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Abstract

Premature convergence of particles is known to be the
main cause of local optima in particle swarm optimization
(PSO). Such premature convergence limits the use of PSO
for the multimodal function optimization problems which may
have more than one optimum of a function and many local
minima. In this paper, we use a novel approach called clustered
PSO or CPSO, which clusters particles periodically around
sample vectors (particles) using self-organizing maps. Such
clustering provides sufficient diversity providing CPSO with
the opportunity to explore other solutions while proactively
escaping local optima. Furthermore, it enables each cluster
of particles to search on the solution space concurrently for
multimodal optimization problems being readily able to escape
many local minima to reach the minimum. The abilities of
the proposed approach in escaping local optima and finding a
global solution were evaluated through simulations on the test
problems used by other researchers. The results of simulations
conclusively demonstrate that CPSO is highly effective in
avoiding local minima for multimodal function optimization
problems as well as reducing the particle population with every
iteration.
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1 Introduction

Image synthesis of dynamic objects such as clouds, smoke,
water, and fire are known to be difficult to simulate due to
their fuzziness. Researchers have studied particle systems in
which particles have their behavior [11] and have tried to
simulate such natural dynamic objects. Many scientists have
also been interested in the movement of a flock of birds or a
school of fish to discover underlying rules that make possible
their aggregate motion. The aggregate motion enables them
to find food quickly and protects them from predators through
early detection and the spread of information. Intrigued by
such social behavior, Kennedy and Eberhart [4] developed the
particle swarm optimization (PSO) method to apply their natural
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behavior to problem-solving. In PSO, particles simulate the
social behavior of a flock of birds, which cooperate to find
food (goal), in a way that each one remembers its personal best
location ever visited called “personal best,” and shares the local
information with their neighbor to identify “local best” location
within a group.The “local best” of a group is shared with other
groups to identify the “global best” value. The local information
refers to individual cognition and the global information to
social interaction. Using the local and global information,
a swarm of particles is able to cooperate and explore the
solution space effectively to find an optimal solution. One of
the advantages of PSO is the particle’s prompt convergence
on solutions by exploring the solution space at a fast speed
like a flock of birds moving fast, but in astonishingly perfect
harmony. However, the solution by early convergence may
cause a local solution if done prematurely. This drawback of
PSO can be attributed to its lack of ability to indicate premature
convergence. The premature convergence phenomenon is
commonly observed in evolutionary methods such as Genetic
Algorithms (GA). In the case of a GA, it is known that high
selection pressure in choosing only superior offsprings for new
generations results in premature convergence. This is because
the high selection pressure restricts the diversity of the new
population, searching for solution space limited to local areas.
Therefore, a search may get stuck in a local optimum. Riget
and Vesterstrlm attributed the premature convergence of PSO
to the fast information flow between particles, which causes
particles to cluster early around local minima [12]. Since little
diversity among the population is considered the main cause
of premature convergence, many researchers [6] [18] [1] have
tried to avoid premature convergence in a way that provides
sufficient diversity for particles at the indication of premature
convergence. The earlier methods like k-means clustering had
an overhead of how to decide an optimum value of k, and also
could not consider the dynamic factor in particle population
update by using fixed pre-defined parameters. Later complex
hierarchical and graphical clustering techniques have been
devised which had low applicability due to structural limitations
in data analysis. However, it remains a very difficult problem to
identify the sign of premature convergence. Furthermore, using
such a reactive approach may be difficult to escape local minima
for optimization problems. In this research, we discuss a novel
Cluster-PSO (CPSO) that we developed in 2011, using self-
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organizing maps (SOM), which is known as an unsupervised
learning method called “Kohonen vector” [5]. Alkazemi and
Mohan [1], and Seo et al.[13] used clustered particles to search
the solution space concurrently. However, the search may not
be adaptive since the population of the group is static. On the
other hand, CPSO using the SOM technique is able to make the
search adaptive to the solution space by dynamically updating
the population of clustered particles. The unsupervised learning
method of SOM is able to cover large solution space effectively
by periodically clustering particles around randomly created
Kohonen vectors, thereby preventing local optima. The SOM
helps to simulate the high dimensional topology information of
particle swarm into 2D or 3D vectors by using mathematical
quantification and projection.The preprocessing of raw data into
clusters by SOM helps in efficient local search, which in turn
helps in maintaining diversity in the optimization process.

