CARIMA, etc. [6,
20] or non-linear models (ARCH, GARCH, ANN, RNN, LSTM,
etc.). Recently, many soft computing heuristic techniques are
also being used in financial prediction [27] with success. All
of these are possible due to the availability of a large corpus of
financial data in digital format which is clean and authentic and
its sheer volume allows to create enough training dataset for the
ANNs.

Researchers in [19] used a data mining technique known as
frequent itemset mining to predict the movement of a sectorial
index depending on a lagged correlation to other indices. They
used a total of six sectoral indices from the Bombay Stock
Exchange and considered a varying lag of 1 day to 5 day and
analyzed the co-movement patterns using apriori algorithm as
well as correlation coefficient.

Roondiwala et al. [23] employed an RNN-LSTM hybrid
model on NIFTY listed scrips with four attributes of historical
price such as every day’s opening and closing price and the
maximum and minimum price. They used a three week window
to predict the following day’s price movement.

The effectiveness of LSTM networks trained with
backpropagation through time for stock price prediction is
explored in [16]. Authors constructed many different LSTM
architectures, trained and tested them. Authors in [29] used
the Naive Bayesian emotional classifier on discussion forum
data along with an LSTM time series learning model to
improve the prediction accuracy while forecasting opening
stock price on the Shanghai Composite index. A similar
approach is employed in [1] where both numerical and textual
data inputs are considered in predicting opening stock prices
by converting media reports into a distributed representations
using a Paragraph Vector and temporal effects of past events of
selected companies with LSTM.

Kim et al. [17] used a convolutional neural network(CNN)
to learn the features from the images of stock charts. The
candlestick charts emerged as the best candidate for the CNN

training image in predicting future stock movement. Then, they
used an LSTM with stock price time series data. They tested
with a minute-wise price and used a thirty minute overlapping
window to predict the 35th minute price on S&P 500 ETF
data. They first used the CNN and LSTM separately on
different representations of the same dataset and then used
the combined feature fusion model. Experimental results
indicate the superiority of the combined model in comparison
to the individual models with a reduced prediction error.
Authors in [7] used LSTM to predict directional movement of
stocks on S&P 500 and compared the result with non-memory
based models like Random forest, logistic regression and deep
neural network. They observed that LSTM outperforms other
predictive models on real stock directional movement data from
1992-2015 on S&P 500 listed stocks. Hansson in [10] compared
direction of change classification on S&P stocks time series
data using statistical models like AR, ARIMA to the LSTM
prediction and concluded that LSTM outperforms in stock
movement direction prediction while shown similar results with
absolute price prediction.

Hiransha et al. [11], used three deep learning architectures
such as RNN, CNN and LSTM to predict stock price using day
wise past closing prices. They have considered two companies
from the IT sector (TCS and Infosys) and one from the Pharma
sector(Cipla) for experiment. The uniqueness of the study is that
they trained the models using data from a single stock and then
they used those models to forecast prices of five other stocks
from NSE and NYSE (New York Stock Exchange). They argued
that linear models try to fit the data to the model but in deep
networks underlying dynamics of the stock prices are unearthed.
As per their results CNN outperformed all other models as well
as classical linear models. The DNN could forecast NYSE
listed companies even though the model has learned from NSE
dataset. The reason could be the similar inner dynamics of both
the stock exchanges. The above results also corroborated by
researchers in [25] with similar observations.

Gers & Schmidhuber proposed a variation of LSTM by
introducing “peephole connections” [8]. In this model the gate
layers can look into the cell state. In another case the model
coupled forget and input gates. In this case, the decision to add
new information or to forget it is taken together. It forgets only
when it needs to input something in its place. This architecture
inputs new values to the cell state when it forgets anything
older. Cho et al. [5] proposed another popular LSTM variation
known as the Gated Recurrent Unit(GRU). It aggregates both
the forget and input gates into an “update gate”. The cell
state and hidden state are merged along with a few other minor
modifications to make the final model simpler than the original
LSTM. Due to the above reason this model is becoming popular
day by day. These are by no means an exhaustive list of
modified-LSTMs. There are many other variants such as Depth
Gated LSTM by Yao et al. [28]. Authors in [2] used both
the bidirectional LSTM and stacked LSTM predictive models
in financial prediction for comparative evaluation. Koutnik
et al. [18] proposed ‘Clockwork RNNs’ to tackle long-term

IJCA, Vol. 27, No. 2, June 2020 67

dependencies in a completely different manner.

3 LSTM Architecture

In the following subsections we shall briefly introduce the
recurrent neural networks with their advantages and limitations
in predicting sequential data. Next, an improved version of
RNN without the limitations of RNN in time series prediction,
i.e. LSTMs are presented followed by detailed construction and
working.

3.1 An overview of Recurrent Neural Network (RNN)

Classically, neural networks work with independent sets of
input-output combinations of data. The output of one step is
seldom fed into the input during the following step but a large
family of real-world problems final output not only varies with
external inputs, rather it depends on an earlier step output as
well. For example, when humans read a book, understanding
of each sentence depends not only on the current list of words
but also on the understanding of the previous sentence or on the
context that is created using past sentences. Humans don’t start
their thinking from scratch every second. As we go through
this paragraph, our understanding of each subsequent word is
based on the meaning of previous words. This concept of
‘context’ or ‘persistence’ is not available with classical neural
networks. Inability to use context-based reasoning becomes a
major limitation of traditional neural network. Recurrent neural
networks (RNN) are conceptualized to alleviate this limitation
of ANN while using sequential data. RNNs are networked
with feedback loops within to allow persistence of information.
Figure 1 shows a simple RNN with a feedback loop and its
unrolled equivalent version side by side.

Initially, (at time step t) for some input Xt the RNN generates
an output of ht . In the next time step (t+1) the RNN takes two
input Xt+1 and ht to generate the output ht+1 as shown in the
below equation.

ht+1 = f (xt+1,ht)

A loop allows information to be passed from one step of the
network to the next. RNNs are not free from limitations though.
When the ’context’ is from near past it works great towards the
correct output. But when an RNN has to depend on a distant
’context’ (i.e. something learned long past) to produce correct
output, it fails miserably. This limitation of the RNNs was
discussed in great detail by Hochreiter [12] and Bengio et al. [3].
They also traced back to the fundamental aspects to understand
why RNNs may not work in long-term scenarios. The LSTMs
are designed to overcome the above problem.

3.2 LSTM Networks

Hochreiter & Schmidhuber [15] introduced a special type
of RNN which is capable of learning long term dependencies.
Later on many other researchers improved upon this pioneering
work in [4, 13, 22, 24]. LSTMs are perfected over the time

to mitigate the long-term dependency issue. The evolution
and development of LSTM from RNNs are explained in [14,
26]. Recurrent neural networks are in the form of a chain of
repeating modules of the neural network. In standard RNNs,
this repeating module has a simple structure like a single tanh
activation layer as shown in Figure 2.

LSTMs follow this chain-like structure, however the
repeating module has a different structure. Instead of having
a single neural network layer, there are four layers, interacting
in a very special way as shown in Figure 3.

In Figure 3, every line represents an entire feature vector,
from the output of one node to the inputs of others. The
pink circles represent pointwise operations, like vector addition,
while the yellow boxes are learned neural network layers. Lines
merging denote concatenation, while a line forking denotes its
content being copied and the copies going to different locations.

3.3 The Working of LSTM

In LSTM architecture, LSTM cells are used instead of
commonly used hidden layers in other neural networks. The
cells are composed of various gates that control the input data
flow. An LSTM cell consists of the following, (i) input gate,
(ii) cell state, (iii) forget gate, (iv) output gate along with (v) a
sigmoid layer, (vi) tanh layer, and (vii) pointwise multiplication.
The key to LSTMs is the cell state, the horizontal line running
through the top of the diagram.The cell state is like a conveyor
belt. This runs straight down the entire chain, having some
minor linear interactions. The input gate is nothing but the
data input vector xt , and similarly the output gate consists of
the output generated by the LSTM. The sigmoid layer outputs
numbers between 0 and 1, describing how much of each
component should be let through. A value of 0 means ”let
nothing through”, while a value of 1 means ”let everything
through!” An LSTM has three of these gates, to protect and
control the cell state. The first step of LSTM is to decide what
information are to be thrown out from the cell state. It is made
by a sigmoid layer called the forget gate layer. It looks at ht−1
and xt , and outputs a number between 0 and 1 for each number
in the cell state Ct−1. A 1 represents ”completely keep this”
while a 0 represents ”completely remove this”. Mathematically
a forget gate is represented as shown in equation (1). The cell
state is updated based on the output from other gates which are
shown in equation 2, 3, 4 and 5.

ft = σ(Wf .[ht−1,xt]+b f) (1)

it = σ(Wi.[ht−1,xt]+bi) (2)

Ct = tanh(Wc.[ht−1,xt]+bc) (3)

Ot = σ(Wo.[ht−1,xt]+bo) (4)

ht = ot ∗ tanh(ct) (5)

In the next step it is decided what new information are going
to be stored in the cell state. It has two parts. First, a sigmoid
layer called the ”input gate layer” decides which values are to

68 IJCA, Vol. 27, No. 2, June 2020

Figure 1: An unrolled recurrent neural network

Figure 2: The repeating module in a standard RNN contains a single layer

Figure 3: The repeating module in an LSTM contains four interacting layers

IJCA, Vol. 27, No. 2, June 2020 69

be updated. Thereafter, a tanh layer creates a vector of new
candidate values, C̃t , that could be added to the state. In the next
step, these two are combined to create an update to the state.
It is now time to update the old cell state, Ct−1, into the new
cell state Ct . We multiply the old state by ft . Then we add
it ∗C̃t . This is the new candidate value, scaled by how much we
decide to update each state value. Finally, we need to decide
on the output. The output will be a filtered version of the cell
state. First, we run a sigmoid layer which decides what parts of
the cell state we’re going to output. Then, we put the cell state
through tanh (to push the values to be between −1 and +1) and
multiply it by the output of the sigmoid gate, so that we only
output the parts we decided to.

4 Proposed Framework to Forecast Share Price &
Company Growth in Different Time Spans

In this section at first we predict the share price for different
time periods using LSTM by calculating the error value. Now
based on the share values we proceed to form the mutual fund.
If it is diversified then we choose the top performing shares of
each segment for the given time period. Then we integrate them
to form the mutual fund. If it is sector specific then we choose
the top k shares (k is determined by portfolio manager) for the
given time period and integrate them to form the mutual fund. In
Section 4.2 we discuss about the share price prediction method
as proposed in [9] and we extend this in Section 4.3 to form the
mutual funds. Before that, in Section 4.1 we give an intuitive
analysis why LSTM is chosen for analysis.

4.1 Analyzing Different Methods

Regression is one of the popular way to do the prediction in
different business sectors including share market. In Figure 4
two figures on TCS share price using linear regression &
polynomial regression of degree four are shown.

Regression is not always very useful to compute the error
values. Similar problem also exist with curve fitting. The above
graphs are showing a poor result in terms of curve fitting. It
is found for time series data such as text, signals, stock prices,
etc. LSTM is well suited to learn temporal patterns. LSTM
is capable to solve the‘vanishing gradient’ problem that exists
in a RNN while learning long-term dependencies with time
series dataset with the use of memory cell (states) and (input
and forget) gates. Therefore LSTM is chosen here for future
prediction of the company’s share price as well as growth.

4.2 Methodology to Compute Share Price

The methodology to compute the share price using LSTM
was proposed in [9]. It is described here in brief. At first the
future closing price of different companies are predicted from
the historical price with the help of LSTM. This prediction is
possible for any period. In our computation we have chosen the
periods of 3-month, 6-month, 1 year, 2 year & 3 year. For these
five different time spans (3-month, 6-month, 1 year, 2 year &

3 years) the growth of these companies are calculated. Then
we analyze the deviations of closing price for each time span
and from these we get the least error for the particular company.
In our analysis, we have performed the analysis in the form of
months. Then the weight of a company is defined as:

weight =
2

P∗ (P+1)

In our case, month-wise weight (Yi) will be calculated using the
following algorithm:

Algorithm 1: Weight Calculation

N := M weight := 2
M∗(M+1)

for i = 1 : N do
Yi := weight ∗N ;
/* Yi is the weight of previous ith month*/
Q = Q−1;
i := i+1

Suppose the growth rate between different time periods is
Gri where i = 1 . . .M, considering current year as 0th year.
Therefore, Gri is the growth rate of (i− 1)th time period w.r.t
its immediate earlier year i.e. ith year. To maximize the impact
of current growth over the growth of an older year, we would
develop a mathematical formula stated below. Suppose the
growth rates of a company are Gr1; Gr2. . . Grm respectively
from present to M years earlier. Then the Company Net Growth
Rate (CNGR) by the following formula.

