
IJCA, Vol. 29, No. 1, Mar 2022 27

Design and Implementation of VS-TAP
The Veteran Services Tracking and Analytics Program

Jonathon Hewitt*, Daniel Hall*, Christopher Parks*, Payton Knoch*,
Sergiu M. Dascalu*, Devrin Lee*, Nikkolas J. Irwin*, Frederick C. Harris, Jr.*

University of Nevada, Reno,
Reno, Nevada, USA.

Abstract

The Veteran Services Tracking and Analytics Program (VS-
TAP) is a web application used to store and query the rate
and duration of visitors within Veteran Services’ locations.
The application accepts data from Navigate as well as a
hosted demographics survey to display statistics in a graphically
meaningful way. Accumulating data from different sources
allows stakeholders to create custom reports to compare
multiple variables that represent student veterans.

Key Words: Analytics, authentication, data, database,
django, document processing, ETL (extract, transform, load),
systemd-nspawn, tracking, veteran services, visualization, web
application.

1 Introduction

The Veteran Services Tracking and Analytics Program (VS-
TAP) is a data gathering and analytics application. The goal of
this program is to collect, store, and combine data from several
sources into a single usable database. The web application
tracks the rate and duration of visitors that attend veteran centers
and events. The program also combines all the data collected
from various sources that can be queried for data visualization
purposes. Data capture and visualization are important to the
center’s existence and helps determine the success of events as
well as requests for funding.

The interface for data visualization is presented as a “reports
wizard” to help walk Veteran Services staff through graph
generation. The initial aim was to mimic the quantity of
graphs associated with Microsoft Excel while eliminating the
learning curve. Previously, Veteran Services manually tracked
attendance using a USB-connected barcode scanner. Veteran
Services staff were unable to obtain demographic information
directly from the barcode scanner. After tracking attendance
with the barcode scanner during a given time frame, staff
members would periodically send the data containing student
information to the Office of Data Analytics. The staff at
the Office of Data Analytics would match the demographics
with the student barcode information and send an Excel report

*Department of Computer Science and Engineering. 1664 North Virginia
Street / MS 171. Reno, NV 89557. Email: {jonathonhewitt, danielhall,
christopherparks, pknoch}@nevada.unr.edu, dascalus@cse.unr.edu,
dllee@unr.edu, nikkolasjirwin@nevada.unr.edu, fred.harris@cse.unr.edu

back to Veteran Services. The Excel sheet would display
demographic information for each associated student barcode
entry.

Veteran Services also collected additional demographics that
were not available from the Office of Data Analytics. Veteran
Services used a custom Google survey from an iPad device.
First-time visitors would fill out the survey on the iPad upon
entry into the facility. Staff members would periodically export
the survey data via an Excel spreadsheet. Staff members would
have a total of three spreadsheets to build reports: Attendance
in/out information, demographics provided by the Office of
Data Analytics, and the Google survey demographics. Using
the three spreadsheets, staff members would manually reconcile
and match student data to build the reports using chart wizards
provided by Microsoft.

During the development of VS-TAP, VS implemented an
upgrade to the barcode scanner system. VS implemented
a student identification (WolfCard) scanner. The upgraded
scanner is able to scan student ID cards and allow Veteran
Services staff direct access to demographic information instead
of obtaining this information from the Office of Data Analytics.
VS staff continues to use a survey to obtain supplemental
demographic information. VS-TAP includes the built-in
implementation of the survey that directly feeds survey data into
the database, instead of using a Google Forms survey. VS-TAP
aims to allow staff members to upload only two spreadsheets
that are automatically parsed and updated into the database. The
staff can then use a reports wizard to obtain the appropriate
charts and tables. The reports wizard was designed to give
staff members more control over graph axis, titles, and graph
aesthetics than was previously possible using Microsoft excel.

Concerning security, VS-TAP was designed to protect against
malicious actors. To this extent developers integrated user
authentication, protection from SQL injections to the database,
as well as CSRF (Cross-Site Request Forgery) token validation.
In addition to the security mentioned, VS-TAP is only accessible
from the University of Nevada, Reno (UNR) network to limit
external network traffic.

The VS-TAP web application was designed to be
containerized using systemd-nspawn [5] which is native
to the Linux operating system. In May 2021, VS-TAP was
launched on the College of Engineering’s virtual server at the
University of Nevada, Reno.

The rest of this paper is structured as follows: Section 2

ISCA Copyright© 2022

28 IJCA, Vol. 29, No. 1, Mar 2022

presents the motivation and design of VS-TAP including
functional and non-functional requirements as well as the
application’s use cases. Section 4 covers the technologies used
to implement the current version of VS-TAP. The final version
of VS-TAP along with screen shots are given in Section 5. VS-
TAP conclusion as well as future works are given in Section 6.