The remainder of this paper has been organized as follows.
Section 2 describes the related works, Section 3, the PSO model,
and Section 4 the CPSO algorithm. In Section 5, we discuss the
results and in Section 6 we make concluding remarks.

2 Related work

The PSO model simulates a swarm of particles moving in
an m-dimensional solution space where a particle corresponds
to a candidate solution characterized by m attributes. It is
represented in the solution space by its position vector ~xi, and
its velocity is represented by a velocity vector~vi.

The velocity of the ith particle of the swarm and its projected
position in the dth dimension are defined by the following two
equations:

~vid(t +1) =~vid(t)+ c1 · rand() · (~lid−~xid(t))

+c2 · rand() · (~gid−~xid(t))
(1)

~xid(t +1) =~xid(t)+~vid(t +1) (2)

where:

• n is the size of the swarm
• m is the number of dimensions in the solution space
• i = 1, . . . ,n
• d = 1, . . . ,m
• ~lid is the local best position of particle i on the dth

dimension
• ~gi is the global best position of particle i in the dth

dimension
• c1 is the learning rate of particles for individual cognition
• c2 is the learning rate of particles for social interaction
• rand() is the random function with the output in the range
(0 . . .1)

Shi and Eberhart [16] introduced a parameter inertia weight ω

into the basic PSO:

~vid(t +1) = ω ·~vid(t)+ c1 · rand() · (~lid−~xid(t +1))
+c2 · rand() · (~gid−~xid(t +1))

(3)

where ω weights the magnitude of the old velocity~vid(t). They
found the range of (0.9 . . .1.2) a good area to choose ω from.

Many researchers have tackled the premature convergence
problem in PSO. They tried to overcome it in a reactive way
that provides diversity to particles at the indication of premature
convergence to escape a local optimum. Krink and Riget [6]
provided diversity for particles upon indication of a collision.
The indication of the collision was determined based on the
distance between particles, and subsequently, diversity was
provided in a way that particles bounce away randomly or
make a U-turn by increasing their velocity to collide against the
boundary of the solution space. The tailored PSO outperformed
the basic PSO for several benchmark functions. However, the
reactive method may not be sufficient for complex optimization
problems. Once converged at a local optimum, clustered on
local best by their nature, particles would struggle to escape
the local optimum without substantial diversity. On the other
hand, CPSO explores solution space by explicitly clustering
particles around randomly created sample vectors, thus being
able to escape local optima for optimization problems. Wei,
Guangbin and Dong [19] presented Elite Particle Swarm with
Mutation (EPSM). EPSM tried to take advantage of best fit
particles to avoid wasting time visiting the solution space with
poor fitness values. To do this, particles with poor fitness
were substituted by elite particles with better fitness. But such
elitism decreases the diversity of particles. To provide diversity
EPSM employed a mutation operator so that the global best
particle may be mutated to generate a new particle. EPSM
outperformed the Standard Particle Swarm Optimization [16]
with respect to the quality of the solution. In contrast to
the elitism, Wang and Qiu [18] tried to give opportunities to
inferior particles to search solution space. Their approach was
motivated by the observation that a search process is very likely
to be dominated by several super particles, which is often not
good in the long term. In order to alleviate the dominance
by super particles, the selection probability of a particle was
set inversely proportional to its original fitness. Next, a
particle is selected in the roulette wheel manner to explore
the solution space. Such a procedure is expected to mitigate
the high selection pressure by super particles. Their approach
outperformed other known algorithms in terms of solution
quality but took additional computational time for the fitness
scaling and roulette selecting process. Veeramachaneni and
Osadciw [17] claimed that particles by nature oscillate between
local optima and a global optimum, wasting time moving in the
same direction to converge at a global optimum. Therefore, they
made particles attract toward the best positions visited by their
neighbors. In other words, particles are influenced by successful
neighbors to explore the solution space. This algorithm was
further improved by concurrent PSO implementation [2] in
which two particle groups worked concurrently, with each group
tracing particles independently and sharing the information
about the best particle. Similarly, the Multi-Phase Particle
Swarm Optimization algorithm (MPSO) employed multiple
groups of particles, each changing a search direction in every
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phase to increase population diversity [1]. Seo et al. [13]
presented multi-grouped particle swarm optimization (MGPSO)
algorithm in which each group searches its own best solution
independently. They prevented each group from interfering
with other groups by regulating the radius of each group. Both
MPSO and MGPSO provide concurrent search through clusters
of particles. However, since early grouped particles search the
solution space throughout the search, it may not be adaptive
in a pathological environment. On the other hand, CPSO can
be more adaptive to the varying environments by periodically
updating the population of a group randomly. Sha and Yang [14]
proposed APSO K-means clustering for speaker recognition
where ant colony algorithm and PSO algorithm were combined
with K-means clustering. In K-means clustering the number
of groups is fixed, whilst the number of groups in CPSO
is updated dynamically throughout the search of the solution
space. Ratnaweera, Watson and Saman [10] used random
dimension and time-varying coefficients to compute particle
velocities during mutation.This technique has a drawback of
loss of valuable data in some dimensions. It also has an
overhead of data re-computation from scratch in case of any
malfunction due to the hierarchical structure. The other major
concern is outdated data, which results in diversity loss. To
handle it, Li and Yang [7] devised a new dynamic optimization
technique. It conducts a detailed search by dividing search space
into sub-swarms. But, it faces the “two-step forward, one-step
backward” phenomenon, as weakness in one dimension affects
the overall fitness of a particle. Another dynamic technique
proposed by Daniel and Xiaodong [9], Species-based Particle
Swarm Optimization is effective in dealing with multimodal
optimization functions in both static and dynamic environments.
A networked structured PSO, called NS-PSO [8] has been
proposed in which adjacent particles are connected in the
neighborhood of a topological space and share the information
of their best positions. These connections have been used to
enhance the local search and increase diversification.

