
IJCA, Vol. 28, No. 1, March 2021 25 

ISCA Copyright© 2021 

Automatic Detection of Novelty Galaxies in Digital Sky Survey Data 
 
 

Venkat Margapuri*, Basant Thapa*, and Lior Shamir* 
Kansas State University, Manhattan, KS, USA 

 
 
 
 
 
 

Abstract 
 
Galaxy images of the order of multi-PB are collected as part 

of modern digital sky surveys using robotic telescopes.  While 
there is a plethora of imaging data available, the majority of the 
images that are captured resemble galaxies that are “regular”, 
i.e., galaxy types that are already known and probed.  However, 
“novelty" galaxy types, i.e., little-known galaxy types are 
encountered on occasion.  The astronomy community shows 
paramount interest in the novelty galaxy types since they 
contain the potential for scientific discovery.  However, since 
these galaxies are rare, the identification of such novelty 
galaxies is not trivial and requires automation techniques.  
Since these novelty galaxies are by definition, not known, 
supervised machine learning models cannot be trained to detect 
them.  In this paper, an unsupervised machine learning method 
for automatic detection of novelty galaxies in large databases is 
proposed.  The method uses a large set of image features 
weighted by their entropy.  To handle the impact of self-similar 
novelty galaxies, the most similar galaxies are ranked-ordered.  
In addition, Bag of Visual Words (BOVW) is assimilated to the 
problem of detecting novelty galaxies.  Each image in the 
dataset is represented as a set of features made up of key-points 
and descriptors.  A histogram of the features is constructed and 
is leveraged to identify the neighbors of each of the images.  
Experimental results using data from the Panoramic Survey 
Telescope and Rapid Response System (Pan-STARRS) show 
that the performance of the methods in detecting novelty 
galaxies is superior to other shallow learning methods such as 
one-class SVM, Local Outlier Factor, and K-Means, and also 
newer deep learning-based methods such as auto-encoders.  The 
dataset used to evaluate the method is publicly available and 
can be used as a benchmark to test future algorithms for 
automatic 
detection of peculiar galaxies. 

Key Words:  Entropy based algorithms, bag of visual words, 
Pan-STARRS, novelty detection, feature extraction. 
 

1 Introduction 
 
In the past two decades, Earth-based astronomical 

instruments have largely shifted from manually controlled  
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telescopes to robotic telescopes that survey and image the entire 
sky [3], making their data available to the astronomy community 
through virtual observatories [6].  The astronomer community 
relies on the data from the observatories to aid in the furthering 
galactic scientific discovery.  These powerful imaging 
instruments generate some of the world’s largest databases, 
contain billions of astronomical objects, and lead to numerous 
scientific discoveries that were not possible in the pre-
information era.  Sloan Digital Sky Survey (SDSS) alone has 
produced data leading to more than 3 • 104 peer-reviewed 
papers, and it is very reasonable to assume that more discoveries 
of paramount scientific interest are hidden inside these 
databases.  Any attempt to examine the abundance of 
information produced by the observatories is unrealistic and 
requires automation techniques to turn them into knowledge and 
scientific discoveries.  One of the effective scientific tasks 
enabled by digital sky surveys is the identification of the 
databases.  Most extra-galactic objects belong in the galaxy 
classification scheme, known as the “Hubble sequence” [13].  
However, some galaxies do not fit any stage on the Hubble 
sequence and are considered “peculiar” galaxies [9].  Although 
these galaxies are rare, they are of high scientific interest as they 
carry important information about the past, present, or future 
universe.  The Panoramic Survey Telescope and Rapid 
Response System (Pan-STARRS) is an array of two robotic 
telescopes synchronized to observe the same part of the sky 
simultaneously to increase the cost-effectiveness of its imaging 
power.  Launched in 2008, Pan-STARRS used its wide 3o field 
of view and 1.4 Gigapixel digital camera to image over 3.5 • 109 
astronomical objects and generated the world’s largest 
astronomical database of ~1.6PB. 

