
4 IJCA, Vol. 29, No. 1, Mar 2022

ISCA copyright© 2022

A Multi-Modal, Pluggable Transaction Tamper Evident Database Architecture

Islam Khalil*, Sherif El-Kassas*, and Karim Sobh*
The American University in Cairo, Cairo, Egypt

Abstract

Fraud and data tampering is one of the key security risks of

computer systems in general and in particular, sophisticated
architecture that involves a wide array of heavily interdependent
systems that communicate data using microservices, as well as
simple normal user-facing systems.

The evolving risks of security threats as well as regulatory
compliance are important driving forces for achieving better
integrity and detecting any possible data tampering by either
internal or external malicious perpetrators. We present the
architecture for a multi-modal tamper detection solution with a
primary goal of being easily retrofittable into existing systems
with minimal intervention required from system developers or
system administrators in large organizations. Our focus in this
work is append-only databases like financial transactions,
auditing systems, as well as technical system logs. We also pay
attention to data confidentiality by making sure that the data
never leaves the organization’s premises. We leverage designs
like chains of record hashes to achieve the target solution. After
illustrating different ways of integrating DBKnot into existing
architecture, we then go through how to leverage existing web
service configuration and definition standards to increase the
seamlessness and ease of retrofitting into existing applications
by automatically detecting and learning about the target web
service semantics without much need for manual human
intervention.

Key Words: Database, security, tamper evident, chaining,
lock-chain, and hash chaining.

1 Introduction

With the increasing use and ubiquity and multiple ways to use

and access data across systems and as system architectures get
more sophisticated and their interdependence is increasing
while the range of technologies being used is widening, the need
for more security and detecting fraud also increases. We
propose a novel solution to protecting database integrity by
providing a transparent and seamless middleware for securing
database transactions against possible tampering by individuals
who have full administrative access to the database and all its
related infrastructure.

Such systems manage information like bank transactions,

* Emails: {ikhalil, sherif, kmsobh}@aucegypt.edu.

medical information, government records, as well as other
critical information. Such systems often fall prey to perpetrators
who are insiders or collude with insiders to commit their fraud
crimes. External malicious actors are in many cases the players
responsible for committing fraud and tampering with sensitive
databases. Many cases involve tampering with existing systems
and making fraudulent transactions that go unnoticed because
they are committed by insiders who already have access and
permission to the systems they tamper with.

According to the Association of Certified Fraud Examiners
(ACFE) 2018 report [26], $7 Billion of losses were incurred due
to internal fraud alone with an average fraud scheme going for
16 months unnoticed. Small businesses lose twice as much as
big organizations due to their lack of proper access to a) Internal
control processes that mitigate against such fraud and b)
Systems in place that protect against such tampering.

According to Harvard Business Review [31], more than 80
million insider security breaches occur every year costing tens
of billions of dollars in the US alone. In one incident $350,000
was stolen from 4 Citibank customers by employees of a
software and service company that Citibank had contracted [31].
According to Accenture [6] and The World Economic Forum
(WEF) [35], the cost of insider malicious activity constitutes
15% of all cybercrime. The IETF’s RFC 4810 [28, 39]
guidelines for “Long Term Archive Services Requirements”
indicate that non-repudiation and integrity are important to any
store of data to protect against potential tampering. The number
of internal fraud cases resulting in compromising the integrity
of organizations’ data is increasing year after year [31]. For
example, in the year 2010 alone, internal fraud has increased at
a rate of 20%.

One of the causes of such an increase is the broadening
complexity and use of IT solutions and its corresponding
increase in the number of internal and external stakeholders
needed to operate such systems.

Various governments have put in place different regulations
to reduce/eliminate such risks. Among such regulations are the
Gramm-Leach-Bliley Act by the US Federal Trade Commission
(FTC) [11] which mandates that companies engaging in
financial services put in place necessary measures to safe-guard
their sensitive data against tampering. Another act that was
decreed by the US congress is the Sarbanes-Oxley Act [22]
(SOX) which mandates that companies protect their data and
ensure that destruction of evidence does not occur for the
purpose of later investigation of corruption and fraud cases.

IJCA, Vol. 29, No. 1, Mar 2022 5

This act was made as a reaction to a number of major corruption
scandals including Enron and WorldCom. The Health
Insurance Portability and Accountability Act [18] (HIPAA) by
the US Department of Health and Human Services (HHS) is also
an example which regulates access and changes to medical
records.

The goal of this work is to design a solution that enables
systems based on traditional databases to be tamper-evident.
Different integration models are to be discussed (on the ORM
level, database level, or web service level). The primary goal is
to eliminate the need for trust inside the organization while
minimizing the overhead added by the solution. Ease of
integration is key while requiring zero or little changes to
existing systems. The solution should be able to detect
tampering either by external hackers or by internal malicious
employees, staff, and system administrators who have full
permissions on the target database. This is done by relying more
on information accountability rather than information restriction
[24, 126, 129].

In the process of coming up with such a solution, a number of
different technologies are examined, in addition to related work.

Example append-only applications that could benefit from our
proposed solutions are server security logs, banking
transactions, accounting ledgers in enterprises, notary and real-
estate records, birth and death records, time and attendance
systems, and many others.

Possible tampering could be committed on different levels.
On a system administrator level, however the risk is that a) The
sysadmin can commit the fraud and b) The sysadmin can cover-
up any traces or logs of the fraudulent activity they have
performed since he/she is the one responsible for all system
permissions, logs, monitoring, etc.

We start this paper by giving a background on some of the
technologies used, then we briefly mention different related
approaches to the same problem and a comparison of their
corresponding features. Afterwards we go through our
proposed solution, then we show some results of our
experimentation followed by a conclusion. This paper is a
continuation of the work done in [13].

2 Background

2.1 Object Relational Mapping (ORM)

Object Relational Mapping (ORM) frameworks [16–17, 36,

38] sit between developer applications and databases. They
provide developers with full object-oriented semantics to the
database allowing developers to use object oriented design to
model their data without having to worry about how this maps
to the database. ORM frameworks in turn take care of the
mapping between data objects on one hand, and tables and
relations on the other hand during database creation and
definition, transactions, as well as querying.

Figure 1: Standard ORM operations shows how the ORM
layer sits between the developer code and the database itself and
abstracts away all of the DBMS specific relational database
operations.

Figure 1: Standard ORM operations

2.2 Web Services

Web services provide a standard mechanism of integrating

different software systems or subsystems while abstracting
away all implementation details and technologies. Web services
usually provide the functionality to make database transactions
as well as queries through formats like the REST API [37].

Figure 2: REST API request and response is an example of
how web services work.

Figure 2: REST API request and response

2.2.1 REST. The definition of REST according to [27] is

“Representational State Transfer”.
REST is defined to be a standardized HTTP based

communication scheme for systems to invoke web services
across hybrid technologies without relying on any technology
specific integration and thus, decouple implementations from
internal technologies.

REST depends on standard HTTP methods (GET, POST,
HEAD, DELETE, etc.) and uses standard HTTP return codes to
communicate meaningful responses.

Contents of a REST message are usually written in formats
like JSON (a javascript notation representation of data), but also
other formats could be used like XML and YAML.

2.2.2 CRUD. CRUD (Create, Read, Update, Delete) are

standard database operations. They are however often mapped

6 IJCA, Vol. 29, No. 1, Mar 2022

very closely to REST API calls [32] (REST APIs have many
other non-CRUD uses as well). The concept of CRUD was
coined long ago before web services APIs were used and is very
database specific.