3 The CPSO Model

The CPSO is a modified version of PSO with an additional
process of clustering particles. In the CPSO model, particles
are periodically clustered around sample vectors using SOM to
provide particles with enough diversity to prevent them from
prematurely converging to local optima. The CPSO procedure
has been described in Procedure 1. In Eq. 4, ~Vp(t + 1) is
the new velocity of particles, α(t) controls the learning rate
where t is the generation number of particles and Φ(p, t) is
the neighborhood function which determines the degree of
the neighborhood between BMP and particle p. We took a
Gaussian function as the neighborhood function for particles
which denotes the lateral particle interaction and the degree of
excitation of the particle. The Gaussian function which returns
values between 0 and 1 is a commonly used simple model for
simulating a large number of random values. Gaussian function
for particles returns a value close to 1 if the particle is close

Procedure 1: Procedure CPSO
Step 1. Initialize particles
Step 2. Randomly create sample particles s in the solution
space, with velocity ~Vs(t), where 1 ≤ s ≤ k, k being the
maximum number of sample vectors
Step 3. Traverse each particle p, 0 ≤ p < n, where n is the
swarm size, and find the best matching particle (BMP) using
the fitness value.
Step 4. Update the velocity of particles in the neighborhood
of BMP by drawing them closer to sample vectors using the
following formulas:

~Vp(t +1) = ~Vp(t)+Φ(p, t)α(t)(~Vs(t)− ~Vp(t)) (4)

~xp(t +1) =~xp(t)+~vp(t +1) (5)

Step 5. Evolve particles using PSO.
Step 6. Go to Step 2, if t < MaxGeneration and F > θ

(where F is the gross increment in particle fitness on objective
optimization functions, and θ=̃0 is a very small value)

to BMP (neighbors of BMP). The neighborhood function is
defined [15] as:

Φ(p, t) = exp
(
− (p−b)2

2α(t)2

)
(6)

where:

• p is the current particle
• b is the best matching particle (BMP)
• t is the Time/Generation
• α(t) ∈ (0 . . .1) is the learning rate

Diversity is required during early phases of optimization when
local optima are computed, but as generations exhaust, the
learning rate should decrease to allow convergence at global
optima. Initially, the learning rate will be close to 1 and
gradually it will decrease. The number of neighbors is reduced
as the generation number grows. From Step 1 through Step
4, the learning process chooses the best particle from each
sample vector based on fitness value and clusters the particles
around the vectors by updating the positions of particles in
the neighborhood. This process gives a chance to explore a
new possible solution space that may contain an optimal or
near-optimal solution. In Step 5, each cluster of particles
is evolved by recomputing the sample vectors based on the
updated particle distribution. These processes of clustering
and evolving particles are iterated until the generation number
is exhausted or a stopping condition that identifies no more
improvements in fitness on objective functions is met. Figure
1 shows particles (clear circles) moving toward three randomly
generated sample vectors (dark circles) to form clusters.
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Figure 1: Clustering particles using self-organizing maps.

