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Abstract 

Consider a linear time-varying (LTV) system described by 
the state-space equation ( ) ( ) ( )t t t= +x A x B u .  The main 
objectives of this paper include (i) determination of the 
analytical or closed-form solutions for the fundamental matrix 
X(t) and the state transition matrix ( , )ot tΦ  of the LTV system; 
(ii) design of feedback control, such that the closed-loop
system matrix ( ) ( ) ( ) ( )cl t t t t= −A A B K , where K(t) is a gain 
matrix, has desirable properties, in particular, ( )cl tA  being 
commutative and triangular; and (iii) design of observers such 
that the observer matrix Ao(t)=A(t)-H(t)C(t), where H(t) is the 
observer gain matrix, has desirable properties as in (ii), 
namely, Ao(t) being commutative and triangular.  The 
commutativity and triangularization of ( )cl tA  and Ao(t) 
facilitate the analytical solutions for their fundamental and 
state transition matrices.  Examples and simulations 
demonstrate the design objectives.  

Key Words:  Linear time-varying (LTV), feedback, 
controller, observer, commutativity, triangular, separation 
principle, triangulatiaon, commutativity. 

1 Linear-Time-Varying (LTV) Systems 

Consider an nth-order linear time-varying (LTV) system 
described by the state-space equation: 

( ) ( ) ( ), ( ) ,o ot t t t= + =x A x B u x x (1a) 

y = C(t)x, (1b) 

where x(t) is an 1n×  state vector, u(t) an 1×  control vector, 
and y(t) an 1m×  output vector; A(t), B(t) and C(t) are, 
respectively, n n× , n×  and m n×  time-varying matrices, and 

( )o ot =x x  is the initial condition.  Using the method of 
variation of parameters, the solution of (1) can be expressed as 

( ) ( , ) ( ) ( , ) ( ) ( )
o

t

A o o At
t t t t t dτ τ τ τ= + ∫x Φ x Φ B u , (2a)

y(t) = C(t)x(t) (2b) 
____________________ 
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where ( , )A ot tΦ  denotes the n×  n state transition matrix 
associated with A(t), and satisfies 

( , ) ( ) ( , ), ( , )A o A o A o o nt t t t t t t= =Φ A Φ Φ I

nI  denotes the n n×  unit matrix. (3) 

The state transition matrix ( , )A t τΦ  is related to the 
fundamental matrix ( )A tX  by 

1( , ) ( ) ( )A A At tτ τ−=Φ X X , (4) 

where the fundamental matrix 

( )
( ) e

t

to
d

A t
τ τ∫=

A
X  (5) 

 solves the n×  n  matrix differential equation  

0( ) ( ) ( ), ( )A A A ot t t t= =X A X X X . (6) 

Further, the matrix exponential in (5) is defined by the power 

series ( )
0

1 ( )
! o

kt

t
k

d
k

τ τ
∞

=
∑ ∫ A , thereby (5) yields, in general, a 

solution of the form 

( ) ( )
0

1( ) exp ( ) ( )
!o o

kt t

A t t
k

t d d
k

τ τ τ τ
∞

=

= = ∑∫ ∫X A A . (7) 

However, if ( ) 1

( )
o

mt

t
dτ τ

+

=∫ A 0  for some finite m <∞ , then (7) 

becomes a finite-sum solution given by [18] 

( )1( ) ( ) ( )
!o o

mt t

A n t t
t d d

m
τ τ τ τ= + + +∫ ∫X I A A . (8)

It is well known that determining the matrix exponential given 
by (5) is a difficult task, even for constant matrix A [13].  Note 
also that ( )A tX  is nonsingular for all t, but may be nonunique; 
however, the state transition matrix given by 

1( , ) ( ) ( )A o A A ot t t t−=Φ X X  is unique for all ot and t. 
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2 Facts about LTV Systems 

Consider an LTV system described by the homogenous 
ordinary differential equation (ODE)  

( )t=x A x ,   ( )o ot =x x . (9) 

The following are important facts about the fundamental 
matrix ( )A tX  and state transition matrix ( , )A ot tΦ  associated 
with A(t): 

F1: Sufficient Conditions for the Existence of 
Fundamental and State Transition Matrices 

The conditions are summarized in Table 1 ([2, 7, 9, 12, 14-
16]). 