2.2.3 Scenarios of REST and CRUD Mapping. With the

creation of REST, there started to be many use cases that tend
to show semantic similarities between parts of the two concepts.

3 Related Work

A number of different solutions have been proposed to target

the problem we are addressing. Solutions vary in the way the
problem is tackled. Some of them use a similar technique of
chained hashes. All the solutions surveyed failed to provide a
seamless and non-invasive way to get retrofitted into existing
solutions with little or zero changes necessary. Another
important difference is the requirement that data does not leave
the users’ premises.

DRAGOON [1, 23-24] is an information accountability
system that relies on continuous cryptographic hashing of
transactions. DRAGOON primarily relies on an external
“Digital Notarization Service” rather than just a simple external
transaction signer.

Amazon Quantum Ledger Database (QLDB) [4], a
blockchain based database, solves part of the problem addressed
in our work.

QLDB provides the ledger database service based on the
premise that there is a “central” and “trusted” authority which
in this case is Amazon. In this case Amazon provides the
signing and trust service as well as the hosting of the actual data.
Which is exactly the model we are trying to avoid and solve.
Having both the storage of the data as well as the verifiability of
its integrity in the hands of the same party. The difference
though is that it requires data to be stored at Amazon premises
meaning that Amazon needs to be depended on as a trusted host
of the data.

BigchainDB [12] leverages a blockchain network to provide
decentralized and an immutable database. However, due to its
sophisticated setup, it does not allow seamless retrofitting into
existing systems.

There are other research work like [24] that focus on
documents rather than data. Some of which are designed to
track documents provenance throughout their lifecycle.

Several other research works have catered to a similar
problem in the domains of operating systems and file systems.
Examples are [5, 8, 10, 14-15, 20, 30, 34]. But most of them
either depend on a local trusted administrator or use
mechanisms that require data to be moved to outside the local
premises.

Summary of Related Work Comparison:

By looking at the related work, the primary gaps that our

solution fills are:

• Trust of an Insider: Many of the solutions provide

measures to protect or detect data tampering on an application
level or on a database level with all requirements present in-
house and within the control of the internal DBA team. This
comes with the implicit assumption that the internal top-most
system administrators with the highest level of access to systems
and databases are fully trusted and cannot be malicious or even
collude to tamper with data. Our goal is, while maintaining the
highest level of privilege to internal database admins, we still
provide a tamper-evident mechanism.
• Trust of Third Party: Some of the commercial solutions

provided (Amazon QLDB) assume the organization trusts the
third party with protecting its data. Our solution eliminates the
need for this trust.
• No Data Transfer: Some of the solutions resort to

providing an external verifiable copy of the data. This adds
some complications like a) confidentiality of data at third party
and in transit, b) performance penalty of transferring all data.
We eliminate the need for transferring an organization’s data
and keep it completely in-house.
• Database: Some of the solutions protect other objects than

databases, for example, documents, filesystem, or even entire
operating systems. Our goal is transactional databases.
• Transactional: Some of the solutions do protect data but

cater more to a batch processing model rather than live
transactional systems. We cover the transactional component.
• Database Specific: Some of the work provides solutions

that have to be implemented in a database specific setup. Even
though we have this approach among one of our solutions, we
also provide two other alternatives that are completely database
agnostic.
• Transparent: Some of the solutions are not transparent

and require modifications at the application level to function.
We provide a solution that is as seamless as possible and that
requires zero or very little modifications on the application
level. Modifications required at the database level or at the
middleware level are minor ones that are add on configurations
rather than being invasive. Our goal has been to design a
solution that could be transparently retrofitted into existing
systems with a) non-invasive approach, and b) empowers old
and currently existing systems as well.

Our goal has been to address the abovementioned gaps as

much as possible. The reason we have chosen the gaps
identified above is that they are vital for any solution to be
applicable in existing real industrial use cases rather than just
propose a solution that stops only at the theoretical level and
falls short of being suitable for solving real life scenarios.
Another goal is to provide a solution that does not impractically
require total change in an underlying infrastructure.

4 Proposed Solution

4.1 Solution Brief

In our presented solution we build a transparent and seamless

middleware for securing database transactions against possible

IJCA, Vol. 29, No. 1, Mar 2022 7

tampering by individuals who have full administrative access to
the database and all its related infrastructure. The way this is to
be achieved is by leveraging some features of the technology
similar to blockchain to interweave sequences of transactions in
an unbreakable chain. This is to be done by generating a unique
hash for each transaction and using it in a chain of transactions.
Any attempts to modify previously entered data will break the
hash and therefore the sequence of transactions following such
transaction will be invalidated.

In order to guarantee that such a chain could not be
regenerated following any tampering attempt, an external
source is used for time stamped signing of hashes. The external
time-stamp signer is external to the entity so it is beyond the
reach of any internal system administrator. Another alternative
could be a physical Hardware Security Module (HSM).

In our work, we propose three integration architectures. One
is used for Object Relational Mapping frameworks (ORM), the
second is for direct database integration, and the third is
implementing microservice solutions by a totally transparent
reverse proxy.

4.2 The Hasher and The Time-Stamping Signer

The direction adopted is to introduce an externalized time-

stamper/signer and/or a tamper-resistant HSM (Hardware
Security Module). The role of the signer is to sign a hash of
each record/transaction that gets added to the database. In
addition to the record, a hash of the previous record is added. A
time-stamp is also added to the signed data to protect against
future signing replay attacks.

The solution relies on the introduction of a third-party signing
authority. The third-party is an external entity that is outside the
reach of organization insiders and thus reduces and ideally
eliminates the possibility of collusion among internal and
external stakeholders.

4.3 Externalized Signer/Stamper

As illustrated in Figure 4, the signer is by design to be external

and to serve (as a service) multiple unrelated organization. This
adds more security and dramatically reduces the possibility of
collusion among system administrators of all the organizations
serviced by the signer.

We introduced in Figure 5, an independent signer and time-
stamper service (in red). The signer/time-stamper is a totally
external entity that could even be outside the organization. The
signer service could cater to different organizations as illustrated
in the diagram.

In addition to being an external entity, the signer is designed
to operate in a completely stateless manner. DBKnot does not
rely on the signer keeping any information regarding the data
being signed or its corresponding hashes. Such statelessness
makes the following possible:

1- Simplicity of design: Reduces the range of possible

attack vectors making it less vulnerable to attacks.
2- No Storage – Confidentiality: No storage is needed on

the signer end which adds to security and privacy. This provides
zero knowledge securing of the data since it only acts as a signer
and not as a repository or secondary storage service.

3- No Data Transferred: Actual data never leaves the
premises of the user. Alternatively, only a hash is exchanged
for the signing process. This reduces a) the network traffic and
overhead due to data transfer, b) vulnerability of data in transit
to both exposure as well as tampering, and c) having to trust the
external signing party on all organization’s data.

4- Workload Balancing: Statelessness makes it possible to
balance loads across many signer nodes as needed if their clocks
are well synced. This makes it easy to scale the signing service
by adding more servers and distributing the workload among
those servers.

5- Multi-Site Failover: Statelessness also allows signers to
be rolled out at multiple different sites. This provides added
reliability in the case of a failure of a whole site due to a total
internet outage or a blackout in the hosted area/country.