CNGR j = Y1 ∗Gr1 +Y2 ∗Gr2 + · · ·+Yi ∗Gri + · · ·+Yp ∗Grm

Where CNGR j is the Company Net Growth Rate of the jth

company (where j = 1 . . .m)

4.3 Implementation Steps

Step 1: Raw Stock Price Dataset: Day-wise past stock
prices of selected companies are collected from the BSE
(Bombay Stock Exchange) official website.
Step 2: Pre-processing: This step incorporates the following:

a) Data discretization: Part of data reduction but with
particular importance, especially for numerical data

b) Data transformation: Normalization.
c) Data cleaning: Fill in missing values.
d) Data integration: Integration of data files. After the dataset

is transformed into a clean dataset, the dataset is divided
into training and testing sets so as to evaluate.

Step 3: Feature Selection: In this step, data attributes are
chosen that are going to be fed to the neural network. In this
study, Date & Closing Price are chosen as the selected features.

Step 4: Train the NN model: The NN model is trained by
feeding the training dataset. The model is initiated using random

70 IJCA, Vol. 27, No. 2, June 2020

(a) (b)

Figure 4: Stock market closing prices of TCS over a time period and polynomial(degree 4) regression line

weights and biases. The proposed LSTM model consists of a
sequential input layer followed by 3 LSTM layers and then a
dense layer with activation. The output layer again consists of a
dense layer with a linear activation function.

Step 5: Output Generation: The RNN generated output
is compared with the target values and error difference is
calculated. The backpropagation algorithm is used to minimize
the error difference by adjusting the biases and weights of the
neural network.

Step 6: Test Dataset Update: Step 2 is repeated for the test
data set.

Step 7: Error and Companies’ Net Growth Calculation:
By calculating deviation we check the percentage of error of
our prediction with respect to actual price.

Step 8: Investigate Different Time Interval: We repeated
this process to predict the price at different time intervals. Here
we train 2-month dataset as training to predict 3-month, 6-
month, 1 year, 2 years & 3 years of close price of the share.
In this different time span, we calculate the percentage of error
in the future prediction.

Step 9: We choose the month where we get the least
error value and from that we compute the share price of each
company.

(Mutual Fund Portfolio Formation Steps)
Step 10: (For Diversified Mutual Fund)

a) For different sectors choose the top performing company.
b) Invest the money equally in each top company of the

selected sectors.

(For Sector Specific Mutual Fund)

a) Choose top k companies for that sector.
b) Select the investment ratio in each company as per the

choice of portfolio manager or may equally be distributed
in top k companies.

5 Results

The proposed system is implemented using Python. Here we
consider 3 sectors namely IT, banking and pharmaceutical. In
Table 1 the analysis is done for 3 year periods. Average closing
price has been taken between 01.01.2012-31.12.2015. The price
is estimated on 31.12.2019 that is after 4 years. Here from
Table 1 we find Monsanto is the best performing company in
IT sector.

Here from Table 2 we choose HDFC as the best performing
company in the banking sector. Here in Table 3, we choose
CIPLA as the best performing company in the pharmaceutical
sector. It is to be noted as per our proposed methodology the
error value prediction of the share price is not over 1.5%. It has
been found that if we consider the test data for a longer period
the error is less where as if the test data is for a short period then
the error is high. Now we will show the formation of diversified
mutual funds based on the proposed methodology. We have
considered 3 sectors in the experiment and we found Monsanto
as the top performing IT share with 60.42% growth, HDFC
bank is the top performing banking share with 120.09% growth
and CIPLA is the top performing pharmaceutical share with
17.89% growth. According to the proposed methodology equal
amount of investments are done in every stock of the selected
domain. Hence we get (60.42 + 120.09 + 17.89)/3 = 66.13
growth over the period of 4 years. The benchmark index of
BSE, SENSEX has grown 57.95% in the same period (SENSEX
was 26117 on 31.12.2015 and 41254 on 31.12.2019). Hence
our proposed method gives better performance over SENSEX
during the period. If we look at the annualized return we
get 66.13/4=16.53% growth. In the Indian mutual fund sector
this growth rate is among the well performing mutual funds.
Generally the annual return over 12% is considered as good
mutual funds. However continuous monitoring is required to
exclude non-performing shares and include well performing

IJCA, Vol. 27, No. 2, June 2020 71

Table 1: Calculation of 4 Years for IT Sector

Company Name Avg. Closing Price Predicted Value Error Percentage % of Growth

TCS 1954.655 2353.04 0.134114252 20.54301143

Tech Mahindra 638.55 579.75 0.542107701 -8.713491504

Wipro 487.274 366.26 0.855394943 -24.18639205

Monsanto 1531.522 2453.74 0.128617363 60.42211604

Table 2: Calculation of 4 Years for Banking Sector

Company Name Avg. Closing Price Predicted Value Error Percentage % of Growth

SBI 158.75 272.118 1.313996134 71.41291339

HDFC 767.68 1689.635 0.211620853 120.0962641

ICICI 895.2 317.412 1.126491752 -64.54289544

AXIS 994.06 571.61 0.625534893 -42.49743476

Table 3: Calculation of 4 years for Pharmaceutical Sector

Company Name Avg. Closing Price Predicted Value Error Percentage % of Growth

CIPLA 471.404 555.78 0.162542913 17.8988723

Sun Pharmaceutical 744.874 581.97 0.155228105 -21.87000754

Lupin 1055.155 1091.32 0.082778745 3.427458525

shares.
In the same way calculation is done for other sectors also

based on the top level companies belonging to that sector. The
error values for the sector is shown in Table 2. It has been
observed from the result that for almost all the sectors the
error level comes down drastically with the test data for longer
periods. So we suggest to apply this LSTM based model to
predict the share price on long time historical data.

6 Conclusions

In this paper, the individual stock prediction is done for many
periods to get the lowest error value so that the prediction is
near to optimal. However as the investment in individual stock
or individual sector is risky the previous analysis is extended for
mutual fund portfolio management. The proposed framework
is capable to work with any number of business sectors as well
as any number of shares for that particular sector. Therefore
the portfolio manager can tune the performance by adding or
removing the number of sectors as well as shares from his
portfolio. Results show that our proposed methodology gives
better results than some of the existing well performing mutual
funds in India. This research work can be extended further
by using other different machine learning or deep learning
techniques for better accuracy. Share market is very much
unpredictable and therefore abrupt changes can take place at any
moment due to many external factors (For example due to the

Coronavirus outbreak in recent time the share market is going
bearish all over the world). Hence continuous computation
is required to find out what method is suitable at the current
context for the best prediction.

References

[1] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara,
”Deep Learning for Stock Prediction Using Numerical
and Textual Information”, In 2016 IEEE/ACIS 15th
International Conference on Computer and Information
Science (ICCIS), IEEE, pp. 1–6, 2016.

[2] K. A. Althelaya, E.-S. M. El-Alfy, and S. Mohammed,
”Evaluation of Bidirectional LSTM for Short-and Long-
Term Stock Market Prediction”, In 2018 9th International
Conference on Information and Communication Systems
(ICICS), IEEE, pp. 151–156, 2018.

[3] Y. Bengio, P. Simard, and P. Frasconi, ”Learning Long-
Term Dependencies with Gradient Descent is Difficult”,
IEEE Transactions on Neural Networks, 5(2):157–166,
1994.

[4] J. Chen and N. S. Chaudhari, ”Segmented-Memory
Recurrent Neural Networks”, IEEE Transactions on
Neural Networks, 20(8):1267–1280, 2009.

72 IJCA, Vol. 27, No. 2, June 2020

[5] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau,
F. Bougares, H. Schwenk, and Y. Bengio, ”Learning
Phrase Representations Using RNN Encoder-Decoder
for Statistical Machine Translation”, arXiv preprint
arXiv:1406.1078, 2014.

[6] Z. A. Farhath, B. Arputhamary, and L. Arockiam,
”A Survey on ARIMA Forecasting Using Time Series
Model”, Int. J. Comput. Sci. Mobile Comput, 5:104–109,
2016.

[7] T. Fischer and C. Krauss, ”Deep Learning with
Long Short-Term Memory Networks for Financial Market
Predictions”, European Journal of Operational Research,
270(2):654–669, 2018.

[8] F. A. Gers and J. Schmidhuber, ”Recurrent Nets That
Time and Count”, Proceedings of the IEEE-INNS-
ENNS International Joint Conference on Neural Networks.
IJCNN 2000. Neural Computing: New Challenges and
Perspectives for the New Millennium, IEEE, 3:189–194,
2000.

[9] A. Ghosh, S. Bose, G. Maji, N. C. Debnath, and S. Sen,
”Stock Price Prediction Using LSTM on Indian Share
Market”, Proceedings of 32nd International Conference
on Computer Applications in Industry and Engineering
(CAINE 2019), ISCA, 63:101–110, 2019.

[10] M. Hansson, On Stock Return Prediction with LSTM
Networks, PhD Thesis, Lund University, London, June
2017.

[11] M. Hiransha, E. A. Gopalakrishnan, V. K. Menon, and
K. P. Soman, ”NSE Stock Market Prediction Using
Deep-Learning Models”, Procedia Computer Science,
132:1351–1362, 2018.

[12] S. Hochreiter, Investigations into Dynamic Neural
Networks, Master’s Thesis, Diploma, Technical University
of Munich, 1991.

[13] S. Hochreiter, ”The Vanishing Gradient Problem During
Learning Recurrent Neural Nets and Problem Solutions”,
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 6(02):107–116, 1998.

[14] S. Hochreiter and J. Schmidhuber, ”Long Short-Term
Memory”, Neural Computation, 9(8):1735–1780, 1997.

[15] S. Hochreiter and J. Schmidhuber, ”LSTM Can Solve
Hard Long Time Lag Problems”, In Advances in Neural
Information Processing Systems, pp. 473–479, 1997.

[16] H. Jia, ”Investigation into the Effectiveness of Long
Short Term Memory Networks for Stock Price Prediction”,
arXiv preprint arXiv:1603.07893, 2016.

[17] T. Kim and H. Y. Kim, ”Forecasting Stock Prices with
a Feature Fusion LSTM-CNN Model Using Different
Representations of the Same Data”, PloS one,
14(2):e0212320, 2019.

[18] J. Koutnik, K. Greff, F. Gomez, and J. Schmidhuber, ”A
Clockwork RNN”, arXiv preprint arXiv:1402.3511, 2014.

[19] G. Maji, S. Sen, and A. Sarkar, ”Share Market Sectoral
Indices Movement Forecast with Lagged Correlation
and Association Rule Mining”, In IFIP International
Conference on Computer Information Systems and
Industrial Management(CISIM), pp. 327–340, 2017.

[20] B. G. Malkiel and E. F. Fama, ”Efficient Capital Markets:
A Review of Theory and Empirical Work”, The Journal of
Finance, 25(2):383–417, 1970.

[21] D. Mondal, G. Maji, T. Goto, N. C. Debnath, and S. Sen,
”A Data Warehouse Based Modelling Technique for Stock
Market Analysis”, International Journal of Engineering
& Technology, 3(13):165–170, 2018.

[22] L. Pasa and A. Sperduti, ”Pre-Training of Recurrent
Neural Networks via Linear Autoencoders”, In Advances
in Neural Information Processing Systems, pp. 3572–
3580, 2014.

[23] M. Roondiwala, H. Patel, and S. Varm, ”Predicting Stock
Prices using LSTM”, International Journal of Science and
Research (IJSR), 6(4):1754–1756, 2017.

[24] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez,
”Training Recurrent Networks by Evolino”, Neural
Computation, 19(3):757–779, 2007.

[25] S. Selvin, R. Vinayakumar, E. A. Gopalakrishnan, V. K.
Menon, and K. P. Soman, ”Stock Price Prediction Using
LSTM, RNN and CNN Sliding Window Model”, In 2017
International Conference on Advances in Computing,
Communications and Informatics (ICACCI), IEEE, pp.
1643–1647, 2017.

[26] R. S. Sutton and A. G. Barto, ”Reinforcement Learning:
An Introduction”, MIT Press, 2018.

[27] S. Wichaidit and S. Kittitornkun, ”Predicting Set 50 Stock
Prices using CARIMA (Cross Correlation ARIMA)”, In
2015 International Computer Science and Engineering
Conference (ICSEC), IEEE, pp. 1–4, 2015.

