
38 IJCA, Vol. 29, No. 1, March 2022

Non-Parametric Error Estimation for σ -AQP using Optimized Bootstrap Sampling

Feng Yu*†

Youngstown State University, Youngstown, OH 44555, USA
Semih Cal‡

Texas Tech University, Lubbock, TX 79409, USA
En Cheng§

University of Akron, Akron, OH 44325, USA
Lucy Kerns¶

Youngstown State University, Youngstown, OH 44555, USA
Weidong Xiong||

Cleveland State University, Cleveland, OH 44115, USA

Abstract

Approximate query processing (or AQP) aims to quickly
provide approximated answers for time-consuming search
queries on large datasets. It brings enormous benefits in
data science when the query execution efficiency weighs more
than the accuracy. However, assessing the accuracy of an
approximated answer from AQP still lacks study. Existing work
usually relies on strict dataset assumptions that are often not
satisfied in real-world datasets. In this work, we employ a
non-parametric statistical method, called bootstrap sampling,
to assess errors of an AQP system for selection queries (or
σ -AQP). We implement a prototype AQP system integrated
with a bootstrap sampling engine that can estimate the standard
deviation and produce confidence intervals for selection query
estimations. Extensive experiments operating the prototype
system demonstrated that the confidence intervals generated can
cover the ground truth query results with high accuracy and
low computing costs. In addition, we introduce optimization
strategies for bootstrap sampling which can improve the overall
computing efficiency of the prototype AQP system.

Key Words: Approximate query processing, error
estimation, non-parametric method, bootstrap sampling

1 Introduction

Efficient query processing of complex queries on big data
posts a demanding challenge for modern data management
systems. Much work has been developed towards promptly
executing data queries on both hardware and software platforms
[9, 21, 22]. However, calculating the exact answer for each data

*Email addresses are to be put first. fyu@ysu.edu, scal@ttu.edu,
echeng@uakron.edu, xlu@ysu.edu, w.xiong15@csuohio.edu

†Department of Computer Science and Information Systems.
‡Department of Computer Science.
§Department of Computer Science.
¶Department of Mathematics and Statistics.
||Department of Electrical Engineering and Computer Science.

query is expensive and may not be necessary for all scenarios.
For example, during the exploratory data analysis (or EDA), a
user often only needs approximated answers for a collection of
testing queries where the execution speed weighs more than the
accuracy.

Approximate query processing (or AQP) is an alternative
scheme to provide estimated query answers with satisfying
accuracy and within a short time [2, 18, 19]. AQP doesn’t need
to run the query on the original dataset but can collect statistics
to generate query estimations. A common application of AQP is
to estimate selection (or σ) queries, called σ -AQP. For selection
queries, simple random samples are usually employed for fast
and accurate query estimations [1, 24].

An open question for the AQP research is how to efficiently
assess the error of query estimation. The challenge is that, for
different selection conditions, the underlying distributions of the
result sets are different and difficult to predict. This creates an
obstacle to efficiently assessing the estimation errors for AQP
systems.

Bootstrap sampling [23] is a statistical technique that can
assess the errors of sample-based estimators. One advantage
of bootstrap sampling is that it doesn’t rely on any knowledge
of the data distribution to provide error estimation, but can
“pull itself up by its bootstrap”. It conducts a special sampling
method, called resampling, which generates many replicated
random samples with replacement, called bootstrap samples,
from the original random samples used by AQP. Using the
bootstrap samples, common error assessments, such as the
standard deviation, of a query estimator can be calculated. An
advantage of bootstrap sampling is it doesn’t require restricted
assumptions of data such as normal distribution used by large
number theory. Statistical methods like these are commonly
named as non-parametric methods [12].

In this work, we will focus on using bootstrap sampling
to assess the estimation error of a σ -AQP system. The
contributions of this work are as follows:

1. We propose a framework equipped with the bootstrap
sampling method to assess the errors of an AQP system

ISCA Copyright© 2022

IJCA, Vol. 29, No. 1, March 2022 39

for selection queries (or σ -AQP). A prototype system is
implemented to simulate a real-world database system that
can execute common selection queries. This system is
integrated with a bootstrap sampling engine used for non-
parametric error assessment.

2. We test the performance of the prototype system on
multiple datasets with various combinations of hyper-
parameters to simulate real-world scenarios. The
experimental results show satisfying accuracy of error
assessment.

3. With the findings of the computing bottlenecks of the
bootstrap sampling procedure, we propose optimization
schemes to improve the overall system performance.

Compared with the conference version work [4], additional
contributions are made including:

1. We extended the sections of background and bootstrap
sampling framework. We added the related work of AQP
and bootstrap sampling.

2. We performed extended experiments of error assessment.
Various datasets with skewness were employed in the
accuracy tests of bootstrap confidence intervals.

3. Additional analysis of the error assessment experiments
is included. The means and standard deviations of the
confidence interval hit ratios and the bootstrap standard
deviations are presented.

The rest of this work is organized as follows. Section 2
introduces the background of σ -AQP and bootstrap sampling.
Section 3 describes how to use bootstrap sampling to assess
estimation errors from a sample-based σ -AQP scheme. The
implementation of the prototype system incorporating σ -AQP
and a bootstrap sampling engine is described in Section 4.
Experimental results are presented in Section 5. The related
work is included in Section 6. The conclusion and future work
are included in Section 7.

2 Background

2.1 σ -AQP

Approximate query processing (or AQP) is the technology
to provide approximated answers to complex queries using
statistical methods. It aims to provide accurate query
estimations within a short time frame. σ -AQP is the AQP
focusing on estimating selection (SELECT or σ) queries. Given
a selection query Q on a table R, to get the ground truth query
answer YGT , the traditional scheme of query answering is to
execute query Q on R which may take a long time when R has a
large volume and the query result size is big. Instead of running
query Q directly on the original dataset R, σ -AQP takes a simple
random sample without replacement (SRSOR) from R, denoted
by S, and runs the query Q on S to get a sample result Ys. In this
case, the ground truth, YGT can then be estimated by

YGT =
Ys

f
(1)

where f = |S|/|R| is the sampling ratio.