In this paper the task of identifying novelty astronomical 
objects automatically is investigated.  Deep-learning based 
auto-encoders technique is compared to statistical methods 
based on “shallow learning".  The paper proposes two 
techniques for novelty detection - a detection algorithm that uses 
the concept of entropy of a set of pre-defined numerical image 
content descriptors and Bag of Visual Words technique that 
represents an image as a set features using Scale-Invariant 
Feature Transform (SIFT).  The performance of the proposed 
techniques is compared against the performance of common 
“traditional” unsupervised machine learning algorithms such as 
One-Class Support Vector Machines (OCSVM), K-Means 
Clustering, Local Outlier Factor (LOF), and K-Nearest 
Neighbors algorithm which falls in the realm of supervised 
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learning.  In addition, the deep learning technique of auto-
encoders are applied and investigated. 

 
2 Related Work 

 
Relevant research in the area of study, while not abundant, is 

existent and studied to help pave a segue for the current work.  
The first attempt to identify peculiar galaxies on data from the 
Sloan Digital Sky Survey (SDSS), a sky survey with data 
analysis, faces challenges that largely overlap with the data 
analysis challenges of Pan-STARRS.  It was done by using a 
large number of “citizen scientists” who observed the images 
manually over several years and determined whether the 
astronomical object is peculiar [4].  That initiative allowed the 
compilation of a large catalog of rare ring galaxies [18].  
However, statistical analysis using ring galaxies detected 
automatically showed that many more ring galaxies were hidden 
inside [8].  Additionally, after several years of work involving 
over 105 volunteers, less than 106 objects were observed [23].  
Applying the same method for the analysis of all objects imaged 
so far by Pan-STARRS will require over ~104 years to complete.  
The size of the data of digital sky surveys reinforces the use of 
automation. 

An example of automatic outlier detection applied to datasets 
of astronomical objects is the application of outlier detection to 
SDSS galaxy data to identify galaxies with unusual 
spectroscopic profile [2].  The method is based on unsupervised 
Random Forest [24], and was applied on the spectroscopic data 
of the galaxies rather than their images. 

Substantial research has been done for general outlier 
detection.  Among numerous approaches, the concept of entropy 
of features was used to mine outliers in databases [21].  Among 
more recent approaches, deep neural networks were used for 
automatic detection of outliers in data, including image data [7, 
15].  While deep artificial neural networks, and in particular 
deep convolutional neural networks, have shown excellent 
performance in supervised learning of image data, the use of 
auto-encoders [7, 15] allows using the power of deep neural 
networks also for unsupervised machine learning. 

 
3 Data 

 
In the absence of a benchmark with ground truth for novelty 

galaxy detection, a controlled benchmark dataset of galaxy 
images from the Pan-STARRS sky survey is compiled.  Each 
image is a 120 x 120 image in the JPG image format.  The 
benchmark includes three datasets, such that each dataset 
contains 200 celestial objects.  The first contains spiral galaxies, 
the second contains lenticular galaxies, and the third contains 
stars.  The reason for using stars is that data analysis pipelines 
of digital sky surveys such as Pan-STARRS often struggle to 
classify between stars and galaxies, and therefore more objects 
identified as galaxies are in fact stars.  Therefore, a practical 
algorithm for novelty galaxy detection needs to handle the 
existence of stars identified incorrectly as galaxies.  The datasets 
are used such that in each run 200 galaxies from one dataset are 
combined with 10 galaxies from another dataset to create a 

dataset in which the majority of the galaxies are “regular” 
galaxies, but a small number of galaxies which are different 
from the majority of the galaxies are also included.  That allows 
to develop and test methods for identifying galaxies that are 
different from most other galaxies.  For instance, in a late-type 
universe that contains only spiral galaxies, a lenticular galaxy 
would be considered a rare novelty galaxy.  Similarly, in a 
universe of just stars, a lenticular galaxy is considered peculiar.  
Therefore, it can be reasonably assumed that an unsupervised 
machine learning algorithm that is not trained on spiral galaxies 
yet automatically detects a small number of spiral galaxies 
among a large number of lenticular galaxies, is an algorithm that 
will also be able to identify other novelty galaxies without 
training.  Figure 1 shows examples of the celestial objects as 
imaged by Pan-STARRS.  