Table 1: Sufficient conditions for the existence of analytical 
solutions of ( )A tX  and ( , )A ot tΦ  

(i) ( )τA  has piecewise continuous elements { }( )i ja τ  for 
 all i,  j and [ ,  ]ot tτ ∈ ; 

(ii) ( )tA  commutes with its integral ( )
o

t

t
dτ τ∫ A , 

i.e., ( ) ( )( ) ( ) ( ) ( )
o o

t t

t t
t d d tτ τ τ τ=∫ ∫A A A A ;

(iii) A(t)A(s)=A(s)A(t) for all t and s;
(iv) 1 2 2 1( ) ( ) ( ) ( ) ;

o o o o

t t t t

t t t t
d s ds s ds dτ τ τ τ=∫ ∫ ∫ ∫A A A A  

(v) ( ) ( )t tα=A A , where ( )tα  is a scalar function and A is
a constant matrix;

(vi) 
1

( ) ( ) , where ( )
m

i i i
i

t t tα α
=

= ∑A A are scalar functions,

and Ai are constant matrices such that AiAj=AjAi, i.e., Ai 
and Aj commute for all {i, j}={1, 2,  , m }; 

(vii) A(t) can be diagonalized as 1( ) ( ) ( ) ( )t t t t−=D T A T , where 
( )1( ) ( ), , ( )nt diag t tλ λ=D   and { }1( ), , ( )nt tλ λ  denote the 

eigenvalues of A(t). ( )tT is the similarity transformation 
matrix.   

F2: Properties of Diagonal, Upper and Lower 
Triangular Matrices 

A general upper triangular matrix U(t) and a lower triangular 
matrix L(t) have the forms, respectively, 

11 12 1

22 2

( ) ( ) ( )
0 ( ) ( )

( )

0 0 ( )

n

n

nn

a t a t a t
a t a t

t

a t

=U





   



 
 
 
 
 
  

 and 

11

21 22

1 2

( ) 0 0
( ) ( ) 0

( )

( ) ( ) ( )n n nn

a t
a t a t

t

a t a t a t

=L





   



 
 
 
 
 
  

 (10) 

where { }ija  are the elements.  Their properties help find the 
corresponding fundamental and state transition matrices X(t) 
and ( , 0)tΦ : 

Properties of upper diagonal matrix U and lower diagonal 
matrix L: 

• T =U U  and T =L L , where (.)T   denotes the transpose of
(.);

• The product of two upper triangular or lower triangular
matrices is, respectively, an upper triangular or lower
triangular matrix, i.e., 1 2 =U U U  and   2 =1L L L ; 

• A diagonal matrix D(t) is invertible if and only if all its
diagonal elements are nonzero;  

• Diagonal matrices D(t) always commute, i.e., 
D(t)D(s)=D(s)D(t); 

• Upper and lower triangular matrices with identical 
diagonal elements are commutative; furthermore, if all 
their diagonal elements are zeros, they become nilpotent 
matrices.  In addition, the eigenvalues of upper and lower 
triangular matrices are equal to their diagonal elements.   

• The eigenvalues of an n n×  time-varying matrix A(t) can
be determined by using the conventional characteristic 
equation, i.e., det[ ( ) ( )] 0nt tλ∆ = − =I A  [15]. 