2 Motivation and Design

Manually collecting visit data is difficult and unreliable, and
the kinds of reports you can generate from this data is limited.
By automating the check-in and check-out procedures at the
Veteran Services offices and collecting data in the process, the
amount of useful reports that can be created increases. The
main goals for this project is to provide a seamless check-in and
check-out experience and to augment the kinds of reports that
can be generated. To make sure these goals are adequately met,
a list of functional and non-functional requirements are created
alongside a list of desired use cases.

2.1 Similar Applications

Data analytics are commonly used across multiple
industries. Tablaeu, part of Salesforce’s software suite,
allows organizations to analyze and visualize data from
multiple sources that is fed into a single platform [10]. For
example, users of Tableau can use data from sales, marketing,
and business expenses to generate detailed, visual reports [10].
VS-TAP provides a similar concept - using a central location
for importing and visualizing data. The difference between
VS-TAP and Tableau is that VS-TAP is more specialized for
attendance tracking that is build to incorporate the specific
third-party technology that is already used at Veteran Services.

Attendance tracking is commonly used among businesses
for hourly employees. Kronos is a timekeeping software that
is used to track employee attendance, employee time off and
vacation, help businesses with remaining compliant with labor
regulations, and provide detailed visualizations [4]. Kronos
software allows businesses to obtain detailed demographic
information based on employee attendance, such as employee
count by state, comparing shift hours worked against shift hours
scheduled, and employee headcount by business location [3].
Kronos is the most similar software to VS-TAP in that it is
primarily used for tracking attendance. Kronos tracks existing
employees that are in regular attendance. While VS-TAP has
visitors in regular attendance, VS-TAP is meant to handle new
visitors on a daily-basis with the integrated survey. Additionally,
VS-TAP is meant to provide a lower learning curve for its
targeted users.

Microsoft Excel is another tool used for tracking attendance
and generating reports. Excel allows users to manually enter
data into tabular format, known as a ”spreadsheet” [6]. Prior
to the development of VS-TAP, Microsoft Excel was used by
staff members. Excel requires its users to manually filter
out unnecessary or repetitive data that is not used in the

visual reports. Excel also allows its users to build charts by
selecting the relevant data entries and choosing from multiple
options in a wizard. Additionally, if multiple spreadsheets
are used in a single chart, it requires its users to combine the
spreadsheets. Filtering out data and combining the spreadsheets
can take up to several hours. Although VS-TAP still involves
Excel spreadsheets, it automates the data selection for report
generation based on user criteria. Furthermore, VS-TAP
automates the process of filtering and combining spreadsheets.

2.2 Functional Requirements

Functional requirements, per Ian Sommerville [9], are
used to describe the necessary functionality of a system.
These requirements are directly seen in the final project. The
following is a list of functional requirements for the VS-TAP
system.

The System shall:
1. Parse scanner data from Navigate.
2. Store visit and demographic data in a database.
3. Allow users to query the database for data reports and

display on the reports page.
4. Allow users to specify events for visit data.
5. Allow users to create an account.
6. Allow users to log in to their accounts.
7. Implement a navigation page that links each page on the

site.
8. Allow users to export reports as images for reports.
9. Allow users to export report tables as CSV files.

10. Allow users to search individual students.
11. Allow users to remove individual students from the visit

data.
12. Display different home pages for authorized and

unauthorized visitors.
13. Provide a wizard as a user interface for creating new

reports.
14. Allow users to specify a range of dates for reporting.
15. Allow users to change their password.
16. Allow users to upload a profile picture associated with their

account.
17. Allow users to change their account first and last name.
18. Allow users to change their email address.
19. Support manual upload of visits when scanners are

unavailable.
20. Allow users to quickly query for individual statistics e.g.

average visit duration.
21. Allow users to save templates for data visualizations and

load them with new data points.
22. Provide an administrative page for managing all user

accounts.
23. Allow administrators to change names, email addresses,

passwords, and profile pictures of other users within the
system.

IJCA, Vol. 29, No. 1, Mar 2022 29

24. Allow users to change the name of each saved report type.
25. Provide a dynamic wizard page for adding stacked graphs.
26. Allow users to download reports as PDF files.
27. In addition to the wizard, provide an interactive dashboard

for quickly creating new reports.
28. Automatically import visit data from Navigate on a live

basis.
29. Provide a portal for quickly sharing visit data to other

users.

2.3 Non-Functional Requirements

Non-functional requirements, per Ian Sommerville [9], are
used to describe the quality constraints that a system must
satisfy. The following is a list of non-functional requirements
for the VS-TAP system.

