
122 IJCA, Vol. 28, No. 3, Sept. 2021

ISCA Copyright© 2021

Capacity Constrained Broadcast and Multicast Protocols for
Clusters in a Pyramid Tree-based Structured P2P Network

Indranil Roy*, Swathi Kaluvakuri*, Koushik Maddali*
Abdullah Aydeger*, Bidyut Gupta*

Southern Illinois University at Carbondale, Carbondale, Illinois, USA

Narayan Debnath†

Eastern International University, VIETNAM

Abstract

In this paper, we have considered an existing non-DHT based

structured P2P network. It is an interest-based system. At the
heart of the architecture, there exists a tree like structure, known
as Pyramid Tree, even though it is not a conventional tree. A
node on the tree represents a cluster of peers with common
interest. There is no limit on the size of such clusters. Residue
Class based on modular arithmetic has been used to realize the
structure of a cluster. It has been shown that overlay diameter
of each such cluster is just one (one overlay hop). Thus, each
cluster is a completely connected network. Therefore,
theoretically any peer in such a cluster is logically connected to
every other peer in the cluster. However, since peers are
heterogeneous in nature, therefore, in practice we have to
consider their different capacities while designing any
communication protocol inside the cluster. In this paper, we
have addressed this issue and offered reasonably efficient
solutions for broadcasting and multicasting considering peer
heterogeneity.

Key Words: P2P network, structured, non-DHT based,
pyramid tree, capacity constrained.

1 Introduction

Peer-to-Peer (P2P) overlay networks are widely used in

distributed systems due to their ability to provide computational
and data resource sharing capability in a scalable, self-
organizing, distributed manner. There are two classes of P2P
networks: unstructured and structured ones. In unstructured
systems [2] peers are organized into arbitrary topology. It takes
help of flooding for data look up. Problem arising due to frequent
peer joining and leaving the system, also known as churn, is
handled effectively in unstructured systems. However, it
compromises with the efficiency of data query and the much-
needed flexibility. Besides, in unstructured networks, lookups
are not guaranteed. On the other hand, structured overlay
networks provide deterministic bounds on data discovery. They

*E-mail: [indranil.roy, swathi.Kaluvakuri, Koushik]@siu.edu,
[aydeger, Bidyut]@cs.siu.edu,
† E-mail: Narayan.debnath@eiu.edu.vn

provide scalable network overlays based on a distributed data
structure which actually supports the deterministic behavior for
data lookup. Recent trend in designing structured overlay
architectures is the use of distributed hash tables (DHTs) [10, 15,
18]. Such overlay architectures can offer efficient, flexible, and
robust service [7, 10, 15, 16, 18]. However, maintaining DHTs
is a complex task and needs substantial amount of effort to
handle the problem of churn. So, the major challenge facing such
architectures is how to reduce this amount of effort while still
providing an efficient data query service. In this direction, there
exist several important works, which have considered designing
DHT-based hybrid systems [4, 6, 9, 14, 17]; these works attempt
to include the advantages of both structured and unstructured
architectures. However, these works have their own pros and
cons. Another design approach has attracted much attention; it
is non-DHT based structured approach [3, 11-13]. It offers
advantages of DHT-based systems, while it attempts to reduce
the complexity involved in churn handling. Authors in [11, 13]
have considered one such approach and have used an already
existing architecture, known as pyramid tree architecture
originally applied to the research area of ‘VLSI design for
testability’ [5]. The P2P architecture has two levels. At the heart
of it, it is a tree structure (pyramid tree); it is not a conventional
tree. This tree forms the first level of the system. Each node on
the tree represents uniquely a cluster-head of a cluster of peers
with common interest and the cluster head is the first peer to join
the system among the peers in this cluster. Such clusters form
the second level of the architecture. Residue class based on
modular arithmetic has been used to realize the architecture.
Some of the main advantages of the system are its low data
lookup efficiency and ease of churn handling. In this paper, we
have considered such architecture and have dealt with a practical
issue related to the architecture as detailed in below.

Problem Statement. In our earlier proposed pyramid tree P2P

architecture [11, 13], every cluster has an overlay diameter of 1.
Each such cluster may consist of a very large number of peers
with common interest. It means that every peer in any such
cluster Ci has direct logical connection to all other peers inside
the cluster. In reality, peers are capacity constrained and it is
most likely that any cluster will have heterogeneous peers;
therefore, peers can be differently capacity constrained. Hence,
even though the overlay diameter is 1, in practice a peer can

mailto:aydeger,%20Bidyut%5D@cs.siu.edu

IJCA, Vol. 28, No. 3, Sept. 2021 123

communicate only to few other peers at a given time depending
on its capacity. In this paper, we address this issue and offer
reasonably efficient solutions for broadcasting and multicasting
considering peer heterogeneity.

Our Contribution. We have earlier designed an inter-cluster
broadcast protocol [13] in which a participating node (cluster-
head) may have to activate a maximum of only three of its links
at a time for the propagation of a broadcast packet along the
pyramid tree. So, the protocol appears to have followed
implicitly an effective capacity constrained approach, even
though that was not the objective at the time of designing the
protocol. Consider the following reasonably efficient capacity
constrained architecture consisting of the peers in any cluster Ci.
We logically restructure the peers inside cluster Ci in the
following way: we partition the peers in Ci in a number of
pyramid trees of identical sizes (except possibly the last one,
explained later) and implement the idea of our already designed
broadcast protocol on these trees inside the cluster. Note that in
the original version of the inter-cluster broadcast protocol, a
node in the tree is a cluster-head, whereas when applied inside
a cluster a node in the tree can be any peer in the cluster that
includes the cluster-head of the cluster as well. Let us first state
the capacity constrained broadcast protocol. Later, we shall
consider multicasting.

