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Abstract 

 
In this paper, we have considered an existing non-DHT based 

structured P2P network.  It is an interest-based system.  At the 
heart of the architecture, there exists a tree like structure, known 
as Pyramid Tree, even though it is not a conventional tree.  A 
node on the tree represents a cluster of peers with common 
interest.  There is no limit on the size of such clusters. Residue 
Class based on modular arithmetic has been used to realize the 
structure of a cluster.  It has been shown that overlay diameter 
of each such cluster is just one (one overlay hop).  Thus, each 
cluster is a completely connected network.  Therefore, 
theoretically any peer in such a cluster is logically connected to 
every other peer in the cluster.  However, since peers are 
heterogeneous in nature, therefore, in practice we have to 
consider their different capacities while designing any 
communication protocol inside the cluster.  In this paper, we 
have addressed this issue and offered reasonably efficient 
solutions for broadcasting and multicasting considering peer 
heterogeneity. 

Key Words:  P2P network, structured, non-DHT based, 
pyramid tree, capacity constrained.  

 
1 Introduction 

 
Peer-to-Peer (P2P) overlay networks are widely used in 

distributed systems due to their ability to provide computational 
and data resource sharing capability in a scalable, self-
organizing, distributed manner.  There are two classes of P2P 
networks: unstructured and structured ones.  In unstructured 
systems [2] peers are organized into arbitrary topology.  It takes 
help of flooding for data look up. Problem arising due to frequent 
peer joining and leaving the system, also known as churn, is 
handled effectively in unstructured systems.  However, it 
compromises with the efficiency of data query and the much- 
needed flexibility.  Besides, in unstructured networks, lookups 
are not guaranteed.  On the other hand, structured overlay 
networks provide deterministic bounds on data discovery.  They 
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provide scalable network overlays based on a distributed data 
structure which actually supports the deterministic behavior for 
data lookup.  Recent trend in designing structured overlay 
architectures is the use of distributed hash tables (DHTs) [10, 15, 
18].  Such overlay architectures can offer efficient, flexible, and 
robust service [7, 10, 15, 16, 18].  However, maintaining DHTs 
is a complex task and needs substantial amount of effort to 
handle the problem of churn.  So, the major challenge facing such 
architectures is how to reduce this amount of effort while still 
providing an efficient data query service.  In this direction, there 
exist several important works, which have considered designing 
DHT-based hybrid systems [4, 6, 9, 14, 17]; these works attempt 
to include the advantages of both structured and unstructured 
architectures.  However, these works have their own pros and 
cons.  Another design approach has attracted much attention; it 
is non-DHT based structured approach [3, 11-13].  It offers 
advantages of DHT-based systems, while it attempts to reduce 
the complexity involved in churn handling.  Authors in [11, 13] 
have considered one such approach and have used an already 
existing architecture, known as pyramid tree architecture 
originally applied to the research area of ‘VLSI design for 
testability’ [5].  The P2P architecture has two levels.  At the heart 
of it, it is a tree structure (pyramid tree); it is not a conventional 
tree.  This tree forms the first level of the system.  Each node on 
the tree represents uniquely a cluster-head of a cluster of peers 
with common interest and the cluster head is the first peer to join 
the system among the peers in this cluster.  Such clusters form 
the second level of the architecture.  Residue class based on 
modular arithmetic has been used to realize the architecture.  
Some of the main advantages of the system are its low data 
lookup efficiency and ease of churn handling.  In this paper, we 
have considered such architecture and have dealt with a practical 
issue related to the architecture as detailed in below.     

 
Problem Statement.  In our earlier proposed pyramid tree P2P 

architecture [11, 13], every cluster has an overlay diameter of 1.  
Each such cluster may consist of a very large number of peers 
with common interest.  It means that every peer in any such 
cluster Ci has direct logical connection to all other peers inside 
the cluster.  In reality, peers are capacity constrained and it is 
most likely that any cluster will have heterogeneous peers; 
therefore, peers can be differently capacity constrained.  Hence, 
even though the overlay diameter is 1, in practice a peer can 
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communicate only to few other peers at a given time depending 
on its capacity.  In this paper, we address this issue and offer 
reasonably efficient solutions for broadcasting and multicasting 
considering peer heterogeneity. 