6- Proximity: Statelessness allows servers to be distributed
in a way that increase proximity to the users of the servers. This
reduces signing latency and duration cost of network delays.
This approach is commonly used by Content Distribution
Networks (CDNs).

The hasher is the first step of the process. As soon as a record

is appended to any of the tracked tables, a hashing process is
triggered. The hasher takes the inserted record, creates a
structure that represents the concatenation of all fields, hashes
that structure, and inserts all information describing that record
in the hash table.

Once a record has been added, and after it has gotten
automatically hashed, the corresponding hash record will be
passed to the signer. The signer will take the hash record, add
to it the preceding record together with a time-stamp and sign
them all with the signer public key. The signature of the
preceding record could be appended to the hashed string instead
of the hash, but we see that the hash will be sufficient because it
will not be possible to tamper with the hash without breaking
the signature. The resulting signature and time-stamp will be

Figure 3: Signer service

8 IJCA, Vol. 29, No. 1, Mar 2022

Figure 4: Detailed introduction of a third-party external signing authority

Figure 5: Introduction of a third-party signing service

returned to the database server and stored inside the hash table.
The signature saved in the hash table will be used for
verification.

4.4 Integration Models

Three different strategies are provided for integrating into

existing systems.
The first technique is to design the DBKnot as an embedded

layer inside Object Relational Mapping (ORM) systems so
application developers can use it seamlessly in a declarative way
as detailed below. The second approach is to implement it as a
hook into existing databases. This requires less intervention
from the user side and only requires an action from the database
system administrator. The third and relatively more challenging
approach is to be implemented in the form of a REST web
service reverse proxy.

4.4.1 ORM Level Integration. Object Relational Mapping

(ORM) frameworks [16-17, 36, 38] sit between developer
applications and databases. They provide developers with full

IJCA, Vol. 29, No. 1, Mar 2022 9

object oriented semantics to interfacing with the database.
ORM frameworks allow system developers to use object

oriented design to model their data without having to worry
about how this maps to the database. ORM frameworks in turn
take care of the mapping between data objects on one hand, and
tables and relations on the other hand.

At design phase, the ORM layer is responsible for generating
the Data Definition Language (DDL) necessary to create the
required tables. In SQL these are SQL INSERT statements.
The ORM takes care of choosing the necessary dialect of the
underlying database by utilizing individual “drivers” for
different databases.
ORM layers are also responsible for maintaining the
consistency of the mapping throughout the development cycle

by propagating any changes done to the model to be reflected
immediately into the database structure while preserving all
data. This is a process that some implementations call
“migration” after the mapping is done, and during runtime, the
ORM layer implements all OOP Create, Retrieve, Update, and
Delete (CRUD) operations by mapping them to their
corresponding Data Manipulation Language (DML) statements.
In SQL, this is done by using INSERT, SELECT, UPDATE,
and DELETE SQL statements respectively. As done in the
DDL, all DML statements are generated by the ORM driver that
corresponds to the database being used which in turn ensures
that the necessary SQL flavor is used.

In addition to the declarative semantics and ease of use by
developers, embedding a tamper-detection layer inside the

Figure 6: Signer and time-stamper

Figure 7: Integration options

Database Layer

Integration
Options

Web Service
Layer

ORM Layer

10 IJCA, Vol. 29, No. 1, Mar 2022

ORM layer also makes it completely database agnostic.
Meaning that the same implementation will work on any

database as long as it is supported by the used ORM layer
without any changes.

Figure 8 shows how the ORM layer sits between the
developer code and the database itself and abstracts away all of
the DBMS specific relational database operations.

In the following section, two different techniques are outlined
for integration into ORM systems.

The first one is through an application level ORM interceptor,
and the second one is through implementing a framework level
global middleware to perform the ORM functionality.

4.4.1.1 ORM Technique 1: ORM Interceptor. To

retrofit DBKnot functionality into an ORM application, as the
user code initiates any persistent database operations (insert
operations) that are tagged as trackable, the ORM interceptor
takes the transaction, passes it to the original ORM layer which
takes care of the transaction as normally expected. Afterwards,
the ORM interceptor starts doing its own hashing and signing
actions by hashing the record and adding it into a local hash
table and then communicating with an external signer to sign the
transaction and save the signed hash linked with the previous
hash.

Figure 10 shows how the DBKnot hook is inserted in the
middle of the operation. DBKnot intercepts all calls to the ORM,
performs the needed hashing and signing functionality, and
passes execution to the original ORM framework.

The integration layer is designed to provide a completely
seamless user experience to developers. In the current
implementation, as illustrated in

Figure 11, all a user (developer) needs to do is to have his/her

model classes extend a class (a mixin) that provides all needed
functionality.

4.4.1.2 ORM Technique 2: Framework-wide Global

Middleware. A second approach to integrating into ORM
systems is to integrate in the form of a middleware that is
embedded into the ORM framework itself. The advantage of
this approach is that it is completely transparent and will not
even require the declarative approach of extending a “trackable”
class in system code. The side effect however of this approach
is that it will give application developers less control to
selectively track specific models (tables) while ignoring the
tracking of other models. This could be mitigated through the
implementation of an external configurator that could be
managed separately to disable universal tracking and allow
selective tracking of data models.

4.4.1.3 More Efficient ORM Tracking through Parallel

Pipelining. The efficiency of the previously outlined ORM
tracking could be increased through the introduction of a level
of parallelism. Such parallelism in signing and stamping is not
going to be as simple as just creating a parallel thread due to the
fact that the feature of “chaining” introduces dependencies. Due
to this level of dependency, a pipelining technique is introduced
as detailed in Chapter 4.7.

Figure 12 shows an adapted version of the activity diagram
after adding the parallel tracking.

4.4.2 Database Level Integration

DBKnot also supports database level integration. This is done

Figure 8: Standard ORM operations

IJCA, Vol. 29, No. 1, Mar 2022 11

Figure 9: ORM interceptor

Figure 10: Adding DBKnot ORM hook basic activity diagram

class Test(DBKnotMixin):
 name=models.CharField("Name",max_length=50)
 def __str__(self):
 return self.name

Figure 11: ORM simple mixing implementation

12 IJCA, Vol. 29, No. 1, Mar 2022

Figure 12: Adding DBKnot ORM hook parallel activity diagram

by embedding triggers on tracked tables. When a record is
inserted in a tracked table, the trigger will be fired and will
perform all the needed tracking functionality.

The default behavior in Figure 13 is changed by adding the
DBKnot layer. The DBKnot layer is called a database trigger
that tracks desired tables.

Figure 14 shows the asynchronous version of the DBKnot
database level integration where the hashing and signing
functionality is signaled by a trigger in the database level.

4.4.2.1 The Signer. The direction adopted is to introduce an

externalized time-stamper/signer and/or a tamper-resistant
HSM (Hardware Security Module). The role of the signer is to
sign a hash of each record/transaction that gets added to the
database. In addition to the record, a hash of the previous record
will be added. A time-stamp is also added to the signed data in
order to protect against future signing replay attacks.

4.4.2.2 A Chain of Hashes. A chain of the hashed

transactions is being maintained. The chain includes the signed

hashes of the data as well as the time-stamps. Each record will
include a hash of the previous record.

The chain of hashes is the only item that is added to the
existing database. All other tables, field definitions, and records
are untouched and remain intact.

As illustrated in Figure 16, The hash-chain-table is made up
of the following fields:

1- id: A sequential ID. This is very important for

identifying the sequence of transactions hashed. This is used
during the signing and signature verification process.

