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and the XGBoost, along with the support vector machine (SVM) method were used in a machine learning process that incorporates 
information from clinical, hemodynamic, and morphological data.  From a set of over 6,000 cases collected over several years, the 
authors down-selected to 303 unruptured cases and 35 ruptured samples to investigate the validity of their approach.  Hyperparameter 
tuning was performed and classification metrics (sensitivity, specificity and F-measure) were applied to analyze their models.  
Results show that these learning algorithms can accurately predict cerebral aneurysm, an indication of potential strokes, with the 
Light BMM model providing the best performance. 

 
We hope you enjoy this special issue of the IJCA and we look forward to seeing you at a future ISCA conference. More information 

about the ISCA society can be found at http://www.isca-hq.org. 
 

Guest Editors: Gordon Lee, San Diego State University, CATA 2020 Program Co-Chair 
  Ying Jin, California State University at Sacramento, CATA 2020 Program Co-Chair 
 
September 2020 

http://www.isca-hq.org/


94 IJCA, Vol. 27, No. 3, Sept 2020

Update Methods for Maintainability of a Multidimensional
Index on Non-ordered Discrete Vector Data

Ramblin Cherniak* Qiang Zhu*

University of Michigan - Dearborn, Dearborn, Michigan, USA

Sakti Pramanik†

Michigan State University, East Lansing, Michigan, USA

Abstract

There are numerous applications nowadays such as
bioinformatics, cybersecurity, and social media that demand to
efficiently process various types of queries on multidimensional
(vector) data with values coming from a non-ordered discrete
(categorical) domain for each dimension. The BoND-tree
index scheme was recently developed to efficiently process
so-called box queries on a large dataset in disk from such
a vector data space. The index construction (insertion) and
query algorithms were introduced in the original work. To
maintain such an efficient index structure for a large dynamic
dataset, one has to develop efficient and effective methods
to support other operations including deletions, updates, and
bulk loading. Although studies on deletions and bulk loading
for the BoND-tree have been reported in early work, how to
efficiently and effectively update the BoND-tree remains an
open problem. In this paper, we first present a general update
procedure which covers all scenarios including special cases
for insertions and deletions. We then examine two approaches
to updating the BoND-tree. The relevant algorithms and
experimental evaluations are presented. Our study shows that
using the bottom-up update method can provide improved
efficiency, comparing to the traditional top-down update
method, especially when the number of dimensions for a
vector that need to be updated is small. On the other hand,
our study also shows that the two update methods have a
comparable effectiveness, which indicates that the bottom-up
update method is generally more advantageous.

Key Words: Non-ordered discrete data; bioinformatics;
mutlidimensional index; index maintenance; update method.

1 Introduction

There is an increasing demand to efficiently process various
types of queries on non-ordered discrete vector data in
contemporary applications such as genome sequence analysis,
internet intruder detection, social network analysis, and business
intelligence [25, 29, 31, 34, 40, 44, 45]. The vectors with
non-ordered discrete values from the domain of each dimension
constitute a vector space, called the Non-ordered Discrete Data

*{rchernia, qzhu}@umich.edu
†sakti.pramanik@gmail.com

Space (NDDS). For example, many genome sequence analysis
techniques (e.g., DNA sequencing error correction [16] and
back-translated protein query on DNA sequences [20]) rely on
processing fixed-length subsequences, so-called k-mers, of one
or more target genome sequences. gacct, aatga, and tagga are
examples of k-mers of length 5, which can be considered vectors
(e.g., < g,a,c,c, t > or simply “gacct”) in a 5-dimensional
NDDS with a domain consisting of non-ordered discrete values
(i.e., nucleotide bases: a, g, t and c) for each dimension. Other
applications [22, 23, 45] may deal with non-ordered discrete
data from domains such as color, gender, season, IP address,
social media symbols, user ids, and text descriptions.

One type of query used in many applications for an NDDS
are called box queries. A box query retrieves vectors from a
dataset in an NDDS that have values from a specified subset of
the domain for each dimension. The BoND-tree was recently
introduced as a new disk-based indexing structure specifically
designed to support efficient processing of box queries for large
datasets in an NDDS [7]. The algorithms for the insertion
(build) and query operations of the BoND-tree were presented
in the original work. However, to maintain an index structure
for a dynamic dataset, efficient and effective algorithms for the
deletion, update, and bulk loading operations are also needed.

Efficient and effective deletion strategies to remove vectors
from the BoND-tree for a dynamically shrinking dataset in an
NDDS were studied in [8], while an efficient and effective bulk
loading method to build the BoND-tree for a very large input
dataset in an NDDS was presented in [12]. To maintain the
BoND-tree for a dynamically changing dataset in an NDDS
(e.g., to capture changing variants in the genome sequence for
a sick person developing a disease), we also need efficient
and effective update methods for the index structure. A
straightforward method for performing an update operation is
to execute a deletion of the outdated vector followed by an
insertion of the updated form of the vector. However, more
efficient and effective approaches for performing updates in the
BoND-tree are yet to be explored. In particular, alternative
strategies for updates may be beneficial when taking into
account considerations such as whether a particular update is
independent from a subsequent update or whether an outdated
vector targeted for an update is similar to its new representative
form. This paper focuses on studying efficient and effective
strategies to support updates for the BoND-tree.

ISCA Copyright© 2020
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Studies on updates for index schemes in a multidimensional
Continuous Data Space (CDS) such as the R-tree [17], the R*-
tree [1] and their variants have been reported in the literature
[3, 24, 38, 39, 48]. Updates with emphasis on moving objects
for several R-tree based index trees [4, 26, 36, 41] have also
been suggested. The problem of frequent updates for the
hB-tree based trees [13, 27, 28] has been examined in [47].
Many CDS index structures including the X-tree [2] adopt the
straightforward update approach through a deletion followed by
an insertion. Note that the CDS indexing schemes rely on the
natural ordering of underlying data and as such cannot directly
be applied to an NDDS that is what we are interested in here.

The update issue has also been studied for some index trees
that may be applicable to an NDDS. For example, index trees for
a metric space [6] (such as the vantage-point tree [18, 42, 46]
and the MVP tree [5]) and string indexing techniques based
on the Trie structures [11] (such as the suffix tree [43]) have
their update techniques reported in the literature [14, 15].
However, these are mainly memory-based structures, while we
are interested in performing updates on a dynamic indexing
scheme for a large dataset in disk. The M-tree [10] is a disk-
based dynamic indexing structure developed for a metric space,
which could be applied to an NDDS although its performance
is not optimized for an NDDS due to its generality [30, 31].
Another disk-based dynamic indexing structure developed for a
metric space is the MB+tree [19] that supports dynamic updates
for similarity searches. However, an index scheme supporting
similarity queries, such as range queries or k-NN queries, may
not be effective for an index scheme that supports box queries.
For example, this is evident in the contrasting splitting strategies
for the insertion operations of the ND-tree [30], which is an
index structure supporting similarity queries in NDDS, to those
of the BoND-tree [7]. The BoND-tree was also found to prefer
a different deletion strategy [8] from the traditional deletion
strategies adopted for the ND-tree[37].

Effective and efficient update strategies are needed to support
the maintenance of the BoND-tree. An update strategy yielding
the BoND-tree that can support efficient box query processing
after updates is said to be effective. An update strategy yielding
minimal I/O overhead during the update procedure is said to be
efficient.

In this paper, we will present a general procedure for the
update operation of the BoND-tree. We will then examine
two update strategies for the BoND-tree to support efficient
box queries and present the experimental results to evaluate the
efficiency and effectiveness of the proposed update methods. In
particular, we present a new bottom-up update strategy for the
BoND-tree that is efficient and effective for both general random
updates and increasingly efficient for updates where the new
updated vector is similar on many dimensions to the outdated
vector. This is useful for applications where an outdated vector
targeted for an update shares many dimensions in common
with the updated representation of that vector. For example,
a vector representing a DNA gene profile in a bioinformatics
database may require such an update when a small percentage

of dimensions have changed in the vector due to mutation or
cancer. The preliminary results of this work were presented in
[9].

The rest of the paper is organized as follows. Section 2
presents preliminary concepts that are useful in our discussions.
Section 3 discusses our proposed update methods for the BoND-
tree. Section 4 reports the experimental evaluation results.
Section 5 concludes the paper.

2 Preliminaries

2.1 Terminology and Concepts

In this section, we present some geometric concepts for an
NDDS [7, 21, 30] that are essential to our discussion on update
strategies for the BoND-tree.

In general, a d-dimensional Non-ordered Discrete Data Space
(NDDS) Ωd is defined as the Cartesian product of d alphabets
(domains): Ωd = A1×A2× ...×Ad , where an alphabet Ai(1 ≤
i≤ d) consists of a finite number of non-ordered discrete values
(letters). A discrete rectangle R in Ωd is defined as R=ud

i=1Si =
S1× S2× ...× Sd , where Si ⊆ Ai(1 ≤ i ≤ d) is called the i-th
component set of R. The area of rectangle R is defined as |S1| ∗
|S2| ∗ ... ∗ |Sd |. We use a span to refer to the edge length of
a particular dimension for a rectangle, which is normalized by
the alphabet size of the corresponding dimension. The discrete
minimum bounding rectangle (DMBR) of a set SV of vectors is
defined as the discrete rectangle whose i-th component set (1≤
i≤ d) consists of all the letters appearing on the i-th dimension
for the vectors in SV .

A box query q on a dataset in an NDDS is a query that
specifies a set of values/letters for each dimension. Let qci ⊆ Ai
be the set of values allowed by box query q along the i-th
dimension, where Ai is the alphabet for the i-th dimension (1≤
i ≤ d) of Ωd . The box query q with box/window w = ud

i=1qci
will return every vector α in the dataset that falls within this
box/window.

A random-span box query has the span of its i-component set
on each dimension i (1≤ i≤ d) to be randomly chosen between
1 to C ≤ |Ai|. For example, with an alphabet being {a,g,c, t}
across all dimensions where vectors have length d = 3, a random
box query might have a window/box w= {c, t,g}×{g}×{t,g}.
The measured spans for the three dimensions are 3, 1, and 2,
respectively. This query will retrieve vectors having any value
from {c, t,g} on the 1st dimension, g on the 2nd dimension, and
t or g on the 3rd dimension. 6 is the maximum possible number
of unique vectors retrieved by such a query.

A uniform-span box query has the same span of its i-
component set on each dimension i (1 ≤ i ≤ d). For example,
with an alphabet being {a,g,c, t} across all dimensions where
vectors have length d = 3, a uniform box query of span = 2
might have a window w = {c,g}× {t,c}× {a,g}. The edge
lengths are uniform with a measured span of 2 for d = 1,2,
and 3. 8 is the maximum possible number of unique vectors
retrieved by such a query.
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We refer to an update with a certain percentage of fixed
dimensions when we set static the given percentage of all the
dimensions for an updating vector. We control this parameter
to influence how similar an outdated vector and an updated
vector can be. For example, if we set 60% of dimensions
to be fixed when performing an update on a vector α (e.g.,
tcacg) of 5 dimensions, then 3 dimensions (e.g., d = 1,4, and 5)
are randomly selected to remain unchanged when generating a
sample updated vector β (e.g., tagcg).

2.2 The BoND-Tree

The BoND-tree is a disk-based balanced index tree that grows
upwards as vectors are inserted. The BoND-tree is made up of
two types of nodes: non-leaf nodes and leaf nodes. Each non-
root node N in the BoND-tree is represented by a corresponding
entry in its parent node, which consists of a pointer to N and
a DMBR covering all the vectors in the subtree rooted at N.
Each entry in a leaf node consists of the indexed vector and
a pointer pointing to an associated object in the underlying
database, which may provide further information about the
indexed vector. All the leaf nodes appear at the same level of
the index tree.

Each node has a maximum number M of entries that can be
contained in it. M is typically determined by the disk block
size. If another entry is added into a node with M entries, this
node is said to be overflow. Each node also has a minimum
number m of entries that have to be contained in it. m is typically
determined by a minimum space utilization criterion. If one
entry is removed from a node with m entries, this node is said to
be underflow. M (m) for a non-leaf node may be different from
that for a leaf node.

Figure 1 illustrates an example of the BoND-tree with sample
nodes and entries for a genome sequence dataset with alphabet
{a,c,g, t}. Note that a general BoND-tree may have more than
three levels of nodes. Vectors contained in a leaf node (e.g.,

{a,c,t}x{a,g,t}x... {a,c,g,t}x{a,g}x... ...

{a,t}x{a,t}x...

... cg...

{c}x{g,t}x...

A

B

D

ct... ...

...

...
root node

non-leaf nodes

leaf nodes

... {a}x{a,g}x... {c,g,t}x{a,g}x... ......

C

... ...... aa...

E

ag... ...