Our Contribution.  We have earlier designed an inter-cluster 
broadcast protocol [13] in which a participating node (cluster-
head) may have to activate a maximum of only three of its links 
at a time for the propagation of a broadcast packet along the 
pyramid tree.  So, the protocol appears to have followed 
implicitly an effective capacity constrained approach, even 
though that was not the objective at the time of designing the 
protocol.  Consider the following reasonably efficient capacity 
constrained architecture consisting of the peers in any cluster Ci.  
We logically restructure the peers inside cluster Ci in the 
following way: we partition the peers in Ci in a number of 
pyramid trees of identical sizes (except possibly the last one, 
explained later) and implement the idea of our already designed 
broadcast protocol on these trees inside the cluster.  Note that in 
the original version of the inter-cluster broadcast protocol, a 
node in the tree is a cluster-head, whereas when applied inside 
a cluster a node in the tree can be any peer in the cluster that 
includes the cluster-head of the cluster as well.  Let us first state 
the capacity constrained broadcast protocol.  Later, we shall 
consider multicasting. 

 
This paper is organized as follows.  In Section 2, we talk about 

some related preliminaries and in Section 3, we present the 
capacity constrained broadcast along with the proposed 
restructuring method of peers inside a cluster.  In Section 4, we 
present the capacity constrained multicast protocol.  Section 5 
draws the conclusion. 

 
2 Related Preliminaries 

 
In this section, we present some relevant results from our 

recent work on the pyramid tree based P2P architecture [11, 13] 
for interest-based peer-to-peer system.  

 
Definition 1.  We define a resource as a tuple ˂Ri, V˃, where 

Ri denotes the type of a resource and V is the value of the 
resource.  

Note that a resource can have many values.  For example, let 
Ri denote the resource type ‘songs’ and V' denote a particular 
singer.  Thus ˂Ri, V'˃ represents songs (some or all) sung by a 
particular singer V'.  

Definition 2.  Let S be the set of all peers in a peer-to-peer 
system with n distinct resource types (i.e., n distinct common 
interests).  Then S = {Ci}, 0 ≤ i ≤ n-1, where Ci denotes the 
subset consisting of all peers with the same resource type Ri.  In 
this work, we call this subset Ci as cluster i.  Also, for each 
cluster Ci, we assume that Ci

h is the first peer among the peers 
in Ci to join the system.  We call Ci

h as the cluster-head of cluster 
Ci.   

 
2.1 Pyramid Tree  

 
The following overlay architecture has been proposed in [13].  

1) The tree consists of n nodes. The ith node is the ith cluster 
head Ci

h. 
2) Root of the tree is at level 1.  
3) Edges of the tree denote the logical link connections 

among the n cluster-heads.  Note that edges are formed 
according to the pyramid tree structure [5]. 

4) A cluster-head Ci
h represents the cluster Ci. Each cluster 

Ci is a completely connected network of peers possessing a 
common resource type Ri, resulting in the cluster diameter of 1. 

5) The tree is a complete one if at each level j, there are j 
number of nodes (i.e., j number of cluster-heads). 

6) Any communication between a peer pi ϵ Ci and a peer pj 
ϵ Cj takes place only via the respective cluster-heads Ci

h and Cj
h 

and with the help of tree traversal. 
7) Joining of a new cluster always takes place at the leaf 

level. 
8) A node that does not reside either on the left branch or on 

the right branch of the root node is 
 an internal node. 
9) Degree of an internal non-leaf node is 4. 
10) Degree of an internal leaf node is 2. 
 

2.2 Residue Class 
 
Modular arithmetic has been used to define the pyramid tree 

architecture of the P2P system.  
Consider the set Sn of nonnegative integers less than n, given 

as Sn = {0, 1, 2,.…  (n – 1)}.  This is referred to as the set of 
residues, or residue classes (mod n).  That is, each integer in Sn 
represents a residue class (RC).  These residue classes can be 
labelled as [0], [1], [2], …, [n – 1], where [r] = {a: a is an integer, 
a ≡ r (mod n)}. 

 
For example, for n = 3, the classes are: 
 
 [0] = {…., ─ 6, ─ 3, 0, 3, 6, …} 
 [1] = {…., ─ 5, ─ 2, 1, 4, 7, …} 
 [2] = {…., ─ 4, ─ 1, 2, 5, 8, …} 
 

In the P2P architecture, we use the numbers belonging to 
different classes as the logical (overlay) addresses of the peers 
with a common interest and the number of residue classes is the 
number of distinct resource types; for the sake of simplicity we 
shall use only the positive integer values.  Before we present the 
mechanism of logical address assignments, we state the 
following relevant property of residue class [13]. 

  
Lemma 1.  Any two numbers of any class r of Sn are mutually 

congruent. 
 

2.3 Assignments of Overlay Addresses  
 
Assume that in an interest-based P2P system there are n 

distinct resource types.  Note that n can be set to an extremely 
large value a priori to accommodate large number of distinct 
resource types.  Consider the set of all peers in the system given 
as S = {Ci}, 0 ≤ i ≤ n-1.  Also, as mentioned earlier, for each 
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subset Ci (i.e. cluster Ci) peer Ci
h is the first peer with resource 

type Ri to join the system and hence, it is the cluster-head of 
cluster Ci.  