2- table_name: The name of the table where the record
came from. The hashing table is a database wide table.
Meaning that it contains hashes of all records regardless of
which table they come from. This keeps the hashing table as the
only item added to the database and avoids making any changes
of any other tables of the database to be secured.

3- record_hash: A hash of the record chained is placed in
this field. In this research, MD5 hashing has been used. It is
necessary that a fast hashing algorithm is used. Hashing is

Figure 13: Normal database operation

IJCA, Vol. 29, No. 1, Mar 2022 13

Figure 14: Database level DBKnot integration

Figure 15: Signer service

applied to a structure that contains a concatenated form of all
record fields. SHA-256 or 512 could also replace MD5 for
added security but with their corresponding performance
tradeoff [9, p 2]. We believe however, that such a change may
or may not be necessary depending on the application. It is not
practical (in fact almost not possible) to generate a reverse hash
for a specific number or piece of information that needs to be
tampered. The only possibility here will be to generate a reverse
hash to corrupt the data rather than put in any meaningful data.

Again, it could be configurable and left to be decided on a case-
by-case basis.

4- Time-stamp: This field is filled by the data returned from
the signer. It is the signature time-stamp.

5- signature: In this field, the signature itself is stored as
returned by the signer.

4.4.2.3 The Hasher. The hasher is the first step of the

process. As soon as a record is appended to any of the tracked

14 IJCA, Vol. 29, No. 1, Mar 2022

tables, a hashing process is triggered. The hasher takes the
inserted record, creates a structure that represents the
concatenation of all fields, hashes that structure, and inserts all
information describing that record in the hash table as described
in Section 4.4.2.2.

Parallelizable Hashing: By nature, the hashing process is
parallelizable. This will utilize any available parallelism
infrastructure present at the database server to optimize signing

performance. In addition, it could be done by any external
server that has access to the same database or a live replica of
the database to relieve the primary server from extra
computation work.

4.4.2.4 Inserting the Signer and Time-Stamper. Once a

record has been added, and after it has gotten automatically
hashed, the corresponding hash record will be passed to the

Figure 16: Chain of hashes

Figure 17: Hasher

IJCA, Vol. 29, No. 1, Mar 2022 15

Figure 18: Signer and time-stamper

Figure 19: Web service implementation

signer. The signer will take the hash record, add to it the
preceding record together with a time-stamp and sign them all
with the signer public key. The signature of the preceding
record could be appended to the hashed string instead of the
hash, but we see that the hash will be sufficient because it will
not be possible to tamper with the hash without breaking the
signature. The resulting signature and time-stamp will be
returned to the database server and stored inside the hash table.

The signature saved in the hash table will be used for
verification.

4.4.3 Web-Service/API Microservices Architecture.

DBKnot functionality could be implemented inside a
middleware. The benefit of injecting the functionality in the
form of a middleware is that it could allow the functionality to
be retrofitted into existing applications while doing zero

16 IJCA, Vol. 29, No. 1, Mar 2022

changes to the existing application. This way existing
applications can benefit from DBKnot and secure their data
seamlessly.

This approach is better suited to cater to applications with
microservice architectures.

Challenge: This will require an easy-to-use mini

language/syntax for application developers to define their
application web service’s semantics.

Advantage: Totally non-invasive, could be totally external
to server inside a reverse proxy.

In this approach, the DBKnot functionality is to be

implemented in the form of a reverse proxy/middleware that sits
between all incoming API requests and the system being
tracked.

The following are the advantages of implementing DBKnot
in the form of a web service intermediary:

- Technology agnostic: Totally decoupled from any

underlying technology used by the software implementation.
- Supports hybrid microservices: In an enterprise

application or a set of applications that is dependent on
numerous microservices, this design will be able to support all
of the services even if they are implemented by different
software/applications (e.g., billing software + accounting
software + CRM software, etc.)

- Multi-server support: This approach will function
regardless of the number of back-end servers providing the
service. It will also work in load balancing use cases.

- Non-relational Database: Relying on REST web
services for tracking database CRUD operations opens the way
to cater to other non-relational database models directly without
being limited to a particular ORM framework or a database
management system.

The drawback/challenge however to implementing DBKnot

as a web service is the lack of adherence to a concrete and clear
CRUD standard in the usage of REST web services.
Accordingly, such implementation will need to be configurable
to match each service that it intercepts. So, even though the
original software is untouched, work will need to be done at the
reverse proxy level in order to configure DBKnot, and this will
make it implementation specific.

As mentioned in Section 2.2, our approach is to try and base
record chaining on the semantics of using the REST API to do
CRUD functionality. This is a good entry point to the
implementation of this technique. The technique could be taken
a step further into covering other REST semantics but will
require more implementation specific configuration and will be
less transparent.

The following are some REST methods that are based on
standard HTTP methods: [21, 32].

As we see in Table 1, HTTP (REST) methods automatically
lend themselves to data operations.

Additionally, most of the HTTP (REST) response codes
match standard database operations. [32]

4.4.4 REST API Based Definition. To be able to track a

microservice based request, in most cases a specific
configuration is required. Fortunately, there are new industry
standards [3] for performing such configurations. Examples are
OpenAPI [2, 19, 33] and RAML [25].

As we can see, a number of the details of the possible web
service operation is specified in YAML format.

4.5 Verification Steps

Verification of records and thus, the detection of possible

tampering falls into the following three categories:

Table 1: HTTP methods and REST

Table 2: HTTP (and REST) return codes
HTTP Return Code Meaning
200 OK Operation performed correctly
201 Created Record added correctly
400 Bad Request There is a problem with the request
401 Unauthorized Authentication Required
403 Forbidden User permission problem
404 Not Found Item being queried does not exist

Method Use
GET Retrieve a particular record of data
HEAD Get a summary of record data
PUT Add a record
POST Possibly update a data record
DELETE Delete a data record

IJCA, Vol. 29, No. 1, Mar 2022 17

This is an example service definition using OpenAPI:

tags:

- pet

summary: Updates a pet in the store with form data

operationId: updatePetWithForm

parameters:

- name: petId

 in: path

 description: ID of pet that needs to be updated

 required: true

 schema:

 type: string

requestBody:

 content:

 'application/x-www-form-urlencoded':

 schema:

 type: object

 properties:

 name:

 description: Updated name of the pet

 type: string

 status:

 description: Updated status of the pet

 type: string

 required:

 - status

responses:

 '200':

 description: Pet updated.

 content:

 'application/json': {}

 'application/xml': {}

 '405':

18 IJCA, Vol. 29, No. 1, Mar 2022

 description: Method Not Allowed

 content:

 'application/json': {}

 'application/xml': {}

security:

- petstore_auth:

 - write:pets

 - read:pets

1- Malicious addition of a record: results in a record that
does not have a corresponding signed hash in the
hash/signature table.

2- Malicious deletion of existing records: results in an
existing hash/signature without a corresponding record.

3- Malicious tampering with hashes or signatures: results in
a scenario that is a combination of the two tampering
situations above.

Figure 21 shows an example of the inconsistencies resulting

from maliciously adding a record to the database.
There are two cases when a verification is triggered. The first

one is at data read or insertion time where one record needs to
be verified. The verification step will trace the record back
throughout the chain through an “n” predefined depth before
generating the assumption that it was not tampered with within
a particular time window (1 week, 1 month, 1 year, etc.).