Figure 1 demonstrates an example of simple random
sampling without replacement. If the original table includes
100 records, using a 20% sampling ratio, 20 records will
be randomly selected without replacement and saved into a
sample table. After that, σ -AQP will use the sample table to
produce estimations for selection queries with a sampling ratio
parameter set to 20%. In practice, the sampling ratio is usually
tiny. For example, a sampling ratio of less than 1% is usually
employed. For highly skewed data, a larger sampling ratio can
be used to increase the accuracy of query estimation.

2.2 Bootstrap Sampling

Bootstrap sampling was originally introduced by Bradley
Efron in 1979 [10]. It is a computer-assisted method designed to
measure the quality of various statistical estimators. Bootstrap
sampling generates a collection of new distributions from the
original distribution and can derive their variance which can
be used to quantify the accuracy of statistical estimators based
on the observed data. It works well when the target data is
drawn from unknown distributions, which is superior to deriving
closed-form methods based on limited data assumptions.

A unique statistical feature in bootstrap sampling is
resampling. This procedure generates new distributions, called
bootstrap samples, from a given sampled dataset using simple
random sampling with replacement (SRSWR). Each resampled
new distribution can produce a scalar called a bootstrap
replication. Bootstrap sampling generates a large number of
bootstrap replications and can use them to estimate the statistical
features, such as standard deviation, of the originally given
dataset even when the original distribution is unknown.

Figure 2 depicts a simple example of how bootstrap sampling
is performed. When given a sample data y = (y1,y2, ...,yn)
from an unknown distribution F , a bootstrap sample y∗ =
(y∗1,y

∗
2, ...,y

∗
n) is a resampled collection obtained by randomly

sample n times with replacement from the original sample
y1, y2, ..., yn. For instance, if n = 5, we might obtain
different bootstrap samples, such as y∗1 = (y5,y3,y1,y2,y1), y∗2 =
(y2,y5,y4,y1,y2), y∗3 = (y3,y3,y2,y3,y4), etc. These resamples
are shown in Figure 2a. Figure 2b depicts a bootstrap sample
example.

A useful application of bootstrap sampling is to estimate the
standard deviation of a statistical estimator from an unknown
distribution. Suppose we wish to estimate an unknown
population parameter, θ = t(F), based on the sampled data y,
i.e., θ̂ = s(y). We first generate a number of B independent
bootstrap samples. Given each bootstrap sample y∗, a bootstrap
replication of θ̂ is computed as θ̂ ∗ = s(y∗). For example,
if θ̂ is the sample mean y, a bootstrap replication θ̂ ∗ is the
mean of a bootstrap sample y∗. The standard error of θ̂ ∗, i.e.
ŝeB(θ̂

∗), called the bootstrap estimation of standard error, can
be calculated from the B bootstrap replications as follows.

40 IJCA, Vol. 29, No. 1, March 2022

Original Data

Sample Data with 20 percent
sampling ratio

Simple Random
Sampling Without

Replacement

Figure 1: Example: simple random sampling without replacement (SRSWOR) using 20% sampling ratio

(a) Bootstrap samples

2

1

1

0

1

1

2

0

1

1

0

1

3

1

0

1

1

0

0

3

5 5 5 5

(b) Bootstrap distributions

Figure 2: Example: bootstrap sampling

ŝeB(θ̂
∗) =

[
1

B−1

B

∑
i=1

(
θ̂
∗
i − θ̄

∗)2
] 1

2

(2)

where θ̄ ∗ = ∑
B
i=1 θ̂ ∗

i /B.
When B → ∞, we have ŝeB(θ̂

∗) → seF̂(θ̂
∗), where seF̂(θ̂

∗)
is called the ideal bootstrap estimation of the ground truth
standard error of θ̂ , i.e. seF(θ̂). Both seF̂(θ̂

∗) and its
approximation ŝeB(θ̂

∗) are called non-parametric bootstrap

estimates since they are generated from the distributions,
F̂ , which are non-parametric estimates of the ground truth
population F .

3 Bootstrap for Selection Query Error Estimation

3.1 Selection Query Estimation

We consider the following query formulation in this research:

Q: SELECT Aggregation(attribute collection)

FROM table_name WHERE conditions

After a query Q is executed on the sample table S, each
sample tuple ui ∈ S will produce a tuple query result yi based
on the aggregation function. For example, if the aggregation
function is COUNT, then yi is either 1 if ui satisfies the selection
condition or 0 otherwise. The query result Ys on the sample table
S is calculated as Ys = ∑

n
i=1 yi, where n = |S| is the sample size.

Suppose the size of the original table R is N, and the sample
fraction f = n

N , then the estimation of the query result ground
truth is

Ŷ =
Ys

f
(3)

This estimation works well if the original table R has low
skewness and the sample S is uniformly collected from R.
Otherwise, the accuracy may be low when data is highly skewed
or the sample S is not uniformly distributed (or even includes
correlation).

3.2 Bootstrap Sampling from Query Results

After the sample query results SQ = {yi}n
i=1 are obtained by

executing Q on the sample relation S, bootstrap samples {y∗j}B
j=1

can be generated for error estimation, where B is the total times
of bootstrap sampling. Each y∗j = {y∗j,i}n

i=1 a bootstrap sampling

IJCA, Vol. 29, No. 1, March 2022 41

of SQ, where each query result y∗j,i, 1 ≤ i ≤ n, is randomly
sampled with replacement from SQ.