Figure 1: An example of the BoND-tree

node D) determine the DMBR of the corresponding entry in its
parent node (e.g., node B) whose entries in turn determine the
DMBR of the corresponding entry in its further up parent node
(e.g., root node A in this case). For example, we can see that
the root node A has an entry with component sets {a,c, t} and
{a,g, t} of its DMBR on the first two dimensions, respectively.
The first (resp. the second) component set is made up of the
letters appearing on the first (resp. the second) dimension of

all the entries in its child node B at the next lower level. As
shown in the figure, node B has visible entries whose DMBRs’
first component sets are {a, t} and {c}, respectively. Node B
has visible entries whose DMBRs’ second component sets are
{a, t} and {g, t}, respectively. The first two component sets of
the DMBR of the corresponding entry in node A indicate that
no other letters are contained in the first two component sets
of other entries in node B. The vectors in node D determine the
DMBR {c}×{g, t}× ... of the corresponding entry in the parent
node B, assuming only c has appeared on the first dimension and
only g or t has appeared in the second dimension for all vectors
in node D in this example.

When processing a box query using the BoND-tree, at each
non-leaf node (starting from the root), we only need to follow
its child node(s) whose DMBR(s) has an overlap with the query
box/window. Those nodes whose DMBRs do not overlap with
the query box/window are pruned during the query processing.
Using Figure 1 as an example, let a query box/window w =
{a,c}×{c, t}× .... Such a query with w could potentially return,
if present, vectors in the result set being ”ac...”, ”at...”, ”cc...”,
and ”ct...”. Starting from the root node level, since w may
overlap with the DMBR of the node B’s entry in node A and
the DMBR of node D’s entry in node B, the processing of this
query may follow the path node A→ node B→ node D. On the
other hand, since w clearly does not overlap with the DMBR of
node C’s entry in node A, the subtree rooted at node C is pruned.

More details of the BoND-tree can be found in [7].

3 Update Methods for the BoND-Tree

An update operation is motivated by the need to modify
an existing (outdated) vector in a given database/dataset in an
NDDS. There are multitudinous reasons that may prompt an
update operation in real-world applications. For example, a
vector is found to have been inserted with an erroneous value(s)
on some dimension(s); a vector is believed to have undergone
a transformation on some dimensions since it was inserted
or last updated; the alphabet for a particular dimension has
been changed so that the vectors with obsolete values on that
dimension must be updated.

3.1 General Update Procedure

In general, an update operation can be defined as follows:
given an outdated vector α and an updated vector β , the
update operation U pdate(α,β ,S) on a database/dataset S is to
ensure that S has β but not α after the update operation, i.e.,
U pdate(α,β ,S) = (S−{α})∪ {β}. Usually, α and β share
many common values and differ only in a few dimensions.

An update procedure needs to account for the following four
scenarios in regards to the existence of outdated vector α and
updated vector β in the given dataset S.

Scenario 1: Outdated α does not exist in S, and updated
β does not exist in S either. In this case, the desired β

needs to be added into S. The outdated α is intended to be
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removed, but it does not exist. Hence, nothing needs to be
done for α . The update operation is actually degenerated
to an insertion operation U pdate(α,β ,S) = S∪{β} in this
case.

Scenario 2: Outdated α does not exist in S, and updated β

exists in S. In this case, nothing needs to be done for α or
β , i.e., U pdate(α,β ,S) = S.

Scenario 3: Outdated α exists in S, and updated β exists
in S. In this case, the outdated α needs to be removed
from S. Nothing needs to be done for β . The update
operation is actually degenerated to a deletion operation
U pdate(α,β ,S) = S−{α} in this case.

Scenario 4: Outdated α exists in S, and updated β does
not exist in S. This is the most expected case for an
update. In this case, the outdated α needs to be removed
from S, and the desired β needs to be added into S, i.e.,
U pdate(α,β ,S) = (S−{α})∪{β}.

Since the existence of α and β in S is typically unknown in
advance, in general, an update procedure must address the above
four scenarios to ensure that the database accurately reflects
the intent of the update. Scenario 4 is the typical and most
interesting update scenario that is considered in evaluating the
efficiency and effectiveness of different update strategies in this
paper.

For the BoND-tree T built for vectors from a given database
S, the update procedure takes as input an outdated vector α that
needs to be updated and an updated vector β that represents the
desired one after the update. First, the procedure issues a query
for vector β on the BoND-tree T to determine if β already exists
in T (i.e., S) to avoid any attempt to add a duplicate vector. If
vector β exists in T (Scenario 2 or 3), then all that is left is to
remove vector α from T if it exists. Specifically, the update
procedure tries to locate the leaf node Nα containing vector α

in the BoND-tree T . It follows a path Pα from root node RN to
leaf node Nα . If it is not found, a ‘not present’ flag is returned
(Scenario 2). If such a leaf node Nα is found, the procedure
removes vector α from Nα (Scenario 3).

In the event that vector β is not found in T (Scenario 1 or
4), the procedure can involve one of the update methods (to
be discussed below) that applies its specific update strategy to
decide how the update is performed. Essentially, a suitable leaf
node Nβ to accommodate vector β must be located. Different
strategies may choose a different Nβ , which may affect the
efficiency and effectiveness of the update. Note that Nβ may
or may not be the same as Nα if α exists in T (Scenario 4).

Additional update overhead (I/Os) may also occur if either the
removal of vector α from leaf node Nα triggers an underflow
handling process or the addition of vector β to Nβ causes an
overflow splitting process.

For the underflow handling process, we adopt the BoND-tree
Inspired Node Reinsertion (BNDINR) strategy suggested in [8].
This process is done by invoking function UnderflowHandling()
in the following discussion. The key idea is to recursively
remove each underflow node along the path from the underflow

leaf node to the root node in a bottom-up fashion until reaching a
parent node (or the root) on the path that is no longer underflow
after the removal of its underflow child node. These underflow
nodes are put into a reinsertion buffer. The entries in the
underflow nodes represent either vectors or sub-trees, depending
on whether the underflow node is a leaf node or non-leaf node.
The entries in each underflow node in the reinsertion buffer will
be directly merged into a sibling node. A good sibling node is
chosen according to the following three heuristics in the given
priority order:

Least overlap enlargement. Choose a sibling node such that its
overlap enlargement with other sibling nodes is minimized
after accommodating the entries in the underflow node.

Steady minimum dimensions. Choose a sibling node such that
the number of its DMBR’s unchanged smallest dimensions
is maximized after accommodating the entries in the
underflow node.

Least area enlargement. Choose a sibling node such that the
area enlargement is minimized after accommodating the
entries of the underflow node.

It is possible that a chosen sibling node is overflow after
accommodating the entries from the underflow node. In this
case, its parent node becomes no longer underflow if it is also in
the reinsertion buffer after the chosen sibling node is split into
two nodes to handle the overflow. The node reinsertion process
to handle the underflow is finished.

The overflow situation is handled by splitting the overflow
node into two according to a set of special heuristics
recommended in [7]. This process is done by invoking function
OverflowHandling() in the following discussion. The key idea
is to recursively split each overflow node along the path from the
overflow leaf node to the root node in a bottom-up fashion until
reaching a parent node (or the root) that is no longer overflow
after splitting its overflow child node into two new nodes. A
good splitting is determined according to the following three
heuristics in the given priority order:

Minimum overlap. Choose a split that minimizes the overlap
between the DMBRs of the newly created nodes.

Minimum span. Choose a split that splits a dimension that has
the smallest span.

Minimum balance. Choose a split that unbalances the
distribution of letters between the DMBRs of the newly
created nodes the most, while satisfying the minimum
space utilization criterion.

During the underflow and overflow handling processes, the
relevant DMBRs are adjusted when needed. Even if no
underflow or overflow has occurred, the update procedure may
still need to adjust the DMBRs in the parent nodes along the path
Pα from Nα to root RN and/or the parent nodes along a path Pβ

from Nβ to root RN when necessary. This is done by invoking
function ComputeDMBR(), which takes as input a node and its
path to the root node and recursively moves up the BoND-tree
until no more DMBR changes are detected.
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In the following discussion, we present two update strategies
to determine a suitable node Nβ for vector β , which result in
two update algorithms/methods.

3.2 Top-Down Update (TDU) Method

A straightforward strategy for updating vectors in the BoND-
tree is the Top-Down Update (TDU) method. This is
accomplished by executing a deletion operation followed by
an insertion operation. First, the outdated vector α is targeted
for deletion. Any underflow scenarios are handled by function
UnderflowHandling(), and the DMBRs in the BoND-tree are
adjusted by function ComputeDMBR() when needed for the case
having no underflow. If α exists in the BoND-tree (i.e., Scenario
3 or 4), α has to be removed from the tree. Otherwise (i.e.,
Scenario 1 or 2), nothing needs to be done for α in the tree.
Whether or not α exists in the tree, the next step is the same.
A query for vector β is performed on the index tree. If β

does not exist in the BoND-tree (i.e., Scenario 1 or 4), β has
to be inserted into the BoND-tree via the root RN. Otherwise
(i.e., Scenario 2 or 3), the update is already finished. Any
overflow cases are handled by function OverflowHandling(),
and the DMBRs in the BoND-tree are adjusted by function
ComputeDMBR() when needed for the case having no overflow.
The details of this method are described in Algorithm TDU.

Algorithm 1: Top-down Update (TDU)
Input: (1) the BoND-tree with root RN; (2) the outdated vector α; (3) the

updated vector β

Output: the root of the modified BoND-tree with α being removed and β

being inserted
1 locate the leaf node Nα containing vector α by following a path Pα from

root RN;
2 if vector α exists then
3 remove vector α from leaf node Nα ;
4 if Nα is underflow then
5 UnderflowHandling(Nα , Pα );
6 else
7 ComputeDMBR(Nα , Pα );
8 end if
9 end if

10 query vector β ;
11 if vector β does not exist then
12 insert vector β via root RN;
13 if Nβ is overflow then
14 OverflowHandling(Nβ , Pβ );
15 else
16 ComputeDMBR(Nβ , Pβ );
17 end if
18 end if
19 return RN;

In Algorithm TDU, steps 1 through 9 perform the deletion
of α from the given BoND-tree. Steps 10 through 18 perform
the insertion of β into the given BoND-tree. Step 12 realizes the
actual insertion into the BoND-tree using the insertion heuristics
and procedure of [7]. A path Pβ from root RN to a suitable leaf
node Nβ is taken to insert vector β into the BoND-tree.

Figure 2 shows an example of a typical top-down update
process. Assume that we want to perform an update to change
an outdated vector “cg...” to an updated vector “cc...” in a

BoND-tree T built for vectors in a given database/dataset. Note
that only the first two dimensions are explicitly displayed in this
example. The TDU method first searches for vector “cg...” in T
by following a path from the root to leaf node C. Vector “cg...”
is then deleted from node C in T . This process is illustrated
in Figure 2(a). The removal of vector “cg...” causes node C to
be underflow. Node C is then removed from node B. Assume
node B is not underflow after removing node C. The vectors in
node C are then merged/inserted into a sibling node D. Assume
the augmented node D is not overflow – otherwise, node D has
to be split into two nodes to replace the original nodes C and
D in parent node B. The underflow handling process for node
C is illustrated in Figure 2(b). The TDU method then starts an
insertion process for updated vector “cc...” via the root. Assume
the heuristics for insertion [7] selects the path from the root to
leaf node F. The updated vector “cc...” is then placed in node F,
as shown in Figure 2(c). If node F is not overflow, the update
process ends. Otherwise, node F has to be split, which may
cause its parent node E to be overflow and split. The overflow
and split may be propagated to the root, which may make T
grow one level taller.

Figure 3 gives an example to illustrate what may occur in an
underflow propagation scenario. Let us make the 3rd dimension
of vectors/DMBRs also visible in this example. The outdated
vector “cg...” in Figure 2(a) is now “cga...” in Figure 3(a).
Like the example in Figure 2, deleting “cga...” from node C
causes the node to become underflow. The entry for node C that
resides in node B must be then removed, and the vectors in node
C must be merged into a sibling node D chosen according to
the heuristics in Section 3.1. Let node D′ be the augmented
node D after the merging as shown in Figure 3(b), which is
not underflow. Assume that node B becomes underflow after
removing the entry of node C, i.e., the underflow of node C is
propagated to node B. As a result, the entry of node B must
be removed from its parent node A. Assume node A is not
underflow after the removal. The entries in node B for all its
child nodes, i.e., nodes D′, H, I, ..., must be merged into a sibling
node G chosen according to the heuristics. Figure 3(c) shows
that new node G′ is obtained from merging the entries in node B
into sibling node G, assuming node G′ is not overflow. If revised
node A′ is not underflow after removing the entry of node B, i.e.,
no further underflow propagation, the underflow handling ends.