The second case is the case of patrolling threads/processes.
These are housekeeping threads that regularly patrol the
database to check and confirm the correctness of all records,
hashes, signatures, and linkages.

We believe more work could be done on both verification
cases to optimize such a process and increase the coverage of
tests within the same short duration of time.

4.6 Performance Optimization

The additional tracking/hashing/signing layer does not come

without an expense. There is of course a performance impact
on insert transactions into the database. In this section we
illustrate a number of different optimizations that could be used
to mitigate and reduce such an impact. Most of them will be for
the purpose of introducing different forms of parallelism into the
design.

4.6.1 Signing Distribution. In this design illustrated in Figure
22: Parallel signers - consistent hashing, a technique similar to
database record sharding is used to distribute workload on a
number of different shards. Instead of chaining signed blocks
in a purely sequential manner, they are chained in a round robin
form. In this case, if the system is configured to use “𝒏𝒏” shards,

then each record “𝒊𝒊” will be chained with distributed to shard
“𝒔𝒔 = 𝒊𝒊 % 𝒏𝒏”. The record will be linked to the previous record
in the same shard too. Please note that the “I” is the sequence
ID of the hash record rather than the ID of any of the tables. So,
there is no possibility of collisions with other IDs in the system.

The advantage of this technique is that it breaks down the
added latency and sequentiality of the process and introduces a
degree of parallelism. Utilizing this method, several insert
statements together with their corresponding hashes could be
done in parallel without having to wait for each other to finish.

The tradeoff in this approach is that database verification is
divided into “n” independent chunks which makes the chaining
process less complex. One mitigation for that is to introduce
occasional inter-shard linkages to tightly intertwine them
together and eliminate that independence.
Figure 23 illustrates how consecutive transactions are linke,
hashed, chained, and signed together and how they are split into
groups.

4.6.2 Coarse Grained Block Signing. Instead of performing

hashing and signing on a record-by-record level, records are
grouped into blocks. Each block is hashed together and then the
group hash is signed by the signer.

The figure below (Figure 24) shows how transaction batches
are broken down into blocks and each block is hashed and
signed separately. This approach reduces the signing overhead
and enhances performance. Instead of a hash table with an entry
for every record, a smaller hash table is utilized with a record
per batch. There is a tradeoff however between the batch
(block) size and the time required to verify a record.
Another drawback is that records of a whole batch will remain
untracked until the batch is completed and signed. This will be
problematic in cases where the database undergoes few
transactions. To mitigate for this problem, a variable size block
could be implemented (illustrated in Figure 24: Coarse grained
signing - variable block size) where if a block remains open for
a certain (configurable) duration of time, the system generates a
clock event. This clock event with its corresponding time-stamp
will force the closing and signing of the open block regardless
of the number of records in the block. This approach will also
have the added benefit of being able to work in an environment

IJCA, Vol. 29, No. 1, Mar 2022 19

Figure 20: Detection of a maliciously deleted record

Figure 21: Detection of a maliciously added record

Figure 22: Parallel signers - consistent hashing

20 IJCA, Vol. 29, No. 1, Mar 2022

Figure 23: Parallel signers - linking of hashes

Figure 24: Coarse grained signing - variable block size

with intermittent or unreliable connectivity.

4.7 Performance Optimization – Pipelining

Four different techniques are being used for handling

sequentiality/parallelism in implementing the DBKnot chaining
process.

The first technique is purely sequential, the second technique
pipelines the signing process, the third technique pipelines both
the hashing and signing processes combined, and the fourth
technique designs everything to be pipelined.

Each one of the techniques will be further explained in its own
corresponding section.

4.7.1 Parameters. For each of the techniques used, there are
three assumed scenarios that will be tested. All the scenarios
are variants of the following set of variables:

- Transaction time: The time taken to perform a
transaction on the database.

- Hashing time: The time taken to hash a transaction.
- Signature time: The time taken to sign the hashes and

produce a signature.

All variables

𝑛𝑛 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑡𝑡 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡1

→ 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡2
→ 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 [4𝑋𝑋] 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

ℎ = ℎ𝑎𝑎𝑎𝑎ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑠𝑠 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑣𝑣 = 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Figure 25: Testing variables

The following categories of transactions were derived from

the preceding variables:

- Transaction Bound: In these scenarios, the transaction

time is the longest of the three numbers.
- Hashing Bound: In these scenarios, the hashing time is

the longest of the three numbers.
- Signing Bound: In these scenarios, the signing time is the

longest of the three numbers.

All tests are done on two batches of transactions, one of them

IJCA, Vol. 29, No. 1, Mar 2022 21

is made up of transactions that require a small “t1” to run,
another one is a long batch with transactions taking longer time
“t2” where (𝑡𝑡2 = 4 × 𝑡𝑡1). There are two other intermediate
batches but we have decided to not include their results in this
document due to the sufficient clarity of the other samples.

4.7.2 Technique 1: Inline Hashing & Signing. The first

technique used is to perform the transaction, followed by the
hashing process, followed by the signing process. They are all
done in series as illustrated in Figure 26.

There are three scenarios of implementing the “all-inline”
sequential method. Such scenarios are used in comparison of
different techniques under varying conditions.
The formula in Figure 27 shows that due to the linear
dependency nature of this approach, the total time taken is a
simple sum of the total time taken for each transaction
(transaction time “t” + hashing time “h” plus signing time “s”)
and that the process is a very basic sequential one without any
performance gains from any potential parallelism.

4.7.3 Technique 2: Partial Concurrency Through

Signature Pipelining. This technique removes the signing
process out of the main execution pipeline to allow running it in
parallel when needed to gain some performance. Please note that
the transaction and hashing in this approach remain sequential.

4.7.4 Technique 3: Concurrency Through Hash and

 Signature Pipelining. This technique separates the hashing
and signing from the main thread and executes them separately
in a single thread of sequential execution. Please note that they
are both sequential as well. The signing process has been
increased in duration to illustrate the sequential nature of the
process and its impact.

4.7.5 Technique 4: Concurrency Through Pipelining All

Operations. This technique is different from all the others
above. In this technique we separate each of the three steps
(transaction, hashing, and pipelining) into its own pipeline and
let them run asynchronously while preserving sequence
dependencies.

In this solution everything runs in parallel. Where a hasher is
separate from a signer and separate from the main transaction
thread of execution.

5 Experimentation and Results

Workloads were automatically generated by taking into

consideration covering all different combinations of different
inputs. For example, signing time was generated to include a

whole spectrum of signing time displaying the existence of local
vs. remote signer and different delays in the signing process.
The same was done for the hashing time as well as transaction
time.

The two comparison sets of heatmaps below show that
pipelining does enhance performance in most cases. The
following is a summary of the pipelining results:

All inline

o Base performance.
o Increase in record hashing or signing time results in

equal impact on performance.

• Pipeline signing

o Better overall performance
o Increase in signing time results in less performance

degradation than increase in hashing time due to
parallelism.

• Pipeline signing & hashing

o Slight performance improvement from the signing-
only pipelining.

o Equal impact of increase in hashing and signing time
on the total duration.

• Pipeline all

o Significantly better performance.
o Performance is slightly better when hashing and

signing time are similar.

6 Conclusions and Future Work

As a conclusion, and after going through related work in the
same area, we believe we have added a new solution for tamper
detection for a certain class of problems. The solution is
designed to be very lightweight, easy to retrofit into existing
systems, as well as adding almost zero steps requiring handling
data either in transit or in new storages.