This paper is organized as follows. In Section 2, we talk about

some related preliminaries and in Section 3, we present the
capacity constrained broadcast along with the proposed
restructuring method of peers inside a cluster. In Section 4, we
present the capacity constrained multicast protocol. Section 5
draws the conclusion.

2 Related Preliminaries

In this section, we present some relevant results from our

recent work on the pyramid tree based P2P architecture [11, 13]
for interest-based peer-to-peer system.

Definition 1. We define a resource as a tuple ˂Ri, V˃, where

Ri denotes the type of a resource and V is the value of the
resource.

Note that a resource can have many values. For example, let
Ri denote the resource type ‘songs’ and V' denote a particular
singer. Thus ˂Ri, V'˃ represents songs (some or all) sung by a
particular singer V'.

Definition 2. Let S be the set of all peers in a peer-to-peer
system with n distinct resource types (i.e., n distinct common
interests). Then S = {Ci}, 0 ≤ i ≤ n-1, where Ci denotes the
subset consisting of all peers with the same resource type Ri. In
this work, we call this subset Ci as cluster i. Also, for each
cluster Ci, we assume that Ci

h is the first peer among the peers
in Ci to join the system. We call Ci

h as the cluster-head of cluster
Ci.

2.1 Pyramid Tree

The following overlay architecture has been proposed in [13].

1) The tree consists of n nodes. The ith node is the ith cluster
head Ci

h.
2) Root of the tree is at level 1.
3) Edges of the tree denote the logical link connections

among the n cluster-heads. Note that edges are formed
according to the pyramid tree structure [5].

4) A cluster-head Ci
h represents the cluster Ci. Each cluster

Ci is a completely connected network of peers possessing a
common resource type Ri, resulting in the cluster diameter of 1.

5) The tree is a complete one if at each level j, there are j
number of nodes (i.e., j number of cluster-heads).

6) Any communication between a peer pi ϵ Ci and a peer pj
ϵ Cj takes place only via the respective cluster-heads Ci

h and Cj
h

and with the help of tree traversal.
7) Joining of a new cluster always takes place at the leaf

level.
8) A node that does not reside either on the left branch or on

the right branch of the root node is
 an internal node.
9) Degree of an internal non-leaf node is 4.
10) Degree of an internal leaf node is 2.

2.2 Residue Class

Modular arithmetic has been used to define the pyramid tree

architecture of the P2P system.
Consider the set Sn of nonnegative integers less than n, given

as Sn = {0, 1, 2,.… (n – 1)}. This is referred to as the set of
residues, or residue classes (mod n). That is, each integer in Sn
represents a residue class (RC). These residue classes can be
labelled as [0], [1], [2], …, [n – 1], where [r] = {a: a is an integer,
a ≡ r (mod n)}.

For example, for n = 3, the classes are:

 [0] = {…., ─ 6, ─ 3, 0, 3, 6, …}
 [1] = {…., ─ 5, ─ 2, 1, 4, 7, …}
 [2] = {…., ─ 4, ─ 1, 2, 5, 8, …}

In the P2P architecture, we use the numbers belonging to
different classes as the logical (overlay) addresses of the peers
with a common interest and the number of residue classes is the
number of distinct resource types; for the sake of simplicity we
shall use only the positive integer values. Before we present the
mechanism of logical address assignments, we state the
following relevant property of residue class [13].

Lemma 1. Any two numbers of any class r of Sn are mutually

congruent.

2.3 Assignments of Overlay Addresses

Assume that in an interest-based P2P system there are n

distinct resource types. Note that n can be set to an extremely
large value a priori to accommodate large number of distinct
resource types. Consider the set of all peers in the system given
as S = {Ci}, 0 ≤ i ≤ n-1. Also, as mentioned earlier, for each

124 IJCA, Vol. 28, No. 3, Sept. 2021

subset Ci (i.e. cluster Ci) peer Ci
h is the first peer with resource

type Ri to join the system and hence, it is the cluster-head of
cluster Ci.

The assignment of overlay addresses to the peers in the
clusters and the resources happens as follows:

1) The first cluster-head to join the system is assigned with

the logical (overlay) address 0 and is denoted as C0
h. It is

also the root of the tree formed by newly arriving cluster-
heads (see the example in Figure 1).

Figure 1: A complete pyramid tree with root 0

2) The (i+1) th newly arriving cluster-head possessing the

resource type Ri is denoted as Ci
h and is assigned with the

minimum nonnegative number (i) of residue class i (mod n) of
the residue system Sn as its overlay address.

3) In this architecture, cluster-head Ci
h is assumed to join

the system before the cluster-head Ci+1
h.

4) All peers having the same resource type Ri (i.e.,
'common interest' defined by Ri) will form the cluster Ci. Each
new peer joining cluster Ci is given the cluster membership
address (i + j.n), for i = 0, 1, 2, …

5) Resource type Ri possessed by peers in Ci is assigned
the code i which is also the logical address of the cluster-head
Ci

h of cluster Ci.

Definition 3. Two peers of a group Gr are logically linked

together if their assigned logical addresses are mutually
congruent.

Lemma 2. Each group Ci forms a complete graph.

Observation 1. Any intra-group data look up communication

needs only one overlay hop.
Observation 2. Search latency for inter-group data lookup

algorithm is bounded by the diameter of the tree.

