
IJCA, Vol. 29, No. 2, June 2022 59

Proposal and Evaluation of a Chinese Character Hash Function

Based on Strokes for Fingerprinting*

Antoine Bossard†

Kanagawa University

Tsuchiya 2946, Hiratsuka, Kanagawa 259-1293, JAPAN

Abstract

Chinese character representation in computer systems has

been a long-standing issue, which is directly related to the

information representation and character encoding fields of

computer science. For example, as of today some Chinese

characters still cannot be easily input in a computer, let alone

be universally represented (identified). In this research, we

have been especially focusing on such Chinese characters that

are not covered by the conventional character encodings, and

in this paper, after having previously introduced a universal

character encoding for Japanese, we propose a non-ambiguous

hash function applicable to any Chinese character. Unlike

previous and related works, the proposed function is solely

based on the strokes of the character, thus leaving no room for

ambiguity. Considering the sparsity and the low collision rate

of the described hash function, fingerprinting is a meaningful

application, which can then be used for information retrieval

purposes, among others. Let us emphasize that simplicity and

unambiguity are the two keys of this proposal. The described

character hashing method is then evaluated both theoretically

and in practice in order to quantitatively show its validity,

applicability and contribution.

KeyWords: Japanese; Chinese; kanji; character; symbol.

1 Introduction

Because Chinese characters are tens of thousands, their

representation and processing in general has always been a

difficult issue for computer systems. Several approaches were

considered as hardware and software evolved over the years. In

the early days of computing, the characters were hard-coded into

read-only memory (ROM), a solution that is interestingly still in

use today for example with some LCD panels [8]. Due to the

lack of flexibility of this ROM approach, logical encodings such

as those defined by the Japanese Industrial Standards Committee

(JISC) rapidly replaced it.

There are two main approaches for such logical character

encodings: the unifying approachwhich considers all thewriting

*This paper is an extended version of [1].
†Graduate School of Science. Email: abossard@kanagawa-u.ac.jp.

systems at once, followed for instance by Unicode [16], and

the non-unifying approach which includes the encodings that

are local to one writing system, such as Shift-JIS for Japanese.

Because both of these two approaches fail at addressing the

representation of any Chinese character, we recently proposed

a universal character encoding for Japanese (UCEJ) [5], which

is based on a three dimensional space used to assign distinct

coordinates to characters. As per the definition of UCEJ, the first

coordinate identifies the character radical, the second coordinate

holds the number of strokes of the character and the third one

distinguishes variants (forms) of a same character.

It is well known that some Chinese characters are

morphologically structured according to composition patterns,

such as vertical and horizontal combinations [2, 3, 7, 15]. Such

(de)composition patterns can sometimes be ambiguous (e.g. the

definition of the support set R̃ of [2]), and moreover they cannot

be applied directly to character strokes since strokes, unlike

characters, are not structured according to easily identifiable

patterns. Hence, this decomposition approach is not a solution

to unambiguous character representation.

Besides, a conventional character encoding like Unicode

cannot be used as a hashing function given that only a limited

number of characters are covered: many Chinese characters are

left unsupported, that is unassigned to a code point, and this

is typically the case of Chinese characters that are local to one

culture, such as the kokuji characters of Japanese [2]. Because

aimed at supporting any character, the conventional encoding

UCEJ could be considered for hashing and fingerprinting, but

since the hash value (coordinate) that corresponds to a character

cannot be fully deterministically calculated, this is not a solution

either.

In continuation of UCEJ, the objective of this research is the

proposal of a non-ambiguous hash function that can be applied to

anyChinese character. Identification of any Chinese character in

a unique and unambiguous manner is a first application. Given

in some cases the existence of numerous variants for a same

character – regularly excluded from conventional encodings –

this is a far from trivial issue. Hence, calculating a Chinese

character fingerprint is meaningful to refer to a character that

is absent from conventional encodings.

