
84 IJCA, Vol. 28, No. 2, June 2021

An Adaptable Memory System Using Reconfigurable Row DRAM To Improve
Performance Of Multi Core For Big Data

Nagi Mekhiel*
Ryerson University, Toronto, ON, CANADA M5B 2K3

Abstract

Multi-core based systems access DRAM using multiple
different addresses that could map to different rows in the same
bank at the same time, causing row conflicts forcing them to
wait to activate one row at a time. We present an adaptable
memory using reconfigurable row DRAM that divides rows into
many segments and uses special latches to allow many accesses
that map to different physical rows to form one adaptable logical
row accessed by multi-core as one physical row. The adaptable
row accesses different rows in a pipeline fashion by overlapping
the long DRAM access time between the different accesses. The
results show that the adaptable memory system improves the
scalability of multi-core by up to 300% and could gain more
from improving processor speed and global cache miss rate and
memory-processor bus bandwidth.

Key Words: Reconfigurable architectures; memory systems;
DRAM; access patterns; pipelining; scalability of multi-core;
big data.

1 Introduction

The processor speed and computing power have continuously
increased due to advancements in technology. This increase in
processor power depends on delivering data and instructions
to the processor from memory at the processor speed.
Unfortunately, current memory systems cannot offer the
processor its data at the required rate [1,5,11]. Computer
performance depends on the memory system to provide multi
core with data at high rate. If the memory system fails to deliver
the required data rate, it will become the limiting factor to the
system performance [1,2].

The cache system has been used to solve this problem
by moving parts of data to a fast memory that can match
the processor speed. The cache system cannot fully isolate
fast processor from the slow main memory. The cache has
misses and the processor have to visit the main memory to
get data when information is not in cache (misses). These
misses represent the portion of processor time that limits the
overall system performance improvements. Furthermore, cache

*Department of Electrical, Computer and Biomedical Engineering. Email:
nmekhiel@ee.ryerson.ca

performance cannot be improved continuously by changing any
of its parameters (size, associativity, speed, ..) and reaches a
point of no return with respect to its parameters [2].

DRAM designs offer high bandwidth that depend on using
multibank and fast page access mode. In fast page mode,
accesses that exist in same DRAM row can be retrieved at a
much faster speed (fast page mode). The large data streams in
the applications can be mapped to the same row and benefit from
this mode. With multibank, more than one active row can supply
a processor with fast accesses from different parts of memory
[3,9]. However, a multi-core system has many different accesses
to different rows at the same time for the same bank.

The contribution of this paper is to reduce the impact
of DRAM on the performance and scalability of parallel
computing when accessing big data with irregular access
patterns. Irregular accesses map to different DRAM rows, cause
row conflicts and increase DRAM access time. Performance
gain of parallel computing is limited by the slowest portion
that cannot be improved. Our method applies parallelism to
the slowest DRAM accesses that is related to activating rows
by pipelining and overlapping these accesses when mapped to
different rows.

2 Backgound

DRAM has been through numerous changes to its design
from the basic DRAM architecture to the asynchronous to the
fast page mode (FPM) to the extended data-out (EDO) to the
burst-mode EDO to the synchronous(SDRAM) [4].

The changes have been relatively minor in terms of their
implementation cost and have increased DRAM throughput
significantly. Compared to the asynchronous DRAM, FPM
simply allows the row to remain open across multiple CAS
commands, requiring very little additional circuitry. To this,
EDO changes the output drivers to become output latches so
that they hold the data valid on the bus for a longer period.
To this, BEDO (EDO with Burst) adds an internal counter that
drives the address latch, so that the memory controller need not
supply a new address to the DRAM on every CAS command
if the desired address is simply one-off from the previous CAS
command. Thus, in BEDO, the DRAMs column-select circuitry
is driven from an internally generated signal, not an externally

ISCA Copyright© 2021



IJCA, Vol. 28, No. 2, June 2021 85

generated signal: the source of the control signal is close to the
circuitry that it controls in space and therefore time, and this
makes the timing of the circuits activation more precise. Lastly,
SDRAM takes this perspective one step further and drives all
internal circuitry (row select, column select, data read-out) by a
clock, as opposed to the RAS and CAS strobes [4].