3.3 Bottom-Up Update (BUU) Method

An alternative strategy we examine for updating vectors in
the BoND-tree is the Bottom-Up Update (BUU) method. The
BUU employs a strategy that caches the node DMBRs along the
path Pα from the root RN down to the leaf node Nα containing
the outdated vector α in the typical update situation when α

exists in the BoND-tree. Utilizing the cached DMBRs along
Pα , the algorithm will compare the vector β against the cached
DMBRs from the leaf up to the root until a cached DMBR (if
any) is found to contain vector β . At the level this occurs, or
the root level if no containing DMBR is found, a local insertion
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Figure 3: Example of handling underflow propagation during update

is performed via the node at this level. The normal insertion
heuristics and procedure of the BoND-tree in [7] are applied to
transform path Pα into a path Pβ leading down to a leaf node
Nβ that accommodates vector β . Any overflow scenarios are
handled by function OverflowHandling(), and the DMBRs for
the new path Pβ from leaf node Nβ up to the root RN are adjusted
by function ComputeDMBR() when needed for the case having
no overflow.

For the BUU, the deletion and insertion operations are
integrated into one update operation. We find a node with a
suitable cached DMBR along the path Pα from which a potential
new path Pβ down the tree is formed and a leaf node Nβ for the
vector β is located. A suitable DMBR is the first one from the
bottom up which contains vector β . The I/O cost of adding
vector β into the BoND-tree is bound in the worst case by
the height of the tree with root RN when no suitable cached
containing DMBR exists.

The best case occurs when vector β is contained in the leaf
node Nα ’s DMBR. In this case, vector β can directly replace
vector α in Nα . Effectively, leaf node Nα is leaf node Nβ , and
path Pα is path Pβ . Advantageously no underflow or overflow
situations occur that demand additional I/O cost when vector β

directly replaces vector α in Nα . Also, the bottom-up update
strategy usually avoids the I/O cost incurred by the top-down
update strategy when traversing the entire path from root RN to
the leaf level to find a suitable home for vector β . The details of
this method are described in Algorithm BUU.

In Algorithm BUU, steps 1 through 6 determine the update
scenario based on whether an insertion of vector β would be
needed. Steps 8 through 20 handle scenarios where outdated
vector α does not exist in the BoND-tree (i.e., Scenario 1 or

2). A standard insertion process via the root for vector β is
performed if β does not exist in the BoND-tree (i.e., Scenario
1). Otherwise, the update is already finished (i.e., Scenario 2).
Steps 22 through 29 handle the scenario in which we know
vector α exists in the BoND-tree, which needs to be removed,
and vector β is also present (i.e., Scenario 3). If the algorithm
reaches step 30, we are in the typical update scenario in which
we have to remove outdated vector α and add desired vector
β (i.e., Scenario 4). Steps 30 through 33 handle the case in
which the BoND-tree consists of only one root node which is
also a leaf node at the same time. Since α is directly replaced
by β , no underflow or overflow processing is needed. Steps 35
through 40 handle the best case in which vector β becomes a
direct replacement for vector α and guarantees no underflow or
overflow. Steps 41 through 50 handle the underflow situation.
In this case, the update process defaults to a standard insertion
process of vector β via the root RN since the underflow handling
may have altered the tree structure and the path of cached nodes
may be no longer valid. Steps 51 through 54 climb up the tree
until the level where a suitable cached node is found to insert
vector β . In the worst case, this node would be in fact the root
RN. Step 55 through 61 perform a local insertion of vector β

via the node PNi at this particular level so that a path Pβ to leaf
node Nβ is found.

Figure 4 shows two examples of the bottom-up update
process. Figure 4(a) illustrates the best scenario in which the
outdated vector “cg...” is directly replaced by the updated vector
“cc...” in leaf node C since the DMBR for node C contains both
vectors. No underflow or overflow would occur in such a case.
The cost of locating the home leaf node for the updated vector
is also the minimum. Figure 4(b) illustrates a typical scenario,
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Algorithm 2: Bottom-Up Update (BUU)
Input: (1) the BoND-tree with root RN; (2) the outdated vector α; (3) the

update vector β

Output: the root of the modified BoND-tree with α being removed and β

being present

1 query vector β ;
2 if vector β exists then
3 set VectorβAlreadyExist = true;
4 else
5 set VectorβAlreadyExist = false;
6 end if
7 locate leaf node Nα containing vector α by following path Pα from root

RN;
8 if vector α does not exist then
9 if VectorβAlreadyExist then

10 return RN;
11 else
12 insert vector β via root RN;
13 if Nβ is overflow then
14 OverflowHandling(Nβ , Pβ );
15 else
16 ComputeDMBR(Nβ , Pβ );
17 end if
18 return RN;
19 end if
20 end if
21 remove vector α from leaf node Nα ;
22 if VectorβAlreadyExist then
23 if Nα is underflow then
24 UnderflowHandling(Nα , Pα );
25 else
26 ComputeDMBR(Nα , Pα );
27 end if
28 return RN;
29 end if
30 if leaf node Nα is the root node RN then // 0 height tree

31 insert vector β into leaf node Nα ;
32 return RN;
33 end if
34 set path Pβ = path Pα ; // finding path for vector β

35 if vector β is contained in leaf node Nα ’s DMBR then // β can
directly replace α

36 set leaf node Nβ = leaf node Nα ;
37 insert vector β into leaf node Nβ ;
38 ComputeDMBR(Nβ , Pβ );
39 return RN;
40 end if
41 if leaf node Nα underflow then // tree structure changes
42 UnderflowHandling(Nα , Pα );
43 insert vector β via root RN ; // default to insert

44 if Nβ is overflow then
45 OverflowHandling(Nβ , Pβ );
46 else
47 ComputeDMBR(Nβ , Pβ );
48 end if
49 return RN;
50 end if
51 set node PNi = parent node of leaf node Nα ;
52 while PNi is not root && vector β is not contained in PNi’s DMBR do
53 set node PNi = parent node of PNi;
54 end while
55 insert vector β via node PNi ; // new path Pβ taken to leaf Nβ

56 if Nβ is overflow then
57 OverflowHandling(Nβ , Pβ );
58 else
59 ComputeDMBR(Nβ , Pβ );
60 end if
61 return RN;

in which the BUU method recursively checks the DMBR of the
parent node of a current node to see if the updated vector is
contained in the DMBR. Once such a DMBR is found (i.e., the
DMBR of node B in node A in this example), the updated vector
is then inserted into the BoND-tree via the local subtree rooted
at the found parent node (i.e., node B in this example) rather
than via the root node for the entire tree. The updated vector
“cc...” is eventually inserted into node D in this example since
its DBMR covers the vector.

Figure 5 gives an example to illustrate what may occur in an
overflow propagation scenario. Let us make the 3rd dimension
of vectors/DMBRs also visible in this example. The outdated
vector “cg...” in Figure 4(b) is now “cgg...” in Figure 5(a).
Like the case in Figure 4 (b), “cgg...” is deleted from node C
(assuming no underflow occurs), and node B is identified to be
the root of a local subtree whose DMBR covers the updated
vector “ccc...”. The updated vector is then inserted into leaf
node D of the tree via node B. Assume node D is overflow after
the insertion. It is split into two new nodes D′ and D′′, which
makes node B become node B′. If node B′ is overflow, it is split
into two new nodes B′′ and B′′′, which makes node A to become
node A′. If node A′ is not overflow, the overflow handling ends.

4 Experiments

Experiments were conducted to evaluate the efficiency and
effectiveness of the two presented update methods for the
BoND-tree. The efficiency is measured in terms of the disk I/Os
for performing the updates. The effectiveness is measured by
the box query I/Os (average) on the resulting BoND-tree after
the updates. The update methods were implemented in C++ on
a Dell PC with a 3.6 GHz Intel Core i7-4790 CPU, 12 GB RAM,
2 TB Hard Drive, and Linux 3.16.0 OS.

Two sets of 1,000 randomly-generated box queries were
performed on the resulting index tree. One set consists of
random-span box queries with a random span (edge length)
ranging from 1 to half of the alphabet size for each dimension
of the query box. The other set consists of uniform-span box
queries with a uniform span of 2 for each dimension of the
query box. The disk block size (i.e., the tree node size) was
set at 4 KB. In the experiments, we also introduced a “fixed
dimension percentage” parameter concerning the updates such
that the desired updated vector was guaranteed to have certain
values in common with the outdated vector on at least 0%, 25%,
50%, or 75% of its dimensions.

Both synthetic datasets and real genome datasets were
used in the experiments. A synthetic data generator
was used to generate random data with the uniform
distribution. The real genome dataset used is derived from the
bacteria.105.1.genomic.fna. A BoND-tree was built to index
each dataset. Some representative results from our experiments
are reported as follows.
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4.1 Update Efficiency

In the first set of experiments, we applied each of the two
update methods to update 50%, 70%, and 90% of the vectors
from each BoND-tree. Tables 1 ∼ 4 show the I/O cost incurred
from the update process when updating the dataset of synthetic
data with 16 dimensions and an alphabet of size 10.

Table 1 shows that, when an updated vector is free to change
along all dimensions and become completely independent from
an outdated vector, the bottom-up update method (BUU) is
comparable to top-down update (TDU) method. However,
the bottom-up update method is consistently marginally better
because it is bounded in the worst case by the performance of
the top-down update method.

Table 1: Number of I/Os for updates on BoND-trees for synthetic
datasets with dimensionality = 16, alphabet size = 10, 0%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19151639 18888607
2 M 70% 26860623 26491901

90% 34573355 34099559
50% 57034309 56728483

6 M 70% 79856600 79428802
90% 102684411 102134677
50% 95012649 94507540

10 M 70% 133016214 132308510
90% 171019290 170109021

Tables 1 ∼ 4 show that increasing the similarity (0% to

Table 2: Number of I/Os for updates on BoND-trees for synthetic
datasets with dimensionality = 16, alphabet size = 10, 25%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19152093 18642310
2 M 70% 26863947 26150218

90% 34575678 33659498
50% 57033823 55939969

6 M 70% 79856697 78324221
90% 102684192 100713707
50% 95012889 93233586

10 M 70% 133016356 130523685
90% 171019154 167816000

75% of fixed dimensions) between an outdated vector and the
updated vector clearly yields increasingly better performance
for the bottom-up update method over the top-down update
method. A similar efficiency benefit with the bottom-up update
method was observed on real genome data (see Table 5).

These tables also show that the top-down update method
has negligible differences in I/O cost for performing updates
regardless of whether an updated vector is at all related to the
outdated vector it is replacing. This is consistent with one’s
intuition because the top-down update method issues a removal
for the outdated vector, and then always issues an insertion via
the root node for the updated vector in all cases. In contrast,
the bottom-up update method does try to capitalize on any
relationship between the updated vector and the outdated vector.
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Table 3: Number of I/Os for updates on BoND-trees for synthetic
datasets with dimensionality = 16, alphabet size = 10, 50%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19151237 18083357
2 M 70% 26855383 25356375

90% 34579733 32649765
50% 57033695 54406359

6 M 70% 79855557 76175575
90% 102682787 97965034
50% 95012813 90806427

10 M 70% 133016223 127120088
90% 171019053 163437333

Table 4: Number of I/Os for updates on BoND-trees for synthetic
datasets with dimensionality = 16, alphabet size = 10, 75%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19125252 16412311
2 M 70% 26818328 23022498

90% 34524669 29642270
50% 57027989 49738937

6 M 70% 79845601 69644132
90% 102667407 89556492
50% 95012452 83190257

10 M 70% 133015786 116444361
90% 171019251 149730814

Less I/O is incurred as an updated vector traverses less levels
in the BoND-tree to find a suitable node location to perform a
local insertion. The tendency across a range of fixed dimension
percentages shows that the the I/O cost of the bottom-up update
method goes down as the percentage of fixed dimensions goes
up.

4.2 Update Effectiveness

To evaluate the effectiveness of the proposed update methods
for the BoND-tree, we examine the number of I/Os (average)
for performing a set of randomly-generated box queries on the
resulting BoND-trees after updates for each experiment. Tables
6 and 7 show the observed performance for 1,000 uniform-
span box queries run on the resulting BoND-trees after updates
for the synthetic datasets. The experimental results show that
the query performance obtained by BUU is comparable to
that obtained by TDU, irregardless of the percentage of fixed
dimensions. Table 8 shows the observed performance for 1,000
random-span box queries run on the resulting BoND-trees after
updates for the synthetic datasets. From the results in the
table, we can see that the query performance obtained by BUU
is comparable to that obtained by TDU for random-span box
queries as well. Comparable query performance between TDU
and BUU on real genome sequence data was also observed (see
Table 9). It is important to obtain the resulting BoND-trees with

Table 5: Number of I/Os for updates on BoND-trees for real genome
datasets with dimensionality = 20, alphabet size = 4, 75%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Update I/Os) (Update I/Os)

50% 19016031 16851815
2 M 70% 26629245 23604711

90% 34246081 30362353
50% 57051316 51512964

6 M 70% 79895890 72180793
90% 102738854 92848747
50% 95099141 86886452

10 M 70% 133167594 121698210
90% 171252292 156576717

Table 6: Number of I/Os for box queries with uniform-span = 2
on BoND-trees after updates for synthetic datasets with
dimensionality = 16, alphabet size = 10, 25% fixed
dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 34.878 34.876
2 M 70% 35.466 35.468

90% 35.628 35.637
50% 41.031 41.031

6 M 70% 41.088 41.088
90% 41.246 41.246
50% 42.997 42.997

10 M 70% 43.000 43.000
90% 42.999 42.999

comparable query performance after the updates performed by
the two methods because it demonstrates that bottom-up update
method does not suffer significantly in terms of effectiveness
by performing local insertions into a subtree of the BoND-tree.
It is not unusual to see different strategies that offer benefits
in efficiency weighed against a trade-off in effectiveness and
vice versa. However, our empirical study shows that the BoND-
tree does not have a significant negative trade-off in terms of
effectiveness when using the bottom-up update method over the
top-down update method.