The assignment of overlay addresses to the peers in the 
clusters and the resources happens as follows:  

 
1) The first cluster-head to join the system is assigned with 

the logical (overlay) address 0 and is denoted as C0
h. It is 

also the root of the tree formed by newly arriving cluster-
heads (see the example in Figure 1). 

 

 

Figure 1:  A complete pyramid tree with root 0 
 
2) The (i+1) th newly arriving cluster-head possessing the 

resource type Ri is denoted as Ci
h and is assigned with the 

minimum nonnegative number (i) of residue class i (mod n) of 
the residue system Sn as its overlay address. 

3) In this architecture, cluster-head Ci
h is assumed to join 

the system before the cluster-head Ci+1
h. 

4) All peers having the same resource type Ri (i.e., 
'common interest' defined by Ri) will form the cluster Ci. Each 
new peer joining cluster Ci is given the cluster membership 
address (i + j.n), for i = 0, 1, 2, … 

5) Resource type Ri possessed by peers in Ci is assigned 
the code i which is also the logical address of the cluster-head 
Ci

h of cluster Ci. 
 
Definition 3.  Two peers of a group Gr are logically linked 

together if their assigned logical addresses are mutually 
congruent.  

 
Lemma 2.  Each group Ci forms a complete graph. 
 
Observation 1.  Any intra-group data look up communication 

needs only one overlay hop. 
Observation 2.  Search latency for inter-group data lookup 

algorithm is bounded by the diameter of the tree. 
 

2.4. Virtual Neighbors [13] 
 
An example of a complete pyramid tree of 5 levels is shown 

in Figure 1.  It means that it has 15 nodes/clusters (clusters 0 to 
14, corresponding to 15 distinct resource types owned by the 15 
distinct clusters).  It also means that residue class with mod 15 
has been used to build the tree.  The nodes’ respective logical 

(overlay) addresses are from 0 to 14 based on their sequence of 
joining the P2P system. 

Each link that connects directly two nodes on a branch of the 
tree is termed as a segment.  In Figure 1, a bracketed integer on 
a segment denotes the difference of the logical addresses of the 
two nodes on the segment.  It is termed as increment and is 
denoted as Inc.  This increment can be used to get the logical 
address of a node from its immediate predecessor node along a 
branch.  For example, let X and Y be two such nodes connected 
via a segment with increment Inc, such that node X is the 
immediate predecessor of node Y along a branch of a tree which 
is created using residue class with mod n.  Then, logical address 
of Y = (logical address of X + Inc) mod n.  

 
Thus, in the example of Figure 1,  
 
Logical address of the leftmost leaf node = (logical address 

of its immediate predecessor along the left branch of the root + 
increment) mod 15 = (6 + 4) mod 15 = 10. 

Also, note that a left branch originating at node 2 on the right 
branch of the root node is 2 → 4 → 7 → 11.  Similarly, we can 
identify all other left branches originating at the respective 
nodes on the right branch of the root node.  In a similar way, we 
can identify as well all right branches originating at the 
respective nodes on the left branch of the root node as well. 

 
Remark 1.  The sequence of increments on the segments 

along the left branch of the root appears to form an AP series 
with 1st term as 1 and common difference as 1. 

Remark 2.  The sequence of increments on the segments 
along the right branch of the root appears to form an AP series 
with 1st term as 2 and common difference as 1. 

Remark 3.  Along the 1st left branch originating at node 2, 
the sequence of increments appears to form an AP series with 
1st term as 2 and common difference as 1.  Note that the 1st term 
is the increment on the segment 0 → 2. 

Remark 4.  Along the 2nd left branch originating at node 5, 
the sequence of increments is an AP series with 1st term as 3 and 
common difference as 1.  Note that the 1st term is the increment 
on the segment 2 → 5.   

 
Authors [13] have presented some important structural 

properties of the pyramid tree P2P system.  According to the 
authors, no existing structured P2P system, either DHT or non-
DHT based, possesses these properties. These are stated below. 

Let SY be the set of logical links which connect a node Y to 
its neighbors in a complete pyramid tree TR with root R.  
Assume that the tree has n nodes (i.e., n group heads / n clusters).  
Let another tree T’R be created with the same n nodes but with 
a different root R’.  Let S’Y be the set of logical links connecting 
Y to its neighbors in the tree T’R. 

 
Property 1.  SY ≠ S’Y 

Property 2.  Diameter of TR = Diameter of T’R 

Property 3.  Number of levels of TR = Number of levels of T’R  
Property 4.  Complexity of broadcasting in TR with root R as 

the source of broadcast is the same for T’R with root R’  
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Property 5.  Both TR and T'
R are complete pyramid trees. 