The rest of this paper is organized as follows: hashing,

ISCACopyright© 2022

https://orcid.org/0000-0001-9381-9346

60 IJCA, Vol. 29, No. 2, June 2022

fingerprinting and character properties are briefly recalled in

Section 2. The proposed hash function is then presented in

Section 3. It is next theoretically and practically evaluated in

Sections 4 and 5, respectively. Section 6 concludes this paper.

2 Preliminaries

We first make a brief recall regarding hashing. Hash functions

are frequently encountered in computer science: they are used to

calculate an index from a datum so that this datum can be used to

directly refer to, for example, the corresponding entry in a table

in memory. In the case of table indices, the calculated values are

expected to fall within a range so that the table entries tend to

be consecutive in memory, and this without any assumption on

the sizes of the original data. Besides, the indices calculated for

distinct data are expected to be distinct too. If they are not, we

say that collisions occur [12].

Such a function which realizes a mapping between data and

identifiers, like indices, has other applications, for instance

fingerprinting: rather than calculating consecutive or near

consecutive table indices, a fingerprint is typically used to

identify a datum of arbitrary size, and this with a more or less

short value. This is comparable to the scientific applications

of human fingerprints. The algorithm described by Rabin is a

classic fingerprinting example [6].

Figure 1: taito

Next, we recall essential properties of

the Chinese characters. Each Chinese

character has one radical, although there

exist some characters for which the

radical is not clearly identified, or at

least is still debated (this is especially the

case for characters that have undergone

simplifications [2]). Each character has

at least one reading, although there are

usually several, especially when various

languages whose writing system involves

Chinese characters are considered.

A character is made of strokes (calligraphic brush strokes),

and there is a consensus that the highest number of strokes in a

Chinese character, at least in Japanese, is 84. This character,

illustrated in Figure 1, is the taito character (a.k.a. daito,

otodo) [9]. Furthermore, the strokes of a character are drawn

in a precise order, although this order may depend on the

writing system considered [2]. Besides, it should be noted

that a character can have variants, which are in some cases

numerous [13]. Additional details can be found for example

in [14].

3 Methodology

We describe in this section the proposed hash function. This

function is solely based on character strokes: it relies on the

stroke number, the stroke types and the stroke writing order.

Because it is essential, we emphasize here that this approach

to the function definition induces no ambiguity at all. For

comparison, we relied in previous researches for character

processing on character radicals and character decomposition

operations, two properties which are more (the latter) or less

(the former) ambiguous. As recalled in Section 2, the number

of strokes, the types of the strokes and the writing order of the

strokes for a Chinese character is indeed unambiguously defined.

Even if the writing order of the character strokes may differ

for a few characters from one writing system to another, such

as between Japanese and Chinese, it is clearly defined when

considering one writing system. For example, the stroke order

of the Chinese characters used in Japanese has been formally

established by the Japanese government [10].

So as to lower the collision probability, the proposed function

involves all the three aforementioned stroke properties: stroke

number, stroke types and stroke order. Regarding stroke types,

36 strokes have been defined by the Unicode consortium for

Chinese characters: this is the 31C0–31EF code block [16].

These 36 strokes are shown in Table 1; we have assigned to each

of them (columns labeled “Str.”) a unique identifier (columns

labeled “Id.”).

Table 1: The 36 strokes for Chinese characters (Unicode block

31C0–31EF).They are each assigned a unique identifier

Id. Str. Id. Str. Id. Str. Id. Str. Id. Str. Id. Str.

0 ㇀ 6 ㇆ 12 ㇌ 18 ㇒ 24 ㇘ 30 ㇞
1 ㇁ 7 ㇇ 13 ㇍ 19 ㇓ 25 ㇙ 31 ㇟
2 ㇂ 8 ㇈ 14 ㇎ 20 ㇔ 26 ㇚ 32 ㇠
3 ㇃ 9 ㇉ 15 ㇏ 21 ㇕ 27 ㇛ 33 ㇡
4 ㇄ 10 ㇊ 16 ㇐ 22 ㇖ 28 ㇜ 34 ㇢
5 ㇅ 11 ㇋ 17 ㇑ 23 ㇗ 29 ㇝ 35 ㇣

Define S the set of these 36 character strokes, and k : S →
{0,1, . . . ,35} the bijection between a stroke and its identifier.