Table 7: Number of I/Os for box queries with uniform-span = 2
on BoND-trees after updates for synthetic datasets with
dimensionality = 16, alphabet size = 10, 75% fixed
dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 34.336 34.286
2 M 70% 35.067 35.088

90% 35.445 35.515
50% 40.916 40.912

6 M 70% 41.026 41.026
90% 41.124 41.122
50% 42.989 42.989

10 M 70% 42.999 42.999
90% 42.998 42.998
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Table 8: Number of I/Os for box queries with random-span on BoND-
trees after updates for synthetic datasets with dimensionality
= 16, alphabet size = 10, 75% fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 152.626 152.471
2 M 70% 156.590 156.762

90% 158.553 158.944
50% 240.444 240.411

6 M 70% 235.808 235.794
90% 247.632 247.628
50% 264.862 264.862

10 M 70% 274.353 274.353
90% 275.445 275.445

Table 9: Number of I/Os for box queries with random-span on
BoND-trees after updates for real genome datasets with
dimensionality = 20, alphabet size = 4, 75% fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Query I/Os) (Query I/Os)

50% 24.515 24.519
2 M 70% 24.994 24.992

90% 24.745 24.742
50% 33.791 33.795

6 M 70% 34.530 34.514
90% 35.474 35.454
50% 40.713 40.728

10 M 70% 43.438 43.466
90% 41.819 41.848

4.3 Space Utilization

When evaluating an index tree, people usually also examine
the space utilization which indicates how efficient the space is
utilized for the index tree. We examined the space utilization
of the BoND-trees after the updates. The representative space
utilization statistics are given in Tables 10 ∼ 12 for different
parameter configurations. From the data in the tables, we can
see that the space utilizations of the BoND-trees after updates
performed by the two methods are comparable, regardless of
the database size, the percentage of fixed dimensions, and
the synthetic/real dataset. This is quite promising since it
demonstrates that the bottom-up update method can produce
quality BoND-trees not only in terms of query performance but
also the space utilization.

4.4 Statistics on Direct Replacement

The best case for the bottom-up update method occurs when
an updated vector can directly replace an outdated vector in the
leaf node that the outdated vector resides in. In this case, no
extra I/O cost is incurred from traversing different branches of
the BoND-tree to locate an appropriate home for the updated
vector. Overflow and underflow handling situations can also
be avoided because the updated vector directly replaces the
outdated vector.

We show sample statistics about the best case for the bottom-

Table 10: Space utilization for BoND-trees after updates for synthetic
datasets with dimensionality = 16, alphabet size = 10, 25%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Space Util.) (Space Util.)

50% 0.583970 0.583970
2 M 70% 0.584254 0.584254

90% 0.585108 0.585080
50% 0.650328 0.650328

6 M 70% 0.642878 0.642889
90% 0.638624 0.638624
50% 0.590993 0.590993

10 M 70% 0.590417 0.590417
90% 0.590272 0.590272

Table 11: Space utilization for BoND-trees after updates for synthetic
datasets with dimensionality = 16, alphabet size = 10, 75%
fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Space Util.) (Space Util.)

50% 0.584311 0.584201
2 M 70% 0.584396 0.583958

90% 0.585223 0.584993
50% 0.655938 0.655842

6 M 70% 0.648190 0.648130
90% 0.643987 0.643862
50% 0.591704 0.591675

10 M 70% 0.590900 0.590859
90% 0.590539 0.590486

up update method with a varying percentage of fixed dimensions
for updates in Table 13 for synthetic datasets and in Table 14
for real genome datasets. From the tables, we can see that the
number of times the best case (direct replacement) has occurred
versus the number of times the worst case (update via root) has
occurred.

Our results indicate that the likelihood of an updated vector
directly replacing an outdated vector tends to increase as the
number of dimensions upon which they share the same values
increases. If the updated vector is contained by the existing
DMBR of the leaf node from which the outdated vector is

Table 12: Space utilization for BoND-trees after updates for real
genome datasets with dimensionality = 20, alphabet size =
4, 75% fixed dimensions

DB Size Update % TDU BUU
(vectors) of DB (Space Util.) (Space Util.)

50% 0.618304 0.617815
2 M 70% 0.614028 0.613519

90% 0.617357 0.616540
50% 0.615432 0.615114

6 M 70% 0.610998 0.610684
90% 0.615000 0.614578
50% 0.614037 0.613729

10 M 70% 0.606661 0.606328
90% 0.600961 0.600524
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Table 13: Number of times direct replacement occurs for synthetic
datasets with dimensionality = 16, alphabet size = 10, DB
size = 10M vectors, update percentage 90%, BUU method

Percentage of Direct Update via
Fixed Dimensions Replacement Root

0% 97 8099296
25% 11040 6077723
50% 266895 4049565
75% 2067574 2025833

Table 14: Number times direct replacement occurs for real genome
datasets with dimensionality = 20, alphabet size = 4, DB
size = 10M vectors, update percentage 90%, BUU method

Percentage of Direct Update via
Fixed Dimensions Replacement Root

0% 77 7970830
25% 3601 6699825
50% 83585 4944486
75% 1089256 2679402

removed, the direct replacement can take place and the best case
is realized.

5 Conclusions

Box queries on non-ordered discrete vector
(multidimensional) data are demanded in contemporary
applications. To efficiently process box queries, the BoND-tree
was recently developed. Although efficient techniques for
query, insertion, deletion, and bulk loading for the BoND-tree
were studied in earlier work, how to efficiently and effectively
perform update operations needs to be explored.

In this paper, we have presented a general update procedure
and studied two update strategies for the BoND-tree, i.e., the
traditional top-down update method and the promising bottom-
up update method. The bottom-up update method is bounded
by the worst-case of the top-down update method, in the
sense that it resorts to an insertion of the updated vector via
the root if no suitable local insertion node closer to the leaf
level is found. Furthermore, the bottom-up update method
promises better efficiency for applications where an updated
vector may be related on some dimensions to the corresponding
outdated vector. This is because the I/O cost is reduced when
a local insertion closer to the leaf level is realized. This
strategy does not impact the effectiveness of subsequent box
queries in a significant negative manner when compared to the
top-down update method. Given that the bottom-up update
method can provide significant performance boost in terms of
efficiency without a significant trade-off in effectiveness as well
as space utilization, it becomes our general recommendation for
processing updates on the BoND-tree in an NDDS.

Our future work includes studying techniques for buffering
update operations for applications where a bulk set of

updates must be done in which one update is not necessarily
independent from the next, integrating bulk loading and
updating techniques, and exploring applications utilizing the
tree maintenance techniques. We also plan to explore the
feasiblity of using advanced Bloom filter structures [33, 34] to
efficiently support queries on non-ordered discrete vector data
and the maintainability of such structures [32] as well as the
evoluationary update strategies [35] for indexing structures.
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Abstract

Statistical machine learning models are widely used in time
series forecasting. These models often use historical data
recursively to make predictions, i.e. future timesteps. This
leads to compounding of errors, which may negatively impact
the prediction accuracy for long-term prediction tasks. In this
paper, we address this problem by using features that can have
“anchoring” effect on recurrent forecasts, thus, limiting the
impact of compounding errors. The approach is tested with
four machine learning models applied to a benchmark energy
dataset. It is observed that the addition of generated features
improves performance for both short and long time horizons.

Key Words: Linear regression; LSTM; energy forecasting;
machine learning; support vector regression; time series
forecasting; XGBoost regression.

1 Introduction

Machine learning models are widely used in the energy
industry for forecasting future energy prices and demands [1,
23]. Advances in sensor and smart meter technologies have
made large quantities of energy data available [13]. This,
combined with increasingly accurate predictions produced by
machine learning models has made it possible for technologies
such as smart grid to flourish.

In the domain of energy forecasting, most machine learning
models, such as Long-Term Short Memory (LSTM) [16], use
historical values of the electricity load as an input feature. This
works well for single timestep predictions, e.g. forecasting
the power consumption for the next hour. However, when
forecasting multiple timestamps into the future, these models
recursively feed back in past predictions. In addition, if
the model uses external features, such as the hourly weather
reading, forecasts of these features must be generated as well.
All these predictions introduce error, which is compounded
when fed back into the model as inputs. Without external inputs,

*Department of Computer Science. Corresponding author: wfeng@trentu.ca

models generally become inaccurate or even unstable after
several timesteps. This makes multiple timestep forecasting
challenging even for models with high single timestep accuracy.
As further extension to our previous work [20], in this paper,
we continue the study on reducing error propagation for energy
forecasting using generated features, i.e. input features that
can be calculated from known variables with perfect accuracy
even far into the future. These features limit the impact
of the accumulated error, as the model is trained on these
features along with recursive inputs. We demonstrate the
efficacy of this approach using a benchmark energy dataset.
Four machine learning models are trained to perform single
timestep predictions: Linear Regression (LR) [19], Support
Vector Regression (SVR) [8], LSTM neural network [16], and
a gradient boosted tree model (XGBoost) [7]. Predictions
are then made over a period of one month by recursively
feeding in the model outputs from earlier timesteps as inputs
for later timesteps. We show that without any generated
features, error accumulates rapidly over time while including
generated features leads to smaller accumulated errors. We also
demonstrate the accuracy of predictions made entirely using
generated features, i.e. without recursive inputs. This version
of the model allows forecasting for arbitrary timesteps in the
future, without the need to predict all values in between.

The remainder of this paper is organized as follows. Section 2
introduces the four machine learning algorithms used in our
study. Section 3 describes time series forecasting using
univariate and multivariate approaches. Section 4 describes the
development of computational models, the experimental set-up
and the results. Lastly, Section 5 concludes the paper.

2 Prediction Using Machine Learning Algorithms

Prediction using machine learning has been shown to be
efficient in many applications. There are numerous learning
algorithms mostly based on statistical and mathematical
approaches. For our study, four popular algorithms representing
different categories are selected including Linear Regression
(LR), Support Vector Regression (SVR), Long Short-Term

ISCA Copyright© 2020
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Memory (LSTM) neural networks, and XGBoost regression.

As a basic method in statistics, LR predicts a future value
using a linear function that was obtained by minimizing the
discrepancies between predicted and actual output values.
Widely applied in industry, linear regression can be easily
performed in many platforms such as Excel, R, MatLab, Python
and others [22].

SVR is a typical kernel based learning method since it relies
on the kernel functions. Different from the linear regression, it
provides some flexibility to define how much error is acceptable
in the model. The problem is equivalent to finding the equation
of a separating hyperplane in a high dimensional space. For
example, if we have N observations with yn is the observed
response for the input data xn, the training data set can be
represented as D = {(xi,yi) | i = 1,2,3, ...N}. The objective of
a linear SVR is to find the linear function f (x) = x′β + b such
that

MIN J(β ) =
1
2

β
′
β +C

N

∑
n=1

(ξn +ξ
∗
n ) (1)

subject to

yn− (x′nβ +b)≤ ε +ξn, n = 1,2, · · · ,N, (2)
(x′nβ +b)− yn ≤ ε +ξ

∗
n , n = 1,2, · · · ,N, (3)

ξn ≥ 0, ξ
∗
n ≥ 0, n = 1,2, · · · ,N, (4)

where the constant C, slack variables ξn and ξ ∗n are for the
Lagrangian formulation. ε > 0 controls the loss function that
ignores the errors within ε distance. β ′β is the l2 − norm of
the coefficient vector. This is a convex quadratic programming
problem, since the objective function is itself convex, and those
points which satisfy the constraints also form a convex set. For
more details on SVR, we refer to [4] and the references within.

LSTM is a type of recurrent neural network architecture
designed to extract long-term dependencies out of sequential
data and avoid the vanishing gradient problem present in
ordinary recurrent networks [12, 16]. These properties make
it the method of choice for longer time series and sequence
prediction problems [11, 24]. Several variations of the LSTM
unit have been successfully applied to energy forecasting and
other areas [3, 15]. The standard LSTM architecture [12]
described below is applied in our study. Each LSTM cell
contains a cell state (ht−1), the long-term memory, and a
recurrent input (yt−1) - the short-term memory. It also contains
three “gates”: neurons which output values between 0 and
1 and are multiplied with the information flowing into and
out of the cell. The forget gate σ f controls the amount of
information discarded from the previous cell state. The input
gate σu operates on the previous state h[t−1], after having been
modified by the forget gate, and decides how much of a new
candidate state h̃[t] to add to the cell state h[t]. The output y[t] is
produced by squashing the cell state with a nonlinear function
g2(·), usually tanh. Then, the output gate σo selects the overall
fraction of the state to be returned as output.