To obtain the bootstrap replication, we use the same estimator
in Eq (2) on each y∗j , j = 1, ...,B as

Ŷ ∗
j =

Yy∗j
f

(4)

For example, if the aggregation is COUNT, then the estimator is

Ŷ ∗
j =

1
f

n

∑
i=1

y∗j,i (5)

After repeating the bootstrap sampling for B times, a
collection of bootstrap replications is obtained, denoted by Ŷ ∗

B =

{Ŷ ∗
j }B

j=1. The bootstrap standard deviation is calculated as

ŝeB =

∑
B
j=1(Ŷ

∗
j − Ŷ ∗

B)
2

B−1

 1
2

(6)

where Ŷ ∗
B is the sample mean of all bootstrap replications Ŷ ∗

B .
By the theory of bootstrap sampling, we claim that Eq (6) is the
bootstrap estimation of the standard error of Ŷ which estimates
the query result YGT of query Q.

3.3 Computing the Confidence Interval

There are different methods in bootstrap sampling to generate
a confidence interval (or CI), such as the normal-theory CI,
bootstrap percentile CI, and basic bootstrap CI. There are also
improved CI methods to increase the accuracy such as the Bias-
Corrected and Accelerated interval (BCa) and Approximate
Bootstrap Confidence interval (ABC) [10]. In this work, we
implemented the normal-theory CI method, which is calculated
as (

Ŷ − zα/2 · ŝeB,Ŷ + zα/2 · ŝeB

)
(7)

where Ŷ is the query estimation from AQP, 1 − α ∈ [0,1] is
the confidence level, and zα/2 is the upper-α/2 standard normal
critical point. For example, for a 90% confidence level (i.e., α =
.10), z.05 = 1.645, and for a 95% confidence level, z.025=1.960.

4 Implementation

We propose a prototype AQP system with the ability to
generate error estimations using bootstrap sampling. The
prototype system consists of the following parts: a simple query
processor, a query execution engine for selection, a σ -AQP
engine using simple random sampling, and a bootstrap engine
for error estimation. The architecture of the query processor is
depicted in Figure 3.

The implemented query processor reads queries from a plain
text file and executes them accordingly. The query execution
engine reads each tuple from the table data file and produces a
tuple query result by checking whether it satisfies the selection

Sampler
Random
Samples

(SRSWOR)

Bootstrap
SamplerOriginal

Data Set

Query
Processor

CI

Query

Bootstrap
Samples

Figure 3: Prototype σ -AQP framework with a bootstrap
sampling engine

condition. Summarizing all tuple query results will produce the
final query result.

The σ -AQP engine of this system has two functions:
generates a sample table S from the base table R using simple
random sampling without replacement (simple random sampler)
and provide query estimations using the sample table (sample
estimator). When sampling starts, a series of random row
numbers will be generated in an array and the sampler will
access the base table file and retrieve only the tuples in the
random number array. Depending on the volume of sample
tuples, if the sample tuples cannot fit into the memory, the
sampler will output the sampled tuples into the sample table file
in batches. Otherwise, the sampled tuples will be read in one
batch and saved into the sample table.

After the sample tuples are drawn, the sample estimator of the
σ -AQP engine can produce a query estimation by first executing
the original query Q on the sample table S and getting a sample
result set Ys. The query execution engine will be called to run
the query on the sample table S and the sample query results SQ

will be generated. The estimation of the query result, Ŷest , will
be calculated using Eq (3). The bootstrap engine will perform
bootstrap sampling on the sample query results SQ, calculate
the bootstrap standard deviation ŝeB, and produce the bootstrap
confidence interval (CI) using Eq (7).

5 Experiment

We present the experimental results in this section. First, we
test the error assessment accuracy of the implemented prototype
AQP system. Second, we investigate the performance of the
bootstrap sampling procedure during the accuracy tests. Finally,
we present the performance results using optimized bootstrap
sampling methods.

5.1 Experiment Setup

The experiment server is equipped with an Intel Xeon
E5-1620 v4 CPU and 8GB of RAM and runs CentOS 7
Linux. The experiment code is written in C and Python
languages. The major prototype components such as query
parsing, query processing, AQP, and bootstrap sampling module

42 IJCA, Vol. 29, No. 1, March 2022

Table 1: Test queries for accuracy experiments

No. Query

1 select count(*) from lineitem where L QUANTITY <20 and L QUANTITY >0
2 select count(*) from lineitem where L LINENUMBER <3 and L LINENUMBER >0
3 select count(*) from lineitem where L LINENUMBER <5 and L LINENUMBER >2
4 select count(*) from lineitem where L DISCOUNT <.07 and L DISCOUNT >.02
5 select count(*) from lineitem where L EXTENDEDPRICE <100000.00 and L EXTENDEDPRICE >20000.00
6 select count(*) from lineitem where L DISCOUNT <.04 and L DISCOUNT >0.0
7 select count(*) from lineitem where L QUANTITY <20 and L QUANTITY >10
8 select count(*) from lineitem where L DISCOUNT <.05 and L DISCOUNT >.02
9 select count(*) from lineitem where L EXTENDEDPRICE <15000.00 and L EXTENDEDPRICE >0.0
10 select count(*) from lineitem where L LINENUMBER <2 and L LINENUMBER >0

are implemented in C. The driver programs for experiments are
written in Python. The source code of the prototype system and
experiments are available on GitHub1.

The tests datasets are generated using the TPC-H benchmark
with skew2 [8] which is widely used for data querying tests.
We focused on testing SELECT (or σ) queries for σ -AQP error
assessment and we chose the largest table, namely LINEITEM,
in a TPC-H database. We generated multiple TPC-H datasets
(only including the LINEITEM table) in volumes of 100MB,
1GB, and 10GB and with skewness of 0 (no skew) and 1 (highly
skewed), respectively. We randomly generated 10 test queries
with different selection ranges listed in Table 1. Among them,
five queries are large-range selection queries and five queries are
small-range selection queries.