Let C be the set of Chinese characters; it is recalled that its

cardinality is unknown. For a character c ∈C of n ∈ N∗ strokes
si ∈ S (0 ≤ i ≤ n− 1) and of stroke order that induced by the

relation i < j ⇒ si written before s j (0 ≤ i, j ≤ n−1), we define
the hash function h as follows:

h : C → N

c 7→
n−1

∑
i=0

26i k(si)

In other words, stroke identifiers are each represented with six

bits, and the stroke number as well as the stroke order are

directly induced by the concatenation of 6-bit sequences. The

fingerprint can thus be conveniently represented with the octal

notation: each stroke corresponds to two octal digits. Examples

of fingerprint calculations are given in Table 2; in this table, the

stroke order is indicated from left to right and fingerprints are

given in the octal notation, with the most significant digit on the

left.

Once a fingerprint has been obtained, it can then be adjusted

for hashing purposes (e.g. hash table), that is, to reduce the

IJCA, Vol. 29, No. 2, June 2022 61

Table 2: Fingerprint calculation for sample Chinese characters

Character Stroke number Stroke types and stroke order Fingerprint (octal notation)

大 “large” 3 ㇐,㇒,㇏ 17 22 20
水 “water” 4 ㇚,㇇,㇒,㇏ 17 22 07 32
凧 “kite” 5 ㇒,㇈,㇑,㇆,㇑ 21 06 21 10 22
迄 “until” 7 ㇒,㇐,㇠,㇔,㇔,㇋,㇏ 17 13 24 24 40 20 22

sparsity of the obtained fingerprints. This would be at the cost of

an increased collision rate though. For example, hashing with

folding by summing each stroke value, or division hashing by

applying a modulo function to the obtained fingerprints.

4 Theoretical Evaluation: Size and Sparsity

4.1 Memory Size Requirements

First, let us compare the size of fingerprints versus the size

of a character coordinate in UCEJ. To this end, we first recall

that each character stroke is represented on 6 bits, and that the

highest number of strokes in a Chinese character, at least in

Japanese, is 84 is a consensus. So, a character of n strokes

requires at most 6n bits (“at most” because the last stroke may

not require all the six bits, thus resulting in a few zeros at

the MSB, in other words digits that can be discarded). So,

an n-stroke character is expressed on at most 6n/8 = 0.75n
bytes. On the other hand, the coordinate of any character in

UCEJ takes 10 bytes [5]: the required memory size does not

depend on the character. And in the case of the refinement

of UCEJ which takes into account stroke types and the stroke

order, each character coordinate takes 38 bytes, again no matter

the character [4]. This memory size requirement comparison is

illustrated in Figure 2; because a conventional encoding such

as Shift-JIS or Unicode only supports a fraction of the Chinese

characters, it is not included in this comparison as it would be

obviously largely unfair. Given that the vast majority of Chinese

characters have at most 30 strokes (this is further detailed in

Section 4.2 below), the memory size taken by a fingerprint

remains reasonable compared to a UCEJ coordinate.

It is however critical to note that a UCEJ coordinate cannot

be completely calculated from a character: as recalled in

the introduction, the UCEJ lookup function calculates from a

character its X and Y coordinates only, thus not involving Z.

This is a major drawback compared to the fingerprint calculation

method proposed herein, and one reason for that lookup function

not being a suitable hashing function.