1. The site will be hosted and run on the UNR network.
2. Allow for multiple concurrent users to upload data and

create visualizations
3. The site should return queries for data, and data

visualizations quickly
4. The site should be easy to navigate for people with little to

no technical knowledge
5. The data reporting options should be shown in a

straightforward and usable manner
6. The site should have minimal downtime
7. The site should be robust to bad data uploads
8. The site should be non portable and only accessible from

the campus network
9. Users should be able to obtain all visual reports that are

needed for funding of VS
10. All information protected by FERPA must be secure from

unauthorized access
11. The software should be designed in a way that does not

need frequent updates
12. The code should be easily maintainable in case future

updates to the software are necessary
13. The software should function offline during downtime

2.4 Detailed Use Cases

This subsection presents the detailed use cases. Figure 1 gives
the use case diagram.

• AccountLogin: When the user first enters the website, the
user will be prompted for a user name and password. If the
credentials are correct, the user will be taken to the home
page.

• ChangePassword: If the user wants to change their
password, they can select Change Password. The user
will be prompted for their current password, the new
password, and a second entry for their new password. The
current password must be correct and the two entries for
the two passwords must match. If all forms are correct,

the user will receive a message that their password was
successfully changed. If the current password is incorrect
or the two fields for the new password do not match, an
error message will display.

• SelectReportPage: When the user selects
Visualizations from the navigation bar or enters
the “Visualizations” view from the address bar, the user
will be taken to the visualizations page.

• SelectImportPage: When the user selects Upload Files

from the navigation bar or enters the “Import” view from
the address bar, the user will be taken to the upload page.

• SelectHomePage: When the user selects Home from the
navigation bar or enters the “Home” view from the address
bar, the user will be taken to the home page.

• ImportFile: On the Import page, the system will prompt
the user for a file. The user will select the file from their
computer. If the file is successfully uploaded to the server,
the system will indicate to the user that it was successful;
otherwise an error message will display. After a successful
upload, the parser will begin parsing the file.

• GetIndividualStatistic: On the Reports page, one of the
options that the system provides to the user is the ability
to select an individual statistic (e.g. average G.P.A, total
number of visitors on 10/31/2020). The user will select
from the available individual statistics, then click Get

Individual Statistic to obtain the statistical report.
• DownloadFile: On the Reports page, the user will have

the option to download any data visualization that they
select to their computer. For example, if they select a bar
graph, they can download the graph as an image.

• PlotData: On the Reports page, the user will select
from a list of options for a specific type of graph. After
selecting the options, the user will click a button that will
submit a user request to the system to plot the data. The
visualizations module should return the plotted data to the
user in the form of a graph.

• CompleteSurvey: Upon the first visit of the VS office, the
student is taken to the Survey page to complete a list of
fields.

• SubmitSurvey: Upon completing the survey, the student
clicks Submit. If all fields are correctly filled out, the
survey data is inserted into the database; otherwise, an error
message appears.

• GetReport: After filling out the reports wizard, users can
get a detailed report about attendance for a given data
range, including both visual and tabular data.

• SelectPreset: After selecting a specific saved report from
the list of saved reports, a user is given the details of that
report with options, such as creating a new report from the
saved report preset and deleting the preset altogether.

• SavePreset: After obtaining a report from the Reports
Wizard, the user is given the option to save the preset. If the
user saves the preset, the preset is saved into the database
where the use can access it via the Presets page.

30 IJCA, Vol. 29, No. 1, Mar 2022

Figure 1: Use case diagram

IJCA, Vol. 29, No. 1, Mar 2022 31

• DeletePreset: The report preset is deleted from the
database after the user selects Delete Preset and the
preset no longer appears in the list of saved presets.

• GetBarGraph: In the reports wizard, the user obtains
visit, demographic, and/or survey data in bar graph format.

• GetLineGraph: In the reports wizard, the user obtains
visit, demographic, and/or survey data in line graph format.

• GetPieChart: In the reports wizard, the user obtains visit,
demographic, and/or survey data in pie chart format.

• GetHistogram: In the reports wizard, the user obtains
visit, demographic, and/or survey data in histogram format.

• RunServer: Upon execution of manage.py, the web
server loads the software and makes it available to its users.

• StoreFiles: The web server will maintain storage of all
files, including database files and user profile pictures.

• LoadTemplates: In conjunction with Django, the web
server is responsible for loading all template (HTML) files
that will display web page content to the end user.

• AuthenticateLogin: The web server should authenticate
the user’s credentials when they try to log into the systems.
If the password or username are not correct, the server shall
deny user access to the system.

3 Acceptance Criteria and Testing Strategy

3.1 User Stories

User stories are used to verify that the application meets
the usability requirements for the end user. The development
team worked closely with the employees at the Veteran Services
center to come up with a list of user stories that can be broken
up into discrete tasks which can be independently tested and
implemented. Below is a list of user stories for the VS-TAP
application.