5.2 Bootstrap Accuracy Tests

We estimate each test query using the implemented AQP
system which produces a 95% level bootstrap CI as a range
estimation. The implemented query processor computes the
ground truth of the query, i.e. YGT , on the original dataset. If
the YGT is contained in the CI, it’s considered a “hit”; otherwise,
it’s a “miss”. For each test query, we repeatedly generate the
bootstrap CI for 10 times and calculate the averaged hit ratio as
follows.

hit ratio =
count(CI includes YGT)

count(overall experiments)
×100% (8)

Figure 4 depicts the results of accuracy tests using bootstrap
sampling. Each small figure depicts the result on one test
dataset using different sampling ratios (f) including 0.1%,
0.5%, and 1%. To study how the bootstrap iterations (B) affect
the hit ratios, we use compare tests with B=200 and B=2000
(recommended in [10]). In addition, to study how the data skew
(z) affects the hit ratios, we compute hit ratios with different
skewness values, z=0 (no skew) and z=1 (highly skewed).

1The experiment code is available at https://github.com/

YSU-Data-Lab/Semih_Cal_Thesis_Summer_2021
2We employed the TPC-H toolkit available at https://github.

com/YSU-Data-Lab/TPC-H-Skew

Table 2 includes the averaged hit ratios of all experiments.
The overall averaged hit ratios range between 94.8% to 97.6%.
As observed in the results, a higher sampling ratio usually
generates higher hit ratios. However, comparing the hit ratio
results with B=200 and those with B=2000, no significant
differences in hit ratios were observed. For instance, the overall
averaged hit ratios of z=1 when B=200 (97.9%) and B=2000
(97.6%) are both slightly higher than those with z=0 when
B=200 (95.8%) and B=2000 (94.8%).

Table 3 includes the standard deviations of the hit ratios. The
overall standard deviations range between 4.8 to 6.1. First,
for each fixed value of B and z, the standard deviation of hit
ratios generally decreases while the sampling ratio increases.
For example, when B=2000 and z=1, the standard deviations
for sampling ratios 0.1%, 0.5%, and 1% are 9.5, 6.7, 6.3,
respectively. On the other hand, when B and z changed, no
significant difference in the standard deviations were observed.
The overall standard deviations of more skewed data when z=1
(STD=4.8 for B=200 and 5.6 for B=2000) are both slightly
smaller than those when z=0 (STD=6.1 for B=200 and 6.4 for
B=2000).

Table 4 includes the bootstrap standard deviations. A smaller
bootstrap standard deviation means a smaller error estimation
of the query estimation and a narrower bootstrap CI. As
observed, the bootstrap standard deviations generally decrease
with the sampling ratio increases. This demonstrates that query
estimations are more consistent given higher sampling ratios.
Changes of B and z do not significantly affect the bootstrap
standard deviations.

In general, the experiments show that higher sampling ratios
help to improve bootstrap CI hit ratios. On the other hand, the
changes of bootstrap iterations (B) or data skewness (z) do not
significantly impact the error assessment accuracy.

5.3 Speed Performance Tests

We present the speed performance results when estimating
the test queries on the 1GB dataset in Figure 5. The running time
to answer each test query is composed of three parts including
the file access time, simple random sampling time, and bootstrap
sampling time. The file accessing, random sampling, and

https://github.com/YSU-Data-Lab/Semih_Cal_Thesis_Summer_2021
https://github.com/YSU-Data-Lab/Semih_Cal_Thesis_Summer_2021
https://github.com/YSU-Data-Lab/TPC-H-Skew
https://github.com/YSU-Data-Lab/TPC-H-Skew

IJCA, Vol. 29, No. 1, March 2022 43

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(a) B=200, z=0, 100MB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(b) B=200, z=0, 1GB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(c) B=200, z=0, 10GB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(d) B=200, z=1, 100MB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(e) B=200, z=1, 1GB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(f) B=200, z=1, 10GB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(g) B=2000, z=0, 100MB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(h) B=2000, z=0, 1GB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100
Hi

t P
er

ce
nt

ag
e

0.1% 0.5% 1%0.1% 0.5% 1%

(i) B=2000, z=0, 10GB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(j) B=2000, z=1, 100MB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(k) B=2000, z=1, 1GB

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

Hi
t P

er
ce

nt
ag

e

0.1% 0.5% 1%0.1% 0.5% 1%

(l) B=2000, z=1, 10GB

Figure 4: Hit ratios of 95% level bootstrap confidence intervals (B: bootstrap iterations; sampling ratio: 0.1%, 0.5%, and 1%; z - data
skewness: 0 or 1, larger value is more skewed)

44 IJCA, Vol. 29, No. 1, March 2022

bootstrap sampling procedures did not use any memory buffer to
simulate the worst performance scenario. The groups of the first
three figures and the last three figures show that, when the total
bootstrap iterations (B) stay the same and the sampling ratio (f)
increases, the bootstrap sampling time increases and becomes
a major bottleneck compared with the random sampling time.
The same trend is also observed when f stays the same and
B increases, for example, comparing Figure 5a and Figure 5d.
Therefore, the performance of bootstrap sampling is mainly
affected by values of B and f , especially when the data resides
out-of-core.

5.4 Tests of Optimized Bootstrap Sampling

To increase the overall performance the prototype AQP
system, we improve the bootstrap sampling procedure in the
following aspects.

1. To lower the data access time, the tuples for bootstrap
sampling are not directly accessed. It’s only the query
sample results that are calculated and stored in a memory
array which are passed to the bootstrap engine. Since
the sampling ratios for AQP are usually small (less than
1%), these arrays shall be small enough to fit into the
main memory. If the sampled array is too large, other
alternatives can be implemented such as using partitioned
data arrays.