4.2 Hash Function Sparsity

Next, we analyze the projected sparsity of the calculated

fingerprints. Directly from above, we have that the fingerprint of

a 1-stroke character is in the interval [0,26−1] (since six bits per
stroke), that of a 2-stroke character in the interval [26,212 − 1]
(since twelve bits for the two strokes) and so on. Because a

0 20 40 60 80

0

20

40

60

number of strokes

b
y
te
s

Fingerprint UCEJ Refined UCEJ

Figure 2: Memory size requirement of a fingerprint versus a

UCEJ coordinate

character includes at most 84 strokes as recalled, a fingerprint

consists in at most 84 × 6 = 504 bits. Therefore, there are a

total of 2504 distinct fingerprints, which is of course significantly

larger than the number of Chinese characters (even if only an

estimation, several tens of thousands, of this character grand

total is known). So, the character density in the range of the

possible fingerprint values is globally low.

The distribution of the stroke number of the Chinese

characters used in Japanese is illustrated in Figure 3. For

reference, we have represented in the same plot the maximum

number of bits required to represent the fingerprint of a character

depending on the stroke number. These data have been extracted

from the List of MJ Characters provided by the Japanese

Character Information Technology Promotion Council [11].

This database includes in total 58 862 characters. Note that 84

has been considered as the highest stroke number as explained,

but since the otodo character does not appear in the database,

the number of occurrences therein is 0. Hence, although this

database is rather exhaustive, the zero number of occurrences as

soon as stroke number 65 is yet another indicator of the lacking

support of the Chinese characters by computer systems.

It should be noted that the proposed fingerprinting algorithm

is not perfect in the sense that it is possible – although rather rare

– to find two distinct characters that induce the same fingerprint,

for example 引 hiku and 弔 tomurau, both of fingerprint 21

62 IJCA, Vol. 29, No. 2, June 2022

0 10 20 30 40 50 60 70 80 90

0

1,000

2,000

3,000

4,000

5,000

number of strokes

Maximum number of bits Character occurrences

Figure 3: Distribution of the stroke number of the Chinese characters used in Japanese

11 20 25 (octal notation). In other words, the described

hashing function is not injective. In an attempt to further

reduce the collision rate, additional character properties could be

considered. Nonetheless, this would be at the cost of increased

ambiguity in the function definition. It is recalled that we

have completely eliminated such ambiguity with the approach

proposed in this paper. Besides, in this search for a perfect

hashing function, it will become clear that the successively

established functions, defined at the beginning in a discrete

manner, will inevitably evolve towards a continuous (i.e. non-

discrete) function, which is problematic considering the hashing

applications.

Finally, it is interesting to remark the following paradox

regarding character density: the characters that have the greatest

stroke number are those whose fingerprint occupies the greatest

number of bits but which are the least “dense” characters. That

is, when considering characters of at most n strokes, the number
of representable such characters is 26n, but at the same time

as n increases, the number of n-stroke characters (i.e. character
occurrences) decreases. This is clearly visible in Figure 3.

5 Practical Evaluation: Collision Analysis

5.1 Methodology

In this section, we conduct another quantitative analysis

by measuring in practice the collision rate of the proposed

hash function. To this end, we have generated a database

that associates to a Chinese character the ordered sequence of

its strokes, such including the stroke types and stroke order

information.

This database is essential to this work; it has been created with

the following recursive algorithm.

Step 1. We have manually defined character (topmost)

decompositions: only the vertical and horizontal

composition operations have been considered, which

is not an issue since these two composition operations

cover the vast majority of Chinese characters (more than

80% for a representative character subset [2]).

For instance, the topmost decomposition operation of the

character加 is defined as the algebraic expression力+口,

with “+” the horizontal composition operation.

Step 2. We have manually defined the ordered stroke sequence

for a few characters that are “prime”, that is which cannot

be further decomposed [2]. This is typically the case for

character radicals. This step induces the base case of the

recursion.

For instance, the ordered stroke sequence for the

character radical禾 is manually defined as: ㇒,㇐,㇑,㇒,

㇏.