We designed a tamper-evident architecture called DBKnot
that detects database tampering in most cases. An external
signer is being used to further protect the database from
tampering even by an insider who has full authority and access
rights over the whole system, including operating systems,
databases, network, and firewalls. DBKnot enables tracking of
individual tables that are immutable such as accounting systems,
banking systems, and system logs. A chain of records inspired

Figure 26: Inline hashing & signing

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Note: Block proportions are the same and are only for sequence illustration and do not denote proportionality of operation time.

All Inline

22 IJCA, Vol. 29, No. 1, Mar 2022

All inline formula:

𝑣𝑣 = �𝑡𝑡 + ℎ + 𝑠𝑠
𝑛𝑛

𝑖𝑖=0

Figure 27: Formula for "all inline"

by blockchain is used to interlink records together through
linking their hashes. Each hash link is signed using an external
signer or a hardware security module.

We showed how the techniques could apply in three different
modes of integration: 1) Embed inside a database management
system, 2) Embed inside an Object Relational Mapping
framework, or 3) Implement as an external reverse-proxy for
multiple web-services and even multiple totally different
servers.

We have illustrated how DBKnot could be implemented in a
web service model and how new web service definition
languages can be used to facilitate the DBKnot web service
configuration process for systems that adhere to the standard
and properly define their services. In that case, this can be done
with much less intervention from the system admin than if
nothing was defined at all.

We have performed tests using generated workloads. As
expected, the tests showed an increased overhead for the
hashing and signing operations. The overhead though was
almost constant when prorated to a transaction level, meaning
that it would scale up with the same level of performance.
Performance overhead could be significantly reduced by using
different parallelization and pipelining techniques to reduce the
synchronicity of hashing and signing.

We have explored different parallelization by testing four
techniques of parallelization. The first approach was zero
parallelization where everything is run in series, and then
incrementally started parallelizing step by step until we reached
an all parallel scenario. The testing showed that parallelization
will lead to a significant performance leap.

The following are some areas that could be enhanced or
features that could be added in upcoming related work:

The current work assumes that data being tracked is
immutable. Further work can be done by finding different
techniques or approaches that would enable catering to database
systems that change through updates and deletes with
reasonable optimality while utilizing the same technique of
relying on external signers for security against internal
tampering.

Figure 28: Partial concurrency through signature pipelining

Formula for signature pipelining:

𝑣𝑣1 = 𝑠𝑠 + �𝑡𝑡 + ℎ
𝑛𝑛

𝑖𝑖=0

 𝑣𝑣2 = 𝑡𝑡 + �𝑠𝑠 + ℎ
𝑛𝑛

𝑖𝑖=0

𝑣𝑣 = max (𝑣𝑣1, 𝑣𝑣2)

Figure 29: Formula for signature pipelining

Figure 30: Concurrency through hash and signature pipelining

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Inline Hashes - Pipelined Signing

Note: Block proportions are the same and are only for sequence illustration and do not denote proportionality of operation time.

Pipelined Hashing & Signing

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Note: Block proportions are the same and are only for sequence illustration and do not denote proportionality of operation time.

IJCA, Vol. 29, No. 1, Mar 2022 23

Formula for hash and signature pipelining:

𝑣𝑣1 = 𝑠𝑠 + �𝑡𝑡 + ℎ
𝑛𝑛

𝑖𝑖=0

 𝑣𝑣2 = 𝑡𝑡 + �𝑠𝑠 + ℎ
𝑛𝑛

𝑖𝑖=0

𝑣𝑣 = max (𝑣𝑣1, 𝑣𝑣2)

Figure 31: Formula for signature and hash pipelining

Figure 32: Pipelining all operations

The area of Merkel Trees could be studied further.
Verification algorithms utilizing a Merkel Tree like approach
could result in more efficient verification of tracked records.

More studies need to be done to see how the system can be
adapted to changes in database structure. This would enable,
not only established and mature systems in production, but also
dynamic and changeable systems that are undergoing constant
development.

DBKnot is designed as much as possible to detect any
tampering with data inside the database. There are however two
cases that are not covered. The first case is where the fraudster
has access to the application source code. In this case the data
is tampered in transit before reaching the database. So the
database has no knowledge that the application data has been
tampered with. The second vulnerability is the small window
between the transaction and the hashing of the transaction. This
window could be controlled (shortened or extended) by
changing the signing granularity or eliminating block signing
altogether and enabling per transaction signing. It is a tradeoff
between window size and performance

.

Formula all pipelining:

𝑣𝑣1 = ℎ + 𝑠𝑠 + �𝑡𝑡
𝑛𝑛

𝑖𝑖=0

 𝑣𝑣2 = 𝑡𝑡 + 𝑠𝑠 + �ℎ
𝑛𝑛

𝑖𝑖=0

 𝑣𝑣3 = 𝑡𝑡 + ℎ + �𝑠𝑠
𝑛𝑛

𝑖𝑖=0

𝑣𝑣 = max (𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3)

Figure 33: Formula for pipelining all operations

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

Transaction

Sign

Hash

N
ote: B

lock proportions are the sam
e and are only for sequence

illustration and do not denote proportionality of operation tim
e.

All Pipelined

24 IJCA, Vol. 29, No. 1, Mar 2022

Figure 34: Pipelining all – illustration

Figure 35: Transaction performance comparison heatmap

References

[1] “Amazon QLDB,” Amazon Web Services, Inc.

https://aws.amazon.com/qldb/ (accessed May 02, 2019).
[2] Apache Foundation, “OpenAPI Specification v3.1.0 |

Introduction, Definitions, & More.” https://spec.openapis.
org/oas/v3.1.0 (accessed Jan. 21, 2022).

[3] “API Specifications Conference,” Linux Foundation
Events. https://events.linuxfoundation.org/openapi-asc/
(accessed Jan. 21, 2022).

[4] “BigchainDB 2.0 Whitepaper • • BigchainDB,”
BigchainDB. https://www.bigchaindb.com/whitepaper/
(accessed May 11, 2019).

[5] “Canonical’s Snap: The Good, the Bad and the Ugly,” The
New Stack, Jul. 07, 2016. https://thenewstack.io/
canonicals-snap-great-good-bad-ugly/ (accessed Aug. 12,
2020).

[6] “Cost of Cibercrime - Accenture.” Accessed: Nov. 07,
2019. [Online]. Available: https://www.accenture. com/
_acnmedia/pdf-96/accenture-2019-cost-of-cybercrime-

https://www.accenture/

IJCA, Vol. 29, No. 1, Mar 2022 25

study-final.pdf.
[7] “Designing Better File Organization Around Tags, Not

Hierarchies,” https://www.nayuki.io/page/designing-
better-file-organization-around-tags-not-hierarchies#git-
version-control (accessed Oct. 12, 2019).

[8] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P.
M. Chen, “ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay,” p. 14, 2002.

[9] R. T. Fielding, “Architectural Styles and the Design of
Network-based Software Architectures,” University of
California, Irvine, CA, 2000.

[10] A. Goel, Wu-chang Feng, D. Maier, Wu-chi Feng, and J.
Walpole, “Forensix: A Robust, High-Performance
Reconstruction System,” 25th IEEE International
Conference on Distributed Computing Systems
Workshops, Columbus, OH, USA, pp. 155-162, 2005. doi:
10.1109/ICDCSW.2005.62.