3 Motivations

In general, DRAM architectures have limitations due to the
following problems :

• DRAM architectures allow one active row per bank, which
limits the ability of multiple accesses from current multi-
core chip to access the same bank if the accesses map into
different rows in the same bank.

• Only one row at a time can be activated, thus can have one
open row per bank at any time. Multiprocessor shares data
that map to the same area of memory, and likely in the same
bank with different rows, therefore current architectures
are not suitable for multi-core.

• Characteristics of software applications are not suitable
for DRAM architectures. Program data could map in
two different rows in one bank. Each time the program’s
accesses one row, the other row is forced to be closed
because it is in the same bank, when it finishes, it goes
back to the closed row and must open it, necessitating it
to close the current row that has just been activated. Each
time a row is closed, it precharges the bank, then latches
the accessed row which wastes time and limit the ability of
DRAM to provide fast accesses to processors.

• As performance of single processor is reaching a
diminishing return, processor makers are now moving
towards multi-core architecture with 8-core or 16-core in
a single chip. The performance of the computer is limited
by memory bandwidth [7,8].

What we need is a DRAM that is capable of providing a
single processor or multiprocessors with high bandwidth using
a new architecture that allows DRAM to have more than one
location active in the same bank and is not restricted to one
active row per bank in DRAM. Therefore, it must have many
partial rows active and map them to multiple of physical DRAM
rows in one bank, allowing multiple threads to access these
active partial rows as if there is a logical row that changes its
mapping to become adaptable to processors access patterns and
includes many physical rows in a bank. The active row must be
constructed based on the processor order of accesses and not by
the order of columns in a physical row (adaptable to processor
access patterns) [6].

4 The Concept of Reconfigurable Row DRAM
”RRDRAM”

DRAM physical row consisting of a number of columns that
are fixed and defined on DRAM array. Through this paper, we

assume a simple DRAM array of 1024 rows, each row has 1024
columns that could be accessed when the row becomes active.
If the processor requests an access that is not in the same active
row in the accessed bank, it must activate a new row and adds
all the time delays associated with opening a new row.

The processor access is usually for one location that maps to
a single column in the accessed row, then a burst mode is used to
transfer one cache block from the same active row. With multi-
core many different accesses are requested from the memory,
these accesses could map to different rows, forcing memory
controller to close some active rows and open new rows which
increases the access time.

The frequency of accessing DRAM in a multi-core system
is multiple times of the single processor. This causes DRAM
to open and close many rows very frequently increasing the
accesses time and power. The root of the problem is having
one fixed physical row activated per bank. A row consists of a
number of columns that are used for accesses, and may be only
one location of DRAM array that is 1024x1024, could be used
in the fast page mode. This is less than .0001% of the DRAM
array size. Having one physical row which either can be active
or not at a time is not suitable for accesses that come from the
multiprocessor and more likely map into many rows at a time.

We should have a memory that is not restricted to a fixed
physical row as the current DRAM architecture dictates. A
reconfigurable row is a logical row that is not restricted to the
DRAM physical row.

If we divide each physical row into segments or sections,
that each represents a smaller row of locations, that has for
example, only 64 columns each representing a partial row. The
size of row segment or section depends on the cache block size
and application requirements and implementation. Each row
segment or section could be active, therefore creating a logical
row that is adaptable for physical rows when changing [6].

Figure 1: DRAM organization

Figure 1, shows a conventional DRAM organization being



86 IJCA, Vol. 28, No. 2, June 2021

accessed by a processor to deliver data from four locations in
the DRAM array: A0, A1, A2, and A3. Assuming that A0 maps
to row Row896, A1 maps to Row82, A2 maps to Row234 and
A3 maps to Row567. This conventional DRAM system must
precharge and activate R896 (Row896) to supply data for A0,
then precharge and activate R82 and wait to supply data for
A1, followed by the same operations for A2 and A3. This
requires that total access time is four of random accesses =
4 *(precharge + ROW access + Column access + Transfer).
In the reconfigurable row system, it will only use one active
logical row and burst the four accesses from the latched data on
sense amps, therefore total time of four accesses is one random
access plus three fast page accesses= Precharge + Row access +
Column access + 4 *transfer.