Step 3. For each character c of the database obtained at Step 1,
we recursively calculate its ordered stroke sequence as

follows: if a stroke sequence for c has been already defined
(i.e. during Step 2 or Step 3), it is returned. Otherwise, let

c1•c2 be the decomposition of c obtained from the database

of Step 1, with “•” a composition operation such as “+”.
We apply this process recursively on c1 and c2 to obtain the

ordered stroke sequences c̄1 and c̄2, respectively. Let c̄ be
the concatenation of the two ordered stroke sequences c̄1
and c̄2. We record and return this newly obtained ordered

stroke sequence c̄ for the character c.

This stroke sequence calculationmethod is exemplified below.

For instance, consider c =量. No stroke sequence exists for

this character. Its decomposition 旦×里 is obtained from the

database of Step 1, with “×” the vertical composition operation.
Next, we have c = 旦. No stroke sequence exists for this

IJCA, Vol. 29, No. 2, June 2022 63

character. Its decomposition 日 ×一 is obtained from the

database of Step 1.

So, we have c = 日. This character is prime, and thus its

ordered stroke sequence has already been calculated (Step 2); it

is returned: ㇑,㇕,㇐,㇐. Then, we have c =一. This character

is also prime, and thus its ordered stroke sequence has already

been calculated (Step 2); it is returned: ㇐.

Hence, the ordered stroke sequence for c = 旦 is obtained

by concatenation: ㇑, ㇕, ㇐, ㇐, ㇐. Next, we have c =里.

This character is prime, and thus its ordered stroke sequence has

already been calculated (Step 2); it is returned: ㇑, ㇕, ㇐, ㇐,

㇑,㇐,㇐. Therefore, the ordered stroke sequence for c =量 is

obtained by concatenation: ㇑,㇕,㇐,㇐,㇐,㇑,㇕,㇐,㇐,㇑,

㇐,㇐.

It is important to note that this newly created stroke sequence

database is not perfect: for example, we assume that the stroke

order for a character decomposed as c1 • c2 consists first of the

strokes of c1 and then of those of c2. This is true in most cases,

but there can be exceptions, albeit rare. In addition, some stroke

sequences are assumed, like ㇔, ㇔, ㇀ (i.e. 氵) for 水. That

is, when the character水 is encountered, its stroke sequence is

assumed to be that of its variant氵; in this research, this variant
氵largely supersedes水 so this assumption is safe.

Also, all the decomposition operations identified for Chinese

characters (refer to [2]) are not present in the decomposition

database (i.e. the first step of the algorithm), so the calculated

fingerprints are for a part of the characters. But as recalled

previously, the horizontal and vertical decomposition operations

cover the vast majority (80%) of characters. Hence, this suffices

to obtain representative fingerprints.

5.2 Results

We give in this section raw results of the collision analysis

experiment. These results are discussed in the next section. First,

the distribution of the calculated ordered stroke sequences based

on the stroke number is shown in Figure 4.

0 5 10 15 20

0

20

40

60

80

100

120

number of strokes

ch
ar
ac
te
r
o
cc
u
rr
en
ce
s

Figure 4: Distribution of the calculated ordered stroke

sequences based on the stroke number

Next, we quantitatively measure collisions: 46 characters

have not a unique ordered stroke sequence, and have thus not

a unique fingerprint. These characters for which hash collisions

would occur are summarized in Table 3. In this table, characters

are grouped so that the character of a same group have the

same ordered stroke sequence. The stroke number is also given

for reference. The groups marked with an asterisk (*) need

additional explanations: they are given in the next section.

Table 3: Asummary of the detected collisions, that is, characters

which have a non-unique ordered stroke sequence.

Characters are grouped when they have the same

ordered stroke sequences

Character group Strokes Character group Strokes

人,八 2 𠮷,吉 6

力,刀 2 伝,会 * 6

土,工,士 3 隶,彔 * 6

彳,心 * 3 貝,旲 7

日,曰 4 呈,里 7

太,犬 4 昌,昍 8

六,文 4 径,怪 8

公,仏 * 4 治,冶 * 8

肉,月 * 4 査,相 9

召,加 5 唄,員 10

旦,目,且 5 准,淮 * 11

Finally, we have extracted from the realized character stroke

database the occurrence frequency of each of all the stroke types

(refer to Table 1). The details of this analysis are given in Table 4.