2.4. Virtual Neighbors [13]

An example of a complete pyramid tree of 5 levels is shown

in Figure 1. It means that it has 15 nodes/clusters (clusters 0 to
14, corresponding to 15 distinct resource types owned by the 15
distinct clusters). It also means that residue class with mod 15
has been used to build the tree. The nodes’ respective logical

(overlay) addresses are from 0 to 14 based on their sequence of
joining the P2P system.

Each link that connects directly two nodes on a branch of the
tree is termed as a segment. In Figure 1, a bracketed integer on
a segment denotes the difference of the logical addresses of the
two nodes on the segment. It is termed as increment and is
denoted as Inc. This increment can be used to get the logical
address of a node from its immediate predecessor node along a
branch. For example, let X and Y be two such nodes connected
via a segment with increment Inc, such that node X is the
immediate predecessor of node Y along a branch of a tree which
is created using residue class with mod n. Then, logical address
of Y = (logical address of X + Inc) mod n.

Thus, in the example of Figure 1,

Logical address of the leftmost leaf node = (logical address

of its immediate predecessor along the left branch of the root +
increment) mod 15 = (6 + 4) mod 15 = 10.

Also, note that a left branch originating at node 2 on the right
branch of the root node is 2 → 4 → 7 → 11. Similarly, we can
identify all other left branches originating at the respective
nodes on the right branch of the root node. In a similar way, we
can identify as well all right branches originating at the
respective nodes on the left branch of the root node as well.

Remark 1. The sequence of increments on the segments

along the left branch of the root appears to form an AP series
with 1st term as 1 and common difference as 1.

Remark 2. The sequence of increments on the segments
along the right branch of the root appears to form an AP series
with 1st term as 2 and common difference as 1.

Remark 3. Along the 1st left branch originating at node 2,
the sequence of increments appears to form an AP series with
1st term as 2 and common difference as 1. Note that the 1st term
is the increment on the segment 0 → 2.

Remark 4. Along the 2nd left branch originating at node 5,
the sequence of increments is an AP series with 1st term as 3 and
common difference as 1. Note that the 1st term is the increment
on the segment 2 → 5.

Authors [13] have presented some important structural

properties of the pyramid tree P2P system. According to the
authors, no existing structured P2P system, either DHT or non-
DHT based, possesses these properties. These are stated below.

Let SY be the set of logical links which connect a node Y to
its neighbors in a complete pyramid tree TR with root R.
Assume that the tree has n nodes (i.e., n group heads / n clusters).
Let another tree T’R be created with the same n nodes but with
a different root R’. Let S’Y be the set of logical links connecting
Y to its neighbors in the tree T’R.

Property 1. SY ≠ S’Y

Property 2. Diameter of TR = Diameter of T’R

Property 3. Number of levels of TR = Number of levels of T’R
Property 4. Complexity of broadcasting in TR with root R as

the source of broadcast is the same for T’R with root R’

IJCA, Vol. 28, No. 3, Sept. 2021 125

Property 5. Both TR and T'
R are complete pyramid trees.

An example: Consider the complete pyramid tree of 5 levels

as shown in Figure 2. Note that root of this tree is node 13,
whereas root of the tree of Figure 1 is 0.

Figure 2: A complete pyramid tree with root 13

It is seen that S’4 = {1,8,9} and S4 = {1,2,7,8}. Therefore,

property 1 holds.
Diameters of both trees are the same; it is 8 in terms of number

of overlay hops. Besides, both trees use the same 15 nodes and
have the same total number of levels. Broadcasting from either
root 0 in the tree of Figure 1 or from root 13 in the tree of Figure
2 can be completed in 4 hops. Finally, both trees are complete
pyramid trees. Thus, all properties as mentioned above hold.

Remark 5. Set of the neighbors of a given node Z may vary

as the root of the tree varies. Hence, it is termed ‘virtual’.
However, time complexity of broadcasting remains same, i.e., it
is O(d), where d denotes the number of levels of the tree

The following note on broadcasting will help in

understanding better the proposed approach on capacity
constrained broadcast.

2.5 Broadcast in Complete and Incomplete Pyramid Trees

We now state an informal sketch of the broadcast protocol

[13] for complete pyramid tree architecture. It has been shown
that the protocol does not generate any duplicate packet. The
protocol uses properties 1 to 4 as stated above. It works as
follows: whenever a node X on the tree wishes to broadcast, it
will assume itself as the root of the overlay tree during
broadcasting.

Step 1: Root X sends packets to its neighbors on left and right

branches.
Step 2: Each receiving node on the left branch sends packets

to its neighbor on this branch till a receiving node is a leaf node.
Step 3a: The ith receiving node on the right branch sends

packets to its neighbor on the ith left branch originating at the ith
node until the ith receiving node is a leaf node.

Step 3b: The ith receiving node sends packets to its neighbor,

the (i+1)th node on the right branch until it is a leaf node.
Step 4: Propagation along the ith left branch continues as in

Step 2.

For incomplete pyramid tree architecture, a broadcast source

unicasts its packets to the root of the tree and the root then
broadcasts the packets in the tree following the broadcast
protocol designed for complete trees. Justification of the source
itself not broadcasting its packets has been worked out in detail
in one of our on-going projects [8]. It has been proven that only
one duplicate packet will be generated per broadcast packet and
it is independent of the total number of peers present in the P2P
system [8].

3 Capacity Constrained Broadcast

Before we state the protocol formally, we first illustrate in

detail the partitioning of the peers in a cluster.