 

 
 
Figure 1: Example image of star (left), lenticular galaxy (center) and 

spiral galaxy (right) imaged by Pan-STARRS 
 
The dataset is freely available at PanSTARRSData and can be 

used as a benchmark dataset for developing future algorithms 
for automatic detection of novelty galaxies. 

 
4 Method 

 
4.1 Entropy Based Algorithm 

 
According to shallow supervised learning of image data, each 

image in the dataset is first converted to a set of numerical image 
content descriptors that reflect its visual content through 
numerical values.  The set of numerical image content 
descriptors used in this study is WND-CHARM [19], that was 
proven effective to machine analysis of galaxy images [14, 17, 
20, 22].  In summary, the WND-CHARM library computes a 
comprehensive set of 2883 numerical image content descriptors 
that reflect numerous aspects of the visual content such as the 
shape, color, edges, textures (e.g., Gabor, Haralick, Tamura), 
fractals, polynomial decomposition of the image (e.g., 
Chebyshev polynomials, Zernike), and statistics of the 
distribution of the pixel values (e.g., Radon features, multi-scale 
histograms, first four moments).  That feature set is described in 
detail in [16, 19, 26], and is applied successfully to the task of 
galaxy image analysis [11, 25].  

The feature extraction process computes 2883 numerical 
image content descriptors for each galaxy image.  That large set 
is sufficiently comprehensive to reflect numerous aspects of the 
galaxy morphology [14, 17, 20, 22].  However, it can also be 
assumed that many of these descriptors are not informative for 
unsupervised detection of novelty galaxies, and possibly add 
noise to the system.  In order to select the most informative 
features and avoid noise to better detect novel objects in the 
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dataset, a process of feature selection is required.  Since the 
learning is unsupervised, many “traditional” feature selection 
algorithms are not suitable.  Therefore, in this study, the concept 
of Entropy is used as a technique to perform unsupervised 
feature selection on datasets with a large number of features.  
The entropy of a system S with N possible outcomes is 
computed as −∑ 𝑝𝑝𝑖𝑖  •  𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖)𝑁𝑁

𝑖𝑖 = 1 , where pi is the frequency of 
outcome i in S.  To compute entropy on the numerical image 
content descriptors, the value of each numerical content 
descriptor is convolved into a histogram of N bins, and pi is the 
frequency of the values in the histogram bin i, such that 𝑖𝑖 ∈
{1. .𝑁𝑁}.  The intuition behind this method of feature selection is 
that informative features tend to have their values distributed in 
some non-random clusters of values, while non-informative 
features have their values randomly distributed. 

Identification of novelty galaxies is unique in the sense that 
due to the enormous size of the datasets of galaxy images, a 
single one-of-a-kind peculiar galaxy is unlikely to exist.  For 
instance, the future Vera Rubin observatory is expected to 
collect ~1010 galaxies, and therefore even an extremely rare one-
in-a-million object is expected to appear in the dataset about 104 
times.  Therefore, an effective novelty galaxy detection 
algorithm is required to be sensitive to the number of galaxies 
in the dataset, and assume that many of the novelty galaxies are 
self-similar to each other. 