F3: Method of Superposition Principle (MSP) 

An n n×  analytical solution X(t) for the homogenous LTV 
system described by ODE (6) can be constructed by picking n 
linearly independent initial conditions [1-3].  The method is 
summarized as follows: 

Set n normalized independent initial condition (IC) as: 

1

1
0

( ) ,

0

ot

 
 
 =
 
 
 

x


 2

0
1

( )

0

ot

 
 
 =
 
 
 

x


,   , 

0
0

( )

1

n
ot

 
 
 =
 
 
 

x


.   (11) 

Let { }( ),  1,  ,  i t i n=x   be the solution of ( )t=x A x  based
on (10), i.e., ( )i tx  is solved uniquely one column at a time for 
each initial condition ( )i

otx .  This construction is based on the 
principle of superposition of linear systems, and is a method of 
superposition principle (MSP) with normalized ICs.  The 
resulting n×  n nonsingular matrix, denoted by ( )Normalized tX , is 
given by 
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1( ) ( ) ( )n
Normalized t t t =  X x x .  (12) 

It follows from (12) that the normalized fundamental matrix 
( )Normalized tX  satisfies 

1 1( ) ( ) ( ) ( ) ( ) ( )
( ) ( ).

n n
Normalized

Normalized

t t t t t t
t t

   = =   
=

X x x A x x
A X

   

 (13) 

The simple initial condition (10) is a convenient choice to 
determine ( )Normalized tX .  Note that it is also possible to choose 

any set of initial conditions { }( ),  1,  2,  ,  i
ot i n=x  , thereby 

obtaining a different ( )tX , as long as { }( ),  1,  2,  ,  i
ot i n=x 

are linearly independent vectors.  Therefore, the non-
uniqueness of ( )Normalized tX  and ( )tX  provides flexibility for 
analyzing LTV systems; however, the state transition matrix 

( , )ot tΦ  is unique and is given by (4). 

Remark 1: The method of superposition principle (MSP) 
hinges on A(t) being an upper or lower triangular matrix [6], 

so that the analytical solution of each ODE 
1

( )
n

i i j j
j

x a t x
=

= ∑

for all 1, 2, ...,i n=   and 1, 2, ...,j n=  can be determined 
successively.  The method is particularly attractive for manual 
calculations of X(t) and ( , )ot tΦ  for low dimensional systems, 
such as n = 2 and n = 3. ■    

F4: Matrix Exponentials and Commutativity of 
Constant and Time-Varying Matrices 

Given two square matrices A and B, it follows, in general, 
that [5, 7] 

t te e≠A AB B ,        (14a) 

t t te e e e≠A B Bt A ,       (14b) 

( )t te e e +≠A B A B t .   (14c) 

Equality will hold if and only if A and B commute, i.e., 
AB=BA.  Further, if AB=BA, then t t t t t Bte e e e e += =A B B A A  ⇒  

t t t te e + −=A A B B .  In addition, if Y is invertible, then 
1 1e e
− −=YXY XY Y  [11]. 

F5: Separation Principle for LTI and LTV Systems 

2.1 LTI Systems 

Consider the LTI system 

x = Ax+Bu,  x(0)=xo,  (15a)   

y = Cx,  (15b) 

where A, B and C are constant matrices of compatible 
dimensions.  It follows that the pair [A, B] is controllable if and 
only if the pair [AT, BT] is observable, which is the well-known 
property of duality for control and estimation. 

The feedback control u is assumed to be given by 

u= −K x̂ ,  (16) 

where K is the feedback gain matrix and x̂  is an estimate of x 
generated by an observer. 

Next, an observer for (17) can be constructed as 

( )ˆ ˆ ˆ+ −x = Ax + Bu H y Cx

(17) 
    = ( ) ˆ− − x + HyA BK HC , 

where ˆ= −u Kx  given by (18), and H  is the observer gain 
matrix. 