3.1 Partitioning of Peers

We illustrate the partitioning process with an appropriate

example. Let us consider a pyramid tree architecture consisting
of cluster-heads of different distinct interests. Each cluster-head
in turn is connected to peers of common interest belonging to its
cluster. Let us call this tree the Global Pyramid Tree (GPT).
Assume that a mod value of M has been used for the formation
of the GPT. To illustrate the partitioning scheme, let us consider
a cluster Ci with cluster-head Ci

h in the GPT. Let Ci consist of
40 peers. Let us assume that inside cluster Ci we use a mod
value of 10 to build four complete pyramid trees T1, T2, T3, and
T4 such that each one consists of 10 nodes. It is shown in Figure
3. Observe that the last tree T4 not necessarily has to be a
complete one, it depends on the number of peers inside a cluster;
however, it has no effect on our explanation of the idea. We call
each such tree inside cluster Ci a local pyramid tree (LPT). Note
that since the mod value is 10 for building the LPTs, the peers
in any such LPT will have secondary overlay addresses from 0
to 9, respectively (Figure 3). We shall use these secondary
overlay addresses for restructuring the LPTs. Why are we
considering pyramid trees inside a cluster? The reason is that
we have already designed efficient communication protocols for
pyramid tree architecture, and it is logical as well as reasonable
to consider similar protocols inside a cluster; it offers uniformity
in terms of implementation both at the levels of GPT and LPT.

Let the logical address of the cluster-head Ci
h be i based on

the mod value of n used in the GPT formation. Then, the other
39 peers in Ci will have the respective overlay addresses as
(i+n), (i+2n), …, (i+39n) based on their sequence of joining the
cluster. These addresses are termed as primary overlay
addresses. The roots of the four trees have the respective
addresses as i, (i+10n), (i+20n), and (i+30n). Since Ci is
completely connected, therefore, any two peers in the cluster are
logically connected. However, to incorporate the idea of
‘capacity constrained’, we assume that among the roots of the
four trees, only the links that connect the neighboring roots are
present. That is, only links between T1 and T2, T2 and T3, and

126 IJCA, Vol. 28, No. 3, Sept. 2021

Figure 3: Cluster Ci has four component trees T1, T2, T3, and T4

In addition, we shall not use in our broadcast protocol any
logical link that connects two peers in two different LPTs, none

of which is a root in the corresponding tree.
Besides the above-mentioned primary overlay addresses

based on the mod value of n, we also assign tertiary overlay
addresses only to the roots of the LPTs inside a cluster. If a
cluster Ci has n number of LPTs, the root of the first LPT formed
will be assigned a tertiary overlay address 1, the root of the
second LPT with address 2; in a similar way the root of the jth
LPT will have the address j. These tertiary overlay addresses
are used in the proposed broadcast and multicast protocols
inside a cluster.

Cluster-head Ci
h assigns the addresses (i+n) to (i+9n) to the

first nine peers joining the cluster besides the cluster-head itself.
It forms the tree T1 with itself as the root. Note that the virtual
links' information among the peers in T1 define implicitly its
pyramid tree structure. Cluster-head Ci

h assigns the next 10
arriving peers with addresses (i+10n) to (i+19n) and imparts the
responsibility of becoming the root of the tree T2 and forming
the complete tree T2 to the peer with address (i+10n). In this
way, the other trees are also formed. As pointed out earlier, the
last tree T4 may not be a complete one; it depends on the number
of the arriving peers joining the tree. For broadcasting (also for
multicasting) inside a tree, we assume that the root as well as
each pear in the tree will maintain a local list of the overlay and
IP addresses of all peers in the tree. Thus, in this example, each
peer in T1 will maintain the addressing information of 10 peers
including that of itself. In general, for an LPT Tj, we denote the
table as Tj. In addition, the link information of a peer in the tree
(i.e., which other peers it is connected to) is present in the table
as well. Thus, effectively, structure of the pyramid tree is
actually embedded (implicitly) in the table in the form of the
links' information that a peer in the tree is linked with some
particular other peers.

Besides, cluster-head Ci
h and the roots of all other LPTS will

maintain a separate table Tr containing the tertiary overlay and
the IP addresses of the root of each LPT in the cluster. Observe
that table size depends on the mod value used to create the LPTs.
At one end it will be a single tree with all peers in the cluster in
it; this is not a practical approach since a cluster may have
tremendously large number of peers resulting in high
broadcast/multicast latency; in addition, table size maintained
by each peer will be as large as the number of peers in the
cluster. So, a practical approach will be to use reasonably small
mod value to create the trees and this mod value can be the

choice of the designers; it can also be dynamically changed
because after all these trees are virtual.

3.2 Restructuring of the LPTs

For the proposed protocols (broadcast and multicast) to work

correctly, we need to consider the effect on an existing LPT
caused by peers joining and leaving (churn handling). Let us
start with the peers joining first.

When we consider new peer joining, only the last LPT may
get affected structurally from the following viewpoint.
According to our proposed way of forming the LPTs in a cluster,
say Ci, process of any new peer joining the cluster will be taken
care of by only the root of the last LPT. For example, in Figure
3, the last LPT is the tree T4 and its root is the peer with overlay
address (i+30n). If the tree T4 is already a complete one, then a
new tree T5 will be formed with its root having the address
(i+40n) and all subsequent joins will take place in T5 unless it is
full; and the process of new tree-formation will go on as needed
as explained above.