[28] K. Yao, T. Cohn, K. Vylomova, K. Duh, and C. Dyer,
”Depth-Gated LSTM”, arXiv preprint arXiv:1508.03790,
2015.

[29] Q. Zhuge, L. Xu, and G. Zhang, ”LSTM Neural Network
with Emotional Analysis for Prediction of Stock Price”,
Engineering Letters, 25(2):1–9, 2017.

IJCA, Vol. 27, No. 2, June 2020 73

Achyut Ghosh completed his Mater
of Computer Application (MCA)
from University of Calcutta in
the year 2019 and obtained B.Sc
(Honours) in Mathematics in the
year 2016. His research interest is
Machine Learning & Data Science.
Currently he is practicing C#, Java
based technology for development of
industrial software.

Soumik Bose completed his Master
of Computer Application (MCA)
from University of Calcutta in
the year 2019 and obtained B.Sc
(Honours) in Mathematics in the
year 2016. He is keen to solve
research problems using Machine
Learning technologies. His industrial
expertization includes C#, Java script.

Giridhar Maji has been working
as a Lecturer in the Department
of Electrical Engineering, Asansol
Polytechnic, Govt. of West Bengal,
India since 2014. He had worked
in the IT industry for more than 6
years in different capacities at Tata
Consultancy Services and Cognizant
Technology Solutions. He has done
his M. Tech from University of
Calcutta in 2015 and B. Tech from

National Institute of Technology, Durgapur, India in 2007. He is
currently working towards his PhD from University of Calcutta.
He has published in more than 20 international journals and
conferences. He has 4 book chapters to his credit. His area
of research is data mining, data warehousing, social network
analysis, information security and steganography. He serves as

reviewer for Springer IEI Series-B journal since 2018 and also
an editorial review board member of IGI Global International
Journal of Information Security and Privacy (IJISP).

Narayan C. Debnath earned a
Doctor of Science (D.Sc.) degree in
Computer Science and also a Doctor
of Philosophy (Ph.D.) degree in
Physics. He is currently the Founding
Dean of the School of Computing
and Information Technology at
Eastern International University,

Vietnam. He is also serving as the Head of the Department
of Software Engineering at Eastern International University,
Vietnam. He has been the Director of the International Society
for Computers and Their Applications (ISCA) since 2014.
Formerly, He served as a Full Professor and Chairman of
Computer Science at Winona State University, Minnesota,
USA. He has been an active member of the ACM, IEEE
Computer Society, Arab Computer Society, and a senior
member of the ISCA.

Soumya Sen is an Assistant professor
in A. K. Choudhury School of
Information Technology under
University of Calcutta. He has been
awarded with Ph.D. in 2016 and
obtained his M. Tech. Degree in
Computer Science & Engineering
in 2007 and M.Sc. in Computer
& Information Science in 2005.
He has around 80 research papers
published in Peer reviewed journals

and International Conferences. He has 3 patents registered in
USA, Japan & South Korea. He has also published 2 books
with Springer in the form of Springer Briefs. He is a reviewer
of many International Journals and PC member & reviewer of
many International conferences across the world. He is member
of IEEE, ACM.

74 IJCA, Vol. 27, No. 2, June 2020

ISCA Copyright© 2020

Generalization of RC-Based Low Diameter Hierarchical
Structured P2P Network Architecture

Swathi Kaluvakuri*, Koushik Maddali*, Nick Rahimi†, Bidyut Gupta*
Southern Illinois University Carbondale, Carbondale, IL USA

Narayan Debnath‡

Eastern International University, VIETNAM

Abstract

In this work, we have considered generalizing a non-DHT-

based low diameter hierarchical structured P2P network which
is designed applying modular arithmetic, called the Residue
Class (RC). This is an interest based two level architecture. At
its second level, diameter of each cluster (group) of peers is one.
It helps in designing very efficient data lookup algorithms.
Besides, complexity involved in data lookup is a function of the
number of distinct resource types unlike in DHT-based
structured P2P systems. In addition, use of the same code to
denote a resource type and the corresponding group-head has
made the search process simple and efficient.

Key Words: Structured P2P network, residue class, network
diameter, data lookup, generalization, interest based, churn.

1 Introduction

Peer-to-Peer (P2P) overlay networks are widely used in
distributed systems due to their ability to provide computational
and data resource sharing capability in a scalable, self-
organizing, distributed manner. P2P networks are classified into
two classes: unstructured and structured ones. In unstructured
systems [2] peers are organized into arbitrary topology. It takes
help of flooding for data look up. Problems arising due to
frequent peers joining and leaving the system, also known as
churn, is handled effectively in unstructured systems. However,
it compromises with the efficiency of data query and the much
needed flexibility. In unstructured networks, lookups are not
guaranteed. On the other hand, structured overlay networks
provide deterministic bounds on data discovery. They provide
scalable network overlays based on a distributed data structure
which actually supports the deterministic behavior for data
lookup. Recent trend in designing structured overlay
architectures is the use of distributed hash tables (DHTs) [13, 15,
20]. Such overlay architectures can offer efficient, flexible, and
robust service [8, 13, 15-16, 20].

*School of Computing. E-mail: swathi.kaluvakuri@siu.edu,
koushik@siu.edu, bidyut@cs.siu.edu.
†School of Information Systems & Applied Technologies. E-mail:
shrahim@siu.edu.
‡School of Computing and Information Technology. E-mail:
narayan.debnath@eiu.edu.vn.

However, maintaining DHTs is a complex task and needs
substantial amount of effort to handle the problem of churn. So,
the major challenge facing such architectures is how to reduce
this amount of effort while still providing an efficient data query
service. In this direction, there exist several important works,
which have considered designing hybrid systems [1, 4, 7, 11, 14,
17-18]; these works attempt to include the advantages of both
structured and unstructured architectures. However, these works
have their own pros and cons.

1.1 Our Contribution

In this paper, we have considered interest-based P2P systems

[3, 17, 19]. The rationale behind this choice is that users sharing
common interests are likely to share similar contents, and
therefore searches for a particular type of content are more
efficient if peers likely to store that content type are neighbors
[10]. We have pointed out above the disadvantages of DHT-
based systems. Therefore, in this paper, we have considered the
problem of designing and making it more generic by generalizing
the non-DHT based structured system that does not have such
problems [5, 12]. We have used a mathematical model based on
modular arithmetic, specifically residue class (RC) [6, 9], to
design a two-level structured architecture. To the best of our
knowledge, there does not exist any such work that has used this
mathematical model. Use of such a mathematical model has
helped in designing very efficient data lookup algorithms. The
proposed architecture has appeared in Preliminary Section 2.
Besides, we have shown that the time complexity in searching
for a resource is independent of the number of peers in the
network and is instead bounded by the number of distinct
resource types. In Section III, we have presented the
Generalization and discussed about the Data lookup in Section
IV and performance comparison in Section VI.

 2 Preliminaries

Some of the preliminaries of this RC-based low diameter two

level hierarchical structured P2P network [6, 9] have been
considered here. In this section, we present a structured
architecture for an interest-based peer-to-peer system. The
following notations along with their interpretations will be used
while we define the architecture.

mailto:swathi.kaluvakuri@siu.edu
mailto:koushik@siu.edu
mailto:bidyut@cs.siu.edu

IJCA, Vol. 27, No. 2, June 2020 75

Definition 1. We define a resource as a tuple ˂Ri, V˃, where
Ri denotes the type of a resource and V is the value of the
resource.

Note that a resource can have many values. For example,

let Ri denote the resource type ‘movies and V' denote a
particular actor. Thus ˂Ri, V'˃ represents movies (some or all)
acted by a particular actor V'.

Definition 2. Let S be the set of all peers in a peer-to-peer

system. Then S = {PRi}, 0 ≤ i ≤ n-1, where PRi denotes the subset
consisting of all peers with the same resource type Ri. and the
number of distinct resource types present in the system is n.
Also, for each subset PRi, we assume that Pi is the first peer
among the peers in PRi to join the system. We call Pi as the
group-head of group Gi formed by the peers in the subset PRi .

We now describe our proposed architecture suitable for

interest-based peer-to-peer system. We assume that no peer can
have more than one resource type. Generalization of the
architecture comes in the next section.

2.1 Two Level P2P Hierarchy.

It is a two-level overlay architecture and at each level

structured networks of peers exist. It is explained in detail
below.

1) At level-1, we have a ring network consisting of the peers

Pi (0 ≤ i ≤ n-1). The number of peers on the ring is n which
is also the number of distinct resource types. This ring
network is used for efficient data lookup and so we name
it as transit ring network.

2) At level-2, there are n numbers of completely connected

networks (groups) of peers. Each sub group, say Gi is
formed by the peers of the subset PRi, (0 ≤ i ≤ n-1), such
that all peers (ϵ PRi) are directly connected (logically) to
each other, resulting in the network diameter of 1. Each
Gi is connected to the transit ring network via its group-
head Pi.

3) Each peer on the transit ring network maintains a global
resource table (GRT) that consists of n number of tuples.
GRT contains one tuple per group and each tuple is of the
form <Resource Type, Resource Code, Group Head
Logical Address>, where Group Head Logical Address
refers to the logical address assigned to a node by our
proposed overlay P2P architecture. Also, Resource Code
is the same as the group-head logical address.

4) Any communication between a peer pi' ϵ Gi and pj' ϵ Gj
takes place only via the respective group-heads Pi and Pj.

The proposed architecture is shown in Figure 1.

2.2 Relevant Properties of Modular Arithmetic

Consider the set Sn of nonnegative integers less than n, given
as Sn = {0, 1, 2, … (n – 1)}. This is referred to as the set of
residues, or residue classes (mod n). That is, each integer in Sn
represents a residue class (RC). These residue classes can be
labelled as [0], [1], [2], …, [n – 1], where [r] = {a: a is an integer,
a ≡ r (mod n)}.

For example, for n = 3, the classes are:

[0] = {…., ─ 6, ─ 3, 0, 3, 6, …}
[1] = {…., ─ 5, ─ 2, 1, 4, 7, …}
[2] = {…., ─ 4, ─ 1, 2, 5, 8, …}

Thus, any class r (mod n) of Sn can be written as follows:

Figure 1: A two-level structured architecture with distinct resource types

76 IJCA, Vol. 27, No. 2, June 2020

[r] = {.…, (r - 2n), (r - n), r, (r + n), (r +2 n), …, (r + (j-1).
n), (r + j.n), (r + (j+1).n), …..}

A few relevant properties of residue class are stated below.

Lemma 1. Any two numbers of any class r of Sn are mutually

congruent.
Proof. Let us consider any two numbers N' and N" of class r.

These numbers can be written as

N' ≡ r (mod n); therefore, (N' – r) / n = an integer, say I' (1)

N" ≡ r (mod n); therefore, (N" – r) / n = an integer, say I" (2)

Using (1) and (2) we get the following,

(N' – N") / n = ((N' – r) – (N" – r)) / n = I' – I" = an integer.

Therefore, N' is congruent to N"; that is, N' ≡ N" (mod n);

also, N" ≡ N' (mod n) because congruence relation (≡) is

symmetric. Hence, the proof. □

2.3 Assignments of Overlay Addresses.

Assume that in an interest-based P2P system there are n

distinct resource types. Note that n can be set to an extremely
large value a priori to accommodate large number of distinct
resource types. Consider the set of all peers in the system given
as S = {PRi}, 0 ≤ i ≤ n-1. Also, as mentioned earlier, for each
subset PRi (i.e., group Gi) peer Pi is the first peer with resource
type Ri to join the system.

In the proposed overlay architecture, the positive numbers

belonging to different classes are used to define the following
parameters:

1) Logical addresses of peers in a subnet PRi (i.e., group Gi).

Use of these addresses will be shown to justify that all
peers in Gi are directly connected to each other (logically)
forming an overlay network of diameter 1. In graph
theoretic term, each Gi is a complete graph.

2) Identifying peers that are neighbors to each other on the
transit ring network.

3) Identifying each distinct resource type with unique code.

The assignment of logical addresses to the peers at the two

levels and the resources happen as follows:

1) At level-1, each group-head Pr of group Gr is assigned with

the minimum nonnegative number (r) of residue class r
(mod n) of the residue system Sn.

2) At level-2, all peers having the same resource type Rr will
form the group Gr (i.e., the subset PRr) with the group-head
Pr connected to the transit ring network. Each new peer
joining group Gr is given the group membership address (r
+ j.n), for j = 1, 2, …

3) Resource type Rr possessed by peers in Gr is assigned the

code r which is also the logical address of the group-head
Pr of group Gr.