Define the estimation error as 

ˆ= −e x x    (⇒  ˆ= +x x e ),  (18) 

which yields 

ˆ−e = x x  .  (19) 

Further, (19) can be expressed as 

( ) ( )[ ]ˆ− ++ −e = x + Bu HCxAx Bu A HC

     = (A-HC)e.  (20) 

Also using (18), (20) can be expressed as 

( )= = +−x Ax + Bu x BKeA BK .      (21) 

Combing (20) and (21), we obtain the augmented systems 

−     
=     −     

x A BK BK x
e 0 A HC e




 
 
 

x
F

e
 ,  (22) 

which yields the characteristic equation 

∆  =det( ( )Fλ −I =det ( )(λ −I A - BK det ( )(λ −I A - BK ,  (23) 

whereby 

( ) ( )λ λ− −A BK A HC ,   (24) 

where (.)λ  denotes the eigenvalues of (.).  This property is the 
well-known Separation Principle for LTI systems [4, 11]. 
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Further, (22) can be expressed in the { }ˆx, x  coordinates as 

,
ˆˆ

  −     
= +       − −      

x A BK BK x 0
y

0 A BK HC x Hx




  (25) 

which is the closed-loop feedback control system and observer. 
Computer simulation of (25) allows responses x(t) and ˆ ( )tx  

to be compared.  If the responses x(t) and ˆ ( )tx are not 
satisfactory, for instance, ˆ ( )tx  does not converge to x(t) 
quickly and smoothly, then the gain matrices K(t) and H(t) 
may be redesigned. 

2.2 LTV Systems 

Consider the LTV System 

x  = A(t)x + B(t)u,   x(0)=xo,   (26a) 

 y = C(t)x,  (26b) 

where A(t), B(t) and C(t) are time-varying matrices of 
compatible dimensions.  Following the formulation in Section I 
above, we assume that the feedback control u(t) is given by 

ˆ( )t= −u K x ,  (27) 

where K(t) is the time-varying feedback gain matrix and x̂  is 
an estimate of x generated by an observer.  Recall that, for LTI 
systems, the pair [A, B] is controllable if and only if the pair 
[AT, BT] is observable [2, Theorem 6.5, Theorem of Duality]. 
However, for LTV systems, it follows that [A(t), B(t)] is 
controllable if and only if ( ), ( )T Tt t − A B  is observable (see 
[2], Problem 6.22 and the Solution Manual for the proof). 

An observer for (26) and (27) results in 

 x̂

[ ] ˆ ˆ ˆ( ) , ( ) .( ) ( ) ( ) ( ) ( ) o ot tt t t t t= + =− − x H y x xA B K H C  (28) 

Define the estimation error as 

e = x- x̂ ,  (29) 

which yields, with (26) and (28), 

 ˆ= −e x x 

 [ ] .( ) ( ) (( ) et t t= −A H C   (30) 

Combing (26) and (30), we obtain the augmented systems 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

t t t t t
t t t

−     
=     −     

x A B K B K x
e 0 A H C e




,    (31) 

The characteristic equation of (31) is given by 

∆ =det( ( )( ) ( )t tλ −I G =det ( )( ) ( )clt tλ −I A  det ( )( ) ( )ot tλ −I A , 
     (32) 

and yields the Separation Principle for LTV systems. 
Equation (31) can also be expressed in the { }ˆx, x - 

coordinates as 

( ) ( ) ( )
.

ˆ) ( ) ( ) ( ) ( ) ( )ˆ
t t t

t t t t t t
  −     

= +       − −      

x A B K x 0
y

0 A B K H C x Hx




 (33) 

Similar to (25) for LTI systems, (33) is needed for 
implementing LTV closed-loop feedback control systems and 
observers.  Simulation responses x(t) and ˆ ( )tx of (33) can be 
used to adjust the gain matrices K(t) and H(t) to improve the 
performance of x(t) and ˆ ( )tx .   

A block diagram for the LTV feedback control system and 
LTV observer is shown in Figure 1. 

F6:Controllability and Observability of LTV Systems 

Consider the LTV system described by (1), repeated here for 
ease of reference: 

[ ]( ) ( ) ( ), ( ) , ,,o o ot t t t t a b= + = ∈x A x B u x x (1a) 

 y = C(t)x. (1b) 

We have the following sufficient conditions for the 
controllability and observability of LTV systems. 