Observation 3. Any new peer joining a cluster Ci will not

affect structurally any LPT other than the last one.
Observation 4. If the existing last LPT is an incomplete one,

new peers joining may turn it into a complete one, or it may
remain an incomplete one.

We now consider the effect on the structures of the LPTs due

to peers leaving. Unlike joins, leaving of peers can take place
at any time in any LPT and therefore, it can affect structurally
any LPT. Therefore, a complete LPT may become incomplete
after some peer(s) leave it. In addition, a complete tree may
remain a complete one as well if multiple peers leave the tree;
however, the new one will have a smaller number of levels.
Besides, based on the positions of the leaving peers in an LPT,
the pyramid tree architecture of the concerned LPT may be
destroyed completely. See Figures 4 and 5. In the trees shown
in these figures a peer with secondary overlay address X appears
as X(k); k is the IP address of peer X. A detailed explanation of
the trees in these figures appears later in this section. The need
for such a representation will be clear shortly. The structure of
an LPT may be destroyed after a peer leaves; it depends on the
position of the leaving peer on the tree. Therefore, some
efficient restructuring process need to be executed after peers
leave the LPTs so that the characteristics of pyramid tree
architecture can be retained, be it a complete or an incomplete

IJCA, Vol. 28, No. 3, Sept. 2021 127

one after peers leave and hence, the existing broadcast /
multicast protocols can be applied in the restructured trees with
some possible graceful degradation. Below we have stated the
restructuring method after peers leave.

3.2.1 Restructuring Method. As mentioned earlier, each

peer in the jth LPT, viz. Tj maintains the addressing information
of all peers in Tj including that of itself in a table Tj. This
information includes a peer’s overlay address and the IP
address.

The following two situations are considered and we state the
methods to handle these so that the characteristics of pyramid
tree architecture can be retained.

Case 1: Any peer p with secondary overlay address X in an

LPT Tj other than its root j leaves.

We assume graceful degradation; right before leaving the tree

Tj, peer p unicasts a ‘leave’ message to the root j of Tj. Root j
will delete the entry corresponding to the peer p with address X
from its table Tj and assigns a virtual address X to the peer which
had earlier the address (X+1) mod m where mod m is used to
build the tree Tj. In this way, readdressing of the overlay
addresses for all peers following the leaving one will take place.
Root j forms a new table Tj' and unicasts this updated table to
the rest of the peers of the tree Tj. Thus, the structure of a
pyramid tree remains intact after the peer p leaves; of course,
the tree Tj now can become an incomplete one. It may also
remain as a complete one depending on the number of the peers
leaving; however, in that case its level will be smaller than the
original version of the tree Tj. Observe that structure of the
pyramid tree is actually embedded in the table in the form of the
links’ information that a peer in the tree is linked with some
particular other peers, along with the overlay addresses of the
peers.

Case 2: Root j of Tj leaves

Step 1. Root j unicasts a ‘leave’ message to the peer p' with

the next higher overlay address.
Step 2. Peer p' becomes the next root and assigns its new

tertiary overlay address as j.
Step 3. Peer p' assigns new overlay addresses to the rest of

the available peers, i.e., a previous address Y now becomes (Y-
1).

Step 4. New root p' forms a new table Tj' and unicasts it to
the other peers.

Step 5. A new tree Tj' is built. This new tree may be an
incomplete or complete one depending on the total number of
the leaving peers.

Observation 5. Any combination of peers leaving an LPT can

be handled as in either Case 1 or 2. If the combination involves
the root, case 2 will be considered; otherwise it is Case 1.

Example (Case 1)

Let us consider the jth LPT of some cluster as shown in Figure

4, peers’ secondary overlay addresses are from 0 to 9 and the
tree is a complete one. To explain the situation of Case 1 clearly,
we assume that the peers’ respective IP addresses are a, b, …, j.
Assume that peer 4 leaves. The structure will be no more that
of a pyramid tree after the leave (Figure 5). However, based on
the proposed restructuring method, peer 5 in Figure 4 now has
the logical address 4, similarly peer 6 in Figure 4 now has the
logical address 5 and in that way peer 9 has 8. The new pyramid
tree after restructuring is shown in Figure 6. Note that in Figure
6 peer 4 with IP address f is different from peer 4 with IP address
e in Figure 4. That is, peer 4 in Figure 6 is actually peer 5 in
Figure 4. Note that peers with logical addresses 0 to 3 have not
gone through any change. Root j constructs a new table Tj' and
unicasts to the other peers in this tree.

Figure 4: Before peer 4 leaves

Example (Case 2)

Consider the tree of Figure 4. Assume that the root peer with

overlay address 0 and IP address a is leaving. Based on the
restructuring method, right before leaving peer 0 unicasts a
leave message to peer 1. Peer 1 (b) now becomes the new root

128 IJCA, Vol. 28, No. 3, Sept. 2021

and its overlay address becomes 0 and it will convert any other
overlay address Y to (Y-1). It builds a new table Tj' and unicasts
it to the rest of the peers. The new information about the links
along with the changed overlay addresses produces the tree as
shown in Figure 7. Thus, the structural properties remain intact
except that the tree is now an incomplete one.