2. The sorting of the random numbers for resampling is
omitted to save computation. During the resampling
procedure, the bootstrap random numbers are kept
unsorted. After that, a resample array of sample query
results are extracted according to the bootstrap random
number array by in-memory array mapping. For example,
if the generated random number array for resampling
is {5,3,1,2}, then the query results resampled shall be
{y5,y3,y1,y2}.

We perform the same experiments on the 1GB test data using
the prototype system with the optimized bootstrap sampling
engine. Figure 6 depicts the execution time speedup factors
comparing the optimized bootstrap sampling scheme with the
original scheme. The speedup factor is defined as follows.

speedup factor =
time(original bootstrap sampling)

time(optimized bootstrap sampling)
(9)

As observed from the experiment results, the optimized
system reached an averaged speed-up factor of 5 comparing the
bootstrap sampling execution times. It also reached an averaged
speedup factor of 2 comparing the file access times. In addition,
the speedup factor progressively increases with the sampling
ratio.

6 Related Work

Based on the schemes of statistics collection, AQP can be
categorized into two directions including the online AQP and

the offline AQP [5]. The online AQP schemes [6, 16, 17], by
the name, start collecting statistics only after the target query
for approximation is given. Therefore, to reach a high statistics
collecting speed, they usually rely on auxiliary data structures,
such as indices and hash tables. Creating and maintaining
these auxiliary data structures will generate heavy overheads
especially for big data applications. Another drawback is that
their collected statistics can only be used once for a given query,
and must be re-collected for a different query which wastes
computing resources. The offline AQP [1, 24], on the other
hand, collects statistics before a query is submitted. It usually
needs the knowledge of the whole database schema or the join
graph, to create a holistic statistical synopsis. One advantage of
the offline AQP is it doesn’t rely on any auxiliary data structure
or advanced hardware to collect statistics because the statistics
collection happens before the target query is given and doesn’t
affect the run-time system performance. Another advantage is
the statistics collected by offline AQP schemes are reusable for
all future target queries given the database join graph is not
changed.

Bootstrap sampling has a long history in statistics. [12] is a
definitive book for its literature. However, this powerful method
still waits to be fully utilized in modern database systems.
Existing work [10, 11, 20, 7, 3, 15, 14, 13, 25, 26, 27] has made
contribution to this direction. Among them, Pol and Jermaine
in [20] focused on increasing the performance of bootstrap
sampling by lowering the number of bootstrap iterations. To this
end, a new data structure named resampling tree was introduced
in their proposed ODM framework. Zeng et al. [25, 26]
introduced an improved method called Analytical Bootstrap
Method (ABM) that can avoid bootstrap iterations for limited
types of database queries. Kleiner et al. [14] introduced a new
bootstrap sampling method that can reduce bootstrap iterations
on big datasets.

Our work concentrates on the empirical analysis of the
bootstrap sampling for σ -AQP systems. We claim that the
mentioned related work doesn’t fully address the topics in this
work. However, some methods [20, 25, 14] can help to improve
the bootstrap sampling performance in this work.

7 Conclusion and Future Work

In this work, we employ a non-parametric statistical method,
called bootstrap sampling, to assess the estimation errors of
σ -AQP systems. The contributions are threefold. First,
we developed a prototype σ -AQP system integrated with
a bootstrap sampling engine that can produce confidence
intervals for selection query estimations. Second, we performed
extensive query estimation experiments using the implemented
system. The results showed that the bootstrap confidence
intervals produced are highly accurate even when small
sampling ratios were used. Third, we studied the performance
bottlenecks of the implemented system and proposed multiple
strategies to optimize the bootstrap sampling procedure which
were shown effective in experiments. In the future, we will

IJCA, Vol. 29, No. 1, March 2022 45

1 2 3 4 5 6 7 8 9 10
Query Number

0

2

4

6

8

To
ta

l T
im

e
(S

ec
on

d)

File Access Time Sampling Time Bootstrap TimeFile Access Time Sampling Time Bootstrap Time

(a) B=200, f =0.1%

1 2 3 4 5 6 7 8 9 10
Query Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

To
ta

l T
im

e
(S

ec
on

d)

File Access Time Sampling Time Bootstrap TimeFile Access Time Sampling Time Bootstrap Time

(b) B=200, f =0.5%

1 2 3 4 5 6 7 8 9 10
Query Number

0

5

10

15

20

25

30

35

To
ta

l T
im

e
(S

ec
on

d)

File Access Time Sampling Time Bootstrap TimeFile Access Time Sampling Time Bootstrap Time

(c) B=200, f =1%

1 2 3 4 5 6 7 8 9 10
Query Number

0

5

10

15

20

25

30

To
ta

l T
im

e
(S

ec
on

d)

File Access Time Sampling Time Bootstrap TimeFile Access Time Sampling Time Bootstrap Time

(d) B=2000, f =0.1%

1 2 3 4 5 6 7 8 9 10
Query Number

0

20

40

60

80

100

120

140

To
ta

l T
im

e
(S

ec
on

d)
File Access Time Sampling Time Bootstrap TimeFile Access Time Sampling Time Bootstrap Time

(e) B=2000, f =0.5%

1 2 3 4 5 6 7 8 9 10
Query Number

0

50

100

150

200

250

300

To
ta

l T
im

e
(S

ec
on

d)

File Access Time Sampling Time Bootstrap TimeFile Access Time Sampling Time Bootstrap Time

(f) B=2000, f =1%

Figure 5: Time overheads in 1GB data tests (B: bootstrap iterations, f : sampling ratio (%))