 
An example:  Consider the complete pyramid tree of 5 levels 

as shown in Figure 2.  Note that root of this tree is node 13, 
whereas root of the tree of Figure 1 is 0.  

 

 
 

Figure 2:  A complete pyramid tree with root 13 
 
It is seen that S’4 = {1,8,9} and S4 = {1,2,7,8}. Therefore, 

property 1 holds. 
Diameters of both trees are the same; it is 8 in terms of number 

of overlay hops.  Besides, both trees use the same 15 nodes and 
have the same total number of levels.  Broadcasting from either 
root 0 in the tree of Figure 1 or from root 13 in the tree of Figure 
2 can be completed in 4 hops.  Finally, both trees are complete 
pyramid trees.  Thus, all properties as mentioned above hold. 

 
Remark 5.  Set of the neighbors of a given node Z may vary 

as the root of the tree varies.  Hence, it is termed ‘virtual’.  
However, time complexity of broadcasting remains same, i.e., it 
is O(d), where d denotes the number of levels of the tree 

 
The following note on broadcasting will help in 

understanding better the proposed approach on capacity 
constrained broadcast. 

 
2.5 Broadcast in Complete and Incomplete Pyramid Trees 

 
We now state an informal sketch of the broadcast protocol 

[13] for complete pyramid tree architecture.  It has been shown 
that the protocol does not generate any duplicate packet.  The 
protocol uses properties 1 to 4 as stated above.  It works as 
follows:  whenever a node X on the tree wishes to broadcast, it 
will assume itself as the root of the overlay tree during 
broadcasting.  

 
Step 1:  Root X sends packets to its neighbors on left and right 

branches. 
Step 2:  Each receiving node on the left branch sends packets 

to its neighbor on this branch till a receiving node is a leaf node. 
Step 3a:  The ith receiving node on the right branch sends 

packets to its neighbor on the ith left branch originating at the ith 
node until the ith receiving node is a leaf node. 

Step 3b:  The ith receiving node sends packets to its neighbor, 

the (i+1)th node on the right branch until it is a leaf node. 
Step 4:  Propagation along the ith left branch continues as in 

Step 2. 
 
For incomplete pyramid tree architecture, a broadcast source 

unicasts its packets to the root of the tree and the root then 
broadcasts the packets in the tree following the broadcast 
protocol designed for complete trees.  Justification of the source 
itself not broadcasting its packets has been worked out in detail 
in one of our on-going projects [8].  It has been proven that only 
one duplicate packet will be generated per broadcast packet and 
it is independent of the total number of peers present in the P2P 
system [8]. 

 
3 Capacity Constrained Broadcast 

 
Before we state the protocol formally, we first illustrate in 

detail the partitioning of the peers in a cluster.  
 
3.1 Partitioning of Peers 

 
We illustrate the partitioning process with an appropriate 

example.  Let us consider a pyramid tree architecture consisting 
of cluster-heads of different distinct interests.  Each cluster-head 
in turn is connected to peers of common interest belonging to its 
cluster.  Let us call this tree the Global Pyramid Tree (GPT).  
Assume that a mod value of M has been used for the formation 
of the GPT.  To illustrate the partitioning scheme, let us consider 
a cluster Ci with cluster-head Ci

h in the GPT.  Let Ci consist of 
40 peers.  Let us assume that inside cluster Ci we use a mod 
value of 10 to build four complete pyramid trees T1, T2, T3, and 
T4 such that each one consists of 10 nodes.  It is shown in Figure 
3.  Observe that the last tree T4 not necessarily has to be a 
complete one, it depends on the number of peers inside a cluster; 
however, it has no effect on our explanation of the idea.  We call 
each such tree inside cluster Ci a local pyramid tree (LPT).  Note 
that since the mod value is 10 for building the LPTs, the peers 
in any such LPT will have secondary overlay addresses from 0 
to 9, respectively (Figure 3).  We shall use these secondary 
overlay addresses for restructuring the LPTs.  Why are we 
considering pyramid trees inside a cluster?  The reason is that 
we have already designed efficient communication protocols for 
pyramid tree architecture, and it is logical as well as reasonable 
to consider similar protocols inside a cluster; it offers uniformity 
in terms of implementation both at the levels of GPT and LPT. 