Figure 7: After restructuring, it remains a pyramid tree

3.3 Protocol Capacity-Constrained-Broadcast

Earlier we have discussed the effect of the leaving of peers on

the existing structure of an LPT. Since after such leaving an
LPT may become an incomplete pyramid tree even after
restructuring, therefore, we shall consider only the protocol
Broadcast-Incomplete in an LPT. We do it irrespective of the
completeness of the tree because protocol Broadcast-Complete
is applicable only to complete LPT, whereas Broadcast-
Incomplete work both in complete and incomplete LPTs. It may
be noted that in Broadcast-Incomplete in an LPT a source peer
first unicasts its packets to the root of the tree (after restructuring
wherever applicable); the root in turn broadcasts the packets to
the rest of the tree. It generates only one extra packet per packet
broadcast. This is the only bad effect of the protocol. Note that
if the root itself is the source of broadcast, neither any extra
packer is generated, nor there is any additional unicast.

In the proposed protocol (see Figure 8), we assume the
following: a cluster Cj has k number of LPTs and the tertiary
overlay address of the root of the jth LPT is j (1≤ j ≤ k). We
denote the jth LPT as LPTj and we call the root simply as root j
(its tertiary address is r also). As mentioned earlier, cluster-head
Cj

h maintains a separate table Tr containing the tertiary overlay
and the IP addresses of the root of each LPT in the cluster;
whereas every other root saves the tertiary overlay and the IP
addresses of the root(s) of its neighboring LPT(s) only. In the
following protocol, unicasting to an LPT means unicast to the
root of the LPT.

Protocol

Based on the location of the broadcast source, we need to

consider the following three possible situations:
Source peer is present in LPTk; or is present in LPT1; or is

present in some LPTr, r ≠ k and r ≠1

if j = k / Source peer is present in the last LPT (LPTk)
 unicasts to LPTj-1
 root j executes Broadcast-Incomplete protocol in its LPTk

 j = j-1
 while 1< j
 root j unicasts to LPTj-1
 root j executes Broadcast-Incomplete protocol in LPTj
 j = j-1
 continue
 root 1 executes Broadcast-Incomplete in LPT1

--
if j = 1 / Source is present in the first LPT1
 while j < k
 root j unicasts to LPTj+1
 root j executes Broadcast-Incomplete protocol in LPTj
 j = j +1
 continue
 root k executes Broadcast-Incomplete protocol in LPTk

if 1 < j < k
 / source is present in some other LPTr, r ≠ k and r ≠1

step 1. root j unicasts to LPTj-1 and LPTj+1
 root j executes Broadcast-Incomplete protocol in

LPTj
step 2. t = j-1
 while 1< t
 root t unicasts to LPTt-1
 root t executes Broadcast-Incomplete protocol

in LPTt
 t = t-1
 continue
 root 1 executes Broadcast-Incomplete protocol in

LPT1
step 3. t' = j+1
 while t' < k
 root t unicasts to LPTt'+1
 root t' executes Broadcast-Incomplete protocol

in LPTt'
 t' = t'+1
 continue

 root k executes Broadcast-Incomplete protocol in

LPTk

__

Figure 8: The protocol

Theorem 1. Each peer in a cluster Cj receives a copy of each

broadcast packet.
Proof. The protocol ensures that each root gets a copy of each

broadcast packet. Each root then executes Broadcast-
Incomplete’ in its tree. Since ‘Broadcast-Incomplete’
guarantees that each peer in a tree receives a copy of each
broadcast packet; hence is the proof. □

Performance

We shall discuss first broadcast latency followed by memory

utilization by any root.

IJCA, Vol. 28, No. 3, Sept. 2021 129

Let a cluster Cj be divided into n LPTs. Let us first consider
the worst case in which the source of broadcast is either in the
1st LPT or in the last one, the kth LPT. Let it be in the 1st LPT.
Let us assume that all LPTs have identical number of levels and
it is l. It takes (k-1) hopes for a broadcast packet to reach the kth
root (i.e., the root of the kth LPT). Observe that the concept of
pipelining is implicitly present in the protocol; that is, by the
time a broadcast packet arrives at the lth level of the kth tree,
broadcast is already complete in all other trees. Therefore, the
number of hops to complete the broadcast in the worst case is
[(k-1) + (l-1)]. In addition, it is clear that if the kth LPT has less
than l number of levels, the total number of hops as mentioned
above is sufficient to complete the broadcast.

If we consider the best case, i.e., when the broadcast source is
present in a tree located at the middle. Total number of hops =
[(k-1)/2 + (l-1)].

From the viewpoint of the memory used by a peer in any LPTj
to save its table Tj or by the cluster-head Cj

h (and any other root)
to save its tables Tj and Tr, we have observed the following using
clusters of different sizes. Broadcast latency does not vary
much with m (m is the mod value used to create the LPTs inside
the cluster); however, there is considerable increase in the
memory requirement to save the tables as we increase the value
of m. In fact, memory requirement varies linearly with cluster
size. Therefore, it may be suggested that the designers select a
reasonably small value of m for efficient use of the memory of
the peers.

4 Capacity Constrained Multicast

We denote the LPT containing the source of multicasting as

LPTs. The source peer, say peer p, in LPTs registers with the
root s. In general, the corresponding root s can itself be the
source of multicasting as well. Source peer p first registers with
the root s and then during multicasting, it unicasts its packets to
the root s and the root s in turn sends the multicast packets to the
peers in its tree which have joined the multicast session;
actually, these peers form a core-based tree (CBT) [1] with s as
its root. In general, we denote a CBT with core j as CBTj. In
addition, root s is also responsible to send multicast packets to
the roots of the other trees that are interested in receiving the
packets. So effectively the root s acts as the source of multicast
during multicasting. The proposed protocol will use the relevant
information present in the tables of the roots as in the case of
capacity constrained broadcast. A multicast session consists of
three phases which are stated below.