Gradient boosting is an ensemble technique which creates
a prediction model by aggregating the predictions of weak
prediction models, typically decision trees. With boosting
methods, weak predictors are added to the collection
sequentially with each one attempting to improve upon the
entire ensemble’s performance.

In the XGBoost implementation [7], given a dataset with n
training examples consisting of an input xi and expected output
yi, a tree ensemble model φ(xi) is defined as the sum of K
regression trees fk(xi):

ŷi = φ(xi) =
K

∑
k=1

fk(xi). (5)

To evaluate the performance of a given model, we choose a
loss function l(ŷi,yi) to measure the error between the predicted
value and the target value, and optionally add a regularization
term Ω( fk) to penalize overly complex trees:

L(φ) =
n

∑
i

l(ŷi,yi)+
K

∑
k
(Ω( fk)). (6)

The algorithm minimizes L(φ) by iteratively introducing each
fk. Assume that the ensemble currently contains K trees. We
add a new tree fK+1 that minimizes

n

∑
i

l(ŷi,yi + fK+1(xi))+Ω( fk). (7)

In other words, the tree that most improves the current model
as determined by L are greedily added. We train the new tree
using the objective function (6); this is done in practice by
approximating the objective function using the first and second
order gradients of the loss function l(ŷi,yi) [10].

3 Univariate and Multivariate Input Features

Time series prediction is a problem which aims to predict
future values using past values [2]. These are generally past
values of the target variable, but this is not necessarily the case.
Forecasting models can be broadly classified into univariate
and multivariate models based on the number of features used.
When forecasting multiple timesteps into the future, models can
also be classified into direct, recursive and MIMO approaches
[21].

A recursive approach trains a single model to predict a single
step in the future, known as a one-step ahead forecast:

x̂t = F(xt−1,xt−2, . . .)

where x(i) represents the value of the variable at timestamp i.
This forecasted value is then fed back in as an input and the
next timestep is forecasted using the same model:

x̂t+1 = F(xt ,xt−1, . . .)



IJCA, Vol. 27, No. 3, Sept. 2020 109

Figure 1: Forecasts for January 1999 using (a) linear regression (b) support vector regression (c) XGBoost regression and (d) LSTM.
Full model (blue) uses recursively calculated load and all external features. No load model (orange) uses only external
features and no recursion. Only load (green) uses no external features and only recursively calculated load

This process is repeated until the desired time horizon has been
reached. This approach is sensitive to accumulated errors, as
any error present in the initial prediction will subsequently be
carried forward to later predictions when the predicted value
is used as input. However, as only one model is used for all
predictions, this allows more resources to be invested in the

single model. In addition, this approach is flexible in that it
allows forecasting for any time horizon, whether or not the
model has been trained on that time horizon. A direct approach
aims to avoid error accumulation by creating a separate model
for each potential time horizon. Thus, a collection of models
is trained as expressed by system (8). This avoids propagated
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errors as no predicted values are used as input. However, as
each model is trained independently, the models may not learn
complex dependencies between the values x̂t , x̂t+1, x̂t+2 . . . .
This approach is also computationally much more expensive as
multiple models must be trained and stored.

x̂t = F(xt−1,xt−2, . . .)

x̂t+1 = G(xt−1,xt−2, . . .) (8)
x̂t+2 = H(xt−1,xt−2, . . .)

. . .= . . .

The multi-input multi-output (MIMO) strategy attempts to
combine the advantages of these approaches by training a single
model with multiple outputs to predict all timesteps up to the
time horizon simultaneously:

[x̂t+H , x̂t+H−1, . . . , x̂t ] = F(xt−1,xt−2, . . .)

This avoids accumulated error by performing all predictions in
one step, as well as modeling any interdependencies between
future timesteps. However, this comes at the cost of less
flexibility, as all horizons are forecasted using the same model
and possible time horizons are limited to those built into the
model.

Based on the input features, time series prediction models can
be categorized as univariate or multivariate. Univariate models
use a single feature, generally the target variable, to predict a
future value:

x̂t = F(xt−1,xt−2, . . .).

This has the advantage of allowing smaller and computationally
lighter models. Univariate models do not require extra external
data and require no feature engineering. However, as they are
tied to a single variable, they exhibit more sensitivity to noise
and reduced stability for recursive models.

Multivariate time series models use observations of multiple
variables or features, often taken simultaneously, and attempt to
also describe the interrelationships among the features [5]:

x̂t = F(xt−1,xt−2, . . . ,a
(1)
t−1,a

(1)
t−2, . . . ,a

(2)
t−1,a

(2)
t−2 . . .)

where each a(i) represents the time series of an external feature.
This has the obvious advantage of modeling relationships
between the target and external variables, but at the cost of a
bulkier model and higher computational costs. Building such
a model generally also requires obtaining measurements of
external features; the difficulty of this is highly dependent on
data availability.

It is also possible for a multivariate model to employ no past
information about the target variable:

x̂t = F(a(1)t−1,a
(1)
t−2,a

(1)
t−3, . . . ,a

(2)
t−1,a

(2)
t−2,a

(2)
t−3, . . .).

In this case, predictions must be made solely based on the
relationships of external features to the target variable. Such a

model is rarely used in practice as training the model in the first
place requires knowledge of past values of the target variable,
but may see use if obtaining a full time series of the target value
is difficult due to missing or unusable values. In addition, as the
output of the model is never used as an input, error accumulation
is limited. If future values for the external features can be
obtained, this approach allows prediction based on those values
without first predicting earlier time horizons.

4 Empirical Study on Energy Forecasting

We study energy forecasting using the four machine learning
algorithms described in Section 2. Effects of external features
on error propagation are compared for the recursive univariate,
multivariate and the modified multivariate techniques.

The linear regression and support vector regression models
are implemented using scikit-learn [18]. We use the radial basis
function (RBF) kernel for SVR. The gradient boosting model
was built using the XGBoost Python library [7] with a maximum
tree depth of 12. All other parameters are set to scikit-learn
defaults.

The LSTM model is implemented using PyTorch [17]
running on Python 3.8. The model consists of four layers: the
input layer, two hidden LSTM layers with 16 nodes each, and
a linear fully connected aggregation layer as the output. To
improve stability, we use a residual connection on the LSTM
layers. The model is trained on MAE loss using the Adam
optimizer for 30 epochs.

In order to ensure reproducibility of the experiment, the
2001 EUNITE competition dataset [9] is used in our study.
This benchmark dataset is well-studied in energy forecasting
research [6, 14]. It spans over two years from January 1997
until January 1999. It contains the following fields: the half-
hourly electricity load, the daily average temperature, and a
flag signifying whether the day is a holiday. In the statistical
analysis of the dataset [6, 14], it was found that the electricity
load generally decreases during holidays and weekends. This
phenomenon depends on the type of the holiday, e.g., Christmas
or New Year.

To ensure no outside forecasts are required, we disregard
all temperature measurements as these require separate weather
forecasts. This ensures model performance is based only on
features which can be calculated with perfect accuracy. In
addition, we generate the following features based on the
prediction timestamp: weekday, ranging from 0 to 6, day of
year, ranging from 1 to 365, and hour of day, ranging from 0
to 23. These two features allow the model to pinpoint the day
and time within the year and capture daily, weekly and yearly
dependencies.

Both datasets were converted into input-output pairs for
supervised learning using a sliding window method, whereby
timesteps within the window were used as input to predict
the next timestep after the window. A window size of 48
timesteps was chosen, corresponding to the previous 24 hours
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Figure 2: Absolute error of January 1999 forecast, smoothed with a moving average of 50 timesteps for (a) linear regression (b)
support vector regression (c) XGBoost regression and (d) LSTM. Full model (blue) uses recursively calculated load and all
external features. No load model (orange) uses only external features and no recursion. Only load (green) uses no external
features and only recursively calculated load

of activity. As the generated time features were uniformly rather
than normally distributed, features were normalized to lie in
range [−1,1]. The last month of data was used to evaluate the
models. This was done in order to limit potential data leakage by
ensuring all evaluation data was drawn from points temporally

after the training data. Ten percent of the remaining data was
used to validate the models during training, while the remainder
was used for training itself. Each model was trained to forecast
only one step ahead. We compared three methods: first, a
univariate model using only past values of the load to forecast
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Table 1: Correlation between forecast error and input feature value for linear regression, LSTM, XGBoost and SVR with rbf kernel.
Shown are recursive full models, non recursive (no load) models and recursive univariate (only load) models

Model Name Load Weekday Holiday Hour Day Of Year

Linear (Full) 0.5388 -0.0296 0.1878 0.2124 0.2919
Linear (No Load) * -0.0284 0.1659 0.2107 0.2414
Linear (Only Load) 0.6260 * * * *
LSTM (Full) -0.4827 0.2664 -0.0042 -0.0479 0.2982
LSTM (No Load) * 0.2385 0.5833 0.1944 -0.1310
LSTM (Only Load) -0.9232 * * * *
XGBoost (Full) 0.6223 -0.3040 -0.0926 0.1341 0.6788
XGBoost (No Load) * -0.0505 -0.0083 -0.0560 0.1149
XGBoost (Only Load) 0.8324 * * * *
SVR (Full) 0.1618 -0.1451 -0.0727 -0.0265 0.0239
SVR (No Load) * -0.1662 0.0312 0.2091 -0.1016
SVR (Only Load) -0.7639 * * * *

future values. Each prediction was recursively added to the
input for the next timestep. The second was a multivariate model
which made use of generated external features in addition to past
values of load. The load was updated recursively as in the first
model, while external features were calculated directly based
on the timestamp of the prediction. The third model removes all
recurrent dependency by ignoring previous loads altogether and
using only the calculated external features.

For each variant, we compare the performance using four
learning models: linear regression, XGBoost, LSTM, and
support vector regression. For evaluation, we calculate the
absolute error of each model for each timestep, after outputs
are scaled back to the original range.

Figure 1 shows the forecasts obtained from the four models.
From top to bottom, these are: linear regression, support vector
regression, XGBoost, and LSTM.

Green lines represent recursive predictions using the
original univariate models, while blue lines represent recursive
predictions from the same models with generated features
introduced. Orange lines show the non-recursive version which
decouples predictions from past values of the output variable
and forecasts based only on generated features.

We note that all models are capable of learning short term
trends in the data. This is reflected in the high forecast accuracy
for short time horizons. We also observe that daily patterns
are successfully captured using all methods. The full models
generally prove to be the most accurate over short time horizons
(less than 1 day), but recursive error begins appear to by as early
as the second day, in the case of the LSTM model.

Figure 2 shows the magnitude of the forecasting error for
the testing set of January 1999 for all models. To showcase
the trend, these are averaged using a moving window of 50
timesteps.

We note that the univariate recursive models generally
accumulate significant error by 250 timesteps. This is mitigated

in the multivariate recursive models, but due to the recursive
nature of the predictions error still rises over time. Nonrecursive
models exhibit higher initial error for linear regression and
LSTM models while being comparable for SVR and LSTM, but
this error remains relatively constant over time. For the linear
regression model, nonrecursive error is significantly higher. We
believe there are two main reasons for this: first, there is a
nonlinear relationship between the features and the load, making
prediction difficult for a linear model. Second, the winter of
1999 (our testing set) was unusually cold and resulted in a
higher power consumption than previous years. This led to
consistent underestimates which were also observed in the SVR
and LSTM models. However, use of actual load values in the
recursive models anchored these models to higher initial values.

Table 1 shows the Pearson correlation coefficients between
error magnitude and feature values. We see that the error
correlation decreases from the univariate to the full multivariate
model.

5 Conclusion

Forecasting time series with machine learning models has
wide applications to our daily life. Reducing errors in the
predictions is a paramount concern in the design of these
algorithms.

In this paper, we have demonstrated an approach using
generated features to convert a univariate model into a
multivariate model to mitigate long-term error accumulation.
This method can be applied to a variety of machine learning
time series models, a selection of which we have studied in this
paper. Our experiments show that the addition of generated
features improves performance of all univariate models tested
over most time horizons, and that it is possible to rely on these
added features alone to avoid recursive error accumulation by
creating a nonrecursive model. Our results also show that
for the majority of models tested, the nonrecursive model can
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achieve comparable performance on short time horizons while
outperforming recursive models over long time horizons.