Let the logical address of the cluster-head Ci
h be i based on 

the mod value of n used in the GPT formation.  Then, the other 
39 peers in Ci will have the respective overlay addresses as 
(i+n), (i+2n), …, (i+39n) based on their sequence of joining the 
cluster.  These addresses are termed as primary overlay 
addresses.  The roots of the four trees have the respective 
addresses as i, (i+10n), (i+20n), and (i+30n).  Since Ci is 
completely connected, therefore, any two peers in the cluster are 
logically connected.  However, to incorporate the idea of 
‘capacity constrained’, we assume that among the roots of the 
four trees, only the links that connect the neighboring roots are 
present.  That is, only links between T1 and T2, T2 and T3, and  
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Figure 3:  Cluster Ci has four component trees T1, T2, T3, and T4 

In addition, we shall not use in our broadcast protocol any 
logical link that connects two peers in two different LPTs, none 

of which is a root in the corresponding tree. 
Besides the above-mentioned primary overlay addresses 

based on the mod value of n, we also assign tertiary overlay 
addresses only to the roots of the LPTs inside a cluster.  If a 
cluster Ci has n number of LPTs, the root of the first LPT formed 
will be assigned a tertiary overlay address 1, the root of the 
second LPT with address 2; in a similar way the root of the jth 
LPT will have the address j.  These tertiary overlay addresses 
are used in the proposed broadcast and multicast protocols 
inside a cluster.  

Cluster-head Ci
h assigns the addresses (i+n) to (i+9n) to the 

first nine peers joining the cluster besides the cluster-head itself.  
It forms the tree T1 with itself as the root.  Note that the virtual 
links' information among the peers in T1 define implicitly its 
pyramid tree structure.  Cluster-head Ci

h assigns the next 10 
arriving peers with addresses (i+10n) to (i+19n) and imparts the 
responsibility of becoming the root of the tree T2 and forming 
the complete tree T2 to the peer with address (i+10n).  In this 
way, the other trees are also formed.  As pointed out earlier, the 
last tree T4 may not be a complete one; it depends on the number 
of the arriving peers joining the tree.  For broadcasting (also for 
multicasting) inside a tree, we assume that the root as well as 
each pear in the tree will maintain a local list of the overlay and 
IP addresses of all peers in the tree.  Thus, in this example, each 
peer in T1 will maintain the addressing information of 10 peers 
including that of itself.  In general, for an LPT Tj, we denote the 
table as Tj.  In addition, the link information of a peer in the tree 
(i.e., which other peers it is connected to) is present in the table 
as well.  Thus, effectively, structure of the pyramid tree is 
actually embedded (implicitly) in the table in the form of the 
links' information that a peer in the tree is linked with some 
particular other peers.  

Besides, cluster-head Ci
h and the roots of all other LPTS will 

maintain a separate table Tr containing the tertiary overlay and 
the IP addresses of the root of each LPT in the cluster. Observe 
that table size depends on the mod value used to create the LPTs.  
At one end it will be a single tree with all peers in the cluster in 
it; this is not a practical approach since a cluster may have 
tremendously large number of peers resulting in high 
broadcast/multicast latency; in addition, table size maintained 
by each peer will be as large as the number of peers in the 
cluster.  So, a practical approach will be to use reasonably small 
mod value to create the trees and this mod value can be the 

choice of the designers; it can also be dynamically changed 
because after all these trees are virtual. 

 
3.2 Restructuring of the LPTs 

 
For the proposed protocols (broadcast and multicast) to work 

correctly, we need to consider the effect on an existing LPT 
caused by peers joining and leaving (churn handling).  Let us 
start with the peers joining first. 

When we consider new peer joining, only the last LPT may 
get affected structurally from the following viewpoint.  
According to our proposed way of forming the LPTs in a cluster, 
say Ci, process of any new peer joining the cluster will be taken 
care of by only the root of the last LPT.  For example, in Figure 
3, the last LPT is the tree T4 and its root is the peer with overlay 
address (i+30n).  If the tree T4 is already a complete one, then a 
new tree T5 will be formed with its root having the address 
(i+40n) and all subsequent joins will take place in T5 unless it is 
full; and the process of new tree-formation will go on as needed 
as explained above.  

 
Observation 3. Any new peer joining a cluster Ci will not 

affect structurally any LPT other than the last one. 
Observation 4. If the existing last LPT is an incomplete one, 

new peers joining may turn it into a complete one, or it may 
remain an incomplete one. 

 
We now consider the effect on the structures of the LPTs due 

to peers leaving.  Unlike joins, leaving of peers can take place 
at any time in any LPT and therefore, it can affect structurally 
any LPT.  Therefore, a complete LPT may become incomplete 
after some peer(s) leave it.  In addition, a complete tree may 
remain a complete one as well if multiple peers leave the tree; 
however, the new one will have a smaller number of levels.  
Besides, based on the positions of the leaving peers in an LPT, 
the pyramid tree architecture of the concerned LPT may be 
destroyed completely.  See Figures 4 and 5.  In the trees shown 
in these figures a peer with secondary overlay address X appears 
as X(k); k is the IP address of peer X.  A detailed explanation of 
the trees in these figures appears later in this section.  The need 
for such a representation will be clear shortly.  The structure of 
an LPT may be destroyed after a peer leaves; it depends on the 
position of the leaving peer on the tree.  Therefore, some 
efficient restructuring process need to be executed after peers 
leave the LPTs so that the characteristics of pyramid tree 
architecture can be retained, be it a complete or an incomplete 
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one after peers leave and hence, the existing broadcast / 
multicast protocols can be applied in the restructured trees with 
some possible graceful degradation.  Below we have stated the 
restructuring method after peers leave.  