1 2 3 4 5 6 7 8 9 10
query number

0

1

2

3

4

5

6

sp
ee

du
p

ra
tio

4.64 4.85

5.65

4.50

5.57

4.88 5.04

5.77
6.19 6.19

(a) Bootstrap sampling time, f =0.1%

1 2 3 4 5 6 7 8 9 10
query number

0

1

2

3

4

5

6

sp
ee

du
p

ra
tio

5.38 5.35
5.74 5.61 5.77 5.97 6.12 6.16 6.18

5.91

(b) Bootstrap sampling time, f =0.5%

1 2 3 4 5 6 7 8 9 10
query number

0

1

2

3

4

5

6

sp
ee

du
p

ra
tio

5.72 5.46
5.88 5.70

5.98 6.17
6.46 6.47 6.38 6.22

(c) Bootstrap sampling time, f =1%

1 2 3 4 5 6 7 8 9 10
query number

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

sp
ee

du
p

ra
tio

1.42 1.44
1.37 1.33 1.31 1.35 1.34 1.32 1.35

1.49

(d) Total time, f =0.1%

1 2 3 4 5 6 7 8 9 10
query number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

sp
ee

du
p

ra
tio

2.74 2.77 2.80
2.52 2.44

2.61
2.73

2.50 2.61
2.86

(e) Total time, f =0.5%

1 2 3 4 5 6 7 8 9 10
query number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

sp
ee

du
p

ra
tio

3.75 3.90 3.94

3.48 3.45
3.70

3.89 3.73 3.72
4.03

(f) Total time, f =1%

Figure 6: Speedup ratios using optimized bootstrap sampling in 1GB data tests (f : sampling ratio (%))

46 IJCA, Vol. 29, No. 1, March 2022

Table 2: Hit ratio means (%, B: total bootstrap iterations, z: skewness value)

B z 100 MB 1GB 10GB Overall
0.1% 0.5% 1% avg 0.1% 0.5% 1% avg 0.1% 0.5% 1% avg avg

200 0 96.0 97.0 95.0 96.0 93.0 96.0 96.0 95.0 95.0 99.0 95.0 96.3 95.8
200 1 96.0 100.0 100.0 98.7 97.0 98.0 98.0 97.7 98.0 97.0 97.0 97.3 97.9
2000 0 93.0 88.0 99.0 93.3 94.0 95.0 97.0 95.3 97.0 97.0 93.0 95.7 94.8
2000 1 97.0 97.0 98.0 97.3 97.0 96.0 95.0 96.0 98.0 100.0 100.0 99.3 97.6

Table 3: Hit ratio standard deviations (B: total bootstrap iterations, z: skewness value)

B z 100 MB 1GB 10GB Overall
0.1% 0.5% 1% avg 0.1% 0.5% 1% avg 0.1% 0.5% 1% avg avg

200 0 7.0 4.8 5.3 5.7 10.6 5.2 5.2 7.0 7.1 0.0 9.7 5.6 6.1
200 1 12.6 0.0 0.0 4.2 6.7 4.2 4.2 5.0 4.2 6.7 4.8 5.2 4.8
2000 0 9.5 11.4 3.2 8.0 5.2 7.1 4.8 5.7 6.7 4.8 4.8 5.4 6.4
2000 1 9.5 6.7 6.3 7.5 4.8 8.4 8.5 7.2 6.3 0.0 0.0 2.1 5.6

Table 4: Bootstrap standard deviations (B: total bootstrap iterations, z: skewness value)

B z
100 MB 1GB 10GB Overall
0.1% 0.5% 1% avg 0.1% 0.5% 1% avg 0.1% 0.5% 1% avg avg

200 0 10817.8 4844.3 3449.9 6370.7 34567.3 15368.4 10775.8 20237.2 108118.6 48151.8 34063.4 63444.6 30017.5
200 1 10821.6 4889.6 3477.0 6396.1 34044.4 15211.9 10851.6 20036.0 107887.7 47909.3 34450.6 63415.9 29949.3
2000 0 10894.7 4855.3 3427.2 6392.4 34198.9 15371.4 10823.5 20131.3 108599.9 48490.2 34193.6 63761.2 30095.0
2000 1 10864.4 4839.7 3427.8 6377.3 34237.1 15313.4 10811.0 20120.5 107740.9 48241.3 34143.8 63375.3 29957.7

generalize the current framework to assess the errors of AQP
systems for more complex queries, such as join and common
aggregation queries, on large datasets.

Acknowledgement

This research is partially supported by University Research
Council Grant and Research Professorship Award at
Youngstown State University.

References

[1] S. Acharya, P. B. Gibbons, V. Poosala, and S. Ramaswamy.
“Join Synopses for Approximate Query Answering”, In
Proc. SIGMOD ’99, pp. 275–286, 1999.

[2] S. Agarwal, H. Milner, A. Kleiner, A. Talwalkar,
M. Jordan, S. Madden, B. Mozafari, and I. Stoica.
“Knowing when You’re Wrong: Building Fast and
Reliable Approximate Query Processing Systems”, In
Proc. SIGMOD 2014, pp. 481–492, 2014.

[3] K. J. Archer and R. V. Kimes. “Empirical Characterization
of Random Forest Variable Importance Measures”,
Computational Statistics and Data Analysis, 52:2249–
2260, 2008.

[4] S. Cal, E. Cheng, and F. Yu. “Optimized Bootstrap
Sampling for -AQP Error Estimation: A Pilot Study”, In
Proc. of ISCA 30th International Conference on Software
Engineering and Data Engineering, 77:144–153, 2021.

[5] S. Chaudhuri, B. Ding, and S. Kandula. “Approximate
Query Processing: No Silver Bullet”, In Proc.
SIGMOD’17, pp. 511–519, 2017.

[6] Y. Chen and K. Yi. “Two-Level Sampling for Join Size
Estimation”, In Proc. SIGMOD 2017, ACM, pp. 759–774,
2017.

[7] M. R. Chernick. Bootstrap Methods: A Guide for
Practitioners and Researchers, John Wiley & Sons, 2008.

[8] T. P. P. Council. “TPC-H Benchmark”, http://www.

tpc.org/tpch/.
[9] C. Doulkeridis and K. Nørvåg. “A Survey of Large-Scale

Analytical Query Processing in MapReduce”, The VLDB
Journal, 23:355–380, 6 2014.