Phase 1: Roots learning about the interested peers

Step 1. Source root s of the LPTs broadcasts a ‘query’

message in all the component trees. This can be accomplished
by executing the capacity constrained broadcast protocol.

Step 2. Source root s forms the CBTs with s as its root if
some peers in LPTs join the core s for receiving multicast
packets from the source peer p of multicasting.

/ CBTs is formed with s as its root

Phase 2: Formation of core-based trees (CBTs) in other
component trees and across the cluster

Step 1. Root j unicasts a join request to the source root s if it

receives any join request(s) from peers in LPTj
Step 2. Root j forms a CBTj consisting of the interested

peers in LPTj

/ this is the CBT inside LPTj

Step 3. A 2-level CBT with root s is formed with other

joining roots as its leaves. The maximum diameter of this tree
is 2.

/ this 2-level CBT with root s is formed across the cluster

Phase 3: Multicasting from source p

Step 1. Source peer p unicasts multicasts packets to source

root s
Step 2. Root s sends the packets to the joining cores in the

2-level CBT.
 Root s multicasts the packets to the peers in the CBTs in

LPTs.
Step 3. Each joining core j multicasts the packets to the

peers in the CBTj in LPTj.

Performance

We assume that for a given mod value of m, the cluster

contains k number of LPTs. The trees have the same level l,
except possibly the last one that may have fewer peers not
enough to make the level l. However, for simplicity we assume
that all LPTs have the same level. Therefore, k.m is the total
number of peers in the cluster before partitioning. The protocol
builds CBTs with maximum level l inside some LPTs
containing multicast receivers and a 2-level CBT across the
cluster with leaves as some roots of some LPTs interested in
receiving multicast packets.

A multicast packet travels from a source peer p to the source
root s in a maximum of (l-1) hops, then to all other roots in the
2-level CBT in 1 hop, and also to all group members in the
receiving LPTs in a maximum of (l-1) hops.

Note that multicast in the source LPT goes on along with the
multicasts in other LPTs; so, idea of pipelining is implicitly
present. Hence, we can safely assume that approximately in (l-
1) hops multicast in the related LPTs can be completed.

Therefore, multicast latency in hops is (l-1) +1+ (l-1), i.e., (2l-
1); and it is independent of the size of the cluster. Hence, time
complexity is O(l). Since l ≈ 2m, therefore, it may be suggested
that the designers select a reasonably small value of m for low
latency multicast in the cluster.

5 Conclusions

In this paper, we have considered a recently reported non-

DHT based structured P2P system. The main advantages of the

130 IJCA, Vol. 28, No. 3, Sept. 2021

architecture are its very low data lookup latency and ease of
churn handling compared to most DHT-based P2P systems. In
this architecture, a cluster consists of peers with common
interest and its overlay diameter is only one hop. In reality,
because of peer heterogeneity, peers are differently capacity
constrained and therefore, lookup latency of O(1) inside a
cluster may not be achievable in reality. It has led us to propose
practical approaches for both broadcasting and multicasting
inside a cluster of peers considering peer heterogeneity.

We are now investigating how the proposed structure can be
used/modified in order to reduce the traffic and operating costs
of Internet Service Provider (ISP) and P2P Service Provider.

References

[1] Tony A. Ballardie, “Core Based Tree Multicast Routing

Architecture,” Internet Engineering Task Force (IETF),
RFC 2201, (September 1997).

[2] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker, “Making Gnutella-Like P2P Systems
Scalable,” Proc. ACM SIGCOMM, Karlsruhe, Germany,
pp. 407-418, August 25-29 2003.

[3] Shiping Chen, Baile Shi, Shigang Chen, and Ye Xia,
“ACOM: Any-Source Capacity-Constrained Overlay
Multicast in Non-DHT P2P Networks,” IEEE Tran.
Parallel and Distributed Systems, 18(9):1188-1201, Sep.
2007.

[4] P. Ganesan, Q. Sun, and H. Garcia-Molina, “Yappers: A
Peer-to-Peer Lookup Service Over Arbitrary Topology,”
Proc. IEEE Infocom 2003, San Francisco, USA, 2:1250-
1260, March 30 - April 1, 2003.

[5] Bidyut Gupta and Mohammad Mohsin, “Fault-Tolerance
in Pyramid Tree Network Architecture,” J. Computer
Systems Science and Engineering, 10(3):164-172,
July,1995.

[6] M. Kleis, E. K. Lua, and X. Zhou, “Hierarchical Peer-to-
Peer Networks using Lightweight SuperPeer
Topologies,” Proc. IEEE Symp. Computers and
Communications, pp. 143-148, 2005.

[7] D. Korzun and A. Gurtov, “Hierarchical Architectures in
Structured Peer-to-Peer Overlay Networks.” Peer-to-
Peer Networking and Applications, Springer, pp. 1-37,
March 2013.

[8] Koushik Maddali, Indranil Roy, Swathi Kaluvakuri, and
Bidyut Gupta, “Efficient Broadcast Protocols for
Complete and Incomplete Pyramid Tree P2P
Architecture,” under preparation.

[9] Z. Peng, Z. Duan, J. Jun Qi, Y. Cao, and E. Lv, “HP2P:
A Hybrid Hierarchical P2P Network,” Proc. Intl. Conf.
Digital Society, pp. 86-90, 2007.

[10] A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for Large Scale
Peer-to-Peer Systems,” Proc. FIP/ACM Intl. Conf.
Distributed Systems Platforms (Middleware), pp. 329-
350, 2001.