Theorem 1: Controllability of LTV systems (2, Th 6.12; 6, 
[12], Th 2.5; 16) 

Let A(t) and B(t) be (n-1) times continuously differentiable. 
Then the pair [A(t), B(t)] is controllable at to if there exists a 
finite t1> to such that  

rank[M(t)] = n,  (34) 

where 

M(t) = [ ]1 1( ) ( ) ( )o nt t t−M M M ,  (35a) 

 Mo(t) = B(t),  (35b) 
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 Mm+1(t) = - A(t)Mm(t)+ ( )m tM ,  (35c) 

for m = 0, 1, …, n-1.  

For LTI systems, (35) yields 

2 3 1n−=  − − M B AB A B A B A B ,   (36)  

which has the same rank as the standard controllability theorem 
of the pair [A, B] given by  

2 3 1n−=   M B AB A B A B A B ,  (37) 

i.e., the alternate minus sign in (36) do not affect its rank and
rank( ) rank( )=M M .

Theorem 2: Observability of LTV systems [2, Theorem 
6.012] 

Let A(t) and C(t) be (n-1) times continuously differentiable. 
Then the pair [A(t), C(t)] is observable at to if there exists a 
finite t1> to such that  

rank[N(t)] = n,  (38) 

where 

N(t) = 1

1

( )
( )

( )

o

n

t
t

t−

 
 
 
 
 
 

N
N

N


,  (39a) 

No(t) = C(t),  (39b) 

Nm+1(t) = Nm(t)A(t) + ( )tN ,  (39c) 

for m = 0, 1, …, n-1.  

Theorem 3: Relationship between Controllability and 
Observability of LTV systems [2] 

The pair [A(t), B(t)] is controllable at to if and only if [-
AT(t), BT(t)] is observable at to . 

Proof: The proof can be found in [2], Solution Manual for 
Problem 6.22.  

3 Analytical Solutions and Simulations of LTV Systems, 
and Design of LTV Feedback Control Systems and LTV 
Observers 

The analytical solutions of the fundamental and state 
transition matrices of LTV systems and the design of feedback 
control and observers will be investigated in this section. 
Matlab solutions and simulations will be given as well. 

Example 1: Second-order LTV system [6, 17] 

Consider the LTV system:  

( )
2 5

2

6 3
( ) ,   

0 3 o o
t t

t t
t

 −
= = = − 

x A x x x x , (1-1) 

where A(t) is an upper triangular matrix.  The primary 
objectives of this example are: 

(1a):  Solving for x(t), the fundamental matrix X(t), and the 
state transition matrix ( , 0)tΦ ; 

(1b):  Simulating the responses of x(t) in Matlab with 
normalized ICs: 1 (0) 1x =  and 2 (0) 1x = . 

Solution: 

(1a):  First, we check the matrix commutativity properties of 
A(t): 

1 2 2 1( ) ( ) ( ) ( ) and ( ) ( ) ( ) ( ),t t t t t t t t≠ ≠A A A A A Ψ Ψ A   (1-2) 
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where ( )tΨ  denotes the integral of A(t), i.e., 

( ) ( )
o

t

t
t dτ τ= ∫Ψ A .  (1-3) 

Since both conditions are not met, then ( )( ) exp
o

t

t

dt τ
 

≠   
 
∫AX

and ( ) ( ) ( )t t t≠X A X .  The problem has been investigated in [6] 
and [17].  The solutions of Wu and Jain are listed below, 
respectively: 

(i) Wu:  ( )
3 3 3 3

3

2 2 3

2

)
,0 , (0,0)

0

t t t t

Wu Wut

e e e t e
t

e

− − − −

−

 − +
= = 
  

Φ Φ I , 

(1-4) 

⇒  
3 3 3 3

3

2 2 3
1 21

2 2

(0) ( ) (0),( )
( )

( ) (0).

t t t t
Wu

Wu t
Wu

e x e e t e xx t
t

x t e x

− − − −

−

 + − +  = =  
  

x

(1-5) 

(ii) Jain:

( )
( )3 3 3

3

3
2 2

2, 0 , (0, 0) ,2
0

t t t

Jain Jain
t

te e e
t

e

− − −

−

 
− = = 

  

Φ Φ I  (1-6) 

⇒
( )3 3 3

3

3
2 2

1 21

2
2

(0) (0),( )
( ) 2

( )
(0),

t t t
Jain

Jain
Jain t

te x e e xx t
t

x t
e x

− − −

−


+ −  = =  

  


x

(1-7) 

where the state transition matrices ( ) ( ), 0 , 0Wu Jaint t≠Φ Φ .  It 
follows that  

( , 0)
( ) ( , 0)Wu

Wu

t
t t

t
∂

=
∂

Φ
A Φ ⇒ Wu's solution is correct,

(1-8) 

( ,0) ( ) ( ,0)Jain
Jain

t t t
t

∂
≠

∂
Φ A Φ ⇒ Jain's solution is incorrect.

(1-9) 

If we check more closely, it follows from (1-5) and (1-7) that  

2 2( ) ( )WU Jainx t x t= , (1-10) 

but the error between 1 ( )Wux t  and 1 ( )Jainx t  is given by 

1 1 1( ) ( ) ( )Wu Jaine t x t x t= −

3 3
3 3

2
21 1 (0)

2 2
t tt te e x− −    

= − + +        
0→    as t →∞ .

(1-11) 

Further, the error between ( , 0)Wu tΦ  and ( , 0)Jain tΦ  is given 
by 

( )2 3 3 32 3 2
10
2( ) ( , 0) ( , 0)

0 0

t t t t

Wu Jain

e e t e et t t
− − − −

 − + + = − =  
  

E Φ Φ

0→    as t →∞ . (1-12) 

The Matlab program using Matlab's EXPM command that 
yields (1-6) is listed below: 

syms t 

A = [-6*t^2   3*t^5; 0   -3*t^2]; 

M = int(A,t) = [-2*t^3, 1/2*t^6]     
[          0,          -t^3];

Xmatlab= simplify(expm(M)) = 

 = [ exp(-2*t^3),   -1/2*t^3*exp(-t^3)*(-1+exp(-t^3))] 
 [                  0,     exp(-t^3)], 

which is identical to (1-6) and is incorrect. 

(1b): The responses of the analytical solutions ( )Wutx  and 
( )Jaintx  given by (1-5) and (1-7), respectively, are 

plotted in Figure 2.  For comparisons, simulations of 
the time-varying ODE (1-1) using Matlab's ODE45 
are also plotted.  All the plots in Figure 2 agree with 
the observations given by (1-10) and (1-11).  Hence, 
based on the matrix differential equations 

( , 0)
( ) ( , 0)Wu

Wu

t
t t

t
∂

=
∂

Φ
A Φ and 

( ,0) ( ) ( ,0)Jain
Jain

t t t
t

∂
≠

∂
Φ A Φ  given by (1-8) and (1-9), 

the error equation given by (1-11), and all the 
simulation results, we conclude that Wu's method 
yields the correct solution to ( )t=x A x  and Jain’s 
solutions are incorrect.  Recall that Matlab will yield 
correct solutions if A(t) given in (1-1) is a 
commutative matrix. 

Example 2: Design of Feedback Control for LTV System 
and LTV observer with Prescribed Properties  

Consider the LTV system described by [6] 

0 1 exp( ) 0
( ) ( )

1 exp( ) 1
t

t t u u
t

− − −   
= + = +   − −   

x A x B x ,  (2-1a) 
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Figure 2: Responses of ( )Wu tx  given by (1-4) and ( )Jain tx  
given by (1-6) with 1 (0) 1x =  and 2 (0) 1x = , and the 
error 1 ( )e t  given by (1-11).  All the solutions decay 
to zero as t →∞ .    

y=C(t)x=[0 1]x=x2. (2-1b) 

Do the following: 

(2a):  Design a feedback control system for (2-1) such that 
the resulting closed-loop system matrix 

( ) ( ) ( ) ( )cl t t t t= −A A B K  (2-2) 

is triangular, commutative, and nilpotent, where K(t) is the 
feedback gain matrix.  Determine the analytical solutions for 
the fundamental matrix ( )cl tX  and state transition matrix 

( , 0)cl tΦ  associated with Acl(t) given by (2-2). 