 
3.2.1 Restructuring Method.  As mentioned earlier, each 

peer in the jth LPT, viz. Tj maintains the addressing information 
of all peers in Tj including that of itself in a table Tj.  This 
information includes a peer’s overlay address and the IP 
address. 

The following two situations are considered and we state the 
methods to handle these so that the characteristics of pyramid 
tree architecture can be retained. 

 
Case 1: Any peer p with secondary overlay address X in an 

LPT Tj other than its root j leaves. 
 
We assume graceful degradation; right before leaving the tree 

Tj, peer p unicasts a ‘leave’ message to the root j of Tj.  Root j 
will delete the entry corresponding to the peer p with address X 
from its table Tj and assigns a virtual address X to the peer which 
had earlier the address (X+1) mod m where mod m is used to 
build the tree Tj.  In this way, readdressing of the overlay 
addresses for all peers following the leaving one will take place.  
Root j forms a new table Tj' and unicasts this updated table to 
the rest of the peers of the tree Tj.  Thus, the structure of a 
pyramid tree remains intact after the peer p leaves; of course, 
the tree Tj now can become an incomplete one.  It may also 
remain as a complete one depending on the number of the peers 
leaving; however, in that case its level will be smaller than the 
original version of the tree Tj.  Observe that structure of the 
pyramid tree is actually embedded in the table in the form of the 
links’ information that a peer in the tree is linked with some 
particular other peers, along with the overlay addresses of the 
peers.  

 
Case 2:  Root j of Tj leaves 
 
Step 1.  Root j unicasts a ‘leave’ message to the peer p' with 

the next higher overlay address. 
Step 2.  Peer p' becomes the next root and assigns its new 

tertiary overlay address as j. 
Step 3.  Peer p' assigns new overlay addresses to the rest of 

the available peers, i.e., a previous address Y now becomes (Y-
1). 

Step 4.  New root p' forms a new table Tj' and unicasts it to 
the other peers. 

Step 5.  A new tree Tj' is built. This new tree may be an 
incomplete or complete one depending on the total number of 
the leaving peers. 

 
Observation 5. Any combination of peers leaving an LPT can 

be handled as in either Case 1 or 2.  If the combination involves 
the root, case 2 will be considered; otherwise it is Case 1. 

 
 
 

Example (Case 1) 
 
Let us consider the jth LPT of some cluster as shown in Figure 

4, peers’ secondary overlay addresses are from 0 to 9 and the 
tree is a complete one.  To explain the situation of Case 1 clearly, 
we assume that the peers’ respective IP addresses are a, b, …, j.  
Assume that peer 4 leaves.  The structure will be no more that 
of a pyramid tree after the leave (Figure 5).  However, based on 
the proposed restructuring method, peer 5 in Figure 4 now has 
the logical address 4, similarly peer 6 in Figure 4 now has the 
logical address 5 and in that way peer 9 has 8.  The new pyramid 
tree after restructuring is shown in Figure 6.  Note that in Figure 
6 peer 4 with IP address f is different from peer 4 with IP address 
e in Figure 4.  That is, peer 4 in Figure 6 is actually peer 5 in 
Figure 4.  Note that peers with logical addresses 0 to 3 have not 
gone through any change.  Root j constructs a new table Tj' and 
unicasts to the other peers in this tree. 
 

 
 

Figure 4:  Before peer 4 leaves 
 

 

 

 

 
Example (Case 2) 
 
Consider the tree of Figure 4.  Assume that the root peer with 

overlay address 0 and IP address a is leaving.  Based on the 
restructuring method, right before leaving peer 0 unicasts a 
leave message to peer 1.  Peer 1 (b) now becomes the new root  
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and its overlay address becomes 0 and it will convert any other 
overlay address Y to (Y-1).  It builds a new table Tj' and unicasts 
it to the rest of the peers.  The new information about the links 
along with the changed overlay addresses produces the tree as 
shown in Figure 7.  Thus, the structural properties remain intact 
except that the tree is now an incomplete one. 
 