[10] B. Efron. “Bootstrap Methods: Another Look at the
Jackknife”, The Annals of Statistics, 7:1–26, 1979.

[11] B. Efron. “Second Thoughts on the Bootstrap”, Statistical
Science, 18:135–140, 2003.

[12] B. Efron and R. J. Tibshirani. An Introduction to the
Bootstrap, CRC Press, 1994.

[13] A. Kleiner, A. Talwalkar, S. Agarwal, I. Stoica, and M. I.
Jordan. “A General Bootstrap Performance Diagnostic”,
In Proc. SIGKDD 2013, pp. 419, 2013.

[14] A. Kleiner, A. Talwalkar, P. Sarkar, and M. Jordan. “The
Big Data Bootstrap”, arXiv preprint arXiv:1206.6415,
June 2012.

[15] N. Laptev, K. Zeng, and C. Zaniolo. “Early Accurate
Results for Advanced Analytics on MapReduce”, Proc.
VLDB Endow., 5:1028–1039, June 2012.

[16] V. Leis, B. Radke, A. Gubichev, A. Kemper, and
T. Neumann. “Cardinality Estimation Done Right : Index-

http://www.tpc.org/tpch/
http://www.tpc.org/tpch/

IJCA, Vol. 29, No. 1, March 2022 47

based Join Sampling”, In Proc. CIDR’17, 2017.
[17] F. Li, B. Wu, K. Yi, Z. Zhao, L. Li, S. Miles, Z. Melville,

A. Prasad, and L. L. Breeden. “Wander Join: Online
Aggregation via Random Walks”, In Proc. SIGMOD’16,
pp. 615–629, 2016.

[18] K. Li and G. Li. “Approximate Query Processing: What is
New and Where to Go?”, Data Science and Engineering,
3:379–397, 2018.

[19] Q. Liu. “Approximate Query Processing”, In L. LIU and
M. T. ÖZSU, Editors. Encyclopedia of Database Systems,
Springer US, pp. 113–119, 2009.

[20] A. Pol and C. Jermaine. “Relational Confidence Bounds
are Easy with the Bootstrap”, In Proc. SIGMOD’05, pp.
587–598, 2005.

[21] D. L. Quoc, I. E. Akkus, P. Bhatotia, S. Blanas, R. Chen,
C. Fetzer, and T. Strufe. “Approximate Distributed Joins
in Apache Spark”, arXiv preprint arXiv:1805.05874 , May
2018.

[22] M. Sch, J. Schildgen, and S. Deßloch. “Sampling
with Incremental MapReduce”, Datenbanksysteme
für Business, Technologie und Web (BTW 2015)-
Workshopband, 2015.

[23] R. J. Tibshirani and B. Efron. An Introduction to
the Bootstrap, Monographs on statistics and applied
probability, 57:1–436, 1993.

[24] F. Yu, W.-C. Hou, C. Luo, D. Che, and M. Zhu. “CS2: A
New Database Synopsis for Query Estimation”, ACM, pp.
469–480, 2013.

[25] K. Zeng. “ABS: A System for Scalable Approximate
Queries with Accuracy Guarantees”, Sigmod, pp. 1067–
1070, 2014.

[26] K. Zeng. “Approximation and Search Optimization on
Massive Data Bases and Data Streams”, PhD Thesis,
University of California, Los Angeles, 2014.

[27] Z. Zhou, H. Zhang, S. Li, and X. Du. “Hermes: A Privacy-
Preserving Approximate Search Framework for Big Data”,
IEEE Access, 6:20009–20020, 2018.

Feng Yu, Ph.D., is currently an associate
professor of Computer Science and
Information Systems at Youngstown
State University, USA. He is a campus
champion for NSF XSEDE. His current
research interests include database
systems, big data management, and

cloud computing. He has served as a reviewer for many
international conferences, such as DEXA, SSDBM, and
IEEE Big Data, and scholarly journals, such as ACM TODS,
Information Sciences, and DKE.

Semih Cal received the B.S. degree from
the Department of Computer Science,
Sam Houston State University, Texas,
USA in 2017 and he received the
M.S. degree from the Department of
Computer Science, Youngstown State
University, Ohio, USA in 2021, He is

currently a Ph.D. student in the Department of Computer
Science, Texas Tech University. His current research interests
include IoT devices, routing protocols in FANET, and mobile
data management.

En Cheng, Ph.D., is an associate
professor in the Department of Computer
Science at The University of Akron.
Before joining The University of
Akron, Dr. Cheng had the opportunity
to experience internships in diverse
research centers, including Microsoft

Research Asia, IBM T.J. Watson Research Center, and
Cleveland Clinic Foundation. Her current research interests
include Data Integration, Big Data, Database Systems and
Applications, Mobile Applications, Semantic Web, and
Business Intelligence.

Lucy Kerns, Ph.D., is currently
working as an associate professor
in the Department of Mathematics
and Statistics at Youngstown State
University, where she also serves as the
Statistics Coordinator and co-director
of the Mathematical and Statistical
Consulting Center. Her research
interests have been focused mainly

on simultaneous inferential techniques, environment risk
assessment and environmental toxicology, statistical modeling,
data analytics (machine learning and data mining), and data
visualization.

Weidong Xiong is a visiting associate
lecturer of the Department of Electrical
Engineering and Computer Science at
Cleveland State University. He received
his Ph.D. in Computer Science from
Southern Illinois University Carbondale,
IL in 2018. His primary research
interests include Concurrency Control
Protocols in Database, 3D Programming,

Volume Rendering, and Deep Learning. Prior to transitioning
his career in academia, Xiong was a senior software engineer
in IT industry with more than ten years of programming
experience.