• As a user with an existing account I want to be able to log
in so that I can create and view reports.

– When users input valid credentials, they are logged in
to the appropriate account.

– After logging in the user is given access to create
reports.

– User profile settings are stored to their account.
– Users should be able to input their credentials into

text forms.

• As a user without an account I want to be able to create an
account so that I can login in the future.

– Users without accounts can create an account by
visiting the create account page.

– User login credentials are stored in the database,
allowing users to login after creating.

– Users can enter credentials into text forms to create
account.

• As a user I want to be able to upload .csv files with visit
data so that I can use that data in future reports.

– Users can visit an upload page and upload a
document.

– If the document is a .csv file with navigate data, it is
parsed into a list of visits.

– Parsed data is inserted into the database so that it can
be queried later.

• As a user I want to be able to manually input visit data for
visitors without Wolf Cards.

– Users can visit a manual entry form page.
– Users can input and submit visit data in a series of

text fields.
– When submitted, the manually entered data is

inserted into the database so that it can be queried
later.

• As a user I want to be able to create dynamic visualizations
to reflect visitor trends.

– Users can visit the custom reports page.
– Users are walked through a creation wizard process

for data visualization.
– Users are given the option to save customization

fields for reuse.
– After finalization, a table and graph matching user

specifications is generated.
– Users may download visualized report.

• As an administrative user I want to be able to create
accounts for other users.

– Admins can visit a user creation page.
– Admins can input account credentials to create an

account for other users.
– The new user credentials are stored into the database.
– After new account creation, the new user can log in

and view the site.

• As an administrative user I want to be able to delete other
user accounts.

– Admins can visit an account list page.
– From the account list page, users can select individual

user accounts.
– From an individual user account profile, admins can

select to delete an account.
– If an account is deleted, it’s entry in the database is

removed.
– After account deletion, that user can no longer log in

and view the site.

• As an administrative user I want to be able to edit other
user’s login credentials and personal information.

– Admins can visit an account list page.
– From the account list page, users can select individual

user accounts.
– From an individual user account profile, admins can

select to edit an account.

32 IJCA, Vol. 29, No. 1, Mar 2022

– If an account is selected to be edited, a set of text
forms are presented.

– If an admin alters the data in the text field from the
user’s current settings the new information replaces
the old field in the database.

– If a user’s login credentials are changed, that user can
no longer log in with their old credentials.

• As a user I want to be able to create a bar graph
demonstrating the number of visits for each day in a month.

– When visiting the visualization page, users can select
bar graph as an option to generate.

– After selecting bar graph, users can select usage by
date as an option to graph.

– Users can manually set the colors and scaling for the
bar graph.

– Users can manually chose a range of dates to pull data
from.

– After users select all of the relevant options, they can
chose to view the report.

– Data should be pulled from the data base to generate
the report.

– After selecting to view the report, users are shown a
bar graph demonstrating the number of visits for each
day in their date range.

• As a user I want to be able to export reports as images and
.csv files to include in other files.

– When generating a report, users should have the
option to include a data table in the report.

– When viewing a report, users should have the option
to export each figure as a .png they can download.

– When viewing a report, if a data table was included,
users should have the option to export the table as a
.png they can download.

– When viewing a report, if a data table was included,
users should have the option to export the table as a
.csv file they can download.

• As a user I want to be able to select a page from a
navigation bar so that I can easily change between different
pages on the website.

– A navigation bar with a list of available pages should
be visible to users at all times.

– When clicking on a page from the navigation bar
users should be taken to the selected page.

– When a user clicks on a different page while filling in
forms in another page those forms are discarded.

• As a user I want to be able to select log out from the
navigation bar so that I can log out and exit the site.

– Log out should be an option on the navigation bar.
– When log out is selected the user is taken to the login

splash page.
– If a user is logged out, they have to re-enter their

credentials to enter the site.

3.2 Testing Strategy

The benefit of working closely with the project’s end users is
the efficacy of acceptance and user tests. The VS-TAP team is
able to host a project built for the stakeholders so that they can
use it and report any bugs or underdeveloped features. These
testing strategies are the main strategies employed to test user
experience, while automated testing is used to verify that each
page of the web-app is accessible. Table 1 outlines some of the
testing done.

The Test Type column indicates what category of test that test
falls under. The two main categories are automated tests, which
are tests that are run programmatically and user and acceptance
tests, which involve the end users using the product to make
sure it meets specifications. The Target File or Screen column
indicates what part of the project is being tested by the test. The
Test Data or Situation indicates what environment the project is
being tested under. Lastly, the Outcome and Actions Required
column indicates what was found and needed to be improved as
a result of the testing.