 

 
Figure 7:  After restructuring, it remains a pyramid tree 

 
3.3 Protocol Capacity-Constrained-Broadcast 

 
Earlier we have discussed the effect of the leaving of peers on 

the existing structure of an LPT.  Since after such leaving an 
LPT may become an incomplete pyramid tree even after 
restructuring, therefore, we shall consider only the protocol 
Broadcast-Incomplete in an LPT.  We do it irrespective of the 
completeness of the tree because protocol Broadcast-Complete 
is applicable only to complete LPT, whereas Broadcast-
Incomplete work both in complete and incomplete LPTs.  It may 
be noted that in Broadcast-Incomplete in an LPT a source peer 
first unicasts its packets to the root of the tree (after restructuring 
wherever applicable); the root in turn broadcasts the packets to 
the rest of the tree.  It generates only one extra packet per packet 
broadcast.  This is the only bad effect of the protocol. Note that 
if the root itself is the source of broadcast, neither any extra 
packer is generated, nor there is any additional unicast. 

In the proposed protocol (see Figure 8), we assume the 
following: a cluster Cj has k number of LPTs and the tertiary 
overlay address of the root of the jth LPT is j (1≤ j ≤ k).  We 
denote the jth LPT as LPTj and we call the root simply as root j 
(its tertiary address is r also).  As mentioned earlier, cluster-head 
Cj

h maintains a separate table Tr containing the tertiary overlay 
and the IP addresses of the root of each LPT in the cluster; 
whereas every other root saves the tertiary overlay and the IP 
addresses of the root(s) of its neighboring LPT(s) only.  In the 
following protocol, unicasting to an LPT means unicast to the 
root of the LPT. 

 
Protocol 
 
Based on the location of the broadcast source, we need to 

consider the following three possible situations: 
Source peer is present in LPTk; or is present in LPT1; or is 

present in some LPTr, r ≠ k and r ≠1 
 
if j = k            / Source peer is present in the last LPT (LPTk) 
     unicasts to LPTj-1 
     root j executes Broadcast-Incomplete protocol in its LPTk 

     j = j-1 
     while 1< j   
          root j unicasts to LPTj-1 
          root j executes Broadcast-Incomplete protocol in LPTj 
          j = j-1 
     continue 
     root 1 executes Broadcast-Incomplete in LPT1 

---------------------------------------------------------------- 
if j = 1                   / Source is present in the first LPT1 
     while j < k   
          root j unicasts to LPTj+1 
          root j executes Broadcast-Incomplete protocol in LPTj 
          j = j +1 
     continue 
     root k executes Broadcast-Incomplete protocol in LPTk 

--------------------------------------------------------------- 
 
if 1 < j < k              
 / source is present in some other LPTr, r ≠ k and r ≠1 
 
step 1. root j unicasts to LPTj-1 and LPTj+1 
 root j executes Broadcast-Incomplete protocol in 

LPTj 
step 2.    t = j-1  
              while 1< t 
 root t unicasts to LPTt-1   
 root t executes Broadcast-Incomplete protocol 

in LPTt 
 t = t-1 
                continue 
 root 1 executes Broadcast-Incomplete protocol in 

LPT1 
step 3.    t' = j+1 
              while t' < k 
 root t unicasts to LPTt'+1 
 root t' executes Broadcast-Incomplete protocol 

in LPTt' 
 t' = t'+1 
                continue 
 
 root k executes Broadcast-Incomplete protocol in 

LPTk 

______________________________________________________________________________ 
 

Figure 8:  The protocol 
 
Theorem 1.  Each peer in a cluster Cj receives a copy of each 

broadcast packet. 
Proof. The protocol ensures that each root gets a copy of each 

broadcast packet. Each root then executes Broadcast-
Incomplete’ in its tree. Since ‘Broadcast-Incomplete’ 
guarantees that each peer in a tree receives a copy of each 
broadcast packet; hence is the proof.  □ 

 
Performance 
 
We shall discuss first broadcast latency followed by memory 

utilization by any root. 
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Let a cluster Cj be divided into n LPTs.  Let us first consider 
the worst case in which the source of broadcast is either in the 
1st LPT or in the last one, the kth LPT.   Let it be in the 1st LPT. 
Let us assume that all LPTs have identical number of levels and 
it is l.  It takes (k-1) hopes for a broadcast packet to reach the kth 
root (i.e., the root of the kth LPT).  Observe that the concept of 
pipelining is implicitly present in the protocol; that is, by the 
time a broadcast packet arrives at the lth level of the kth tree, 
broadcast is already complete in all other trees.  Therefore, the 
number of hops to complete the broadcast in the worst case is 
[(k-1) + (l-1)].  In addition, it is clear that if the kth LPT has less 
than l number of levels, the total number of hops as mentioned 
above is sufficient to complete the broadcast. 

If we consider the best case, i.e., when the broadcast source is 
present in a tree located at the middle.  Total number of hops = 
[(k-1)/2 + (l-1)]. 