4 Simulations and Results

To run the tests, we implemented PSO and CPSO using
the Java programming language. It is very cumbersome to
conduct simulations on high-dimensional functions due to large
computational overhead. For instance, if we choose a mixed
range of dimension functions, it is very difficult to compare their
results. The SOM uses vector projection to convert complex
particle swarm topology into low-dimensional vectors. So it
is economical to run simulations on a set of low-dimensional
functions with different cluster sizes and generations as input. In
the simulations, PSO and CPSO were run for four well-known
objective functions namely DeJong’s F2, Schaffer F6, Rastrigin,
and Griewank. These are the same functions that were used
by Kennedy [3]. The optimization performances of PSO and
CPSO were compared. The corresponding objective functions
have been described as follows:

f (x,y) = 100(x2− y)2 +(1− x)2 (7)

where −2.048 < x,y < 2.048

f (x,y) = 0.5+
(sin2(

√
x2− y2−0.5)

(1+0.001(x2 + y2)2 (8)

where −100≤ x,y≤ 100

f (x) = 100+
10

∑
i=1

x2
i −10cos(2πxi) (9)

f (x) =
100

∑
i=1

x2
i

4000
−

100

∏
i=1

cos(
xi√

i
)+1 (10)

where −600≤ xi ≤ 600
De Jong’s F2 function, represented by Eq. (7), is a two-

dimensional function with a deep valley with the shape of a

Figure 2: Rastrigin’s function

Figure 3: Griewank function

parabola. The Schaffer F6 function represented by Eq. (8)
is known to be very difficult to optimize, having infinite local
minima and one global minimum at (x,y) = (0,0). Rastrigin
represented by Eq. (9) and Griewank represented by Eq. (10)
are multimodal functions that have many local minima. Figures.
2 and 3 show the Rastrigin’s function and the Griewank’s
function, respectively, which have many local minima shown
by the “valleys.” Both have the global minimum at (0,0, . . . ,0).
Figures. 4-7 show minimum fitness values found by particles
exploring the solution space under the objective functions
described above. Figure 4 shows the results of PSO and CPSO
on the F2 function. For the F2 function, both CPSO and
PSO perform well, early finding a minimum. Both converge
early to a minimum, but CPSO continues to search for a better
solution (which in this case does not exist). In Figure 5, it is
shown that PSO prematurely converges to a solution, whereas
CPSO escapes several local optima to reach global optima.
Again, Figure 6 shows that for the Rastrigin’s optimization
problem (9), CPSO enables particles to find a global solution,
oscillating between local minima and global minimum, whereas
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particles of PSO converge at a local minimum. Finally, Figure 7
shows CPSO outperforms PSO dramatically for a very complex
multimodal optimization problem. PSO converges early at local
minima, whereas CPSO quickly finds a global minimum. The
results clearly demonstrate that our approach is very effective
for highly complex multimodal optimization problems.

Figure 4: CPSO vs. PSO for De Jong’s F2

Figure 5: CPSO vs. PSO for Schaffer F6

5 Conclusions

We addressed the problem of premature convergence
observed in PSO. In this research, we focused on providing
enough diversity for particles to escape local minima. CPSO
explicitly clusters particles around sample vectors to enable
particles to escape local minima, and explore new possible
solution space which may contain better solutions. Simulation
results show that CPSO outperforms PSO significantly for
complex optimization problems and avoids local minima
yielding global solutions. Although CPSO makes an extensive

Figure 6: CPSO vs. PSO for Rastrigin F1

Figure 7: CPSO vs. PSO for Griewank

search within the solution space, it limits the search time by
limiting the particles which explore the solution space using
self-organizing maps. The research strongly suggests that
CPSO is very effective for complex multimodal problems. In
future work, we will study finding early signs of premature
convergence for preventing such premature convergence.
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