To handle the self-similarity of novelty galaxies, the intuition 
of the algorithm is that, given a set of galaxies, the farthest Kth 
neighbor amongst the Kth nearest neighbors of all the galaxies is 
a novelty galaxy.  This allows the user of the algorithm to 
specify a minimum number of self-similar novelty galaxies.  For 
example, consider a dataset of 100 galaxies with a K value of 
10.  The distance of each galaxy in the dataset is determined by 
its 10th nearest neighbor.  Therefore, if a galaxy has nine similar 
neighbors but is different from the remaining 90 galaxies, it will 
be assigned a high distance that reflects its dissimilarity from 
most of the galaxies.  This simple mechanism might be inferior 
to other algorithms for the general case of novelty detection, but 
it is suitable for the detection of novelty galaxies as it provides 
the user with clear control over the number of self-similar 
novelty galaxies.  This number changes with the type of galaxies 
considered, and therefore, the user is required to adjust the 
number based on the size of the dataset and the estimated 
frequency of different types of novelty galaxies. 

The algorithm is described as follows: 
 
1. Normalize the values in the dataset using Min-Max 

normalization. 
2. Compute the entropy of each of the features of the dataset. 
3. Choose a value between 0 and the greatest entropy of the 

features as the entropy threshold. 
4. Apply the entropy threshold to the entropies of the features 

and set all entropies greater than the threshold to 0. 
5. Pick a K, the order of the neighbor to be considered as the 

nearest neighbor.  For instance, if the value of K is set to 
5, the distance to the 5th closest neighbor of each of the 
galaxies is used as the dissimilarity measure of that galaxy. 

6. Compute the distance to the Kth neighbor of each of the 

galaxies using Minkowski distance i.e., weighted 
Euclidean Distance where the weights of the features are 
the entropy values obtained in Step 4. 

7. Sort the galaxies by their distance to their Kth neighbor.  
Greater the distance, higher the likelihood that the galaxy 
is a novelty. 

 
The algorithm depends on two parameters that control its 

performance: 
 
1. The order of the closest neighbor (K):  If the value of K 

is lower than the number of novelty galaxies of a specific 
type, it is possible that the distance between a certain 
galaxy and its Kth neighbor is not larger than other non-
novelty galaxies.  Therefore, the user is required to select 
a value that is higher than the number of novelty galaxies 
of a certain type that are expected to exist in the dataset.  
The number depends on the size of the entire dataset and 
also not necessarily known to the user.  In that case the 
user will need to attempt several K values and inspect the 
results to see if the detected novelty galaxies are indeed 
not “regular” galaxies. 

2. The value of the entropy threshold (Step 3 in the 
algorithm above):  A high entropy threshold might lead 
to the rejection of features that carry information about the 
morphology of the galaxy.  On the other hand, a low 
threshold might lead to the inclusion of noisy features. 

 
The source code of the algorithm can be found at 

PanSTARRSNoveltyDetectionAlgorithm. 
 

4.2 Bag of Visual Words 
 
Bag of Visual Words (BOVW) [1, 10, 12] is a technique 

assimilated to image classification from the popular Bag of 
Words (BOW) technique used in information retrieval and 
natural language processing.  The idea is to represent an image 
as a set of features.  Each feature consists of keypoints and 
descriptors.  Keypoints refer to the important defining points in 
an image that remain unaltered even upon the application of 
operations such as rotation, compression and expansion.  
Descriptors are the entities that describe the keypoints.  The 
combination of keypoints and descriptors are used to construct 
vocabularies.  Each image is represented as a frequency 
histogram of features present in the image.  The histogram is 
leveraged to identify the similarity of one image to another. 

The detection of keypoints on the images is made using Scale-
Invariant Feature Transform (SIFT) [5, 10, 12].  The procedure 
is defined as follows: 

 
1. Construction of Scale Space:  The idea behind the 

construction of a scale space is to ensure that the detected 
features are not scale dependent.  In some cases, an image 
can appear differently at different scales.  However, the 
detection of similarity between images is required to be 
performed agnostic of the scale of the images.  Gaussian 
blur is applied on the image to reduce the noise on the 
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image.  The original is reduced in half resulting in a scaled 
image.  Varying degrees of Gaussian blur are applied to 
original and scaled images resulting in images of varying 
scale space. 