In this table, the stroke identifier (“Id.”), visual rendering

(“Str.”), number of occurrences (“Occur.”) and percentage are

given for each detected stroke.

Table 4: Frequency of the stroke types as calculated from the

realized database

Id. Str. Occur. % Id. Str. Occur. %

16 ㇐ 2 769 30.28 31 ㇟ 100 1.09

17 ㇑ 1 565 17.12 22 ㇖ 95 1.04

18 ㇒ 1 245 13.62 25 ㇙ 58 0.63

20 ㇔ 1 004 10.98 2 ㇂ 33 0.36

21 ㇕ 546 5.97 8 ㇈ 29 0.32

15 ㇏ 518 5.66 4 ㇄ 26 0.28

6 ㇆ 216 2.36 23 ㇗ 21 0.23

26 ㇚ 205 2.24 12 ㇌ 16 0.17

19 ㇓ 182 1.99 1 ㇁ 12 0.13

28 ㇜ 180 1.97 27 ㇛ 12 0.13

0 ㇀ 176 1.92 9 ㇉ 5 0.05

7 ㇇ 127 1.39 30 ㇞ 4 0.04

64 IJCA, Vol. 29, No. 2, June 2022

5.3 Discussion

Ordered stroke sequences for a total of 1 014 characters

were successfully calculated. The distribution of the calculated

ordered stroke sequences according to the stroke number shown

in Figure 4 shows that the characters for which stroke sequences

were calculated have a distribution that is a on a par with

Chinese characters in general (see Figure 3) and thus the validity

(generality) of the results obtained in this experiment.

The collision analysis shows that only 46 characters that

induce collisions were found, and this in 22 character groups.

In other words, this is a collision rate of approximately 4.5%.

However, it should be noted that 14 out of these 46 characters

are false positives (they are marked with an asterisk in Table 3):

for example, the collisions induced by the two character pairs

(准, 淮) and (治, 冶) are false positives: they are detected as

collisions because of database assumptions (precisely, that水 is

assumed to be of the form氵), and will thus not induce collisions
in practice. This is also the case for the character pairs (肉,

月), (彳, 心), (公, 仏) and (伝, 会): they are found to induce

collisions as well since we assumed 肉 to be of the form 月,

心 to be of the form忄and亻to be of the form人 for the same

reasonwe assumed水 to be of the form氵. Finally, this is also the
case for the pair隶,彔: the character element彐 was assumed

as a simplification of character strokes. Hence, the collision

rate in this experiment actually amounts only to 3.2% (i.e. 32

characters).

Regarding the stroke type analysis, in total 9 144 strokes

were enumerated, and several stroke types were absent from

the database: 24 stroke types were detected out of the total 36

(see Table 1). The frequency of the horizontal stroke㇐ (more

than 30%) is significantly higher than that of the rest. It is not

a surprising result since the fact that this stroke is also both a

radical and a character (一) shows the omnipresence of this brush

drawing.

6 Conclusions

Theprocessing, let alone representation, of Chinese characters

in computer systems has been a long-standing issue. It is, for

example, still not possible to input some characters into systems,

albeit infrequently used ones. To tackle this problem, we have

recently introduced a universal character encoding for Japanese

(UCEJ). However, UCEJ still lacks a fully deterministic way of

calculating the code point of a character. Directly related to this

issue, in this paper we have described a non-ambiguous hashing

function for fingerprinting Chinese characters. One objective

of this work is to facilitate the identification and processing

in general of Chinese characters by computer systems. The

proposed hashing method has been both theoretically and

practically evaluated so as to quantitatively show its validity,

applicability and contribution.