From the viewpoint of the memory used by a peer in any LPTj 
to save its table Tj or by the cluster-head Cj

h (and any other root) 
to save its tables Tj and Tr, we have observed the following using 
clusters of different sizes.  Broadcast latency does not vary 
much with m (m is the mod value used to create the LPTs inside 
the cluster); however, there is considerable increase in the 
memory requirement to save the tables as we increase the value 
of m.  In fact, memory requirement varies linearly with cluster 
size.  Therefore, it may be suggested that the designers select a 
reasonably small value of m for efficient use of the memory of 
the peers.   

 
4 Capacity Constrained Multicast 

 
We denote the LPT containing the source of multicasting as 

LPTs.  The source peer, say peer p, in LPTs registers with the 
root s.  In general, the corresponding root s can itself be the 
source of multicasting as well.  Source peer p first registers with 
the root s and then during multicasting, it unicasts its packets to 
the root s and the root s in turn sends the multicast packets to the 
peers in its tree which have joined the multicast session; 
actually, these peers form a core-based tree (CBT) [1] with s as 
its root.  In general, we denote a CBT with core j as CBTj.  In 
addition, root s is also responsible to send multicast packets to 
the roots of the other trees that are interested in receiving the 
packets.  So effectively the root s acts as the source of multicast 
during multicasting.  The proposed protocol will use the relevant 
information present in the tables of the roots as in the case of 
capacity constrained broadcast.  A multicast session consists of 
three phases which are stated below. 

 
Phase 1:  Roots learning about the interested peers 
 
Step 1. Source root s of the LPTs broadcasts a ‘query’ 

message in all the component trees.  This can be accomplished 
by executing the capacity constrained broadcast protocol. 

Step 2. Source root s forms the CBTs with s as its root if 
some peers in LPTs join the core s for receiving multicast 
packets from the source peer p of multicasting.  

 
/ CBTs is formed with s as its root 

Phase 2: Formation of core-based trees (CBTs) in other 
component trees and across the cluster 

 
Step 1. Root j unicasts a join request to the source root s if it 

receives any join request(s) from peers in LPTj 
Step 2. Root j forms a CBTj consisting of the interested 

peers in LPTj    
                                                                                                               

/ this is the CBT inside LPTj        
 
Step 3. A 2-level CBT with root s is formed with other 

joining roots as its leaves.  The maximum diameter of this tree 
is 2.                

 
/ this 2-level CBT with root s is formed across the cluster 
 

Phase 3: Multicasting from source p  
 
Step 1. Source peer p unicasts multicasts packets to source 

root s 
Step 2. Root s sends the packets to the joining cores in the 

2-level CBT. 
 Root s multicasts the packets to the peers in the CBTs in 

LPTs.    
Step 3. Each joining core j multicasts the packets to the 

peers in the CBTj in LPTj. 
 
Performance 
 
We assume that for a given mod value of m, the cluster 

contains k number of LPTs.  The trees have the same level l, 
except possibly the last one that may have fewer peers not 
enough to make the level l.  However, for simplicity we assume 
that all LPTs have the same level.  Therefore, k.m is the total 
number of peers in the cluster before partitioning.  The protocol 
builds CBTs with maximum level l inside some LPTs 
containing multicast receivers and a 2-level CBT across the 
cluster with leaves as some roots of some LPTs interested in 
receiving multicast packets. 

A multicast packet travels from a source peer p to the source 
root s in a maximum of (l-1) hops, then to all other roots in the 
2-level CBT in 1 hop, and also to all group members in the 
receiving LPTs in a maximum of (l-1) hops. 

Note that multicast in the source LPT goes on along with the 
multicasts in other LPTs; so, idea of pipelining is implicitly 
present.  Hence, we can safely assume that approximately in (l-
1) hops multicast in the related LPTs can be completed. 

Therefore, multicast latency in hops is (l-1) +1+ (l-1), i.e., (2l-
1); and it is independent of the size of the cluster.  Hence, time 
complexity is O(l).  Since l ≈ 2m, therefore, it may be suggested 
that the designers select a reasonably small value of m for low 
latency multicast in the cluster. 

 
5 Conclusions 

 
In this paper, we have considered a recently reported non-

DHT based structured P2P system.  The main advantages of the 
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architecture are its very low data lookup latency and ease of 
churn handling compared to most DHT-based P2P systems.  In 
this architecture, a cluster consists of peers with common 
interest and its overlay diameter is only one hop.  In reality, 
because of peer heterogeneity, peers are differently capacity 
constrained and therefore, lookup latency of O(1) inside a 
cluster may not be achievable in reality.  It has led us to propose 
practical approaches for both broadcasting and multicasting 
inside a cluster of peers considering peer heterogeneity.  

We are now investigating how the proposed structure can be 
used/modified in order to reduce the traffic and operating costs 
of Internet Service Provider (ISP) and P2P Service Provider. 
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