2. Difference of Gaussian:  The procedure is to subtract one 
blurred version of an original image from another, less 
blurred version of the original image.  The intuition is that 
the features of the images are enhanced providing images 
of better quality since they are put through a blurring effect 
in Step 1. 

3. Keypoint Localization:  The feature selection aspect of 
the algorithm lies in this step.  Initially, the local minima 
and maxima of the images are identified by comparing 
each pixel in the image with every other pixel in its 
neighborhood.  Later, the keypoints that provide the most 
information are kept and the low contrast keypoints are 
discarded.  The prominence of the keypoints is identified 
using the second-degree Taylor expansion.  Only the 
keypoints that result in a magnitude of 0.03 are kept and 
the others are discarded. 

4. Orientation Assignment:  This stage of the process 
assigns an orientation to each of the keypoints identified 
in Step 3 to make them invariant to rotation.  Firstly, the 
magnitude and orientation for each of the pixels is 
computed where the former represents the intensity and 
latter represents the orientation of the pixel.  The 
computation of magnitude and orientation warrants that 
the gradients in X and Y directions be computed.  
Assuming that the gradient in the X direction in Gx and Y 
direction is Gy, the magnitude is given by �𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 and 
orientation by atan(Gy/ Gx).  The obtained magnitude and 
orientation are plotted as a histogram with orientation on 
the X axis and magnitude on the Y axis, where each bin 
represents a 10o orientation yielding in 36 bins.  The peak 
of the histogram is considered the orientation for the 
keypoint. 

5. Generation of Keypoint Descriptors:  The final step is 
obtaining the keypoint descriptors for each of the 
keypoints obtained in Step 4.  The descriptors for a 
keypoint are identified by taking a 16 x 16 neighborhood 
around the keypoint.  The neighborhood is then split into 
four 4 x 4-pixel neighborhoods.  Similar to Step 4, a 
histogram is plotted between magnitude and orientation.  
However, the histogram is made up of only eight bins with 
each bin representing a 45o orientation.  Overall, 128 bins 
indicating magnitude and orientation for each keypoint are 
obtained. 

 
The implementation of BOVW technique for novelty 

detection is as follows: 
 
1. Extract the set of features from each of the images in the 

data set using Scale-Invariant Feature Transform (SIFT). 
2. Convert the extracted features into visual words by using 

the K-Means Clustering algorithm.  The centers identified 
by the algorithm form the vocabulary of visual words. 
 

3. Compare the features of each of the images against the 
vocabulary and create histograms for each of the images 
in both the training and testing data sets. 

4. Select a K, the order of the neighbor to be considered as 
the nearest neighbor and compute the Euclidean distance 
from each galaxy to its Kth neighbor using the data from 
the histogram. 

5. Sort the galaxies by the distance to their Kth neighbor. 
Greater the distance, higher the likelihood that the galaxy 
is a novelty. 

 
The source code of the algorithm can be found at 

PanSTARRSVisualBOWAlgorithm. 
 

5 Method 
 
The concept of ‘rank’ is used to express the performance of 

the proposed techniques.  Rank r is the number of query galaxies 
determined by the algorithm as the most likely to be novelty 
galaxies.  If a novelty galaxy is among these r galaxies, the 
attempt is considered a hit, and otherwise a miss.  Since 
candidates of novelty galaxies are inspected manually, a method 
that returns false positives is acceptable as long as the novelty 
galaxies are among a set that is small enough for manual 
analysis.  Note that the problem of novelty galaxy detection does 
not require identifying all novelty galaxies, as novelty galaxies 
of the same type are expected to be present multiple times in 
galaxy datasets acquired by robotic telescopes. 

 
5.1 Entropy Based Algorithm 

 
Figure 2 shows the performance of the Entropy based 

algorithm stated in Section 4.1 when the K parameter is set to 5, 
10, and 20.  The results show that the performance of the 
algorithm when identifying spiral galaxies among lenticular 
galaxies is better than the performance of the algorithm when 
identifying stars among lenticular galaxies.  This is partly 
explained by the fact that lenticular galaxies and stars are more 
similar in morphology to each other compared to lenticular and 
spiral galaxies. 