4) Each time a new group-head joins, a corresponding tuple
<Resource Type, Resource Code, Group Head Logical
Address> is entered in the global resource table (GRT).

Remark 1. GRT remains sorted with respect to the logical

addresses of the group-heads.
Definition 3. Two peers Pi and Pj on the ring network are

logically linked together if (i + 1) mod n = j.
Remark 2. The last group-head Pn-1 and the first group-head

P0 are neighbors based on Definition 3. It justifies that the
transit network is a ring.

Definition 4. Two peers of a group Gr are logically linked
together if their assigned logical addresses are mutually
congruent.

Lemma 2. Diameter of the transit ring network is n/2.
Lemma 3. Each group Gr forms a complete graph.
Proof. According to Definition 4, two peers of a group Gr are

logically linked together if their assigned logical addresses are
mutually congruent. Also, from Lemma 1, we note that any two
numbers of any class r of Sn are mutually congruent. Therefore,
every peer has direct logical connection with every other peer in
the same group Gr. Hence, the proof. □

2.4 Salient Features of the Overlay Architecture.

We summarize the salient features of this architecture.

1) It is a hierarchical overlay network architecture consisting

of two levels; at each level the network is a structured one.
2) Use of modular arithmetic allows a group-head address to

be identical to the resource type owned by the group. We
will show in the following section the benefit of this idea
from the viewpoint of achieving reasonably very low
search latency.

3) Number of peers on the ring is equal to the number of
distinct resource types, unlike in existing distributed hash
table-based works some of which use a ring network at the
heart of their proposed architecture. [15, 17].

4) The transit ring network has the diameter of n/2. Note that
in general in any P2P network, the total number of peers
N >> n.

5) Each overlay network at level 2 is completely connected.
That is, in graph theoretic term it is a complete graph
consisting of the peers in the group. So, its diameter is just
1. Because of this smallest possible diameter (in terms of
number of overlay hops) the architecture offers minimum
search latency inside a group.

2.5 Problem Formulation

In the architecture proposed above, it is assumed that no peer

can have more than one resource type and this could be a very
hard restriction practically. To overcome this restriction, we
came up with the concept of Generalization i.e., the architecture
is generalized in such a way that a peer can have multiple
resource types. To implement this idea, we have redesigned the

IJCA, Vol. 27, No. 2, June 2020 77

concept of peers joining a network in Section 3, the data lookup
algorithms in Section 4. In Section 5, we have considered
concurrent joins and leaves, and finally the maintenance of the
transit ring network in Section 6.

3 Generalization of the Architecture

Generalization of the Architecture is dealt in multiple

scenarios. Now, let us consider a situation that in group Gi, the
group-head Pi or a peer p that belongs to Gi wants data insertion
in the system of another existing resource type Rk.

3.1 Peer with Multiple Existing Resource Types

Scenario: Let us consider that in Gi the group-head Pi or a

peer p (ϵ Gi) wants data insertion in the system of another
existing resource type Rk,

Note that Rk exists in Gk and Pi or p already possesses Ri.
Solution: The solution for this scenario is as follows. The

group-head Pi or peer p will now become a member of group Gk
as well. So, it is understood that the IP address of Pi /p will be
known to members of both the groups Gi and Gk. It logically
means that, in the overlay network, Pi /p will be directly
connected to all the members of Gi and Gk as well. The
implementation of this proposal is stated below in Figure 2.

Data- Insertion Algorithm states the implementation

Time complexity of Algorithm 1 is bounded by (1+ n/2), n

being the number of distinct resource types. Data insertion for
more existing resource types can be done similarly.

3.2 Existing Peers Declaring New Resource Types

Scenario: Consider a P2P interest-based system which has S

distinct resource types, viz., R0, R1, R2, … Rs-1. Without any
loss of generality, let us assume a scenario where peer Pi /p in
Gi wants a data insertion for a new resource type Rs.

Note that Rs doesn’t exist in system so far and Pi or p already
possesses Ri. The implementation of this scenario is stated
below.

Solution: As it’s said before, each peer on the transit ring
network maintains a global resource table (GRT) that consists
of S number of tuples, where S is the number of distinct resource
types in this case. GRT contains one tuple per group and each
tuple is of the form <Resource Type, Resource Code, Group
Head Logical Address>, where Group Head Logical Address
refers to the logical address assigned to a node by our proposed
overlay P2P architecture. So, based on this Pi can know that the
new Resource type doesn’t exist in the system so far.

Step 1: Pi /p will become the group-head of the newly created
group Gs possessing resource type Rs

Step 2: The Transit-ring has to be reconstructed in the
following way.

• As the recent group-head Ps, the new location of Pi or p on

the ring is now between Ps-1 and P0
• If the peer declaring the new resource type is Pi, it will

appear (logically) twice as group-heads on the ring for Gi
and Gs

• If it is peer p, it will appear once as the group-head of Gs
and once as a member of Gi.

Step 3: Note that the Resource code of the new Group head

Rs is its logical address S.
Step 4: Now, Pi /p will ask the group-heads to update their

GRT by including Rs and its code along with the IP address of
Pi /p

Step 5: For implementation, Pi /p will now have another set
of pointers pointing to its new neighbors, Ps-1 and P0.

Step 6: Group-heads Ps-1 now changes its right neighbor from
P0 to Ps and group-head P0 changes its left neighbor from Ps-1
to Ps; they adjust their pointers accordingly.

Figure 2: Data insertion algorithm for multiple existing resource types

Data-Insertion Algorithm

1. Data insertion request for Rk from Pi /p is forwarded along the transit ring from group-head Pi to Pk

// no. of hops along the ring in worst case is n / 2

2. Pk assigns to Pi /p the next available address, not yet assigned in group Gk
// The new peer joining group Gk is given the group membership address as (k + j.n)

3. a. Pk broadcasts the address of Pi /p in Gk
 // Pi /p is the new member of Gk ; 1-hop communication
b. Each group member of Gk updates its list of neighbors

4. Pk unicasts a copy of neighbor list to Pi /p
// Pi /p is a new member of Gk now

78 IJCA, Vol. 27, No. 2, June 2020

Next, we consider the data look up in the generalized
structure.

4 Data Look-Up

Data lookup can be either intra-group or inter-group. The

former one means that a peer pi' (ϵ Gi) requests for some
resource ˂ Ri,V"˃ which it does not possess. Note that only some
peer(s) pi" (ϵ Gi) can possess ˂Ri,V"˃ if at all; no other peer in
any other group Gk can possess it since it is an interest based
architecture.

The following data structure will be used for efficient data
lookup. As mentioned earlier every group-head Pi will maintain
a global resource table (GRT) with identical contents. We have
earlier mentioned that the code of a resource type Ri is the same
as the logical address of the corresponding group-head.

Apart from maintaining a GRT, each Pi maintains the
following: each Pi has pointers to its two neighbors on the
transit ring network. That is, each Pi knows the IP address of
each of its two-neighboring group-heads Pi-1 and Pi+1. The
pointer information of Pi is also saved in the peer (ϵ Gi) with the
next logical address. This saved information can be used to
achieve fault tolerance in the event that Pi crashes or leaves.
Each member peer in a group maintains a list of all its neighbors
present in the group

4.1. Intra-Group Data Lookup

Without any loss of generality, let us consider a data lookup

in group Gi by a peer p' possessing ˂Ri,V'˃ and requesting for
˂Ri,V"˃. The algorithm for intra-group data lookup is presented
in Figure 3, Algorithm-Intra.

Figure 3: Intra-group data lookup algorithm

4.2 Inter-Group Data Lookup

In our proposed architecture, any communication between a

node pi' ϵ Gi and pj' ϵ Gj takes place only via the respective
group-heads Pi and Pj. Without any loss of generality let a peer
pi' (ϵ Gi) request for ˂Rj,V*˃. The following steps are executed
to answer the query. Peer pi' knows that Rj ∉ Gi. Assume that

there are n distinct resource types. In order to locate resource
Rj, a search along the transit ring network is required. The
algorithm for inter-group data lookup is presented in Figure 4,
Algorithm-Inter.

However, in our proposed architecture, number of peers on
the ring is the number of distinct resource types n and it has been
observed that the number of peers in most P2P networks is too
large compared to the number of distinct resource types i.e.,
n<<N. ,Therefore, such search on the ring in our proposed
architecture appears to be quite practical.

5 Concurrent Leaves and Joins

We assume that a well-known server keeps a copy of the

GRT. When a new node (peer) wishes to join the system, it
contacts the server. If the request to join is for an existing
resource type, say Ri, the server sends the IP address of the
group-head Pi to the node. If the request is for a new resource
type, the server sends the IP address of the group-head P0.
Therefore, in our design the server plays a small but very
important role related to load sharing by group-heads. All that
is needed is when the GRT is updated by the group-heads, a
copy is sent to the server. By virtue of its construction, the GRT
remains sorted by default and in an ascending order of the
Group-heads’ logical addresses; so determining the exact group-
head is O(log n).

Churn is frequent arrivals and departures of the peers in the
system. Let us now see the possible scenarios of peers joining
and leaving.

5.1 Concurrent Joins

As pointed out earlier, a peer p either can join an existing

group, or can form a new group with the group-head being the
peer itself.

Scenario 1: Peer joining an existing resource type is

explained in Figure 5.

• Since nodes in a group are directly connected to each other,

hence joining a group means forming a logical link between the
peer p and each node in the group.
• If multiple peers join the same group, say Gk, the join

requests are queued at the group head Pi and are served on FCFS
basis.
• Observe that joining multiple groups can take place

concurrently, because joining one group is unrelated to joining
other groups.

Scenario 2: New peer with new resource type

Consider a P2P interest-based system which has S distinct

resource types, viz., R0, R1, R2, … Rs-1. Without any loss of
generality, let us assume a scenario where a new peer p wants a
data insertion for a new resource type Rs.

• In this case, it is a new resource type Rs, the joining peer

Algorithm-Intra

1. p' broadcasts its request in Gi for ˂Ri,V"˃
 //one hop communication since diameter of Gi is one

2. if ∃ p" with ˂Ri,V"˃ then
 p" unicasts ˂Ri,V"˃ to p'

 else
 search for ˂Ri,V"˃ fails
 //search latency is minimum, i.e., only two hops

IJCA, Vol. 27, No. 2, June 2020 79

Figure 4: Inter-group lookup algorithm

Algorithm-Inter

1. pi' sends a data lookup request for ˂Rj,V*˃ to its group-head Pi

 // one hop communication

2. if Pi is also the group-head (Pj) for resource type Rj

 if Pi (as Pj) possesses < Rj, V*> then
 Pi (as Pj) unicasts < Rj, V*> to pi'
 else
 Pi (as Pj) executes Algorithm-Intra in Gj

 else
3. Pi determines the group-head Pj's address code from GRT

 / address code of Pj = resource code of Rj = j

4. Pi computes │i - j│= h
5. if h ˃ n / 2 then

 Pi forwards the request along with the IP
 address of pi' to its immediate predecessor Pi-1

 else
 Pi forwards the request along with the IP
 address of pi' to its immediate successor Pi+1

 / Looking for minimum no. of hops along the
 transit ring network
 end

6. if an intermediate group-head Pk is also the group-head for resource type Rj then

 if Pk (as Pj) possess < Rj, V*> then
 Pk (as Pj) unicasts < Rj, V*> to pi'
 else
 Pk (as Pj) executes Algorithm-Intra in Gj as the group head Pj

 else
7. Each intermediate group-head Pk forwards the request until Pk = Pj

 / no. of hops along the ring in worst case is n / 2

8. if Pj possess ˂Rj,V*˃ then
 Pj unicasts ˂Rj,V*˃ to pi'
 else
 Pj executes Algorithm-Intra in Gj

 end

80 IJCA, Vol. 27, No. 2, June 2020

Figure 5: Peer joining existing resource type algorithm

contacts P0 which is the group-head of the very first group
formed in the system

• P0 assigns a logical address s (mod n) of the residue system
Sn to p.

• p becomes the group head Ps of new group Gs
• GRT and all the predecessor and successor pointers of

group heads are updated accordingly
• Multiple such requests eventually arrive at P0 and P0 serves

the requests on FCFS basis
• We can handle insertion of multiple new resource types by

the same peer in a similar way. Note that in the proposed
architecture joining of any new resource type always takes
place between the recent and the first groups. This feature
makes such joining localized to a single position on the
ring; thereby making the joining process much simpler.