[11] “Gramm-Leach-Bliley Act,” Federal Trade Commission.
https://www.ftc.gov/tips-advice/business-center/privacy-
and-security/gramm-leach-bliley-act (accessed Oct. 12,
2019).

[12] R. Hasan, R. Sion, and M. Winslett, “The Case of the Fake
Picasso: Preventing History Forgery with Secure
Provenance,” Proccedings of the 7th Conference on File
and Storage Technologies, Berkeley, CA, USA, pp. 1-14,
2009. Accessed: Oct. 11, 2019. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1525908.1525909

[13] I. Khalil, S. El-Kassas, and K. Sobh, “DBKnot: A
Transparent and Seamless, Pluggable, Tamper Evident
Database,” EPiC Series in Computing, 77:90-103, Oct.
2021. doi: 10.29007/7l81.

[14] L. Lavaire, “Immutable Systems: How They Work and
Why Should We Care,” Medium, Jul. 10, 2019.
https://medium.com/nitrux/immutable-systems-how they-
work-and-why-should-we-care-39e567a59f28 (accessed
Aug. 12, 2020).

[15] “MD5, SHA-1, SHA-256 and SHA-512 Speed
Performance – Automation Rhapsody.” https://
automationrhapsody.com/md5-sha-1-sha-256-sha-512-
speed-performance/ (accessed Aug. 23, 2020).

[16] “Object-relational Mappers (ORMs).” https://www.full
stackpython.com/object-relational-mappers-orms.html
(accessed Aug. 23, 2020).

[17] “Object-Relational Mapping,” Wikipedia. Aug. 20, 2020.
Accessed: Aug. 23, 2020. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Object-
relational_mapping&oldid=974070664

[18] O. for C. Rights (OCR), “Summary of the HIPAA Security
Rule,” HHS.gov, Nov. 20, 2009. https://www.
hhs.gov/hipaa/for-professionals/security/laws-
regulations/index. html (accessed Oct. 12, 2019).

[19] “OpenAPI Specification,” Wikipedia. Nov. 27, 2021.
Accessed: Jan. 21, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=OpenAPI_Spe
cification&oldid=1057453112

[20] “OSTree.” https://ostree.readthedocs.io/en/latest/
(accessed Aug. 12, 2020).

[21] “Overview of RESTful API Description Languages,”
Wikipedia. Jan. 17, 2022. Accessed: Jan. 21, 2022.
[Online]. Available: https://en.wikipedia.org/w/index.
php?title=Overview_of_RESTful_API_Description_Lan
guages&oldid=1066320532

[22] M. G. Oxley, “H.R.3763 - 107th Congress (2001-2002):
Sarbanes-Oxley Act of 2002,” Jul. 30, 2002.
https://www.congress.gov/bill/107th-congress/house-
bill/3763 (accessed Oct. 12, 2019).

[23] K. E. Pavlou and R. T. Snodgrass, “Forensic Analysis of
Database Tampering,” ACM Trans Database Syst,
33(4)30:1-30:47, Dec. 2008, doi: 10.1145/1412331.
1412342.

[24] K. Pavlou and R. Snodgrass, “DRAGOON: An
Information Accountability System for High-Performance
Databases,” Proc. - Int. Conf. Data Eng., pp. 1329-1332,
Apr. 2012. doi: 10.1109/ICDE.2012.139.

[25] “RAML (Software),” Wikipedia. Oct. 14, 2021. Accessed:
Jan. 21, 2022. [Online]. Available: https://en.wikipedia.
org/w/index.php?title=RAML_(software)&oldid=104981
3969

[26] “Report to the Nations - 2018 Global Study on
Occupational Fraud and Abuse,” Association of Certified
Fraud Examiners, 2019. Accessed: Apr. 17, 2019.
[Online]. Available: https://www.acfe.com/report-to-the-
nations/behind-the-numbers/

[27] “Representational State Transfer,” Wikipedia. Jan. 06,
2022. Accessed: Jan. 21, 2022. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Representa-
tional_state_transfer&oldid=1064071285

[28] “RFC 4810 - Long-Term Archive Service Requirements.”
https://datatracker.ietf.org/doc/rfc4810/ (accessed May
01, 2019).

[29] “Security by Design Principles - OWASP.”
https://www.owasp.org/index.php/Security_by_Design_P
rinciples (accessed May 01, 2019).

[30] “Snapcraft - Snaps Are Universal Linux Packages,”
Snapcraft. https://snapcraft.io/ (accessed Aug. 12, 2020).

[31] D. M. Upton and S. Creese, “The Danger from Within,”
Harvard Business Review, no. September 2014, Sep. 01,
2014. Accessed: May 09, 2019. [Online]. Available:
https://hbr.org/2014/09/the-danger-from-within

[32] S. Watts, “REST vs CRUD: Explaining REST & CRUD
Operations,” BMC Blogs. https://www.bmc.com/
blogs/rest-vs-crud-whats-the-difference/ (accessed Jan.
21, 2022).

[33] “Welcome,” RAML. https://raml.org/ (accessed Jan. 21,
2022).

[34] “Welcome to Flatpak’s Documentation! — Flatpak
Documentation.” https://docs.flatpak.org/en/latest/
(accessed Aug. 12, 2020).

[35] Weltwirtschaftsforum and Zurich Insurance Group,
Global risks 2019: insight report. 2019. Accessed: Nov.
07, 2019. [Online]. Available: http://www3.weforum.
org/docs/ WEF_Global_Risks_Report_2019.pdf

[36] “What is Object/Relational Mapping? - Hibernate ORM.”
https://hibernate.org/orm/what-is-an-orm/ (accessed Aug.

26 IJCA, Vol. 29, No. 1, Mar 2022

23, 2020).
[37] “What is REST.” https://restfulapi.net/ (accessed Jul. 26,

2020).
[38] C. Xia, G. Yu, and M. Tang, “Efficient Implement of

ORM (Object/Relational Mapping) Use in J2EE
Framework: Hibernate,” pp. 1–3, Jan. 2010, doi: 10.1109/
CISE.2009.5365905.

[39] K. Zeng, “Publicly Verifiable Remote Data Integrity,”
Information and Communications Security, pp. 419-434,
2008.

Islam Khalil has received his BSc and
MSc degrees in computer science from
The American University in Cairo. He
is currently pursuing his PhD with a
primary focus on database systems and
security. On the professional side,
Khalil is the co-founder of companies
that provide data analytics, business
intelligence, and cloud services for
various enterprises in the areas of

telecommunication, AgTech, utilities, defense, and others
worldwide. Khalil’s company has been recognized as one of the
top 5 companies worldwide in applying artificial intelligence to
the field of agriculture and one of the top 3 worldwide most
influential companies in data analytics in some specific
agriculture verticals. Khalil has been appointed by the minister
of industry on the board of directors of various semi-
governmental organizations focused on industry and export
development.

Sherif El-Kassas is a Professor of
Computer Science and Engineering at
the American University in Cairo. El-
Kassas’ research interests are focused
on Security Engineering, the
application of formal methods in
Software engineering and Computer
Security, and Open Source
technologies.