 
5.2 Bag of Visual Words 

 
The performance of the Bag of Visual Words technique 

described in Section 4.2 is shown in Figure 3 when the value of 
K is set to 5, 10 and 20.  From the results, it is inferred that the 
performance of the technique while identifying stars is far 
superior compared to the performance of the technique while 
identifying spiral and lenticular galaxies.  It is perhaps due to 
the similarities observed between the images of spiral and 
lenticular galaxies.  While the galaxies are structurally different, 
both lenticular and spiral galaxies contain a sea of nebulous 
matter around them.  The error rate for stars is significantly 
lower because the images of stars contain no nebulous matter 
around them and are structurally circular.  This characteristic of 
stars aids the technique in being identified better. 
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Figure 2:  Detection accuracy when using different datasets and ranks using entropy-based algorithm 

 

 
Figure 3:  Detection accuracy when using different datasets and ranks using bag of visual words 
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6 Comparison to Novelty Detection Algorithms 
 
Since the problem of automatic novelty galaxy detection is 

relatively new, not many proposed novelty detection 
algorithms for galaxies are available in the existing literature.  
Hence, the performance of the proposed algorithm is 
compared against “traditional” novelty detection algorithms 
such as one-class SVM, K-Means, and Local Outlier Factor 
(LOF), as well as the deep learning-based auto-encoders. 

 
6.1 Comparison to Deep Learning with Auto-Encoders 

 
Auto-encoders [7] are a class of unsupervised machine 

learning using artificial neural networks (ANN).  A typical 
artificial neural network consists of an input layer, which 
inputs the data to the layers of the neural network, several 
hidden layers, and an output layer, which outputs the 
outcome.  Each of the hidden layers in the network performs 
computations on the weighted inputs and transfers the 
computed result to the next layer.  An auto-encoder can be 
conceptualized as a specific type of neural network that copies 
the input values to the output without requiring a target 
variable.  Since target variables are not required, it is a good 
fit for unsupervised learning [15]. 

For this experiment, a deep auto-encoder is used.  The auto-
encoder architecture comprises of ReLU activation function 
in the encoding layers and sigmoid activation function in the 
decoding layers.  The loss function used is binary cross- 
entropy and the optimizer used is RMSProp.  The size of the 
input of 120 x 120. Auto-encoders with three different  

architectures are developed.  Architecture#1, with hidden 
layers of sizes 128, 64, 32, 64, 128, architecture#2, with 
hidden layers of sizes 1024, 512, 256, 512, 1024 and 
architecture#3 with hidden layers of sizes 2048, 1024, 512, 
1024, 2048.  In each of the datasets, the “regular” galaxy 
images are split into two groups, one containing 180 images 
to train the auto-encoder, and another of 20 images to test on 
the auto-encoder to obtain the reconstruction losses.  Then, 
the “novelty” galaxy images are tested on the auto-encoder, 
and the loss of the “novelty” galaxies is compared to the loss 
of the “regular” galaxies.  For evaluation, the 30th to the 90th 
percentile of reconstruction loss values on “regular” galaxies 
are used as thresholds, and the percentage of “novelty” 
galaxies identified from amongst 200 images of “novelty” 
galaxies is computed as shown in Figure 4. 

 
6.2 One-Class Support Vector Machines (OCSVM) 

 
The OCSVM algorithm is applied to each of the four datasets 
using the scikit-learn library.  The performance of the 
algorithm is measured as the number of actual “novelty” 
galaxies identified by the algorithm divided by the total 
number of “novelty” galaxies attempted.  Ideally, only the ten 
“novelty” galaxies are identified as “novelty” galaxies by the 
algorithm, in which case the detection rate would be 100%.  
However, the observation on all four datasets is that the 
algorithm identifies a large portion of “regular” galaxies also 
identified as “novelty” galaxies while also misidentifying 
some “novelty” galaxies as regular galaxies.  So, the 
performance of the algorithm is similar to that of novelty  

 
 

 
Figure 4:  Detection accuracy when using different datasets and ranks using auto-encoders 
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galaxy detection by random chance.  The outcomes of the 
algorithm are shown in Figure 5. 
 