As for future works, refining the function definition in

an attempt to further reduce the collision probability of the

computed fingerprints is a meaningful objective. This however

involves several issues, like the sparsity of the hash values,

the collision rate, and the simplicity and discreteness of the

established function, and because they are interdependent there

is no other way but to consider them simultaneously.

References

[1] Antoine Bossard. “A Chinese Character Hash Function

Based on Strokes for Fingerprinting.” Proceedings of the

34th International Conference on Computer Applications

in Industry and Engineering (CAINE; 11–13 October,

online), EPiC Series in Computing, 79:64–70, 2021.

[2] Antoine Bossard. Chinese Characters, Deciphered.

Kanagawa University Press, Yokohama, Japan, March

2018.

[3] Antoine Bossard andKeiichi Kaneko. “Chinese Characters

Ontology and Induced Distance Metrics.” International

Journal of Computers and Their Applications,

23(4):223–231, 2016.

[4] Antoine Bossard and Keiichi Kaneko. “Refining

the Unrestricted Character Encoding for Japanese.”

Proceedings of 34th International Conference on

Computers and Their Applications (CATA; 18–20

March, Honolulu, HI, USA), EPiC Series in Computing,

58:292–300, 2019.

[5] Antoine Bossard and Keiichi Kaneko. “Unrestricted

Character Encoding for Japanese.” Databases and

Information Systems X, Frontiers in Artificial Intelligence

and Applications, 315:161–175, January 2019.

[6] Andrei Z. Broder. “Some Applications of Rabin’s

Fingerprinting Method.” Sequences II, pp. 143–152, 1993.

[7] Osamu Fujimura and Ryohei Kagaya. “Structural Patterns

of Chinese Characters.” Proceedings of the Conference on

Computational Linguistics (1–4 September, Sånga-Säby,

Sweden), pp. 1–17, 1969.

[8] Hitachi, Tokyo, Japan. HD44780U (LCD-II) (Dot Matrix

Liquid Crystal Display Controller/Driver), ADE-207-

272(Z), ’99.9, Rev. 0.0, 1998.

[9] Takehiro Ito. “辞書になかった最多画数の漢字「幽霊
文字」の怪…「タイト」さんをご存じないですか?”

TheYomiuri Shimbun (online), November 2020. https://
www.yomiuri.co.jp/life/20201030-OYT8T50053/
In Japanese. Last accessed June 2022.

[10] Japanese Ministry of Education, Science, Sports and

Culture (文部省). 筆順指導の手びき. First Edition. In

Japanese, March 1958.

[11] Japanese Character Information Technology

Promotion Council (一般社団法人 文字情報技術促進
協議会). List of MJ characters (MJ文字情報一覧表).

https://moji.or.jp/mojikiban/mjlist/ Version

006.01. In Japanese, May 2019. Last accessed June 2022.

https://www.yomiuri.co.jp/life/20201030-OYT8T50053/
https://www.yomiuri.co.jp/life/20201030-OYT8T50053/
https://moji.or.jp/mojikiban/mjlist/

IJCA, Vol. 29, No. 2, June 2022 65

[12] Donald E. Knuth. The Art of Computer Science – Volume

3, Second Edition. Addison-Wesley, Boston, MA, USA,

1998.

[13] Kyoo-Kap Lee. “Causes of Variant Forms as a Result of

Structural Changes to Character Components.” Journal of

Chinese Writing Systems, 1(1):29–35, 2017.

[14] Ken Lunde. CJKV Information Processing, Second

Edition. O’Reilly Media, Sebastopol, CA, USA, 2009.

[15] Richard Sproat. A Computational Theory of Writing

Systems. Cambridge University Press, Cambridge,

England, 2000.

[16] The Unicode Consortium. The Unicode Standard 5.0.

Addison-Wesley, Boston, MA, USA, 2007. More recent

versions accessible online at http://www.unicode.
org/versions/latest/ Last accessed June 2022.