(2b):  Design an observer for (2-1) such that the observer 
matrix 

     ( ) ( ) ( ) ( )o t t t t= −A A H C  (2-3) 

is triangular, commutative, and nilpotent, where H(t) is the 
observer gain matrix.  Determine the analytical solutions for 
the fundamental matrix ( )o tX  and state transition matrix 

( , 0)o tΦ  associated with Ao(t) given by (2-3). 

(2c):  Simulate and plot the responses of x(t) and ˆ ( )tx . 

Solution:  

(2a) Design of LTV Control System 

Solution: 

Step 1: Check the controllability matrix of the pair [A(t), 
B(t)] given by (36), Theorem 1.  We obtain: 

[ ]1( ) ( ) ( )ot t t=M M M

= ( ) ( ) ( ) ( )o o ot t t t − + M A M M = [ ]( ) ( ) ( )t t t−B A B  

=
0 1 exp( )
1 exp( )

t
t

+ − 
 − 

,   (2-4a) 

where 

( )o tM =B(t), (2-4b) 

M1(t) = -A(t)*Mo(t) =
1 exp( )

exp( )
t

t
+ − 

 − 
. (2-4c) 

The determinant det(M(t)) of M(t) is given by 

det(M(t)) = -1 -exp(-t) 0≠  for all t, (2-5) 

⇒ rank[M(t)] = 2 for all t  ⇒   LTV system (2.1) is
controllable for all t.

Step 2: Design of feedback control system 

Let a feedback control be given by 

u= - K(t) x̂ , (2-6) 

where K(t) =[k1(t)   k2(t)] is a feedback gain matrix, and x̂  is 
an estimate generated by an observer .  Substituting (2-6)  into 
(2-1) yields the closed-loop control system 

x = A(t)x-B(t)K(t) x̂ . (2-7) 

Since [A(t), B(t)] is a controllable pair, a suitable control gain 
matrix K(t) exists such that Acl(t) has desirable properties, 
specifically, Acl(t) being triangular  and commutative.  

Step 3: Determine the control gain matrix K(t) in (2-6) and 
(2-7).  We have 

Acl(t)=A(t)-B(t)K(t)
1 2

0 1 exp( )
1 ( ) exp( ) ( )

t
k t t k t

− − − 
=  − − − − 

. (2-8) 

Setting  k1(t) =1 and  k2(t) = - exp(-t) in (2-8)  yields 
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Acl(t)=A(t)-B(t)K(t)=
0 1 exp( )
0 0

t− − − 
 
 

,      (2-9) 

which is a commutative and triangular matrix with zero 
diagonal elements so that the design criteria are satisfied.   

Step 4: Determination of the fundamental matrix Xcl(t) and 
transition matrix ( , 0)cl tΦ . 

Since Acl(t) is a triangular and commutative matrix, its 
associated fundamental matrix Xcl(t) and state transition 
matrix ( , 0)cl tΦ  can be determined readily as follows: We 
have 

0 exp( )
( )

0 0
t

clo

t t
dτ τ

− + − 
=  
 

∫ A ,  ( )2

( )
t

clo
dτ τ =∫ 0A . (2-10)

Since ( )2

( )
t

clo
dτ τ =∫ 0A , ( )cl tX  is given by 

( )
( ) e

t
clo

d

cl t
τ τ∫=

A
X ( )

0

1
( )

!

kt

clok
d

k
τ τ

∞

=

= ∑ ∫ A 2 ( ) ,
t

clo
dτ τ= + ∫I A  

 (2-11) 

which yields a finite-sum solution 

2( ) ( )
t

c l clo
t dτ τ= + ∫X I A

1 e
0 1

tt − − +
=  
 

,    
1 1

(0)
0 1cl
 

=  
 

X . 