This principle of using generated features to create a
multivariate model can be used for a wide variety of applications
and algorithms. Our method preserves the flexibility of
recursive forecasting and allows use of the same model for any
forecast length, and can be extended to models which forecast
multiple timesteps at once. For future work, performance will
be evaluated on other applications such as stock market price
forecasting. We will also consider other types of non time-based
or composite features which can be generated.
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Abstract

We have developed a framework for multi-user Virtual
Reality experiences aimed at video games played over a
network. Features include tracked avatars, interactable physics
objects, peer-to-peer with a user matching system, and voice
chat, as well as options to customize these modules for a
wide range of support. We go into detail on how several
implementation details, such as networking, voice chat, and
interaction work. In addition, networking performance details
of the framework are included. We also go into detail on how
to use the library in Unity for your own projects. We also talk
about avatar representation in VR, and how this tool can be used
to facilitate many different types of avatar representation.

Key Words: Graphics, user-interface, virtual reality,
multiplayer, networking, performance.

1 Introduction

This paper is an extended version of our work published in
the Proceedings of CATA 2020 [11].

Multi-Headset Virtual Reality experiences are few and
far between which brings about exciting new opportunities
when looking at solidifying standards for interacting in this
environment. Current multi-player frameworks aren’t built to
handle the intricacies of Virtual Reality support, and current
Virtual Reality frameworks aren’t built with the intention of
having multiple headsets in the same virtual environment at the
same time. As the popularity of virtual reality increases, the
need for more diverse experiences will increase as well, and
this will lead to a need for multi-player experiences, which have
been previously under-explored. In this paper, we introduce a
framework and several techniques for multi-user Virtual Reality
experiences. This framework builds a foundation for a multitude
of multi-headset experiences to be built on top of it. It provides
developers with a networking connection layer, voice chat
system, and networked physics system.

The rest of this paper is structured as follows: In Section 2
we cover target platforms, other tools, avatars, and social
interaction. In Section 3, we discuss the design and
implementation of our framework, which includes how we set
up our networking stack and multi-user matchmaking as well
as performance in Section 3.1, multi-user interaction and object
ownership in Section 3.2, avatar representation in Section 3.3,
and multi-user voice chat in Section 3.4. We finish the paper
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with conclusions, successful uses of the framework, and future
work in Section 4.

2 Background Review

2.1 Target Platforms

Our framework is built for the Unity[14] game engine, but
the techniques discussed can easily be extended to any other
game engine. Unity was chosen due to its current popularity
in individual game development as well as the availability of
already established Virtual Reality and networking frameworks,
such as Mirror[17], which was chosen for our framework.
Mirror allows easy setup for the simple interactions that
commonly occur in multiplayer virtual environments while
allowing for the possibility of more complex networking
interactions. Mirror also allows for simple peer-to-peer
communication needed in simple 2-4 player games and
server-client communication needed in massively multiplayer
experiences. As well, our framework uses OpenVR [15] due
to its hardware-agnosticism, however it can easily be extended
to other Virtual Reality frameworks. OpenVR also requires
Steam[16] to be running, so we targeted Steam users and took
advantage of several features of the Steamworks SDK. However
none of the methods discussed in this paper require the use of
any of these pre-existing frameworks.

For this iteration of the framework we decided to use the HTC
Vive as shown in Figure 1 as it has many nice features that
we used including a microphone and the option to add more
trackers, see Figure 8. Again, this choice is not reflective of the
framework but rather an implementation of it. This framework
can be extended to any hardware.

2.2 Other Tools

Networking libraries for Unity, such as Mirror [17],
Photon [4], and SteamWorks, are common, but come with
many downsides to the developer, especially when concerning
VR. Photon, for instance, uses a client-server model, where
players are matched on Photon’s own servers, but Photon
expects developers to pay for this service. Developers can also
use their own servers or set up server on clients for a peer-
to-peer experience, but advertising servers so that users can
find each other is also expected to be paid for. Steamworks,
meanwhile, provides a peer-to-peer service and a way to match
users together for free, but doesn’t provide any networking layer
for syncing objects in Unity itself. Mirror provides a good peer-
to-peer system which syncs objects in Unity, but isn’t built to
accommodate VR headsets, and by default will not work with

ISCA Copyright© 2020
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Figure 1: The HTC Vive HMD with controllers

them at all. As well, as a peer-to-peer tool, Mirror does not
provide a system of matching users, nor a voice chat system,
which are necessary in many modern multi-user experiences.

VR libraries are also common - Unity has a VR library built
in, for instance. OpenVR, one of the most popular cross-
platform libraries that supports many headsets, also has support
for Unity. However, none of these libraries are built to work with
multiple headsets, let alone multiple headsets over a network.

2.3 Avatar Representation

When a user is immersed in a virtual environment, there
are many choices when it comes to how to represent that
user’s self/body in the environment. There is good research
about the implications/advantages of using different levels of
representations of a user’s own body in the environment when
it comes to immersion, virtual awareness, and computation
cost. In singleplayer experiences, increased complexity of
player avatars doesn’t gain any significant advantage in terms of
immersion, while coming at the cost of framerate - something
very important in virtual immersion [5, 8, 9, 13]. But in
multiplayer experiences, there is an unexplored question of how
other users’ bodies should be represented and what needs to be
tracked/networked to make that level of detail possible.

2.4 Social Interactions

With multiple users in a virtual experience, it becomes
important for them to be able to interact in an expected way.
This includes having perfect replication of environment, similar
interaction schemes between users, and feedback to let players
know that they are interacting with another player [12, 18]. A
multiplayer Virtual Reality framework must seek to efficiently
implement these goals, and allow for other types of social
interactions easily.

3 Framework Design

Our framework seeks to fill in the “holes” left by other
libraries made for multi-user and VR experiences by providing a
peer-to-peer networking stack with user matching which is free
to the developer. Our framework is made for Unity, supports a
wide variety of user interactions and avatar representations, and
has voice chat built in.

3.1 Networking

3.1.1 Networking Setup. The networking API that our
framework is built on top of is Mirror. Mirror uses a type of
client-server communication where the server can also be a user
of the software as well. To make connecting to other users easy,
Steamworks was used. Opening of the software requires Steam
to be open, and will load a list of friends who are currently
running the game, as can be seen in Figure 2. Selecting one of
these friends will invite them to join a lobby, thereby starting a
server on the user’s local machine and marking the two player as
a Steam "lobby". Further users will be able to see this lobby and
instead of starting another server when inviting those friends,
will instead join the already made server as an observer or
other user. Steam allows connecting between users with their
Steamworks API, allowing easy connections through firewalls
without having to know the other users’ IP address(es).

Figure 2: A menu displaying active Steam friends with which to
join into a lobby

Starting a server opens a scene normally, but when other users
connect to the server, the scene is then cloned to the connecting
user. From then on, the server pushes updates to all connected
clients syncing the scenes on their computers to the one on the
server, so only changes made on the server will be represented
to other users. Users can attempt to modify objects in their
scene, but these changes will eventually be overwritten by the
connection. As well, they can modify objects which are not
synced over the network, however these changes will not be
represented to other clients.

To override this behaviour, a mechanic called "authority"
is used to determine which client has the authority to modify
certain objects at any time. Each networked object has a single
"authority figure" at any given time, and if this authority figure
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is not the server, the syncing behaviour changes to one where the
authority figure will push its changes on an object to the server,
and the server will re-distribute these changes to all other clients.
Using this "authority" method keeps networking costs down to
a minimum, and ensures smooth physics if needed.

3.1.2 Networking Performance. Of course, networking
performance would be of concern to any potential user of the
framework, since poor performance could make it prohibitive
for any clients of the end product. The most important
performance is that of the host (who is both operating the server
and participating in the experience), as they are the central "hub"
for all traffic in the experience and will therefore experience
the most traffic. The host’s download and upload traffic as a
function of number of users connected to the experience can be
found in Figure 3. As can be seen, the host’s download traffic is
linear in the number of users, but its upload traffic is quadratic
in the number of users. This is due to the increase in number
of users which must receive updates and also an increase in the
amount of data in each update (from more tracked points). Since
the traffic is still within 2-15 KB/s, this should be acceptable for
most people’s networks, but the number of players within each
experience probably shouldn’t exceed 10, due to the quadratic
nature of the host’s upload traffic.
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Figure 3: Host network traffic as a function of connected users.
Number of tracked points per user is 3. Points taken
as mean over 10 second samples from NetLimiter
4 [7] with shaded regions as minimum and maximum
observations

Also of interest is the comparison between the host’s
download traffic and each client’s download traffic, which can
be found in Figure 4. The client’s download speed actually get
more efficient as the number of users increase, as more data is
sent in each update, whereas the host receives multiple updates
from each of the clients.

Finally, the number of updates per second can be adjusted to
fit the capabilities of the network and the needs of the program.
The network traffic as a function of the updates per second can
be found in Figure 5, and is mostly linear, however there is a
certain minimum amount of data that needs to be transmitted
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Figure 4: A comparison of the host’s download traffic and a
client’s download traffic as a function of number of
connected users. Points taken as mean over 10 second
samples from NetLimiter 4 [7] with shaded regions as
minimum and maximum observations

each second just to maintain a connection and synchronization.
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Figure 5: The host’s mean network traffic as a function of
update speed. Points taken as mean over 10 second
samples from NetLimiter 4 [7]

3.2 Multi-User Interaction

3.2.1 Tracking Users. The first step to creating a multi-user
environment is tracking those users throughout the environment.
This is done natively by many Virtual Reality frameworks, but
typically not in a multi-user fashion. Our first attempt to track
users in the environment was to simply network the objects tied
to the tracked pieces of the user. However, this didn’t work
as using multiple player objects in a single scene caused each
connected player to influence the motions of each player in
the scene. OpenVR picks up all player objects in the scene
as a controllable entity and so would change the position of
the tracked points in each model simultaneously. In order to
rectify this, we disabled all the components in the scene tracked
by OpenVR which were not controlled by the local player (the
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player the current client is supposed to control) (Figure 6). This
method seemed like the most reasonable solution to the problem
without delving too far into Steam’s OpenVR implementation.

Additionally, in order to create a more immersive
environment, we decreased the sync rate between the server and
the clients to allow for more smooth movement in the players
and interactable objects in the scene. We changed the sync
rate from it’s default of 100 milliseconds to 10 milliseconds.
This gave the players almost seamless movement and made
interacting with objects with multiple players very fluid and life-
like.

Figure 6: This figure shows the components which are being
disabled for non-local players in the scene

3.2.2 Tracking Objects. The next step in creating a multi-
user environment is to allow players to interact with objects in
the scene together. Doing this on a single machine in Virtual
Reality is trivial since we only need to worry about keeping the
physics updated on the local machine. In a multi-user setting
however, we need to worry about how the physics of a given
object is tracked across all clients. Some challenges we faced
were figuring out which client should have "authority" over
an object at a given time and how physics should be tracked
over the network. We settled on only keeping track of physics
on the machine which has authority over the tracked object
and then just updating the position over all clients (Figure 7).
This method seemed to allow for the best performance since no
information about the physics is transferred over the network
only information about position, rotation, etc.

3.3 Avatar Representation

In single-player virtual experiences, it has been shown that
there is no notable increase in immersion or self-presence with

User
interacts

with object

client
requests
authority
over the
object

client
updates the
physics of
the object

server
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the client
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updates the
information

of the
object to
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while
interacting

Figure 7: The flow of operation for interacting with an object on
a client

the addition of more-realistic player avatars. However, in a
multi-player environment, this can change. Not only does the
user have to keep track of their own avatar, but they now also
must be able to keep track of other avatars as well. There is
also now potentially a need for a user to be able to see the same
avatar that everyone else is seeing.

To keep networking costs low, only three positions are sent
over the network: head position, and hand positions. However,
this can be expanded using the trackers shown in Figure 8 to
track additional joints in the avatar. After these positions are
sent over the network, each client then separately updates the
avatars of each player with respect to these positions. This
allows for a large amount of freedom with player avatars,
including more complex player avatars through the use of
techniques such as inverse kinematics. Players can choose
which avatars they would like to represent themselves and
others without impacting the other players. Some examples of
dynamic avatar representations can be seen in Figures 9 to 11.

3.4 Multi-User Voice Chat

Another form of interaction one might wish to have in a multi-
user virtual environment is speech. Indeed, every modern Head-
Mounted Display made for Virtual Reality (including, in our
case, the HTC Vive) has a microphone array built-in with this
purpose in mind, meaning voice chat is accessible to everyone.

Steamworks makes using these microphones easy - the library
will automatically pick up on and compress any audio from the
microphone on the headset. This is stored in a buffer until
the appropriate retrieval function is called, upon which time
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Figure 8: Trackers which can sync with the Vive to add
additional tracking points to the avatar [1]

Figure 9: A simple player model which allows for good social
interactions

it gives access to 16-bit compressed Pulse-Code Modulation
(PCM) audio. This is ideal for sending over the network, and
we implemented a custom network package to deliver the audio
containing a buffer for the audio, a player ID to keep track of
the origin of the audio, and a channel ID for special purposes.
This is sent to the server, which then re-sends it to every other
client. When a client receives this package, it finds the audio
source associated to the player ID, decodes the audio, and stores
it in a buffer waiting to play. This is a bit tricky, as the C#
version of Steamworks returns a buffer of 8-bit integer values to
represent 16-bit audio and Unity requires 32-bit floating point
values between -1 and 1. As well, C# is little-endian (i.e. high

Figure 10: A much smaller player avatar - player avatars can be
as flexible as you want!