It is obvious that the above mentioned Scenario 1 and

Scenario 2 can occur simultaneously.

5.2 Concurrent Leaves

It is assumed that any two directly connected peers in a group

or along the transit ring periodically exchange periodic hello
packets. Leaving a network could be graceful or abrupt
(unexpected crash). In both the cases, if a hello packet is not
received from a neighbor peer it is interpreted that the peer is no
more alive(unreachable). Both the cases of a peer leaving
Figure 5: Peer Joining Existing Resource type algorithm
(graceful or abrupt) are handled in the same way.

Scenario 1: Group Member Crashes or Leaves

• The logical link information (i.e., logical address) of the

peer left is deleted from the routing table of each peer not
receiving the hello packet.

• Therefore, concurrent such leavings whether taking place
in the same group or in multiple groups amounts to the
deletion of the corresponding link information in the
routing tables of the concerned non-leaving peers only.

Scenario 2: Group Head Crashes or Leaves

• The procedure to handle the case of a group-head crashing

or leaving the network can be achieved easily with a small
overhead of saving pointer values present in a group-head
Pi in a peer p∗ ∈ Gi.

• An update from Pi to pi
∗ is triggered whenever Pi detects a

change in the transit network.
• In order to guard against any loss of information due to

group-head Pi’s crash/leave, Pi also sends a snapshot of its

request queue to p∗each time the content of the queue is
updated.

Note that handling of single group-head crash has been

discussed in [12]. Multiple group heads’ leaving is considered
in the following section.

5.3 Concurrent Joins and Leaves

Observe that ‘concurrent joins and leaves’ means that

addition and deletion of logical links taking place concurrently.

• If a peer is involved in both actions, it will do so

sequentially on FCFS basis
• Otherwise, different peers can execute these two operations

concurrently in the system.

6 Comparison

6.1 Data Lookup Complexity

In Chord [15] search along the chord is not followed, because

it is very inefficient in a large peer to peer system since the mean
number of hops required per search is N / 2, where N is the total
number of peers in the system. In our work, the mean number
of hops required (on the ring network) per search is n / 2, where
n is the number of distinct resources. Fact is, in general, the
total number of peers N is much larger than the number of
distinct resource types n; hence search along the transit ring
network in our work can be quite efficient.

It is also apparent from the fact that in Chord [15] and in other
structured P-2-P systems [13, 20] the complexity involved in
data lookup is a function of the number of peers N in the system;
where as in the proposed architecture it is a function of the
number of distinct resource types n. The point to mention is that
use of the same code to denote a resource type Ri and the
corresponding group-head Pi has made the search process
simple and efficient. Thus, the time complexity for data lookup
in our presented architecture is bounded by �1 + 𝑛𝑛

2
�. In Table

1, we have presented data lookup complexity of our approach as
well as those of some important existing DHT based systems.
The look up performance comparison is represented graphically
on Figure 6. Observe that from the viewpoint of data lookup
complexity, our proposed architecture offers better
performance.

Algorithm- Join Existing

1. New peer p with resource type Rk unicasts its join

request to P0

2. P0 determines the group Gk for p from its GRT

3. P0 unicasts IP address of p to Pk

4. Pk assigns p with the next available address (k+jn)

5. Pk includes p in its list of neighbors in Gk

6. Pk asks all members of Gk to include p in their lists

7. Pk sends the updated list of neighbors in Gk to p

8. p establishes direct logical link to all members of Gk

IJCA, Vol. 27, No. 2, June 2020 81

Figure 6: Lookup performance comparison

7 Conclusion

In this paper, we have extended our non-DHT based structured

P2P architecture to incorporate the generic idea that a peer can
possess multiple resource types. We have applied some property
of modular arithmetic, specifically residue class (RC), to design
a scalable, hierarchical structured overlay P2P system, which
provides highly efficient data lookup algorithms. One

noteworthy point is that complexity involved in data lookup is a
function of the number of distinct resource types n unlike in
DHT-based systems. Another point to mention is that use of the
same code to denote a resource type Ri and the corresponding
group-head Pi has made the search process simple and efficient.
This work is a part of an ongoing research project with the goal
of designing P2P federation consisting of small P2P systems so
that bandwidth cannot be an issue.

Table 1: Data lookup complexity comparison

 Chord Our Work Our Work

Architecture DHT-based RC-based RC-based

Lookup Protocol Matching key
and NodeID.

Inter-Group:
Routing through
Group-heads

Intra-group:
 Complete Graph

Parameters N-number of
peers in network.

n - Number of distinct
resource types,

N-number of peers in
network,

n << N

n - Number of distinct
resource types,

N-number of peers in
network,

n << N

Lookup
Performance O(log N)

Inter-Group:
O(n)

Intra-group:
O(1)

82 IJCA, Vol. 27, No. 2, June 2020

References

[1] C. K. S. Banerjee and B. Bhattacharjee, “Scalable

Application Layer Multicast,” Proc. ACM SIGCOMM’02,
pp. 205-217, Aug. 2002.

[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker, “Making Gnutella-like P2P Systems
Scalable,” Proc. ACM SIGCOMM, Karlsruhe, Germany,
pp. 407-418, August 25-29 2003.

[3] E. Cohen, A. Fiat, and H. Kaplan, “Associative Search in
Peer-to-Peer Networks: Harnessing Latent Semantics,”
2:1261-1271, 2003.

[4] P. Ganesan, Q. Sun, and H. Garcia-Molina, “Yappers: A
Peer-to-Peer Lookup Service over Arbitrary Topology,”
Proc. IEEE Infocom 2003, San Francisco, USA, 2:1250-
1260, March 30 - April 1 2003.

[5] Bidyut Gupta, Nick Rahimi, Henry Hexmoor, Shahram
Rahimi, Koushik Maddali, and Gongzhu Hu, “Design of
Very Efficient Lookup Algorithms for a Low Diameter
Hierarchical Structured Peer-to-Peer Network,” Proc.
IEEE 16th Int. Conf. Industrial Informatics (IEEE INDIN),
Porto, Portugal, pp. 861-868, July 2018.

[6] Swathi Kaluvakuri, Koushik Maddali, Bidyut Gupta and
Narayan Debnath, “Design of RC Based Low Diameter
Hierarchical Structured P2P Network Architecture,”
EMENA-ISTL, 2019; LAIS 7 (Learning and Analytics in
Intelligent Systems), Springer, 7:312-320, 2020.

[7] M. Kleis, E. K. Lua, and X. Zhou, “Hierarchical Peer-to-
Peer Networks using Lightweight SuperPeer Topologies,”
Proc. IEEE Symp. Computers and Communications, pp.
143-148, 2005.

[8] D. Korzun and A. Gurtov, “Hierarchical Architectures in
Structured Peer-to-Peer Overlay Networks,” Peer-to-Peer
Networking and Applications, Springer, pp. 1-37, March
2013.

[9] Koushik Maddali, Banafsheh Rekabdar, Swathi
Kaluvakuri and Bidyut Gupta, “Efficient Capacity-
Constrained Multicastin RC based P2P Networks,” EPiC
Series in Computing, CAINE, 63:121-129, September
2019

[10] Andrea Passarella, “A Survey on Content-Centric
Technologies for the Current Internet: CDN and P2P
Solutions,” Computer Communications, 35:1-32, 2012.

[11] Z. Peng, Z. Duan, J. Jun Qi, Y. Cao, and E. Lv., “HP2P:
A Hybrid Hierarchical P2P Network,” Proc. Intl. Conf.
Digital Society, pp. 18-28, 2007.

[12] N. Rahimi, K. Sinha, B. Gupta, and S. Rahimi, “LDEPTH:
A Low Diameter Hierarchical P2P Network
Architecture,” Proc. 2016 IEEE Int. Conf. on Industrial
Informatics (INDIN 2016), Poitiers, France, pp. 832-837,
July, 2016.

[13] A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for Large Scale
Peer-to-Peer Systems,” Proc. FIP/ACM Intl. Conf.
Distributed Systems Platforms (Middleware), pp. 329-
350, 2001.

[14] K. Shuang, P Zhang, and S. Su, “Comb: A Resilient and

Efficient Two-Hop Lookup Service for Distributed
Communication System,” Security and Communication
Networks, 8(10):1890-1903, 2015.

[15] R. I. Stocia, R. Morris, D. Liben-Nowell, D. R. Karger, M.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet
Applications,” IEEE/ACM Tran. Networking, 11(1):17-
32, Feb. 2003.

[16] M. Xu, S. Zhou, and J. Guan, “A New and Effective
Hierarchical Overlay Structure for Peer-to-Peer
Networks,” Computer Communications, 34:862-874,
2011.

[17] M. Yang and Y. Yang, “An Efficient Hybrid Peer-to-Peer
System for Distributed Data Sharing,” IEEE Trans.
Computers, 59(9)1158-1171, Sep. 2010.

[18] R. Zhang and Y. C. Hu, “Borg: A Hybrid Protocol for
Scalable Application-Level Multicast in Peer-to-Peer
Networks,” Proc. Int’l. Workshop Network and Operating
System Support for Digital Audio and Video
(NOSSDAV’03), pp. 172-179, 2003.

[19] R. Zhang and Y.C. Hu, “Assisted Peer–to-Peer Search
with Partial Indexing,” IEEE Trans. Parallel and
Distributed Systems, 18(8):1146-1158, 2007.

[20] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. Zoseph,
and J. D. Kubiatowicz, “Tapestry: A Global-Scale
Overlay for Rapid Service Deployment,” IEEE J-SAC,
22(1):41-53, Jan. 2004.

Swathi Kaluvakuri (photo not available) is a Ph.D. candidate
from Southern Illinois University Carbondale – School of
Computing. She graduated from Jawaharlal Nehru
Technological Unversity with a Bachelor of Technology degree
in Computer Science major. She holds a keen interest in the
areas of Peer to Peer Networking and BlockChain and worked
as a Software Engineer, Technical Product Support and IBM
AS400 developer for NetCracker Pvt Ltd from 2012-2014.

Koushik Maddali (photo not available) is a Ph.D. candidate in
Department of Computer Science at Southern Illinois University
Carbondale. He received his MS from the same university and
his BS from Jawaharlal Nehru Technological University, India.
His research interests include Peer to Peer Networking,
BlockChain and worked on a Virtual Terminal project of Cisco
from 2017-2018.

Nick Rahimi (photo not available) is a Cybersecurity assistant
professor in Southern Illinois University (SIU). His research
interest lies in the area of Blockchain, cryptography, peer-to-

IJCA, Vol. 27, No. 2, June 2020 83

peer networks, software security, and Internet censorship. He
earned his Ph.D. and M.S. in Computer Science from Southern
Illinois University. Nick obtained two B.S. degrees in
Computer Software Engineering and Information Systems and
Technologies.

Bidyut Gupta (photo not available) received his M. Tech.
degree in Electronics Engineering and Ph.D. degree in
Computer Science from Calcutta University, Calcutta, India. At
present, he is a professor at the School of Computing (formerly
Computer Science Department), Southern Illinois University,
Carbondale, Illinois, USA. His current research interest
includes design of architecture and communication protocols for
structured peer-to-peer overlay networks, security in overlay
networks, and block chain. He is a senior member of IEEE and
ISCA.

Narayan Debnath (photo not available) earned a Doctor of
Science (D.Sc.) degree in Computer Science and also a Doctor
of Philosophy (Ph.D.) degree in Physics. Narayan C. Debnath
is currently the Founding Dean of the School of Computing and
Information Technology at Eastern International University,
Vietnam. He is also serving as the Head of the Department of
Software Engineering at Eastern International University,
Vietnam. Dr. Debnath has been the Director of the International
Society for Computers and their Applications (ISCA) since
2014. Formerly, Dr. Debnath served as a Full Professor of
Computer Science at Winona State University, Minnesota, USA
for 28 years (1989-2017). Dr. Debnath has been an active
member of the ACM, IEEE Computer Society, Arab Computer
Society, and a senior member of the ISCA.