El-Kassas is also a consultant for

various organizations; Member of the board of e-finance
(leading provider of governmental and payment services),
former board member of the Information Technology Industry
Development Agency (ITIDA); Member of the board of trustees
of the Egyptian e-signature center of excellence; Founding
member of the Egyptian Open Source NGO (OpenEgpt) and
Internet Masr (Egyptian Chapter of Internet Society); Founding
partner, former broad member, and former CTO of SecureMisr
(leading Egyptian Information Security services providers,
recently acquired Cysiv a trend micro company); Founder of
new startup, QuiverLabs, focusing on innovative threat
modeling and incident response technologies; and Member of
various professional computing societies.

El-Kassas received his Ph.D. from the Eindhoven University
of Technology in the Netherlands.

Karim Sobh received the B.Sc., M.Sc.,
and Ph.D. degrees in computer science
from The American University in Cairo.
He worked at the American University
in Cairo (AUC) as a Full time Assistant
Professor for three academic years in the
Department of Computer Science and
Engineering. Prior to that he worked at
Nile University (NU), Cairo and as an
Assistant Professor and the University

of California at Santa Cruz (UCSC) as a Visiting Lecturer. He
is currently the Chief Technology Officer (CTO) of Blnk
Consumer Finance, an emerging FinTech startup in Egypt. He
also founded Code-Corner, a software development firm
providing software development, subcontracted services, cloud
deployment services, consultation services, and turn-key
solutions using open source technologies. He also worked as a
Systems Architecture Consultant at IBM Egypt. His role
included and was not limited to providing system architecture
consultations and implementation services for large projects.
His specialization is in operating systems, networks, distributed
systems, and cloud computing, and his Ph.D. topic is cloud
environments metering.

	Final IJCA Journal Issue for Mar 2022
	International Society for Computers
	Editorial; March Issue 2022 . 1
	Guest Editoral: Special Issue from ISCA Fall—2021 SEDE Conference 2
	A Multi-Modal, Pluggable Transaction Tamper Evident Database Architecture 4
	Islam Khalil, Sherif El-Kassas, and Karim Sobh

	Design and Implementation of VA-TAP the Veteran Services Tracking and Analytics Program . 27
	Jonathon Hewitt, Daniel Hall, Christopher Parks, Payton Knoch, Sergiu M. Dascalu, Devrin Lee, Nikkolas J. Irwin, and Frederick C. Harris, Jr.
	Jonathon Hewitt, Daniel Hall, Christopher Parks, Payton Knoch, Sergiu M. Dascalu, Devrin Lee, Nikkolas J. Irwin, and Frederick C. Harris, Jr.
	Feng Yu, Semih Cal, En Cheng, Lucy Kerns, and Weidong Xiong

	VR Tracker Location and Rotation Preductions using HTC Vive Tracking System and Gradient Boosting Regressor . 48
	Mariam Hassanein, Sherine Rady, Wedad Hussein, and Tarek F. Gharib

	IJCA Editorial Board inside front cover-1
	EditorsNote's
	2b Guest Editorial March 2022
	1d Khalil El-Kassas Sobh IJCA Mar 2022
	1 Introduction
	2 Background
	2.1 Object Relational Mapping (ORM)
	2.2 Web Services
	2.2.1 REST. The definition of REST according to [27] is “Representational State Transfer”.
	2.2.2 CRUD. CRUD (Create, Read, Update, Delete) are standard database operations. They are however often mapped very closely to REST API calls [32] (REST APIs have many other non-CRUD uses as well). The concept of CRUD was coined long ago before web ...
	2.2.3 Scenarios of REST and CRUD Mapping. With the creation of REST, there started to be many use cases that tend to show semantic similarities between parts of the two concepts.

	3 Related Work
	4 Proposed Solution
	4.1 Solution Brief
	4.2 The Hasher and The Time-Stamping Signer
	4.3 Externalized Signer/Stamper
	4.4 Integration Models
	4.4.1.1 ORM Technique 1: ORM Interceptor. To retrofit DBKnot functionality into an ORM application, as the user code initiates any persistent database operations (insert operations) that are tagged as trackable, the ORM interceptor takes the transac...
	4.4.1.2 ORM Technique 2: Framework-wide Global Middleware. A second approach to integrating into ORM systems is to integrate in the form of a middleware that is embedded into the ORM framework itself. The advantage of this approach is that it is co...
	4.4.1.3 More Efficient ORM Tracking through Parallel Pipelining. The efficiency of the previously outlined ORM tracking could be increased through the introduction of a level of parallelism. Such parallelism in signing and stamping is not going to b...
	4.4.2 Database Level Integration
	4.4.2.1 The Signer. The direction adopted is to introduce an externalized time-stamper/signer and/or a tamper-resistant HSM (Hardware Security Module). The role of the signer is to sign a hash of each record/transaction that gets added to the databa...
	4.4.2.2 A Chain of Hashes. A chain of the hashed transactions is being maintained. The chain includes the signed hashes of the data as well as the time-stamps. Each record will include a hash of the previous record.
	signer. The signer will take the hash record, add to it the preceding record together with a time-stamp and sign them all with the signer public key. The signature of the preceding record could be appended to the hashed string instead of the hash, b...

	4.4.3 Web-Service/API Microservices Architecture. DBKnot functionality could be implemented inside a middleware. The benefit of injecting the functionality in the form of a middleware is that it could allow the functionality to be retrofitted into e...
	4.4.4 REST API Based Definition. To be able to track a microservice based request, in most cases a specific configuration is required. Fortunately, there are new industry standards [3] for performing such configurations. Examples are OpenAPI [2, 19...

	4.5 Verification Steps
	4.6 Performance Optimization
	4.6.1 Signing Distribution. In this design illustrated in Figure 22: Parallel signers - consistent hashing, a technique similar to database record sharding is used to distribute workload on a number of different shards. Instead of chaining signed b...
	4.6.2 Coarse Grained Block Signing. Instead of performing hashing and signing on a record-by-record level, records are grouped into blocks. Each block is hashed together and then the group hash is signed by the signer.

	4.7 Performance Optimization – Pipelining
	4.7.2 Technique 1: Inline Hashing & Signing. The first technique used is to perform the transaction, followed by the hashing process, followed by the signing process. They are all done in series as illustrated in Figure 26.
	4.7.3 Technique 2: Partial Concurrency Through Signature Pipelining. This technique removes the signing process out of the main execution pipeline to allow running it in parallel when needed to gain some performance. Please note that the transaction...
	Signature Pipelining. This technique separates the hashing and signing from the main thread and executes them separately in a single thread of sequential execution. Please note that they are both sequential as well. The signing process has been incr...
	4.7.5 Technique 4: Concurrency Through Pipelining All Operations. This technique is different from all the others above. In this technique we separate each of the three steps (transaction, hashing, and pipelining) into its own pipeline and let them ...

	5 Experimentation and Results
	6 Conclusions and Future Work

	2 Hewitt, Hall, Harris, IJCA Mar 2022
	3d Yu Cal, Cheng, Kerns IJCA Mar 2022
	Introduction
	Background
	-AQP
	Bootstrap Sampling

	Bootstrap for Selection Query Error Estimation
	Selection Query Estimation
	Bootstrap Sampling from Query Results
	Computing the Confidence Interval

	Implementation
	Experiment
	Experiment Setup
	Bootstrap Accuracy Tests
	Speed Performance Tests
	Tests of Optimized Bootstrap Sampling

	Related Work
	Conclusion and Future Work

	4 Hall Wang Blankenship IJCA 3 22_Revised
	Journal Submission Instructions2022
	Journal Submission

	IJCA Jrnl back outside cover Mar 2022