	Final IJCA Journal Issue for Mar 2022
	International Society for Computers
	Editorial; March Issue 2022 . 1
	Guest Editoral: Special Issue from ISCA Fall—2021 SEDE Conference 2
	A Multi-Modal, Pluggable Transaction Tamper Evident Database Architecture 4
	Islam Khalil, Sherif El-Kassas, and Karim Sobh

	Design and Implementation of VA-TAP the Veteran Services Tracking and Analytics Program . 27
	Jonathon Hewitt, Daniel Hall, Christopher Parks, Payton Knoch, Sergiu M. Dascalu, Devrin Lee, Nikkolas J. Irwin, and Frederick C. Harris, Jr.
	Jonathon Hewitt, Daniel Hall, Christopher Parks, Payton Knoch, Sergiu M. Dascalu, Devrin Lee, Nikkolas J. Irwin, and Frederick C. Harris, Jr.
	Feng Yu, Semih Cal, En Cheng, Lucy Kerns, and Weidong Xiong

	VR Tracker Location and Rotation Preductions using HTC Vive Tracking System and Gradient Boosting Regressor . 48
	Mariam Hassanein, Sherine Rady, Wedad Hussein, and Tarek F. Gharib

	IJCA Editorial Board inside front cover-1
	EditorsNote's
	2b Guest Editorial March 2022
	1d Khalil El-Kassas Sobh IJCA Mar 2022
	1 Introduction
	2 Background
	2.1 Object Relational Mapping (ORM)
	2.2 Web Services
	2.2.1 REST. The definition of REST according to [27] is “Representational State Transfer”.
	2.2.2 CRUD. CRUD (Create, Read, Update, Delete) are standard database operations. They are however often mapped very closely to REST API calls [32] (REST APIs have many other non-CRUD uses as well). The concept of CRUD was coined long ago before web ...
	2.2.3 Scenarios of REST and CRUD Mapping. With the creation of REST, there started to be many use cases that tend to show semantic similarities between parts of the two concepts.

	3 Related Work
	4 Proposed Solution
	4.1 Solution Brief
	4.2 The Hasher and The Time-Stamping Signer
	4.3 Externalized Signer/Stamper
	4.4 Integration Models
	4.4.1.1 ORM Technique 1: ORM Interceptor. To retrofit DBKnot functionality into an ORM application, as the user code initiates any persistent database operations (insert operations) that are tagged as trackable, the ORM interceptor takes the transac...
	4.4.1.2 ORM Technique 2: Framework-wide Global Middleware. A second approach to integrating into ORM systems is to integrate in the form of a middleware that is embedded into the ORM framework itself. The advantage of this approach is that it is co...
	4.4.1.3 More Efficient ORM Tracking through Parallel Pipelining. The efficiency of the previously outlined ORM tracking could be increased through the introduction of a level of parallelism. Such parallelism in signing and stamping is not going to b...
	4.4.2 Database Level Integration
	4.4.2.1 The Signer. The direction adopted is to introduce an externalized time-stamper/signer and/or a tamper-resistant HSM (Hardware Security Module). The role of the signer is to sign a hash of each record/transaction that gets added to the databa...
	4.4.2.2 A Chain of Hashes. A chain of the hashed transactions is being maintained. The chain includes the signed hashes of the data as well as the time-stamps. Each record will include a hash of the previous record.
	signer. The signer will take the hash record, add to it the preceding record together with a time-stamp and sign them all with the signer public key. The signature of the preceding record could be appended to the hashed string instead of the hash, b...

	4.4.3 Web-Service/API Microservices Architecture. DBKnot functionality could be implemented inside a middleware. The benefit of injecting the functionality in the form of a middleware is that it could allow the functionality to be retrofitted into e...
	4.4.4 REST API Based Definition. To be able to track a microservice based request, in most cases a specific configuration is required. Fortunately, there are new industry standards [3] for performing such configurations. Examples are OpenAPI [2, 19...

	4.5 Verification Steps
	4.6 Performance Optimization
	4.6.1 Signing Distribution. In this design illustrated in Figure 22: Parallel signers - consistent hashing, a technique similar to database record sharding is used to distribute workload on a number of different shards. Instead of chaining signed b...
	4.6.2 Coarse Grained Block Signing. Instead of performing hashing and signing on a record-by-record level, records are grouped into blocks. Each block is hashed together and then the group hash is signed by the signer.

	4.7 Performance Optimization – Pipelining
	4.7.2 Technique 1: Inline Hashing & Signing. The first technique used is to perform the transaction, followed by the hashing process, followed by the signing process. They are all done in series as illustrated in Figure 26.
	4.7.3 Technique 2: Partial Concurrency Through Signature Pipelining. This technique removes the signing process out of the main execution pipeline to allow running it in parallel when needed to gain some performance. Please note that the transaction...
	Signature Pipelining. This technique separates the hashing and signing from the main thread and executes them separately in a single thread of sequential execution. Please note that they are both sequential as well. The signing process has been incr...
	4.7.5 Technique 4: Concurrency Through Pipelining All Operations. This technique is different from all the others above. In this technique we separate each of the three steps (transaction, hashing, and pipelining) into its own pipeline and let them ...

	5 Experimentation and Results
	6 Conclusions and Future Work

	2 Hewitt, Hall, Harris, IJCA Mar 2022
	3d Yu Cal, Cheng, Kerns IJCA Mar 2022
	Introduction
	Background
	-AQP
	Bootstrap Sampling

	Bootstrap for Selection Query Error Estimation
	Selection Query Estimation
	Bootstrap Sampling from Query Results
	Computing the Confidence Interval

	Implementation
	Experiment
	Experiment Setup
	Bootstrap Accuracy Tests
	Speed Performance Tests
	Tests of Optimized Bootstrap Sampling

	Related Work
	Conclusion and Future Work

	4 Hall Wang Blankenship IJCA 3 22_Revised
	Journal Submission Instructions2022
	Journal Submission

	IJCA Jrnl back outside cover Mar 2022