84 IJCA, Vol. 27, No. 2, June 2020

A Detailed Comparison of the Effects of Code Refactoring Techniques in Different
Mobile Applications

Osama Barack* and LiGuo Huang†

Southern Methodist University, Dallas, TX 75205, USA

Abstract

Due to the high usage of mobile applications among
end users, developers are required to maintain and extend
mobile application code. Fowler Martin introduces refactoring
techniques to make software code readable, understandable,
extensible and more efficient. When refactoring techniques
are applied to mobile application code, they affect the energy
efficiency and performance of mobile applications. In our
previous study, we implemented Fowler’s sample code into a
mobile application and used Greenup, Powerup, and Speedup
(GPS-UP) metrics to evaluate and categorize the impact of
refactoring techniques. However, Fowler’s sample code is
simple and does not reflect an accurate evaluation of the
refactoring techniques. Thus, we extend our work through
presenting a case study that evaluates and categorizes the impact
of refactoring techniques when they are applied to open-source
mobile applications. In addition, we provide a comparison of
the effect of refactoring techniques between the results of this
study and our previous one.

Key Words: Energy, GPS-UP metrics, mobile application,
open-source, performance, refactoring technique.

1 Introduction

The popularity of mobile devices increases the daily use
of mobile applications, which leads to shortened battery life.
In addition, software developers increase the complexity and
features of mobile applications, which makes the software code
complicated and inefficient. Software quality is concerned
with measuring and addressing the quality level of software
code [13], and maintainability is considered one of the main
quality attributes. Therefore, Fowler Martin introduces code
refactoring techniques to increase the quality of the software
code. Fowler defined refactoring as “the process of changing a
software system in such a way that it does not alter the external
behavior of the code yet improves its internal structure” [8].
Refactoring techniques do improve the quality of the software
code; however, they also affect the energy consumption and
performance of the mobile applications.

*Department of Computer Science. Email: obarack@smu.edu
†Department of Computer Science. Email: lghuang@smu.edu.

Abdulsalam et al. [1] proposed Greenup, Powerup, and
Speedup (GPS-UP) metrics to show the interrelationships
among energy, performance, and power. GPS-UP metrics show
the correlation between energy consumption and performance.
In our previous work [3], we modified GPS-UP metrics by
adding two categories to the original eight categories and
presented a study to evaluate and categorize the impact of 21
refactoring techniques implemented Fowler’s sample code in
mobile environments using the modified GPS-UP metrics to
make developers and programmers aware of the changing in
energy efficiency and performance of mobile applications after
applying refactoring techniques.

In this study, we extend our work through evaluating the
impact of refactoring techniques that are applied to the software
code of mobile applications that contain common algorithms
(quick sort and binary search), and data structures (linked list).
In addition, we evaluate the influence of refactoring techniques
on open-source mobile applications (Simple Calculator and
AnotherMonitor). Moreover, we compare the results of this
study and the results of Fowler’s sample code.

The remainder of this journal is structured as follows: Section
2 provides related work. Section 3 explains the methodology
of our approach. Section 4 presents the preparation, setup,
and execution. Section 5 presents the case studies. Section 6
provides a discussion and analysis of the experiment results.
Finally, section 7 provides conclusions and suggestions for
future work that can be achieved in this field.

2 Related Work

Software engineering is the approach of studying the design,
development, testing, and maintenance of software. It ensures
that software is built correctly while satisfying all requirements
[4] [5] [19]. Researchers present different methodologies to
overcome the limitation of mobile devices. The literature
presents different approaches to enhance the performance and
energy efficiency of mobile applications.

Ramirez et al. [20] presents a study that measures the energy
consumption of multithreading android applications executing
only Java application and compared it to the Android executing
complex part of code in C programming language using Java
Native Interface (JNI). The study results help developers find the

ISCA Copyright© 2020

IJCA, Vol. 27, No. 2, June 2020 85

cause behind increasing mobile application energy consumption
and improve application development strategies to increase
energy efficiency.

Implementing refactoring techniques improves the
understandability, maintainability, and extensibility of the
software code. However, the impact of energy efficiency of
each refactoring technique is not shown in the automated
support of refactoring in IDEs. Sahin et al. [22] presents an
empirical study to explore the impact of energy efficiency
for 197 application with 6 refactoring techniques. Their
experiment results showed the refactoring impact on energy
consumption and the capability of increasing and decreasing
energy consumption. In addition, the authors gave metrics that
correlated with energy consumption to predict the impact of
implementing refactoring techniques.

Morales et al. [18] proposes an energy-aware refactoring
approach for mobile apps (EARMO), a novel anti-pattern,
accounts energy consumption when refactoring mobile anti-
patterns. The authors analyze the impact of eight types of
anti-patterns on a testbed of 20 android applications. EARMO
has been evaluated by testing three multiobjective search-based
algorithms. Their experiment results show that EARMO can
generate refactoring recommendations in less than a minute
and remove a median 84% of anti-patterns. In addition,
EARMO extend the battery life of a mobile phone by up to
29 minutes, and 68% of EARMO refactoring suggestions were
found relevant by developers.

Zecena et al. [25] explores and analyzes three parallelized
sorting algorithms (Odd-Even Sort, ShellSort, and QuickSort)
by executing them on multicore computers. The results showed
that better algorithm performance leads to more energy savings.

Rashid et al. [21] analyzes the energy consumption of
different implementations of sorting algorithms in different
programming languages. The experiment results showed
that different combinations of algorithms and programming
languages change the level of energy efficiency. The authors’
study provides the basic information of selecting algorithms and
identifying main factors affecting energy consumption.

Code obfuscation prevents code piracy; however, code
obfuscation has become an important concern about its impact
on energy efficiency on mobile application. Therefore, Sahin et
al. [23] presents an empirical study on the impact of 18 code
obfuscations on energy consumption. The authors’ experiment
included 15 usage scenarios on 11 Android applications. The
experiment results indicate that using code obfuscation is likely
to increase energy consumption.

Hunt et al. [12] proposed using a lock-free data structure
to improve performance, scalability, and energy efficiency.
Three different types of lock-free and locking data structures
were implemented to run excessive workloads and compare the
execution time and the energy efficiency of each data structure
type. Using threads to access a shared data structure requires
synchronization of the threads and assurance of the data’s
consistency and integrity. However, thread synchronization
causes performance problems in multithreaded programs. As a

result, the lock-free data showed better performance and higher
energy efficiency.

3 Methodology

The main objective of this study is to profile the positive and
negative impact of refactoring techniques on mobile application
code using GPS-UP metrics to determine whether the impact
on performance and energy consumption caused by refactoring
is beneficial. Previous studies measured performance or
energy efficiency without finding the interrelationship between
them. The goal of finding the correlation between performance
and energy efficiency is to find the cause of increasing or
decreasing energy consumption when refactoring techniques
are implemented. The impact of refactoring techniques on
mobile application code has rarely been investigated, and
previous experiments ended up just measuring performance
or energy consumption for desktop applications. Therefore,
this study focuses on assessing the positive or negative impact
of refactoring on mobile application code. Our approach
quantitatively evaluates and categorizes refactoring techniques
when applied to software applications in mobile environments.

4 Experiment Preparation, Setup, and Execution

Two versions of the application software code (non-
refactored and refactored) are compared to each code
refactoring technique by using the modified GPS-UP metrics
in order to show the improvement or decline in performance
and energy efficiency. The following is a description of
the experiment preparation, including a list of the selected
refactoring techniques and the tools that are used for the
experiment.

4.1 Selection of Code Refactoring Techniques

In this study, we evaluate and categorize the impact
of 10 refactoring techniques for energy consumption and
performance. Table 1 is a list of the selected code refactoring
techniques organized in the order they were introduced in
Fowler’s book:

Table 1: The selected refactoring techniques

Group Refactoring Technique

Composing Methods

Extract Method
Inline Method
Inline Temp
Replace Temp with Query
Split Temporary Variable

Moving Features Between Objects Move Method
Organizing Data Replace Array with Object
Simplifying Conditional Expressions Move Method
Making Method Calls
Simpler

Add Parameter
Remove Parameter

86 IJCA, Vol. 27, No. 2, June 2020

Table 2: GPS-UP metrics categories for 10 code refactoring techniques for common algorithms code in Samsung Galaxy S5, where
(s) is second and (j) is joule

Samsung Galaxy S5 - Common Algorithms AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC
Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed
Inline Method 88.49 28.86 86.19 27.16 1.06 1.03 0.97 C1 310 8
Move Method 89.01 29.35 86.52 28.17 1.04 1.03 0.99 C1 310 20
Remove Parameter 89.07 28.82 88.28 28.53 1.01 1.01 1.00 C2 310 8
Inline Temp 88.88 28.77 87.52 28.48 1.01 1.02 1.01 C4 310 5
Replace Array with Object 88.66 27.99 87.26 29.84 0.94 1.02 1.08 C6 310 25
Decompose Conditional 88.43 29.07 89.48 29.35 0.99 0.99 1.00 C8 310 10
Replace Temp with Query 88.57 28.30 88.79 29.61 0.96 1.00 1.04 C9 310 11
Split Temporary Variable 88.38 28.39 88.48 29.67 0.96 1.00 1.04 C9 310 5
Extract Method 87.54 27.74 88.82 29.09 0.95 0.99 1.03 C10 310 9
Add Parameter 87.32 28.36 88.78 29.20 0.97 0.98 1.01 C10 310 6

Table 3: GPS-UP metrics categories for 10 code refactoring techniques for common algorithms code in LG Nexus 5X, where (s) is
second and (j) is joule

LG Nexus 5X - Common Algorithms AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC
Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed
Inline Method 89.17 29.02 85.80 26.13 1.11 1.04 0.94 C1 310 8
Move Method 88.34 29.31 86.99 27.45 1.07 1.02 0.95 C1 310 20
Remove Parameter 88.86 29.02 87.86 28.83 1.01 1.01 1.00 C2 310 8
Inline Temp 88.25 29.18 86.65 28.89 1.01 1.02 1.01 C4 310 5
Replace Array with Object 89.00 28.99 87.09 30.19 0.96 1.02 1.06 C6 310 25
Decompose Conditional 88.80 28.87 89.76 29.04 0.99 0.99 1.00 C8 310 10
Replace Temp with Query 88.79 29.05 88.95 31.03 0.94 1.00 1.07 C9 310 11
Split Temporary Variable 88.71 29.63 88.84 30.84 0.96 1.00 1.04 C9 310 5
Extract Method 88.87 28.85 91.05 30.79 0.94 0.98 1.04 C10 310 9
Add Parameter 88.92 28.42 90.29 30.88 0.92 0.98 1.07 C10 310 6

4.2 Experiment Tools

We use modified GPS-UP metrics to evaluate and categorize
the selected refactoring techniques. The execution time of the
mobile application (T) in second(s) and the energy consumption
of the mobile application in joule(s) are measured to calculate
Speedup and Greenup. Speedup indicates the ratio of the non-
refactored code runtime to the refactored code runtime. Greenup
indicates the ratio of the total energy consumption of the non-
refactored code to the total energy consumption of the refactored
code.

Android Studio was used to implement refactoring techniques
to the mobile applications. The applications were installed on
the same mobile devices (Samsung Galaxy S5 and an LG Nexus
5X) to have a suitable comparison with our previous work.
We also use the same mobile application to measure energy
consumption (PowerTutor [24]).

4.3 Experiment Execution Setup

The steps of the experiment are explained in algorithm 1:

Algorithm 1: Experiment Steps
Result: Evaluating and categorizing code refactoring

techniques
Install the mobile application through Android Studio;
count = 1;
while count <= 10 do

Run the application on the Android mobile platform;
Measure the energy consumption (joule) and
performance (speed in second);

end
Calculate the average of the energy consumption and

performance;
Apply the code refactoring technique to the code;
count = 1;
while count <= 10 do

Run the application on the Android mobile platform;
Measure the energy consumption (joule) and
performance (speed in second);

end
Calculate the average of the energy consumption and

performance;
Apply the GPS-UP metrics to the experiment results;

IJCA, Vol. 27, No. 2, June 2020 87

Table 4: GPS-UP metrics categories for 6 code refactoring techniques for AnotherMonitor application in Samsung Galaxy S5, where
(s) is second and (j) is joule

Samsung Galaxy S5 - AnotherMonitor AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC
Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed
Inline Method 87.54 17.42 84.47 15.53 1.12 1.04 0.92 C1 2394 70
Inline Temp 87.57 17.44 86.55 17.29 1.01 1.01 1.00 C2 2394 15
Replace Array with Object 87.56 17.49 85.52 18.49 0.95 1.02 1.08 C6 2394 60
Extract Method 87.59 17.44 87.78 18.55 0.94 1.00 1.06 C9 2394 75
Decompose Conditional 87.32 17.47 88.96 18.47 0.95 0.98 1.04 C10 2394 60
Split Temporary Variable 87.47 17.52 88.57 18.44 0.95 0.99 1.04 C10 2394 25

Table 5: GPS-UP metrics categories for 6 code refactoring techniques for AnotherMonitor application in LG Nexus 5X, where (s) is
second and (j) is joule

LG Nexus 5X - AnotherMonitor AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC
Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed
Inline Method 89.14 18.45 85.51 17.68 1.04 1.04 1.00 C2 2394 70
Inline Temp 89.45 18.55 85.68 18.35 1.01 1.04 1.03 C4 2394 15
Replace Array with Object 87.43 19.09 89.29 19.31 0.99 0.98 0.99 C7 2394 60
Extract Method 88.87 18.64 88.91 18.74 0.99 1.00 1.01 C9 2394 75
Decompose Conditional 88.50 18.30 89.59 19.10 0.96 0.99 1.03 C10 2394 60
Split Temporary Variable 87.93 17.98 89.14 18.79 0.96 0.99 1.03 C10 2394 25

5 Case Studies

In this study, three different mobile applications are used
to evaluate code refactoring techniques, common algorithms
code, AnotherMonitor, and Simple Calculator. The energy
consumption and execution time of the mobile application
were measured ten times before implementing each refactoring
technique, and ten times after implementing each refactoring
technique. After the average, median, and variance of each
ten runs were calculated and analyzed, there were no extreme
scores, and the average value was found as the best value to be
applied to the GPS-UP metrics. Then, we calculated Greenup,
Speedup, and Powerup to categorize each refactoring technique.