6.3 Local Outlier Factor (LOF) Algorithm 

 
The Local Outlier Factor (LOF) algorithm produces a score 

that provides an insight into the likelihood of a data point 
being an outlier in a given dataset.  The scikit-learn LOF 
library is used to apply the algorithm to each of the datasets.  
Since the algorithm is unsupervised, no alteration is made to 
the datasets.  A score close to 1 means that the sample is an 
inlier, while outliers have a larger LOF score.  The results 
show that for each of the datasets, all of the values obtained 
for the LOF scores are 1, indicating that the algorithm 
considers all of the images, including the outliers, as the same 
class as the inliers.  As a result, the accuracy obtained using 
the algorithm is 0 % on all four of the datasets. 

 
 

galaxies are the most frequent.  The results are as shown in 
Figure 6. 
 

7 Comparison to Novelty Detection Algorithms 
 
Automation techniques in the field of astronomical 

discovery and analysis are the need of the hour considering 
the enormous amount of information recorded by modern sky 
surveys using robotic telescopes.  The infrequent occurrence 
of novelty galaxies makes the problem of novelty galaxy 
detection complex since conventional machine learning 
classifiers don’t always perform well owing to lack of enough 
training data.  

The proposed unsupervised novelty detection algorithm 
uses a comprehensive set of numerical image content 
descriptors, and therefore depends on feature selection.  
Entropy is shown as a useful way to select features for the  

 
 

 
Figure 5:  Detection accuracy when using different datasets and ranks using OCSVM 

 
6.4 K-Means Clustering Algorithm 
 

K-Means is a simple and established unsupervised learning 
algorithm which works by choosing a centroid value for each 
randomly chosen cluster, and iteratively assigning each data 
point to a cluster that best fits based on the Euclidean distance 
between the data point and the centroids of the clusters.  K-
Means is typically used for automatic clustering.  However, 
in some cases it can be used for novelty detection by 
identifying small clusters.  If a small cluster is identified, the 
cluster may contain a small number of self-similar samples 
that are different from the other samples in the dataset.  
Therefore, K-Means is an algorithm that could be possibly 
used for novelty detection in the current scenario.  The 
algorithm is tested with two through 10 clusters.  The 
performance is measured as the number of novelty galaxies 
among regular galaxies in the cluster in which novelty 
  

 
Figure 6: Detection accuracy using different datasets and 

using K-Means Clustering 
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problem of unsupervised detection of novelty galaxies. 
The Visual Bag of Words technique assimilated to novelty 

detection identifies the distinctive features of galaxies to help 
identify novelty galaxies.  The technique can scale to images 
of different dimensions and orientations since it is built to be 
scale and orientation invariant.  

The methods proposed in the paper outperform 
“traditional” methods such as one-class SVM, K-Means, and 
newer methods based on deep neural networks such as auto-
encoders.  It should be noted, however, that the relatively low 
number of annotated samples does not allow efficient training 
of an autoencoder, that normally requires a high number of 
samples.  The dataset used for the experiments is publicly 
available and can be used for the development and testing of 
new algorithms for novelty galaxy detection in large 
astronomical databases.  

The downside of the evaluation is that it is performed on a 
relatively small and controlled dataset, far smaller than the 
huge datasets generated by modern digital sky surveys.  The 
efficacy of the method will be tested in the future by applying 
it to extremely large image databases and evaluating its ability 
to identify real novelty galaxies hidden among millions of 
celestial objects that have not been inspected yet. 
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