Figure 2: Mapping accesses in adaptable row DRAM

Figure 2 shows the adaptable row system in accessing the four
addresses A0, A1, A2 , A3 for the above example. Although
these addresses map to different four rows R896, R82, R234
and R567, the logical row is formed to contain only four partial
rows. The other row segments are not included in the activated
logical row, therefore leaving 12 partial rows available and
precharged for the next group of accesses. It uses only a portion
of the total sense amps leaving the rest available for next access.
It should also be noted that in the reconfigurable row, because
a large portion of DRAM array will be ready and precharged,
latching new rows, and columns for the next accesses could be
completely overlapped and interleaved with data transfer to the
processor.

The latching of row segments allows the row address to
change and be decoded, while accessing present row segments.
This is a pipelining of accessing DRAM in which segments are
used and accessed in parallel by overlapping their delay time of
precharging, latching, decoding and access as explained below
in system operation.

5 The Reconfigurable ROW DRAM ”RRDRAM” System

5.1 The Basic System

The basic reconfigurable row for DRAM maintains the same
interface to the outside system. It uses the same DRAM core of
an array of columns and rows and the same storage elements of
single capacitor. The main difference is in using multiple row
segment latches, with each latch having a number of flip flops
equal to the number of rows in the DRAM array. For example, if
the DRAM array is 1024x1024, then these row segment latches
have 1024 flip-flops each. Each physical row in DRAM array
is divided into multiple segments, each segment is connected to
one output of the corresponding segment row latch [6].

Figure 3: Block diagram for reconfigurable row DRAM

Figure 3 shows a block diagram for a reconfigurable row for
DRAM. Multiple row segment latches. RLSn are used to latch
the decoded row of an accessed segment, each time there is a
request to access DRAM.

The outputs of these RLS latches control the word lines of
a specific row segment and each output is connected to 1 word
line of a segment. For 1024x1024 and 16 segments, there are
1024 outputs from each of RLS and each output is connected to
64 of word lines to activate the segment for 64 cells.

Figure 4 shows a more detailed schematic diagram to the
RRDRAM for each segment of the different rows being latched
by its corresponding segment row latch using k flip-flop, where
k is the number of rows in DRAM array and n is the number of
segments in each row, thus requiring nxk Flip-Flops in total per
the DRAM array. The flip-flops use RlClk to activate one flip-
flop that has its row = 1. ROW signals are activated by the row
decoder when a valid access is requested. The column decoder
shown is used to generate the proper RlClk for one segment at a
time. RlClk is generated to latch 1 at flip flop for the segment in
the intersection of accessed row and accessed column in DRAM
array.



IJCA, Vol. 28, No. 2, June 2021 87

Figure 4: Block diagram for row segments of reconfigurable
row DRAM

6 System Operation

6.1 Pipelined Operation

Our RRDRAM uses the same known DRAM technology,
therefore it requires the same timing to access data from one
location. In conventional DRAM the following are the basic
operations that must be performed for a DRAM operation (read
or write):- 1-Precharge operation wait for Tpr then 2-Latch a
valid row address wait for Trcd then 3-Latch a valid column wait
for Tcac then 4-access data In RRDRAM, the use of different
latches for row address, column address and latches for the
decoded rows in a segment (RL) and the latch for multiple
decoded columns (Column decoder Latch) allows the system
to overlap multiple accesses to different DRAM rows similar to
processor pipelining of instruction execution.

Figure 5: State diagram for pipelined operation in
reconfigurable row DRAM

Figure 5 shows a state diagram for the pipelined operation
of RRDRAM using the system of latches given above. The
following are the different states for multiple DRAM accesses
to different rows in RRDRAM:

• S0 (time t0): The row address of the first access is applied
to the DRAM multiplexed address and is latched by row
address latch at time t0. The row decoder immediately
starts to decode this row address.

• S1 (time t1): The memory controller applies the column
address of first access to DRAM multiplexed bus and is
latched by the column address latch at time t1. The column
decoder starts immediately decoding this column address.
The segment decoder decodes a portion of that address
corresponding to the segment selection and makes one
output active that corresponds to the accessed row segment.

• S2 (time t2) and S0 of second access: The system starts the
second access by applying the row address of the second
access similar to the first access in S0. It also continues
with the first access by latching the decoded row from the
row decoder in the corresponding RL latch by one of RlClk
generated from the segment decoder circuit. It also latches
the decoded column for the first access in the column
decoder latch and keeps previous accessed columns in the
active latch by the feedback.