5.1 Common Algorithms Code

In this experiment, we implement a mobile application with
a code that has a common data structure (linked list) [11] and
two algorithms (quick sort and binary search) in Java code [6]
[21] [25]. The linked list contains 4,500 objects. Ten code
refactoring techniques are applicable to the application code.
After we implemented each refactoring technique to the code,
results were applied to the GPS-UP metrics to categorize each
refactoring technique. Table 2 and Table 3 illustrate the results
of the Samsung Galaxy S5 and LG Nexus 5X, respectively.

5.2 Open-Source Applications

To generalize our experiment results, we chose two
commonly used applications from F-Droid [15] software
repository to measure the impact of 6 refactoring techniques
on energy consumption and performance in a real open-source
mobile application as in [2] [7] [10] [16] [17].

AnotherMonitor [9] is a mobile application that monitors
and records CPU utilization and memory usage. It generates
graphic results in 0.5, 1, 2 and 4 second intervals. To
perform the experiment and measure the application energy
consumption and performance, the interval time was disabled
and swapped with a loop that has 20k iterations. Six code
refactoring techniques out of the 21 were applicable to the
mobile application code. After implementing each refactoring
technique to the code, the results were applied to the GPS-UP
metrics to categorize the used refactoring technique. Table 4
and Table 5 illustrate the results of the Samsung Galaxy S5 and
LG Nexus 5X, respectively.

Simple Calculator [14] is a mobile application that performs
simple mathematical functions. Decimal numbers were injected
as an input to the application code, to eliminate the human
factor and measure the application energy consumption and
performance. Six code refactoring techniques out of the
21 were applicable to the mobile application code. After
we implemented each refactoring technique to the code, the
results were applied to the GPS-UP metrics to categorize each
refactoring technique. Table 6 and Table 7 illustrate the results
of the Samsung Galaxy S5 and LG Nexus 5X, respectively.

6 Discussion

The following is an explanation of the technical reasons
behind the positive or negative improvement for each
refactoring technique shown in the result of our case studies.

88 IJCA, Vol. 27, No. 2, June 2020

Table 6: GPS-UP metrics categories for 6 code refactoring techniques for Simple Calculator application in Samsung Galaxy S5,
where (s) is second and (j) is joule

Samsung Galaxy S5 - Simple Calculator AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC
Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed
Inline Method 62.21 11.00 61.52 9.98 1.10 1.01 0.92 C1 700 21
Inline Temp 62.34 10.56 61.52 10.43 1.01 1.01 1.00 C2 700 10
Replace Array with Object 61.78 10.33 60.16 11.00 0.94 1.03 1.09 C6 700 15
Extract Method 62.82 10.39 62.99 11.28 0.92 1.00 1.08 C9 700 35
Decompose Conditional 62.76 11.81 63.25 12.11 0.98 0.99 1.02 C10 700 29
Split Temporary Variable 61.16 11.32 62.33 12.02 0.94 0.98 1.04 C10 700 17

Table 7: GPS-UP metrics categories for 6 code refactoring techniques for Simple Calculator application in LG Nexus 5X, where (s)
is second and (j) is joule

LG Nexus 5X - Simple Calculator AVG of 10 Runs AVG of 10 Runs GPS-UP Metrics LOC
Code refactoring techniques TBR(s) EBR(j) TAR(s) EAR(j) Greenup Speedup Powerup Category Total Changed
Inline Method 63.67 10.37 62.28 10.10 1.03 1.02 1.00 C2 700 21
Inline Temp 63.04 10.17 61.71 10.03 1.01 1.02 1.01 C4 700 10
Replace Array with Object 62.99 10.91 64.13 10.99 0.99 0.98 0.99 C7 700 15
Extract Method 62.75 10.03 62.86 11.28 0.89 1.00 1.12 C9 700 35
Decompose Conditional 63.21 11.09 63.68 11.82 0.94 0.99 1.06 C10 700 29
Split Temporary Variable 63.22 11.26 63.84 13.11 0.86 0.99 1.15 C10 700 17

6.1 Green Categories

The refactoring techniques that fell in the green area of GPS-
UP metrics improved performance or energy efficiency or both
together. The Inline Method technique replaced the method call
with its body which eliminates the fetch-decode-execute cycle
to call the method. The Move Method technique reduced the
cost of the queries between two classes by moving the method to
the class that has more features with it. The Remove Parameter
technique deleted the parameter that is no longer needed in the
method. As a result, the refactoring technique eliminated the
extra load in the memory.

The Inline Temp technique improved the performance more
than the energy efficiency. Deleting temporary variables
reduced the time for fetching the unnecessary temporary
variable from the main and cache memories. As SpeedUp
is greater than PowerUp, the Inline Temp technique is still
considered a positive improvement to the energy efficiency.

6.2 Red Categories

The refactoring techniques that fell in the red area of GPS-
UP metrics consumed more energy although several refactoring
techniques improved performance. The Replace Array With
Object technique changed the array that had different types of
elements into an object and the different types of elements into
the object’s attributes which made the code more understandable
and faster over the cost of consuming more energy for accessing
the object’s attributes instead of the array’s elements. The
Decompose Conditional technique replaced each part of a
complicated condition if-then-else into a method which is
more readable and understandable; however, calling the created
methods costs more energy. The Extract Method technique

extracted part of the long method to be in a new separate
method. As a result, the refactoring technique downgraded the
performance and energy efficiency for calling the new method.
However, this technique is still beneficial because the new
method can be called by other methods.

The Replace Temp With Query technique replaces the
temporary variable and its references with a query from a
method, which made the CPU execute the method at every
reference to the temporary variable. The positive improvement
is that the created query and its method can be used by
other methods. The Split Temporary Variable technique
replaced a temporary variable that is assigned to two values
with two temporary variables, which makes the code more
understandable. The price was sacrificing performance and
energy by loading two variables instead of one to the memory.

The last refactoring technique, the Add Parameter technique,
adds a parameter to the method that needed more information,
which means more energy is needed to access this parameter
from the RAM. These refactoring techniques do not improve
performance or energy efficiency despite being useful for
reaching maintainability.

6.3 Analysis and Comparison

The four case studies are compared next to each other in
Table 8 based on GPS-UP metrics categories for refactoring
techniques. In Fowler’s Sample, the categories of the 21
refactoring techniques are slightly different in the two mobile
environments. However, the 21 refactoring techniques fell
within the same green or red area of the GPS-UP metrics.
In common algorithms, the 10 refactoring techniques fell
exactly in the same GPS-UP metrics categories in both mobile

IJCA, Vol. 27, No. 2, June 2020 89

Ta
bl

e
8:

C
om

pa
ri

so
n

of
G

PS
-U

P
m

et
ri

cs
ca

te
go

ri
es

fo
rc

od
e

re
fa

ct
or

in
g

te
ch

ni
qu

es
in

th
e

th
re

e
ca

se
st

ud
ie

s,
w

he
re

(-
)i

s
no

ta
pp

lic
ab

le

Ca
te

go
rie

s
Fo

w
le

r’s
Sa

m
pl

e
Co

m
m

on
A

lg
or

ith
m

s
A

no
th

er
M

on
ito

r
Si

m
pl

eC
al

cu
la

to
r

Co
de

re
fa

ct
or

in
g

te
ch

ni
qu

es
Sa

m
su

ng
G

al
ax

y
5S

LG
N

ex
us

5X
Sa

m
su

ng
G

al
ax

y
5S

LG
N

ex
us

5X
Sa

m
su

ng
G

al
ax

y
5S

LG
N

ex
us

5X
Sa

m
su

ng
G

al
ax

y
5S

LG
N

ex
us

5X
In

lin
eM

et
ho

d
C1

C1
C1

C1
C1

C2
C1

C2
M

ov
eM

et
ho

d
C1

C1
C1

C1
-

-
-

-
In

lin
eC

la
ss

C1
C1

-
-

-
-

-
-

Re
m

ov
eP

ar
am

et
er

C2
C1

C2
C2

-
-

-
-

Pu
ll

U
p

Fi
el

d
C3

C1
-

-
-

-
-

-
Pu

ll
U

p
M

et
ho

d
C3

C3
-

-
-

-
-

-
In

lin
eT

em
p

C4
C4

C4
C4

C2
C4

C2
C4

Re
m

ov
eA

ss
ig

nm
en

ts
to

Pa
ra

m
et

er
s

C4
C5

-
-

-
-

-
-

Re
pl

ac
eT

yp
eC

od
ew

ith
St

at
eS

tra
te

gy
C4

C5
-

-
-

-
-

-
Re

pl
ac

eM
et

ho
d

w
ith

M
et

ho
d

O
bj

ec
t

C6
C6

-
-

-
-

-
-

M
ov

eF
ie

ld
C6

C6
-

-
-

-
-

-
Ex

tra
ct

Cl
as

s
C7

C6
-

-
-

-
-

-
Re

pl
ac

eA
rra

y
w

ith
O

bj
ec

t
C6

C6
C6

C6
C6

C7
C6

C7
D

ec
om

po
se

Co
nd

iti
on

al
C9

C9
C8

C8
C1

0
C1

0
C1

0
C1

0
Ex

tra
ct

M
et

ho
d

C1
0

C1
0

C1
0

C1
0

C9
C9

C9
C9

Re
pl

ac
eT

em
p

w
ith

Q
ue

ry
C9

C1
0

C9
C9

-
-

-
-

Sp
lit

Te
m

po
ra

ry
Va

ria
bl

e
C9

C1
0

C9
C9

C1
0

C1
0

C1
0

C1
0

Re
pl

ac
eD

at
aV

al
ue

w
ith

O
bj

ec
t

C8
C1

0
-

-
-

-
-

-
Se

lf
En

ca
ps

ul
at

eF
ie

ld
C1

0
C1

0
-

-
-

-
-

-
Re

pl
ac

eC
on

di
tio

na
lw

ith
Po

ly
m

or
ph

ism
C1

0
C1

0
-

-
-

-
-

-
A

dd
Pa

ra
m

et
er

C1
0

C1
0

C1
0

C1
0

-
-

-
-

90 IJCA, Vol. 27, No. 2, June 2020

environments (Samsung Galaxy 5S and LG Nexus 5X) because
the code is very simple and only has one Java class. In
Another Mobile and Simple Calculator, the categories of the
6 refactoring techniques fell in the same GPS-UP metrics
categories in each mobile environment. However, within the
same application, different mobile environments led to slightly
different GPS-UP metrics categories within the same green
or red area. However, in all case studies, each refactoring
technique had the same impact on energy consumption and
performance in each mobile application code and environment.

7 Conclusions and Future Work

This paper provides an evaluation of the impact of code
refactoring techniques for energy efficiency and performance in
mobile environments using GPS-UP metrics. We present a case
study using GPS-UP metrics to evaluate refactoring techniques
in mobile application code that contains common algorithms
(quick sort and binary search), data structures (linked list), and
two real open-source mobile applications (Simple Calculator
and AnotherMonitor). In addition, we provide a discussion
and analysis of the case studies results and explained the
correlation between performance and energy efficiency for each
of the chosen refactoring techniques. Moreover, we provide a
comparison between the results of this study and the experiment
results of Fowler’s sample code. Our work helps application
software developers become aware of the effects of refactoring
techniques in real mobile applications.