Antoine Bossard received the B.S.

and M.S. degrees from Université

de Caen Basse-Normandie, France in

2005 and 2007, respectively, and the

Ph.D. degree from Tokyo University

of Agriculture and Technology, Japan

in 2011.

He is an Associate Professor of

the Graduate School of Science,

Kanagawa University, Japan. His research is focused on graph

theory, interconnection networks, and dependable systems. For

several years, he has also been conducting research regarding

Chinese characters and their processing by computer systems.

He is a member of ACM, ACIS, ISCA, and TUG.

http://www.unicode.org/versions/latest/
http://www.unicode.org/versions/latest/

	Final IJCA Journal for June 2022
	International Society for Computers
	Guest Editorial . 57
	Proposal and Evaluation of a Chinese Character Hash Function Based on Strokes for Fingerprinting . 59
	Antoine Bossard
	Robert N. K. Loh and K. C. Cheok

	Logical Modeling of Adiabatic Logic Circuits using VHDL with Examples 79
	Lee A. Belfore II
	Thomas Bidinger, Hannah Buzard, James Hearne, Amber Meinke, and Steven Tanner

	Integration of Multimodal Inputs and Interaction Interfaces for Generating Reliable Human-Robot Collaborative Task Configurations . 97
	Shuvo Kumar Paul, Pourya Hoseine, Arjun Vettath Gopinath, Mircea Nicolescue, and Monica Nicolescu
	In Fra_OE: An Integrated Framework for Ontology Evaluation . 111
	Narayan C. Debnath;, Archana Patel, Debarshi Mazumder, Phuc Nguyen Manh, and Ngoc Ha Minh

	new IJCA Jrnl inside front cover June 2022
	A publication of the International Society for Computers and Their Applications
	ASSOCIATE EDITORS

	Dr. Hisham Al-Mubaid
	Dr. Mark Burgin
	Dr. Sergiu Dascalu
	University of Nevada
	Reno, USA
	dascalus@cse.unr.edu
	Dr. Sami Fadali

	Dr. Vic Grout
	Glyndŵr University
	v.grout@glyndwr.ac.uk
	Dr. Yi Maggie Guo
	University of Michigan,
	Dearborn, USA
	hongpeng@brandeis.edu
	Dr. Wen-Chi Hou
	Southern Illinois University, USA
	hou@cs.siu.edu
	Dr. Ramesh K. Karne
	Towson University, USA
	Dr. Bruce M. McMillin
	Dr. Muhanna Muhanna
	Princess Sumaya University
	for Technology
	Amman, Jordan
	m.muhanna@psut.edu.jo
	Dr. Mehdi O. Owrang
	Dr. Xing Qiu
	University of Rochester, USA
	xqiu@bst.rochester.edu
	Dr. Abdelmounaam Rezgui
	Dr. Ramalingam Sridhar
	Dr. Junping Sun
	Dr. Jianwu Wang
	Dr. Yiu-Kwong Wong

	Dr. Rong Zhao

	Hu revised guest editorial-2
	1 Bossard j_hash
	Introduction
	Preliminaries
	Methodology
	Theoretical Evaluation: Size and Sparsity
	Memory Size Requirements
	Hash Function Sparsity

	Practical Evaluation: Collision Analysis
	Methodology
	Results
	Discussion

	Conclusions

	2h loh Cheok IJCA June 2022
	3c Belfore ijca_manuscript
	4 Bidinger Buzard Hearne Meinke Tanner
	Abstract
	1 Introduction
	2 Approach
	sufficient for the effect. Formally, this means that the search for causes is equivalent to searching for valid implications whose right-hand side is the effect and whose left-hand side is a disjunctive normal form expressing configurations of condit...
	3 Related Work
	4 Method
	4.1 A Brief Description

	9 Future Work

	5 Hoseine Gopinath Nicolescu Nicolscu
	6 Debnath Mazumber Nanh Minh
	Journal Submission Instructions2022
	Journal Submission

	IJCA Jrnl back outside cover June 2022