[11] Indranil Roy, Bidyut Gupta, Banafsheh Rekabdar, and
Henry Hexmoor, “A Novel Approach Toward Designing

a Non-DHT Based Structured P2P Network
Architecture,” EPiC Series in Computing, Proceedings
of 32nd Int. Conf. Computer Applications in Industry and
Engineering, Las Vegas, NV, 63:121-129, 2019.

[12] Indranil Roy, Koushik Maddali, Swathi Kaluvakuri,
Banafsheh Rekabdar, Ziping Liu, Bidyut Gupta, and
Narayan Debnath, “Efficient Any Source Overlay
Multicast in CRT-Based P2P Networks ─ A Capacity -
Constrained Approach,” Proc. IEEE 17th Int. Conf.
Industrial Informatics (IEEE INDIN), Helsinki, Finland,
pp. 1351-1357, July 2019.

[13] Indranil Roy, Nick Rahimi, Koushik Maddali, Swathi
Kaluvakuri, Bidyut Gupta, and Narayan Debnath,
“Design of Efficient Broadcast Protocol for Pyramid
Tree-based P2P Network Architecture,” EPiC Series in
Computing, Proceedings of 33rd Int. Conf. Computer
Applications in Industry and Engineering, San Diego,
CA, 63:182-188, 2020.

[14] K. Shuang, P. Zhang, and S. Su, “Comb: A Resilient and
Efficient Two-Hop Lookup Service for Distributed
Communication System,” Security and Communication
Networks, 8(10):1890-1903, 2015.

[15] I. Stocia, R. Morris, D. Liben-Nowell, D. R. Karger, M.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet
Applications,” IEEE/ACM Tran. Networking, 11(1):17-
32, Feb. 2003.

[16] M. Xu, S. Zhou, and J. Guan, “A New and Effective
Hierarchical Overlay Structure for Peer-to-Peer
Networks,” Computer Communications, 34:862-874,
2011.

[17] M. Yang and Y. Yang, “An Efficient Hybrid Peer-to-Peer
System for Distributed Data Sharing,” IEEE Trans.
Computers, 59(9):1158-1171, Sep. 2010.

[18] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. Zoseph,
and J. D. Kubiatowicz, “Tapestry: A Global-Scale
Overlay for Rapid Service Deployment,” IEEE J-SAC,
22(1):41-53, Jan. 2004.

Indranil Roy (photo not available) is currently a PhD student

in Computer Science Department of Southern Illinois
University, Carbondale. He has completed his B.E in
Electronics & Communication from RCCIIT, Kolkata, in the
year 2016. He received his M.S degree in Computer Science
from Southern Illinois University, Carbondale in 2018. His
main research interests include Blockchain along with interest-
based p2p architecture.

Swathi Kaluvakuri (photo not available) is a Ph.D. candidate

from Southern Illinois University Carbondale – School of
Computing. She graduated from Jawaharlal Nehru

IJCA, Vol. 28, No. 3, Sept. 2021 131

Technological University with a Bachelor of Technology degree
in Computer Science major. She holds a keen interest in the
areas of Peer to Peer Networking and Blockchain and worked
as a Software Engineer, Technical Product Support and IBM
AS400 developer for Net Cracker Pvt Ltd from 2012-2014.

Koushik Maddali (photo not available) is a Ph.D. candidate

in Department of Computer Science at Southern Illinois
University Carbondale. He received his MS from the same
university and his BS from Jawaharlal Nehru Technological
University, India. His research interests include Peer to Peer
Networking, Blockchain and worked on a Virtual Terminal
project of Cisco from 2017-2018.

Abdullah Aydeger (photo not available) is an Assistant

Professor in the Department of Computer Science at Southern
Illinois University, Carbondale. He received his M.S. and a
Ph.D. degree from the Department of Computer Engineering at
Florida International University in 2016 and 2020 and his B.S.
degree in Computer Engineering from Istanbul Technical
University in 2013. His research interests include Software
Defined Networking, Network Function Virtualization, Moving
Target Defense, and their utilization for different network
security and resiliency problems. He applies the ideas not only
to traditional ISP networks but also to emerging network
domains within cyber-physical systems and IoT. He has
published papers in reputable journals and conferences. He has
also contributed two book chapters. Dr. Aydeger has served as
a reviewer for many conferences and journals.

Bidyut Gupta (photo not available) received his M. Tech.
degree in Electronics Engineering and Ph.D. degree in
Computer Science from Calcutta University, Calcutta, India. At
present, he is a professor at the School of Computing (formerly
Computer Science Department), Southern Illinois University,
Carbondale, Illinois, USA. His current research interest
includes design of architecture and communication protocols for
structured peer-to-peer overlay networks, security in overlay
networks, and Blockchain. He is a senior member of IEEE and
ISCA.

Narayan Debnath (photo not available) earned a Doctor of

Science (D.Sc.) degree in Computer Science and also a Doctor
of Philosophy (Ph.D.) degree in Physics. Narayan C. Debnath
is currently the Founding Dean of the School of Computing and
Information Technology at Eastern International University,
Vietnam. He is also serving as the Head of the Department of
Software Engineering at Eastern International University,
Vietnam. Dr. Debnath has been the Director of the International
Society for Computers and their Applications (ISCA) since
2014. Formerly, Dr. Debnath served as a Full Professor of
Computer Science at Winona State University, Minnesota, USA
for 28 years (1989-2017). Dr. Debnath has been an active
member of the ACM, IEEE Computer Society, Arab Computer
Society, and a senior member of the ISCA.

	1 Roy Kalurakuri Maddali Sept 2021