Figure 11: A complex player avatar rigged over the network [3]

order bytes are stored after low order bytes), so there is a bit of
finesse required to turn this audio into something useable. Once
this is done, however, the audio source is set to stream from the
buffer of incoming voice audio, making the audio sound like it
is coming from that player.

As well, one can use the aforementioned channel ID to
change how this works. Channels can be used to filter out certain
players from hearing other players, joining certain voice chat
channels, and changing which audio source to play the incoming
audio from. For instance, a mining evacuation simulator used
voice channels to make player audio come out of walkie-talkies
instead of being played directly from the other player, as players
were often on other sides of the mine [2].

By Using SteamVR actions, this allows players and
developers flexibility in how they want to be able to talk to other
players. By default, the framework is set up to use a push-to-
talk schema where as user will push a button to start talking and
then push it again to stop while an indicator lets them know that
they are broadcasting Figure 12. This can be easily configured
by both developers and users to become a hold-to-talk scheme
or an always-on scheme where users are always chatting. The
framework doesn’t send voice packages over the network unless
noticeable audio is detected, so silent users of an always-on
scheme won’t cause network stress. As well, action sets can
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be configured to make a more dynamic voice chat experience.
For instance, the aforementioned mining simulator uses walkie-
talkies whose push-to-talk button doesn’t become available until
the player picks up the walkie-talkie into their hand thereby
switching action sets [2].

Figure 12: An indicator lets a user know that they are
broadcasting to other players

4 Conclusions and Future Work

We believe this library will provide to be a useful framework
for other multi-user virtual reality experiences, which are
becoming more and more common. Integration with Steam, the
world’s largest game distribution and VR platform, and Unity,
one of the largest game engines in use today, together with being
free to the developer, we believe this framework will be a great
boon to developers looking to get into this new market.

We are planning to include IBM Watson support with the
voice-chat feature, which would allow for written transcripts of
audio sessions during the experience. Planned use cases include
’replays’ of scenarios in the experience, as well as voice-to-text
chat in the experience. We also plan to use the feature in our
own virtual reality game to trigger certain features of the game
off of certain key phrases.

Various projects and papers have already successfully made
use of the framework for multi-player games and multi-
user experiences. METS VR [2], a mining evacuation
training simulator, requires multiple users to be able to train
simultaneously and an "operator" who operates the simulation
from within the digital space. VFireVI [6] simulates wildfires in
a virtual space and allows multiple users to experience and cause
the virtual wildfires together using a centralised fire simulation
server. Several video games have also been developed which
make use of the framework, such as a cooperative puzzle game
[3] and a competitive "clan-like" tower defense game [10]. Our
own virtual reality game is also in the works, which makes use
of asymmetric player avatars to have players solve puzzles using
specific roles.
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Abstract

Advances in computing continue to improve the human
condition in many ways, including in healthcare. This
paper focuses on the issue of accurately predicting a stroke,
particularly a subarachnoid hemorrhage. A stroke is a serious
cerebrovascular condition that causes brain cells to die, due
to an abrupt blockage of the arteries that supply blood and
oxygen to the brain. A stroke could also be caused when
blood vessels burst, causing bleeding in the brain. Since
the onset of a stroke may be very sudden, its prevention is
often difficult. In Japan, a stroke ranks fourth as the major
cause of death. It is associated with high medical costs
and these problems are exacerbated by the aging population.
Thus, stroke prediction and treatment are important issues to
address. Based upon a patient’s risk of stroke, preventive
treatments are usually provided. However, since characterizing
the risks of stroke typically depends upon an individual’s
health history as well as the skillset of the doctor, a highly
accurate prediction method for strokes that is independent of the
doctor’s experience and skills would be highly desirable. This
study focuses on a predictive method for a particular type of
stroke—the subarachnoid hemorrhage. Two gradient boosting
decision tree methods—the LightGBM and the XGBoost, along
with the support vector machine (SVM) method were used
to predict the rupture of cerebral aneurysms using a machine
learning process that incorporates clinical, hemodynamic, and
morphological information. These classification models were
used to analyze samples from 338 cerebral aneurysm cases
(35 ruptured, 303 unruptured). Simulations of the cerebral
blood flow was used to calculate the hemodynamic features,
while the surface curvature was extracted from 3D blood-vessel-
shape data as morphological features. Comparing the machine
learning methods using the performance metrics of sensitivity
and specificity, it was found that the LightGBM method yielded

*Email: m-suzuki@rs.tus.ac.jp

the best performance, with a sensitivity of 0.77 and a specificity
of 0.83 in accurately predicting potential rupture of cerebral
aneurysm.

Key Words: Artificial intelligence; machine learning;
gradient boosting decision tree; computational fluid dynamics
simulation; stroke; subarachnoid hemorrhage; cerebral
aneurysm rupture.

1 Introduction

Advances in computing continue to improve the human
condition in many ways, including in healthcare. This
paper focuses on the issue of accurately predicting a stroke,
particularly a subarachnoid hemorrhage. A stroke is a
generic term that corresponds to cerebral infarction, cerebral
hemorrhage, and subarachnoid hemorrhage. It occurs as a result
of a severe cerebrovascular injury and causes the destruction
of brain cells due to an abrupt blockage of arteries transferring
blood and oxygen to the brain or due to bleeding in brain tissue
provoked by a burst of blood vessels. In many cases, stroke
may occur suddenly and without warning signs; therefore, it is
difficult to prevent. In 2018 in Japan, stroke took fourth place
among the leading causes of death due to illness and the first
place among the causes of being bedridden. Therefore, it is
crucial to introduce effective methods of early prediction and
treatment for stroke patients. Reducing the incidence of stroke
requires a preventive strategy that lowers the associated risks.
However, the outcome of stroke risk evaluation significantly
depends on the individual judgments and expertise of doctors.
Therefore, a highly accurate method for predicting stroke risk
regardless of the experience and judgment of medical personnel
is required.

Some of the existing stroke-prediction models [15], [16]
incorporated the features that were known as clinically verified
or were manually selected by medical experts. For example,
[11], [14], and [26] used the medical history data of patients

ISCA Copyright© 2020
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as input features in their research. Amini et al. [2] applied
the k-nearest neighbor algorithm [1] and the C4.5 decision
tree method [22] to predict a stroke onset based on the
medical history data of patients. Moreover, several studies
suggested to analyze vascular imaging with the purpose of
predicting disease onsets. For example, Nogueira et al. [20]
employed vascular imaging to predict clinical outcomes through
investigating the risk of symptomatic intracerebral hemorrhage
among the patients undergoing the intravenous thrombolytic
treatment. Bentley et al. [4] utilized computerized tomography
brain images as the inputs into a support vector machine
(SVM) algorithm [9] to predict strokes. More recently, Kim
et al. [13] applied a convolutional neural network (CNN)
to aneurysm images to predict the rupture of small-sized
intracranial aneurysms and demonstrated the applicability of
deep learning algorithms to the rupture risk assessment.

In several other reports, the state of cerebral blood flow was
considered in addition to the medical information of patients
to predict a stroke onset [7], [19]. Morino et al. [18] applied
particle image velocimetry and laser doppler velocimetry to
evaluate the velocity profiles of ruptured and unruptured intra-
aneurysmal hemodynamics. Xiang et al. [28] examined how
an inlet waveform affected the predicted hemodynamics in the
patient-specific aneurysm geometries. Furthermore, several
research groups acknowledged the significance of the wall shear
stress (WSS), energy loss (EL), and pressure loss coefficient
(PLC) in predicting the rupture of cerebral aneurysms [21], [23],
[25].

Among these studies, only a limited number of them
considered combining the data from various technological
sources to successfully predict a stroke onset. Aranda and
Valencia [3] relatively recently employed machine learning
(ML) using combined geometric data and intracranial blood-
flow-simulation data to analyze 60 saccular aneurysm samples.
In this regard, in our previous study, we suggested combining
the clinical, hemodynamic, and morphological information
within a classification model to realize an enhanced prediction
of stroke [24]. Moreover, we aimed to develop a highly accurate
stroke-onset prediction method based on ML techniques.
Specifically, we constructed an ML-based model predicting
whether a cerebral aneurysm would rupture and cause
subsequent subarachnoid hemorrhage. The proposed model
relied on logistic regression and SVM incorporating the
clinical information, and hemodynamic information derived
from the computational fluid dynamics (CFD) simulation data
of cerebral blood flow, as well as the morphological information
obtained from the 3D blood-vessel-shape data. Analyzing the
performance of logistic regression as a classification model for
a total of 338 cerebral aneurysm data samples, we found that it
yielded a sensitivity of 0.64 and a specificity of 0.85.

In [10], Haruhara et al. applied LightGBM [12], a type
of gradient boosting decision tree method actively used in
the recent data analysis competitions, as a classifier. Here,
the obtained time-series data from the CFD simulation of the
cerebral blood flow were considered as hemodynamic features.

Additionally, the surface curvature data representing a cerebral
aneurysm obtained from the 3D blood-vessel-shape data were
considered as morphological features. In the present study,
the main purpose is to find an effective classification model
for predicting the rupture of cerebral aneurysms. To achieve
this, we conduct the experiments to evaluate and compare
the prediction performance of two gradient boosting decision
tree methods, LightGBM and XGBoost [6], along with a
conventional ML method, SVM.

In this present paper, which is an extension of [10], we
describe the data that are required to construct the proposed
classification model (Section 2), the process of developing the
classifiers (Section 3), the results of the numerical experiments,
and the implications of these results (Section 4). The
conclusions are presented in Section 5.

2 Dataset

In the present study, we considered the total of 6,470 cases
previously registered in the Jikei University database. Among
these cases, we first extracted the cases for analysis based on the
occurrence location of an aneurysm. If a case was unruptured,
we extracted the cases that are being observed and have not
been treated in the past. If a case was ruptured, we extracted
the cases that ruptured during the follow-up visits. In addition,
we applied a morphological classification to restrict the cases
to those in which the length, width, and the neck of a bulge
were each < 10 mm but at least one of them was > 3 mm.
Furthermore, we restricted the set of the considered unruptured
cases to those in which the follow-up period1 was over two
years and then analyzed all the consecutive cases. Finally, 338
cases were selected for the analysis. We extracted the clinical,
hemodynamic, and morphological information from 338 cases,
including 303 unruptured and 35 ruptured samples.

2.1 Clinical Information

The following clinical information attributes were considered
in each case: patient age; sex; aneurysm location; the history of
subarachnoid hemorrhage (SAH); the history of smoking (SH);
diabetes mellitus (DM); hypertension (HT); hyperlipidemia
(HL); alcohol consumption (AC); polycystic kidneys (PK);
cerebral hemorrhage (CH); hormone replacement (HR); the date
of the last consultation (discretized in units of three months and
ten days.); the family history of SAH (FH SAH); the family
history of unruptured aneurysms (FH UA); and the family
history of PK (FH PK). A total of 32 features were extracted
from the patient medical history. Comparisons of main clinical
features between the rupture and unruptured groups are shown
in Table 1.

1The follow-up period is defined as the time between the initial consultation
and the final consultation.



124 IJCA, Vol. 27, No. 3, Sept. 2020

Table 1: Statistical comparison of clinical features between the rupture and unruptured groups (The data represent the number of
samples for categorical features and the mean value for continuous features)

Rupture (n=35) Unruptured (n=303)
Age [years] 62.7 69.9
Sex Male : Female 24 : 11 188 : 115
SAH No : Yes 35 : 0 303 : 0
SH None : Past : Current 24 : 8 : 3 183 : 68 : 52
DM No : Yes 35 : 0 283 : 20
HT No : Yes 17 : 18 135 : 168
HL No : Yes 31 : 4 245 : 58
AC No : Yes 29 : 6 258 : 45
PK No : Yes 35 : 0 303 : 0
CH No : Yes 35 : 0 303 : 0
FH SAH No : Yes 31 : 4 261 : 42
FH UA No : Yes 34 : 1 300 : 3
FH PK No : Yes 34 : 1 302 : 1

2.2 Hemodynamic Information

The hemodynamic information was obtained through the
cerebral blood flow CFD simulation. CFD is regarded as
a branch of the fluid mechanics that employs numerical
analyses to solve the problems associated with fluid dynamics.
The simulation results exhibited the physical blood-flow
characteristics, including PLC, EL, energy loss per unit volume
(ELV), inflow concentration index (ICI), WSS, oscillatory shear
index (OSI), low shear-stress area percentage (LSA), low
shear index (LSI), and shear concentration index (SCI). In
our previous study [24], we considered only the maximum,
minimum, amplitude, and the average values of these quantities.
In the present research, we additionally computed the ratios
between the maximum and minimum values for PLC, EL, ELV,
ICI, LSA, LSI, and SCI. Among these characteristics, PLC,
EL, and WSS were reported as representative in predicting
whether a cerebral aneurysm could rupture [21], [23], [25]. In
addition, we extracted the time-series features of the cerebral
blood flow velocity, pressure, shear force, and WSS based on
the CFD simulation data. The duration of registering these time-
series data was 0.8 seconds while the sampling interval was
0.05 seconds. Concerning a cerebral aneurysm, we identified
the positions where the value of each physical parameter was
at maximum during 0.8 seconds and the positions where the
variance of each physical parameter took the maximum value
during 0.8 seconds (eight positions in total). Thereafter, the
rates of change during the time window of 0.05 seconds for
each physical parameter at those positions were employed as
the time-series features in the ML model. Overall, a total
of 181 features were extracted from the blood-flow-simulation
data. Comparisons of main hemodynamic features between the
rupture and unruptured groups are shown in Table 2.