4 Technologies Used

VS-TAP uses Django as the main architecture. As VS-TAP
is a web application, the frontend features Hypertext Markup
Language (HTML), Cascading Stylesheets (CSS) to provide
visual enchancements to the object displayed via HTML, and
JavaScript to provide any interactivity to the users. The backend
logic is handled via Python scripts. SQLite3 is the database
containing all of the visit and demographic data. Additionally,
the team used the Bootstrap HTML library for faster frontend
development time and JQuery for handling user events in
JavaScript.

Django: Django [2] uses a concept known as Model-View-
Template (MVT), which is based off of the Model-View-
Controller architectural pattern. Django models feature objects
that interact with the integrated database, such as SQLite3. A
model object contains all of the database fields associated with
the object. Each instance of the object corresponds to an entry in
the database. The View contains all of the functions that render
the HTML templates and the associated logic performed prior
to the rendering. The Template is the HTML templates that
are displayed, including any accompanying JavaScript or CSS
styling.

HTML/CSS/JavaScript: A majority of the frontend starts
with a base HTML page that contains the common styling
and layout used for all of the web pages. Specific web pages
(e.g. Reports page) extend from the base HTML page. Django
provide dynamic elements in the HTML pages through the use
of context variables. A context variable is a variable whose
value is calculated by the backend via Python functions. The
output varies based on conditions such as the database contents
and user input. CSS provides styling to individual HTML

IJCA, Vol. 29, No. 1, Mar 2022 33

Table 1: Acceptance Test Plan

34 IJCA, Vol. 29, No. 1, Mar 2022

elements, classes of HTML elements, or entire pages. CSS style
options include (but are not limited to) centering, changing the
color, font size, and font color. JavaScript provides interactivity
to the page based on user actions, such as clicking on a button
and typing in a text entry.

Dash: Dash is a library used for creating detailed and
informative interfaces that provide visual reports through
Plotly [7]. VS-TAP uses Dash because each visit report
needs visual representation, such as a Bar Graph or a Pie
Chart. Django contains an extension known as Django-Plotly-
Dash. Django-Plotly-Dash provides tools for integrating Dash
components within the Python scripts and HTML code. The
backend of the reports page is written using Plotly functions and
variables in Python while the graph itself is rendered by Dash.

SQLite3: SQLite3 is used for the database. The database
logic for the user accounts and the report presets is automatically
carried out by Django models. The logic for the student
demographics and visits are direclty handled by SQLite3
commands embedded in the Python view functions within the
parser and the reports modules.

5 Results

Aside from security, such as user authentication, there are
three main sections of the VS-TAP web application that Veteran
Services’ staff and visitors interact with: the student survey, the
document upload section, and the data visualization page.

Student Survey: The student survey is a multiple choice
questionnaire which is accessible by students using a QR code

Figure 2: The UNR Veteran Services Survey requires each
visitor’s NSHE ID to relate their survey demographics
to their visit data

located within each veteran center. Data collected from the
student survey helps Veteran Services determine relationships
between various demographic data, student’s involvement in the
center, and student’s academic performance. Figure 2 and 3
show the beginning and end of an 18 question survey that helps
the VS-TAP web application create more dynamic reports to
better serve student veterans.

Figure 3: When each survey is submitted the student’s
responses are stored along their visits data for future
querying

Document Upload: The document upload section allows
users to upload documentation from different sources. Once a
document is submitted to the application, the web application
extracts, transforms, and loads (ETL) the data into the back-
end of the application. The document upload section allows
the users to upload data from the university’s Navigate system,
GPA data, and manual entry data in the event that the Navigate
system is down. Figure 4 show the document upload section

Figure 4: In the event that the university student tracking system
is offline, staff at Veteran Services may still upload
visits data manually

IJCA, Vol. 29, No. 1, Mar 2022 35

where users may upload two different comma separated value
(csv) documents or enter manual student’s visit data.

Data Visualization: The data visualization section walks
the user through a “reports” wizard to create a graphical
representation of specific visitor’s data. Reports creation allows
the user to generate various different graph types while querying
28 different student visitor parameters. Figure 5 and 6 show the
results from one such query where the reports wizard creates a
table and graph for the classification of students who visited the
center between the dates of 04/05/2021-08/31/2021.

6 Conclusion and Future Work

The staff of Veteran Services (VS) can now use spreadsheets
obtained from Navigate to upload them to VS-TAP. By
uploading the spreadsheet data, the data is saved to a database
and the data storage process is automated. Staff members of
VS can specify the type of report, date range, and aesthetics to
retrieve a report that is automatically generated. Previously, VS
staff needed to manually inspect multiple spreadsheet pages to
create a custom report for VS funding. VS-TAP has the potential
to be used for other buildings at both the UNR campus and
other universities. Other universities provide an equivalent to
the Veteran Services building and may use a similar funding
structure; therefore, it would be beneficial for other universities

to use this software to track attendance.