• S3 (time t3) and S1 of second access: The first access
is waiting for Trcd and the accessed row is being active
and applied to the word line of the selected row segment
from the corresponding RL latch. The second access is
continuing in S1 similar to access 1 to latch its column
address. It is important to note that the first access column
has been captured and stored in the column decoder latch
in S2.

• S4 (time t4), S2 of second access and S0 of third access:
The first access asserts its active column to the bit line to
access the data. The second access latches the decoded row
in RL latch similar to first access in S2 and also latches the
decoded column. The third access starts in applying a row
address to the multiplexed bus similar to first access in S0.

• S5 (time t5) ,S3 of second access and S1 of third access:
The first access waits for Tcac to get data. The second
access waits for Trcd and accessed row is applied to word
line as in S3 for first access. Third access is in S1 to latch
column address and decode segment.

• S6 (time t6), S4 of second access and S2 of third access:
First access has its data ready and valid. The second access
asserts its active column to the bit line to access the data.
The third access is latching the decoded row from the row
decoder in the corresponding RL latch by one of RlClk
generated from the segment decoder circuit. Also it latches
the decoded column for the first access in the column
decoder latch and keeps previous accessed columns in the
active latch by the feedback.

At S6 data is ready for access 1, after two cycles data is ready
for access 2, after two cycles data is ready for access 3. When



88 IJCA, Vol. 28, No. 2, June 2021

access 1 delivers its data at S6, RRDRAM starts immediately
precharging the segment of access1. In this way the precharge
time is hidden and pipelined with other accesses. The second
and third accesses follow the same method making all accesses
pipelined in precharge, latching, decoding, access time and data
delivery.

6.2 Timing for System Operation

Figure 6: The timing of pipelined operation in RRDRAM

Figure 6 shows the timing of the RRDRAM operation given
above with the state diagram. The address bus supplies row and
column address for each access through the use of a multiplexer
in the memory controller as in any conventional DRAM. The
next access address is supplied to the address bus without the
waiting for data to be accessed from DRAM for the first access.
The memory controller keeps supplying the RRDRAM address
bus by new accesses every two clock cycles. The bus speed
could be increased compared to conventional DRAM because
of the use of latches in RRDRAM. Each address is latched
immediately and stored in the latch to be decoded.

The access to first address starts by latching the row in LR0
assuming that LR0 is used for access 0. LC0 is used to latch
column address for first access 0. The partial row is then
activated through applying the output of its RL latch to the
word line of the segment in LS0. The system waits, then uses
the output of column latch to activate bit line and access the
data after waiting for one cycle as shown in data bus as D0.
After each segment delivers its data it goes through precharge
individually without the need to precharge the whole bank as in
conventional DRAM.

Other accesses, access 1 and access 2 time is overlapped with
each other in a pipeline fashion to deliver data at a rate of 1
access every two cycles regardless of row number, therefore
more than one physical row could be accessed in parallel.

7 Performance Evaluation of RRDRAM

7.1 Conventional Single Processor Model

T s = T p×Ni+M×Ni× (Ta+T f ) (1)

Ts is the execution time for single processor using conventional
DRAM
Tp= processor cycle time and could be less than 1 for
superscalar
Ni=number of instructions in an application
M=Cache Miss rate
Ta=main memory access time to activate DRAM Row and
access first location
Tf=time to transfer 1 block of cache using memory bus

7.2 Conventional Multiprocessor Model Using DRAM

T m = T p×Ni+N p×M×Ni× (Ta+T f ) (2)

Tm is the time to execute multiple parallel processes on
multiprocessor system using conventional DRAM where Np is
number of processors. The total number of misses to external
shared main memory will be proportional to Np as they have to
be serviced in a serial fashion from one shared memory.

The processor execution time is overlapped among multiple
processors working in parallel, but accesses to shared memory
must be serialized.

Scalability = N p×T s÷T m (3)

The scalability is calculated by dividing the total time that
a single processor spends to execute same Np number of
processes in serial fashion by the time that multiprocessor takes
to execute same number of processes in parallel as given by
Equation (2).

7.3 Conventional Multiprocessor Model Using RRDRAM

T m(R) = T p×Ni+M×Ni× (Ta+N p×T f ) (4)

Tm(R) is the time to execute multiple processes on a
multiprocessor system with RRDRAM where Np is the number
of processors.