The calculation conditions for the CFD simulation are
summarized below. We utilized a prototype CFD solver

(Siemens Healthcare GmbH, Forchheim, Germany, “Not to
be used for Diagnosis and/or Therapy”) based on the Lattice
Boltzmann method [5]. Concerning the physical properties of
blood, the fixed density and viscosity values were set, and the
non-Newtonian fluids were disregarded. After considering the
laminar flow field, the two pulses were calculated based on
the pulse conditions, and only the results corresponding to the
second pulse were used. The outlet boundary condition was
set to the average static pressure of 0 Pa. The calculations
were established in a structured computational grid with the
maximum size of 0.1 mm. More detailed description of
the process was provided in the previously published studies
[21],[25].

2.3 Morphological Information

In the present study, the considered morphological
information about a cerebral aneurysm included the maximum
aneurysm height, maximum neck diameter, neck area, volume,
aspect ratio, sidewall or bifurcation type, and the presence
or absence of a bleb. To extract additional features from the
3D blood-vessel-shape data stored in the stereolithography
(STL) format, we estimated the curvatures on the vessel surface
and employed these characteristics as features. This method
allowed extracting the following four characteristics related to
the surface curvature: mean curvature, Gaussian curvature, root
mean square curvature, and absolute curvature. MeshLab [8]
was utilized to read and analyze the STL files representing the
blood-vessel-shape data and to derive the surface curvatures.
We considered the histograms of each of the four surface
curvatures as morphological features. As a result, a total of
257 features were extracted from the morphological data.
Comparisons of main morphological features between the
rupture and unruptured groups are shown in Table 3.
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Table 2: Statistical comparison of main hemodynamic features between the rupture and unruptured groups (The data represent the
mean value)

Rupture (n=35) Unruptured (n=303)
Time-averaged PLC 1.17 1.49
Time-averaged EL [mW] 2.6×10−4 2.6×10−4

Time-averaged ICI 0.72 0.76
Time-and-space-averaged WSS [Pa] 2.57 3.26
Space-averaged OSI 0.02 0.02
Time-averaged LSA 0.45 0.37
Time-averaged LSI 0.17 0.14
Time-averaged SCI 4.18 2.98

Table 3: Statistical comparison of main morphological features between the rupture and unruptured groups (The data represent the
number of samples for categorical features and the mean value for continuous features)

Rupture (n=35) Unruptured (n=303)
Max. height [mm] 5.02 3.84
Max. neck diameter [mm] 4.97 4.89
Neck area [mm2] 17.0 15.7
Volume [mm3] 83.2 46.4
Aspect ratio 0.83 0.69
Type Sidewall : Bifurcation 9 : 26 115 : 188
Bleb No : Yes 23 : 12 279 : 24

3 Classification Model for the Cerebral Aneurysm
Rupture Prediction

In the present study, the LightGBM, XGBoost, and SVM
methods were employed as the classifiers to predict whether a
cerebral aneurysm would rupture or not.

3.1 Machine Learning Algorithms

Available as open-source software libraries, LightGBM and
XGBoost provide gradient-boosting decision tree frameworks.
Gradient boosting is an algorithm that uses a technique called
boosting, which is a type of ensemble learning. In ensemble
learning, multiple models (“weak learners”) are trained to solve
the same problem and then are combined to obtain better
predictive performance. In particular, boosting is applied to
sequentially train weak learners based on the errors of a previous
weak learner. Gradient-boosting is one of the most widely
used methods in recent data analysis competitions due to its
high efficiency and predictive power. LightGBM and XGBoost
are both gradient-boosting algorithms that use decision trees as
weak learners, but one of the differences between them is the
way of training decision trees. When training each decision tree,
two strategies can be employed: level (depth)-wise tree growth
and leaf-wise tree growth. Level-wise tree growth splits all
leaves at a given depth before adding more depth. Most decision

tree learning algorithms, including XGBoost, grow trees level-
wise. Leaf-wise tree growth, on the other hand, determines on
splits leaf-by-leaf basis, i.e., selectively splits the leaf node that
reduces the loss the most. LightGBM grows trees leaf-wise.
Compared with traditional level-wise tree growth, the leaf-wise
tree growth adopted by LightGBM is more efficient and tends
to require less time and memory for training. However, it
is concluded that LightGBM’s performance is not necessarily
better than XGBoost’s and should be used on a case-by-case
basis.

SVM can be used to map the input data onto a high-
dimensional feature space using a kernel function and then to
construct an optimal classification hyperplane maximizing the
distance between the hyperplane and the nearest data points
of each class. In this study, a SVM with the radial basis
function (RBF) kernel, a nonlinear kernel, is employed as it is
not possible to separate the data linearly.

3.2 Hyperparameters

All three classifiers can internally produce the predicted
probability values that range between 0.0 and 1.0 rather than
the predicted label values such as “rupture” or “unruptured”.
Therefore, we had to set a probability threshold to label the
outcome as rupture or unruptured. To determine the threshold
value, the harmonic mean of the sensitivity and specificity was
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computed. Sensitivity and specificity can be calculated from the
confusion matrix. The confusion matrix is a table that classifies
the prediction results of the classification model for the test data
into four categories, True positive, True negative, False positive,
and False negative, and summarizes the number of each (Table
4).

Table 4: Schematic of the confusion matrix

Actual class
Positive Negative

Predicted Positive True positive False positive
class Negative False negative True negative

The meaning of each category is as follows:

• True positives (TP): Number of positive samples that have
been correctly predicted as positive.

• True negatives (TN): Number of negative samples that have
been correctly predicted as negative.

• False positives (FP): Number of negative samples that have
been mispredicted as positive.

• False negatives (FN): Number of positive samples that have
been mispredicted as negative.

In this study, the rupture of a cerebral aneurysm is defined as
positive, and unruptured is defined as negative. The sensitivity
was calculated using Eq. (1) and represented the fraction of the
ruptured samples that were correctly predicted out of the total
number of ruptured samples.

Sensitivity =
TP

TP+FN
(1)

The specificity was computed by Eq. (2) and was regarded to
the fraction of the correctly predicted unruptured samples out of
the total number of unruptured samples.

Specificity =
TN

TN+FP
(2)

A threshold value maximizing the harmonic mean of the
sensitivity and specificity was regarded as the optimal threshold
value (Topt). We calculated the harmonic mean H using the
following equation:

H =
2 ·Sensitivity ·Specificity
Sensitivity+Specificity

(3)

To improve the sensitivity of a classifier, fine-tuning was
performed through multiplying the obtained optimum threshold
Topt by 0.9 as per the equation below:

T ∗
opt = 0.9 ·Topt (4)

The other hyperparameters were manually tuned to maximize
the sum of the sensitivity and specificity.

4 Results and Discussion

We used the 338 cerebral aneurysm data samples (35
ruptured, 303 unruptured) extracted in Section 2 to construct
the three classifiers and test their performance by stratified
10-fold cross-validation (CV). CV is a statistical technique to
evaluate predictive models by splitting the original data into
two segments: one used to train the model and the other used
to evaluate it. In k-fold CV, the original data is first randomly
divided into k equally sized folds. Of the k folds, a single fold
is retained as the test data for evaluating the model, and the
remaining k− 1 folds are used as training data. Subsequently,
k iterations of training and test are performed such that within
each iteration, a different fold of the data is held-out for the test.
The k results from the folds can then be combined (or otherwise
averaged) to produce a single estimation. Figure 1 represents a
schematic of a CV with k = 10. Stratified k-fold CV, in which
the folds are selected so that each fold contains roughly the same
proportions of class labels, is typically used for classification
problems.

4.1 Hyperparameter Tuning

Tables 5 represent the probability threshold values, T ∗
opt,

resulting from the learning of the training data.

Table 5: Probability threshold values

LightGBM XGBoost SVM
0.113 0.407 0.095

The results of hyperparameter tuning for LightGBM and
XGBoost are provided in Table 6. Here, “n estimator” is the
number of decision trees to build, “learning rate” is a parameter
that adjusts the weighting of new trees, and “max depth”
is the maximum depth of the decision trees. The other
hyperparameters were assigned with default values, and their
details are available on [17], [27]. Table 7 provides the results of
hyperparameter tuning for SVM. Here, “C” is a regularization
parameter that adjusts how much misclassification is allowed,
and “gamma” is a kernel coefficient that adjusts the range of
influence of a single training data.

Table 6: Hyperparameters selected for the LightGBM and
XGBoost

Hyperparameter Candidate values Selected value
n estimators 10, 50, 100 10
learning rate 0.01, 0.02, 0.05, 0.1 0.02
max depth 3, 5, 6, 8, 10 6
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Figure 1: Schematic of a 10-fold CV

Table 7: Hyperparameters selected for SVM with the RBF
kernel

Hyperparameter Candidate values Selected value
C 0.01, 0.1, 1, 10, 100 1.0
gamma ‘scale’, ‘auto’ ‘auto’ ∗

∗ if ‘auto’, uses the reciprocal of the number of features.

4.2 Predicting Cerebral Aneurysm Rupture

The performance of the considered classification models were
evaluated in terms of the sensitivity, specificity, and F-measure
that was defined as a harmonic mean of the precision and
sensitivity and was computed according to Eq. (5).

F-measure =
2 ·TP

2 ·TP+FP+FN
(5)

Tables 8–10 represent the confusion matrix, and Table
11 summarizes the performance measures resulting from the
classification of the test data. Using the newly added features,
namely, the time-series data obtained through CFD simulation
and the surface curvature data corresponding to a cerebral
aneurysm, the sensitivity of the considered models was greatly
improved compared to our previous study in which the achieved
sensitivity was equal to 0.64 [24]. However, the specificity
values were rather low for XGBoost (0.34) and SVM (0.46).
In general, high sensitivity is often considered important in
constructing a model to classify the presence/absence of disease.
However, in predicting the rupture of cerebral aneurysms, a
high number of false positives become problematic because
of the risk of complications during the treatment of cerebral
aneurysms that are expected to rupture. Therefore, in addition
to sensitivity, specificity needs to be also high, and the balance
between these two parameters is crucial. Specifically, one of
the considered criteria while introducing the proposed classifier
into a clinical site is that both sensitivity and specificity have
to be 0.8 or higher. Here, the classification based on the

LightGBM method was found to be appropriate as it provided
the best balance of sensitivity and specificity compared with the
XGBoost and SVM methods.

Table 8: Confusion matrix obtained by LightGBM

N=338 Actual class
Rupture Unruptured

Predicted Rupture 27 53
class Unruptured 8 250

Table 9: Confusion matrix obtained by XGBoost

N=338 Actual class
Rupture Unruptured

Predicted Rupture 27 201
class Unruptured 8 102

Table 10: Confusion matrix obtained by SVM

N=338 Actual class
Rupture Unruptured

Predicted Rupture 25 165
class Unruptured 10 138

5 Conclusions

The main purpose of this research was to identify an effective
classification model for predicting the rupture of cerebral
aneurysms. To achieve this, we implemented two gradient
boosting decision tree methods, LightGBM and XGBoost,
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Table 11: Performance measures resulting from the
classification

LightGBM XGBoost SVM
Sensitivity 0.77 0.77 0.71
Specificity 0.83 0.34 0.46
F-measure 0.47 0.21 0.22

along with the conventional ML approach, SVM, and then
constructed the classifiers incorporating the clinical, CFD,
and geometric data. We applied the developed models to
the prediction of cerebral aneurysm ruptures based on 338
cerebral aneurysm data samples (including 35 ruptured and 303
unruptured). We compared the performance of the considered
models in terms of sensitivity and specificity and found that
the LightGBM achieved the best performance in predicting the
potential rupture of a cerebral aneurysm, reaching the sensitivity
of 0.77 and the specificity of 0.83. The future related research
will be focused on evaluating the contribution of each data
source and feature into prediction performance, interpreting
and understanding the importance of each feature from a
medical perspective, and conducting the statistical evaluation of
predictive performance through repeated runs of CV.
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