Although there exists commercial software that tracks
attendance, such as ADP [1], the commercial software is
primarily concerned with tracking employee attendance for
payroll purposes. VS-TAP customizes the attendance tracking
to provide data visualizations and reports to obtain funding. In
the future, VS-TAP’s functionality can also be expanded to a
more interactive dashboard of data visualizations. Currently,
reports are generated by selecting from a list of customization
options through a wizard format. If users can dynamically view
how their customization choices can change the output of their
reports, they can find their ideal customization settings at a
faster rate. The interactive dashboard can be achieved through
libraries such as Dash Enterprise [8].

VS-TAP requires users to upload visit data from a third party
source. The third party source is Navigate. In the future, it
would be beneficial if visit data reflected in real-time. Real-
time visit data can be obtained through an auxiliary application
within VS-TAP that uses hardware to scan the WolfCard, then
uploads the visit to the VS-TAP database through a cloud
infrastructure. By allowing real-time visit uploads, VS staff
would be solely focused on obtaining the desired report needed
for funding.

Figure 5: Pie chart representing the amount of students who visit the center and their associated classification year

Figure 6: Table representing the amount of students who visit the center and their associated classification year

36 IJCA, Vol. 29, No. 1, Mar 2022

Acknowledgments

This material is based in part upon work supported by the
National Science Foundation under grant number IIA-1301726.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foundation.

References

[1] ADP, Inc. “Employee Time Tracking”. https://www.

adp.com/what-we-offer/time-and-attendance/

employee-time-tracking.aspx (Last Accessed:
2/3/2002).

[2] Django Software Foundation. “Django Documentation,
Release 3.2.4.dev”. https://docs.djangoproject.

com/en/3.2/#django-documentation (Last
Accessed: 2/3/2002).

[3] Kronos Incorporated. “Kronos Workforce Ready
Data Visualizations”. https://www.kronos.com/

resource/download/29126 (Last Accessed: 3/7/2002).

[4] Kronos Incorporated. “Time & Attendance System;
Time Tracking Software — Kronos”. https://www.

kronos.com/products/time-and-attendance (Last
Accessed: 3/7/2002).

[5] Linux.org. “Systemd-nspawn - Spawn a Namespace
Container for Debugging, Testing and Building at
Linux.org”. https://www.linux.org/docs/man1/

systemd-nspawn.html (Last Accessed: 2/3/2002).

[6] Microsoft Corporation. “Microsoft Excel”. https://

www.microsoft.com/en-us/microsoft-365/excel

(Last Accessed: 2/3/2002).

[7] Plotly. “Dash Documentation & User Guide —
Plotly”. https://dash.plotly.com/ (Last Accessed:
2/3/2002).

[8] Plotly. “Dash Enterprise”. https://plotly.com/dash/
(Last Accessed: 2/3/2002).

[9] Ian Sommerville. Software Engineering.
Pearson, 10th edition, 2016. https://www.

pearson.com/us/higher-education/program/

Sommerville-Software-Engineering-10th-Edition/

PGM35255.html (Last Accessed: 2/3/2002).

[10] Tableau Software, LLC. “Salesforce + Tableau”.
https://www.tableau.com/solutions/salesforce

(Last Accessed: 2/3/2002).

Jonathon Hewitt received his BS in
Computer Science and Engineering
from the University of Nevada, Reno
in 2020. His research interests are
in Software Engineering, Computer
Graphics, Image Processing, and
Security. Since he graduated he
has pursued a career in Software
Engineering and is currently working
for a company that creates image

processing and visualization tools for the medical and airport
security industries.

Daniel Hall is an alumni from the
University of Nevada, Reno. He
received his Bachelor of Science in
Computer Science and Engineering
in 2021. He also had a minor in
Mathematics. His research interest
are in Software Engineering, Game
Design, Distributed Computing, and

Big Data Systems. Since he graduated he has pursued a career
in Software Engineering and is currently working for a defense
contractor supporting the U.S. Dept. of Defense.

Christopher Parks is an alumni from
the University of Nevada, Reno. He
received his Bachelor of Science in
Computer Science and Engineering
in 2019. His research interest are
in Software Engineering, Computer
Graphics, and Cyber Security. Since
he graduated he has pursued a
career in Software Engineering and is
currently working in a startup in the

insurance industry.