In future work, we will evaluate the impact of additional
refactoring techniques in different mobile environments to
profile all refactoring techniques. In addition, we will evaluate
refactoring techniques by applying different metrics other than
GPS-UP metrics

References

[1] Sarah Abdulsalam, Ziliang Zong, Qijun Gu, and Meikang Qiu. Using the
Greenup, Powerup, and Speedup Metrics to Evaluate Software Energy
Efficiency. In Proceedings of the 2015 Sixth International Green and
Sustainable Computing Conference (IGSC). IEEE Computer Society, pp.
1–8, 2015.

[2] Abhijeet Banerjee, Lee Kee Chong, Sudipta Chattopadhyay, and Abhik
Roychoudhury. Detecting Energy Bugs and Hotspots in Mobile Apps.
In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, pp. 588–598, 2014.

[3] Osama Barack and LiGuo Huang. Effectiveness of Code Refactoring
Techniques for Energy Consumption in a Mobile Environment. In
Proceedings of the International Conference on Software Engineering
Research and Practice (SERP). The Steering Committee of The World
Congress in Computer Science, pp. 165–171, 2018.

[4] Bruce I. Blum. Software Engineering: A Holistic View. Oxford University
Press, Inc., 1992.

[5] B.W. Boehm. Software Engineering. volume C-25:1226-1241, December
1976.

[6] C. Bunse, H. Höpfner, E. Mansour, and S. Roychoudhury. Exploring
the Energy Consumption of Data Sorting Algorithms in Embedded and
Mobile Environments. In 2009 Tenth International Conference on Mobile
Data Management: Systems, Services and Middleware, pp. 600–607, May
2009.

[7] Jason Flinn and Mahadev Satyanarayanan. Powerscope: A Tool for
Profiling the Energy Usage of Mobile Applications. In Mobile Computing

Systems and Applications, 1999. Proceedings. WMCSA’99. Second IEEE
Workshop on. IEEE, pp. 2–10, 1999.

[8] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999.

[9] GNU. AnotherMonitor Application. https://f-droid.org/en/

packages/org.anothermonitor, 2015.

[10] Shuai Hao, Ding Li, William GJ Halfond, and Ramesh Govindan.
Estimating Mobile Application Energy Consumption Using Program
Analysis. In Proceedings of the 2013 International Conference on
Software Engineering. IEEE Press, pp. 92–101, 2013.

[11] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh,
Bram Adams, and Abram Hindle. Energy Profiles of Java Collections
Classes. In Proceedings of the 38th International Conference on Software
Engineering. ACM, pp. 225–236, 2016.

[12] Nicholas Hunt, Paramjit Singh Sandhu, and Luis Ceze. Characterizing
the Performance and Energy Efficiency of Lock-Free Data Structures. In
Interaction between Compilers and Computer Architectures (INTERACT),
2011 15th Workshop on. IEEE, pp. 63–70, 2011.

[13] Capers Jones. Applied Software Measurement: Global Analysis of
Productivity and Quality, 2008.

[14] Tibor Kaputa. Simple calculator application. https://f-droid.org/
en/packages/com.simplemobiletools.calculator, 2016.

[15] F-Droid Limited. F-droid. https://www.f-droid.org, 2010.

[16] Grace Metri, Weisong Shi, and Monica Brockmeyer. Energy-Efficiency
Comparison of Mobile Platforms and Applications: A Quantitative
Approach. In Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications. ACM, pp. 39–44, 2015.

[17] Radhika Mittal, Aman Kansal, and Ranveer Chandra. Empowering
Developers to Estimate App Energy Consumption. In Proceedings of
the 18th annual international conference on Mobile computing and
networking. ACM, pp. 317–328, 2012.

[18] Rodrigo Morales, Rubén Saborido, Foutse Khomh, Francisco Chicano,
and Giuliano Antoniol. EARMO: an Energy-Aware Refactoring Approach
for Mobile Apps. IEEE Transactions on Software Engineering, (1):1–1,
2017.

[19] Peter Naur and Brian Randell. Software Engineering: Report of a
Conference Sponsored by the NATO Science Committee. October 1969.

[20] R. I. Ramirez, E. H. Rubio, A. M. Viveros, and I. M. T. Hernández.
Differences of Energetic Consumption Between Java and JNI Android
Apps. In 2014 International Symposium on Integrated Circuits (ISIC), pp.
348–351, December 2014.

[21] Mohammad Rashid, Luca Ardito, and Marco Torchiano. Energy
Consumption Analysis of Algorithms Implementations. In Empirical
Software Engineering and Measurement (ESEM), 2015 ACM/IEEE
International Symposium on. IEEE, pp. 1–4, 2015.

[22] Cagri Sahin, Lori Pollock, and James Clause. How Do Code Refactorings
Affect Energy Usage? In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. ACM,
p. 36, 2014.

[23] Cagri Sahin, Philip Tornquist, Ryan Mckenna, Zachary Pearson, and
James Clause. How Does Code Obfuscation Impact Energy Usage? In
Software Maintenance and Evolution (ICSME), 2014 IEEE International
Conference on. IEEE, pp. 131–140, 2014.

[24] Z Yang. Powertutor-a Power Monitor for Android-Based Mobile
Platforms. EECS, University of Michigan, retrieved Dember, 2:19, 2012.

[25] Ivan Zecena, Ziliang Zong, Rong Ge, Tongdan Jin, Zizhong Chen,
and Meikang Qiu. Energy Consumption Analysis of Parallel Sorting
Algorithms Running on Multicore Systems. In Green Computing
Conference (IGCC), 2012 International. IEEE, pp. 1–6, 2012.

IJCA, Vol. 27, No. 2, June 2020 91

Osama Barack is a PhD candidate in
the Department of Computer Science
with a specialization in Software
Engineering at Southern Methodist
University (SMU). He also works for
the Institute of Public Administration
as a faculty member in Saudi Arabia.
His research interests include mobile

systems, virtual systems, performance, and green energy.

LiGuo Huang is an Associate Professor
in the Department of Computer Science
and Engineering at Southern Methodist
University (SMU). Her research area
is software engineering, with an
emphasis on software quality/information
dependability and value-based software
engineering.

Journal Submission
The International Journal of Computers and Their Applications is published four times a year with the purpose of
providing a forum for state-of-the-art developments and research in the theory and design of computers, as well as
current innovative activities in the applications of computers. In contrast to other journals, this journal focuses on
emerging computer technologies with emphasis on the applicability to real world problems. Current areas of particular
interest include, but are not limited to: architecture, networks, intelligent systems, parallel and distributed computing,
software and information engineering, and computer applications (e.g., engineering, medicine, business, education,
etc.). All papers are subject to peer review before selection.
__

A. Procedure for Submission of a Technical Paper for Consideration

1. Email your manuscript to the Editor-in-Chief, Dr. Ziping Liu at: zliu@semo.edu.

2. Illustrations should be high quality (originals unnecessary).

3. Enclose a separate page (or include in the email message) the preferred author and address for correspondence.
Also, please include email, telephone, and fax information should further contact be needed.

4. Note: Papers shorter than 10 pages long will be returned.

B. Manuscript Style:
1. The text should be double-spaced (12 point or larger), single column and single-sided on 8.5 X 11 inch

pages.
2. An informative abstract of 100-250 words should be provided.
3. At least 5 keywords following the abstract describing the paper topics.
4. References (alphabetized by first author) should appear at the end of the paper, as follows: author(s), first

initials followed by last name, title in quotation marks, periodical, volume, inclusive page numbers, month and
year.

5. The figures are to be integrated in the text after referenced in the text.

C. Submission of Accepted Manuscripts

1. The final complete paper (with abstract, figures, tables, and keywords) satisfying Section B above in MS
Word format should be submitted to the Editor-in-Chief. If one wished to use LaTex, please see the
corresponding LaTex template.

2. The submission may be on a CD/DVD or as an email attachment(s). The following electronic files should be
included:

• Paper text (required).
• Bios (required for each author).
• Author Photos (jpeg files are required) or photos can be integrated into the text.
• Figures, Tables, and Illustrations. These should be integrated into the paper text file.

3. Reminder: The authors photos and short bios should be integrated into the text at the end of the paper. All
figures, tables, and illustrations should be integrated into the text.

4. The final paper should be submitted in (a) pdf AND (b) either Word or LaTex. For those authors using LaTex,
please follow the guidelines and template.

5. Authors are asked to sign an ISCA copyright form (http://www.isca-hq.org/j-copyright.htm), indicating that
they are transferring the copyright to ISCA or declaring the work to be government-sponsored work in the
public domain. Also, letters of permission for inclusion of non-original materials are required.

Publication Charges

After a manuscript has been accepted for publication, the contact author will be invoiced a publication charge of
$500.00 USD to cover part of the cost of publication. For ISCA members, publication charges are $400.00 USD
publication charges are required.
Revised 2019

ISC
A

 IN
TER

N
A

TIO
N

A
L JO

U
R

N
A

L O
F C

O
M

PU
TER

S A
N

D
 TH

EIR
 A

PPLIC
A

TIO
N

S
V

ol. 27 N
o. 2, June 2020

	June 2020 Final Journal Issue
	International Society for Computers
	Guest Editorial: Special Issue from ISCA Fall – 2019 CAINE Conference 55
	Gongzhu Hu, Yan Shi, and Quan Yuan

	Evaluating the Microservice Architecture Style for Manufacturing Cell
	Controller Software . 56
	Christoph Wunck and Jonas Kallisch
	Achyuit Ghosh, Soumik Bose, Soumya Sen, Giridhar Maji, and Narayan C. Debnath

	Generalization of RC-Based Low Diameter Hierarchical Structured P2P
	Network Architecture . 74
	Swathi Kaluvakuri, Koushik Maddali, Nick Rahimi, Bidyut Gupta, and Narayan Debnath
	Osama Barack and LiGuo Huang

	IJCA Jrnl inside front cover June 2020
	A publication of the International Society for Computers and Their Applications
	ASSOCIATE EDITORS

	Dr. Hisham Al-Mubaid
	Dr. Mark Burgin
	Dr. Sergiu Dascalu
	University of Nevada
	Reno, USA
	dascalus@cse.unr.edu
	Dr. Sami Fadali

	Dr. Vic Grout
	Glyndŵr University
	v.grout@glyndwr.ac.uk
	Dr. Yi Maggie Guo
	University of Michigan,
	Dearborn, USA
	hongpeng@brandeis.edu
	Dr. Wen-Chi Hou
	Southern Illinois University, USA
	hou@cs.siu.edu
	Dr. Ramesh K. Karne
	Towson University, USA
	Dr. Bruce M. McMillin
	Dr. Muhanna Muhanna
	Princess Sumaya University
	for Technology
	Amman, Jordan
	m.muhanna@psut.edu.jo
	Dr. Mehdi O. Owrang
	Dr. Xing Qiu
	University of Rochester, USA
	xqiu@bst.rochester.edu
	Dr. Abdelmounaam Rezgui
	Dr. Ramalingam Sridhar
	Dr. Junping Sun
	Dr. Jianwu Wang
	Dr. Yiu-Kwong Wong

	Dr. Rong Zhao

	Guest Editorial June 2020
	Guest Editorial:
	Special Issue from ISCA Fall-2019 CAINE Conference

	1 Manuscript Wunck, Kallisch - final
	Abstract
	1 Introduction
	2 Reference Architectures and Implementations
	2.1 IEC 62264 / ISA-95
	2.2 Holonic Manufacturing Systems
	The concept of Holon was developed in the context of social organizations and living organisms to describe a whole-part-relationship between real-life objects. Holons are both self-contained entities to their subordinated parts, and dependent parts w...
	2.3 Multi-Agent Systems
	2.4 Service-oriented Architectures
	2.5 Reference Architecture Model Industrie 4.0 (RAMI 4.0)

	3 Discussion of Traditional Architectures
	4 Microservice Architecture
	5 Case Study
	6 Conclusions
	References

	2 Sen IJCA_Journal
	3 RC based P2P Generalization- ISCA 2020
	3.1 Peer with Multiple Existing Resource Types
	3.2 Existing Peers Declaring New Resource Types
	5.1 Concurrent Joins
	5.2 Concurrent Leaves
	5.3 Concurrent Joins and Leaves

	4 Barack Hunag 27-7-2020
	AuthorInstructions 2020
	Journal Submission

	IJCA Jrnl back outside cover June 2020