Scalability = N p×T s÷T m(R) (5)

The total time to access the external main memory RRDRAM
will be the first access time Ta to DRAM then overlap the rest
of access times with Np transfer times to fill Np caches.

The scalability is calculated by dividing the total time that
a single processor spends to execute same Np number of
processes in serial fashion by the time that multiprocessor takes
to execute the same number of processes in parallel as given by
Equation (4).



IJCA, Vol. 28, No. 2, June 2021 89

7.4 Parameters of the System

Assuming a SPEC CPU2000 [10] benchmark application in a
processor running at 3.3 GHz.
IPC = 2 from using superscalar.
Tp = .15n average.
Ni= depends on the workload and changes from .774 to 14.6
billion instructions for SPEC CPU2000. We assume Ni = 1
billion.
M depends on the application and the cache. It can vary from
.0002 to .001, We assume M=.0006 for SPEC CPU2000 , 64 KB
L1 caches and is the same for all systems.
We assume Ta= 30 ns for a typical DRAM, this is the access
time to get first data element.
We can calculate the cache block transfer time as: similar to
Intel multi core that has about 10 GB/S (1.33 GHz and bus = 8
B) Tf = 128/10 = 12.8 ns.

7.5 Scalability of DRAM and RRDRAM Systems Results

Figure 7: Scalability of multiprocessor systems using DRAM
versus RRDRAM

Figure 7 shows the results of multiprocessor scalability when
using conventional DRAM and RRDRAM versus the number
of parallel processors.

The systems parameters are: processor speed is 3.3 GHz,
DRAM and RRDRAM access time Ta is 30 ns, Global Cache
miss rate is .0006 and memory bus bandwidth is 10 GB/s.
The effect of DRAM and RRDRAM is significant to the
performance and scalability of multiprocessors limiting its
scalability for a large number of processors. This shows that
the memory gap is still an issue that should be dealt with for
parallel computing. This confirms the Amdahl’s law that the
portion of time that cannot be improved remains the system
bottleneck to overall performance gain.

The multiprocessor using RRDRAM significantly improves

scalability of the system compared to the system using
conventional DRAM up to 300%.
Scalability of multiprocessor using DRAM reaches its
maximum at a low number of processors while the
multiprocessor using RRDRAM reaches its maximum
performance at a higher number of processors.

7.6 Scalability of DRAM versus RRDRAM Systems Using
different Processor Speed

Figure 8: Scalability of multiprocessor systems using DRAM
versus RRDRAM with different processor speed

Figure 8 shows the scalability of both systems when changing
processor speed from 1 GHz to 4 GHz. The multiprocessor
system using conventional DRAM gains much less than the
system using RRDRAM for improving processor speed. The
system using DRAM only improves its scalability by 20% for
four times increase in processor speed. The system using
RRDRAM improves by 40% for same processor speed increase.
This indicates that RRDRAM gains more from increasing
processor speed and technology could use both improvements in
the number of transistors and improvements speed of transistors
to continue in improving the gain of multiprocessor scalability.

The results also show that RRDRAM system using a faster
processor gives the same scalability when using 20 faster
processors as the same system using 70 processors if using
slower processors. The DRAM based system with slower
processor speed needs to use 100 processors to get the same
scalability of 20 faster processors. This indicates that the system
using RRDRAM gains more from increasing processor speed
than the system using DRAM.

7.7 Scalability of DRAM versus RRDRAM Systems Using
different Miss Rate

Figure 9 shows the scalability of both systems when changing
global cache miss rate. The miss rate changes by eight times
from .0003 to .0024.



90 IJCA, Vol. 28, No. 2, June 2021

Figure 9: Scalability of multiprocessor systems using DRAM
versus RRDRAM with different miss rate

The multiprocessor system using conventional DRAM
improves its scalability by 200% from 6 to 12 when miss rate
improves by eight times.

The multiprocessor system using RRDRAM improves its
scalability by 180% from 18 to 32 when miss rate improves by
eight times.

This indicates that both systems are more dependent on the
performance of their DRAM and RRDRAM memory and that
the memory gap between processor speed and memory speed is
still a bottleneck for the performance of computer systems.