Payton Knoch is an alumni from
the University of Nevada, Reno. He
received his Bachelor of Science in
Computer Science and Engineering
in 2019. His research interest are
in the areas of Software Engineering,
Video Games, and Cybersecurity. He
has implemented projects to mimic an
original network attack and defense
model in cybersecurity and he has

designed a video game on the Android operating system for
personal entertainment. Payton has utilized his skills learned
at the university to pursue a career as a software engineer in the
insurance industry.

IJCA, Vol. 29, No. 1, Mar 2022 37

Sergiu M. Dascalu is a Professor in
the Department of Computer Science
and Engineering at the University
of Nevada, Reno (UNR), which he
joined in July 2002. He received his
PhD degree in Computer Science
(2001) from Dalhousie University,
Canada and a Master’s degree in
Automatic Control and Computers
(1982) from the Polytechnic of

Bucharest, Romania. At UNR he is also the Director of
the Software Engineering Laboratory (SOELA) and the Co-
Director of the Cyberinfrastructure Lab (CIL). Since joining
UNR, he has worked on research projects funded by federal
agencies (NSF, NASA, DoD-ONR) as well as the industry.
He has advised 11 PhD and over 50 Master students. He
received several awards, including the 2009 Nevada Center
for Entrepreneurship Faculty Advisor Award, the 2011 UNR
Outstanding Undergraduate Research Faculty Mentor Award,
the 2011 UNR Donald Tibbitts Distinguished Teacher of the
Year Award, the 2014 CoEN Faculty Excellence Award, and the
2019 UNR Vada Trimble Outstanding Graduate Mentor Award.
He is a Senior Member of the ACM.

Devrin Lee finished her BS in
Computer Science in 2005, and
her MS in Information Systems
in 2008 from the University of
Nevada, Reno. She is a Project
Management Professional and a
certified ScrumMaster. She has done
consulting for small businesses in

the IT arena, was the manager of Technical Operations for
PCLender, and is currently an Operational Program Manager for
Microsoft. Her research interests are in software engineering,
product design, and project management.

Nikkolas J. Irwin Nikkolas Irwin
received his BS in Computer
Science and Engineering from the
University of Nevada, Reno in 2020.
He currently works for the U.S.
Department of Energy (DOE), Office
of Inspector General (OIG), Office of
Technology, Financial, and Analytics
(OTFA) as a data scientist. His

current interests include leveraging DataOps, MLOps, and
more broadly DevOps to enhance data science workflows.

Frederick C. Harris, Jr. received his
BS and MS degrees in Mathematics
and Educational Administration from
Bob Jones University, Greenville, SC,
USA in 1986 and 1988 respectively.
He then went on and received his
MS and Ph.D. degrees in Computer
Science from Clemson University,
Clemson, SC, USA in 1991 and 1994

respectively.
He is currently a Professor in the Department of Computer

Science and Engineering and the Director of the High
Performance Computation and Visualization Lab at the
University of Nevada, Reno. Since joining UNR, he has worked
on research projects funded by federal agencies (NSF, NASA,
DARPA, ONR, DoD) as well as industry. He is also the Nevada
State EPSCoR Director and the Project Director for Nevada
NSF EPSCoR. He has published more than 300 peer-reviewed
journal and conference papers along with several book chapters
and has edited or co-edited 14 books. He has had 14 PhD
students and 81 MS Thesis students finish under his supervision.
His research interests are in parallel computation, simulation,
computer graphics, and virtual reality. He is also a Senior
Member of the ACM, and a Senior Member of the International
Society for Computers and their Applications (ISCA).

	Final IJCA Journal Issue for Mar 2022
	International Society for Computers
	Editorial; March Issue 2022 . 1
	Guest Editoral: Special Issue from ISCA Fall—2021 SEDE Conference 2
	A Multi-Modal, Pluggable Transaction Tamper Evident Database Architecture 4
	Islam Khalil, Sherif El-Kassas, and Karim Sobh

	Design and Implementation of VA-TAP the Veteran Services Tracking and Analytics Program . 27
	Jonathon Hewitt, Daniel Hall, Christopher Parks, Payton Knoch, Sergiu M. Dascalu, Devrin Lee, Nikkolas J. Irwin, and Frederick C. Harris, Jr.
	Jonathon Hewitt, Daniel Hall, Christopher Parks, Payton Knoch, Sergiu M. Dascalu, Devrin Lee, Nikkolas J. Irwin, and Frederick C. Harris, Jr.
	Feng Yu, Semih Cal, En Cheng, Lucy Kerns, and Weidong Xiong

	VR Tracker Location and Rotation Preductions using HTC Vive Tracking System and Gradient Boosting Regressor . 48
	Mariam Hassanein, Sherine Rady, Wedad Hussein, and Tarek F. Gharib

	IJCA Editorial Board inside front cover-1
	EditorsNote's
	2b Guest Editorial March 2022
	1d Khalil El-Kassas Sobh IJCA Mar 2022
	1 Introduction
	2 Background
	2.1 Object Relational Mapping (ORM)
	2.2 Web Services
	2.2.1 REST. The definition of REST according to [27] is “Representational State Transfer”.
	2.2.2 CRUD. CRUD (Create, Read, Update, Delete) are standard database operations. They are however often mapped very closely to REST API calls [32] (REST APIs have many other non-CRUD uses as well). The concept of CRUD was coined long ago before web ...
	2.2.3 Scenarios of REST and CRUD Mapping. With the creation of REST, there started to be many use cases that tend to show semantic similarities between parts of the two concepts.

	3 Related Work
	4 Proposed Solution
	4.1 Solution Brief
	4.2 The Hasher and The Time-Stamping Signer
	4.3 Externalized Signer/Stamper
	4.4 Integration Models
	4.4.1.1 ORM Technique 1: ORM Interceptor. To retrofit DBKnot functionality into an ORM application, as the user code initiates any persistent database operations (insert operations) that are tagged as trackable, the ORM interceptor takes the transac...
	4.4.1.2 ORM Technique 2: Framework-wide Global Middleware. A second approach to integrating into ORM systems is to integrate in the form of a middleware that is embedded into the ORM framework itself. The advantage of this approach is that it is co...
	4.4.1.3 More Efficient ORM Tracking through Parallel Pipelining. The efficiency of the previously outlined ORM tracking could be increased through the introduction of a level of parallelism. Such parallelism in signing and stamping is not going to b...
	4.4.2 Database Level Integration
	4.4.2.1 The Signer. The direction adopted is to introduce an externalized time-stamper/signer and/or a tamper-resistant HSM (Hardware Security Module). The role of the signer is to sign a hash of each record/transaction that gets added to the databa...
	4.4.2.2 A Chain of Hashes. A chain of the hashed transactions is being maintained. The chain includes the signed hashes of the data as well as the time-stamps. Each record will include a hash of the previous record.
	signer. The signer will take the hash record, add to it the preceding record together with a time-stamp and sign them all with the signer public key. The signature of the preceding record could be appended to the hashed string instead of the hash, b...

	4.4.3 Web-Service/API Microservices Architecture. DBKnot functionality could be implemented inside a middleware. The benefit of injecting the functionality in the form of a middleware is that it could allow the functionality to be retrofitted into e...
	4.4.4 REST API Based Definition. To be able to track a microservice based request, in most cases a specific configuration is required. Fortunately, there are new industry standards [3] for performing such configurations. Examples are OpenAPI [2, 19...

	4.5 Verification Steps
	4.6 Performance Optimization
	4.6.1 Signing Distribution. In this design illustrated in Figure 22: Parallel signers - consistent hashing, a technique similar to database record sharding is used to distribute workload on a number of different shards. Instead of chaining signed b...
	4.6.2 Coarse Grained Block Signing. Instead of performing hashing and signing on a record-by-record level, records are grouped into blocks. Each block is hashed together and then the group hash is signed by the signer.

	4.7 Performance Optimization – Pipelining
	4.7.2 Technique 1: Inline Hashing & Signing. The first technique used is to perform the transaction, followed by the hashing process, followed by the signing process. They are all done in series as illustrated in Figure 26.
	4.7.3 Technique 2: Partial Concurrency Through Signature Pipelining. This technique removes the signing process out of the main execution pipeline to allow running it in parallel when needed to gain some performance. Please note that the transaction...
	Signature Pipelining. This technique separates the hashing and signing from the main thread and executes them separately in a single thread of sequential execution. Please note that they are both sequential as well. The signing process has been incr...
	4.7.5 Technique 4: Concurrency Through Pipelining All Operations. This technique is different from all the others above. In this technique we separate each of the three steps (transaction, hashing, and pipelining) into its own pipeline and let them ...

	5 Experimentation and Results
	6 Conclusions and Future Work

	2 Hewitt, Hall, Harris, IJCA Mar 2022
	3d Yu Cal, Cheng, Kerns IJCA Mar 2022
	Introduction
	Background
	-AQP
	Bootstrap Sampling

	Bootstrap for Selection Query Error Estimation
	Selection Query Estimation
	Bootstrap Sampling from Query Results
	Computing the Confidence Interval

	Implementation
	Experiment
	Experiment Setup
	Bootstrap Accuracy Tests
	Speed Performance Tests
	Tests of Optimized Bootstrap Sampling

	Related Work
	Conclusion and Future Work

	4 Hall Wang Blankenship IJCA 3 22_Revised
	Journal Submission Instructions2022
	Journal Submission

	IJCA Jrnl back outside cover Mar 2022