The result shows that if global miss rate is high, the scalability
of both systems is drastically reduced, for the system with
DRAM its scalability decreases from 12 to 1 by 1200%, when
miss rate increases by eight times. The scalability of the system
using RRDRAM deceases from 32 to 5 by 600% and is less
dependent on miss rate.

7.8 Scalability of DRAM versus RRDRAM Systems Using
different Memory Bus Bandwidth

Figure 10 shows the scalability of both systems when using
different memory to processor bandwidth. Bus bandwidth
changes from 2.5 GB/S to 20 GB/S by eight times. This causes
transfer time Tf of a 8 B block to the cache from 6.4 ns to 51.2
ns.

The system using RRDRAM improves its scalability from 5
to 32 by about 600%. The system using DRAM improves its
scalability from 2 to 7 by 350%. This indicates that RRDRAM
system gains more from improving the memory bus bandwidth.

8 Conclusions

Multi-core based system performance depends on using
suitable memory system able to provide it with low latency and
high bandwidth. The conventional DRAM with one row per

Figure 10: Scalability of multiprocessor systems using DRAM
versus RRDRAM with different transfer time

bank is not suitable to handle the requirements of a multi core
that access memory with different addresses simultaneously.
High bandwidth obtained by fast interface cannot help the
performance of a multi core system when using conventional
DRAM.

Our proposed RRDRAM is able to offer multi-core better
scalability for data with irregular access patterns that have
different addresses mapped to different physical rows and
accessed in a pipelined fashion as if it is in one physical
row. The scalability of the system using RRDRAM is multiple
fold that of the same system using DRAM. Using RRDRAM
also enables multiprocessor system for benefiting from faster
processors and higher bandwidth of memory bus. The speed
gap of processor memory becomes less severe when the system
uses RRDRAM.

References

[1] D. Burger, J. R. Goodman, and A. Kagi, Memory
Bandwidth of Future Microprocessors, Proc. 23rd Ann.
Int’l Symp. On Computer Architecture, ACM Press, New
York, 1996, pp. 78-89.

[2] J. Hennessy, and D.A. Patterson, Computer Architecture:
A Quantitative Approach, Morgan Kaufmann Publishers,
Inc, San Francisco, CA, 2003.

[3] Kohji Hosokawa, Toshio Sunaga, and Shinpei Watanabe,
DRAM with Multiple Virtual Bank Architecture for
Random Row Access, US Patent No. 6,925,028 B2 Aug.
2, 2005

[4] Bruce L. Jacob, Synchronous DRAM Architectures,
Organizations, and Alternative Technologies 2002-
12-10, Electrical & Computer Engineering Dept.
University of Maryland College Park, MD 20742
http://www.ece.umd.edu/ blj/



IJCA, Vol. 28, No. 2, June 2021 91

[5] Sally A. McKee and Robert H. Klenke, Smarter Memory:
Improving Bandwidth for streamed References, IEEE
Computer , pp 54-63, July 1998.

[6] Nagi Mekhiel, Reconfigurable Row DRAM, US Patent
9,734,889 B2, Aug 15, 2017.

[7] Samuel Moore, Multicore Is Bad News For
Supercomputers, IEEE Spectrum, Nov 2008.

[8] R. Murphy, On the Effects of Memory Latency and
Bandwidth on Supercomputer Application Performance
Workload Characterization, 2007. IISWC 2007. IEEE 10th
International Symposium, pp.35-43, Sept 27-29, 2007.

[9] RAMBUS XDR DRAM, www.rambus.com, 2007 .
[10] SPEC CPU2000 Benchmark

https://www.spec.org/cpu2000
[11] Wm. A. Wulf, and Sally A. McKee, Hiting the Memory

Wall: Implication of the Obvious, ACM Computer
Architecture News Vol. 23, No. 1, pp. 2024, 1995..

Nagi Mekhiel is a Professor in the
Department of Electrical, Computer
and Biomedical Engineering,
Ryerson University, Toronto. His
research interests are computer
architecture, parallel processing, high

performance memory systems, advanced processors, VLSI, and
performance evaluation of computer systems. He holds many
U.S. and World patents in memory and multiprocessors. He is
conducting research to solve the fundamental problems facing
computer industry, including scalability of parallel processors,
and processor/memory speed gap.


	2 Mekhiel June 2021