 (2-12) 

Using (2-12), the state transition matrix ( , 0)cl tΦ  is obtained as 

1( ,0) ( ) (0)cl cl clt t −=Φ X X =
1 1
0 1

tt e− − − +
 
 

,   2( ,0)cl t =Φ I . 

(2-13) 

Equations (2-12) and (2-13) satisfy, respectively, the matrix 
differential equations: 

( ) ( ) ( ), (0)cl cl cl clt t t=X A X X ,    (2-14) 

2( ,0) ( ) ( ,0), (0,0)cl cl cl clt t t= =Φ A Φ Φ I ,    (2-15) 

which confirm that ( )cl tX  and ( , 0)cl tΦ  solve (2-14) and (2-
15), respectively.  

(2c): Design of LTV Observer with Prescribed 
Properties 

Step 1: Check the observability matrix of the pair [A(t), 
C(t)] given by (40), Theorem 2.  We obtain: 

N(t) =
1

( ) 0 1
( ) 1 exp( )

o t
t t

   
=   − −  

N
N

, (2-16) 

The determinant det(N(t)) of N(t) is given by 

det(N(t)) = -1, (2-17) 

⇒ rank[N(t)] = 2 for all t  ⇒   LTV system (2.1) is
observable for all t.

Step 2: An observer for (2-1) has been designed in [8, Eq. 
(3.215)] and is given by, 

ˆ ˆ ˆ( ) ( )[ ( ) ] ( )t t t t= + − +x A x H y C x B u  

(2-18) 

where the observer gain matrix H(t) is given by 

1

2

( )
( )

( )
h t

t
h t
 

=  
 

H . (2-19) 

Substituting (2-19) into (2-18) yields 

1

2

0 1 ( )ˆ ˆ ( ) ( )
1 ( )

t

t

e h t
t t

e h t

−

−

 − − −
= + + − − 

x x H y B u . (2-20) 

In [6], the observer gain matrix H(t) was chosen as 

1

2 1

( ) 1 e
( )

( ) e

t
o

t

h t m
t

h t m

−

−

 − − 
= =    −   

H  , (2-21) 

where mo and m1 are constants.  Substituting (2-21) into (2-20) 
yields an LTI observer 

1

0
ˆ ˆ ˆ( ) ( ) ( ) ( )

1
o

o

m
t t t t

m
− 

= + + + + − 
x x H y B u A x H y B u  . 

(2-22) 

where oA  is a constant matrix.  The eigenvalues of  oA  are 

given by 
2

1 4
2

om m m
λ

− ± +
=  which can be used to guide 

the choice of mo and m1 for stability analysis. 
Simulation studies of the LTV closed-loop control and 

observer can be obtained by using (2-1) and (2-22), repeated 
for ease of reference, 

0 1 exp( ) 0
( ) ( )

1 exp( ) 1
t

t t u u
t

− − −   
= + = +   − −   

x A x B x ,  
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y=C(t)x=[0 1]x=x2,   x(0))=xo; (2-1) 

1

0
ˆ ˆ ( ) ( )

1
om

t t
m

− 
= + + − 

x x H y B u ,    ˆ ˆ(0) o=x x (2-22) 

where 

u= - K(t) x̂ = [ ] ˆ1 exp( t− − x . (2-23) 

The responses of x(t) and ˆ ( )tx  are as shown in Figure 3, 
where x(t) converges to ˆ ( )tx  quickly and smoothly. 

 
Figure 3: Responses of the estimate ˆ ( )tx  given by (2-22) 

converges to x(t) given by (2-1) quickly and 
smoothly for mo=1 and m1=1.  The initial conditions 
were both chosen as x(0)) = ˆ(0) =x [2  1]T  

Example 3: Design of Feedback Control for LTV System 
and LTV observer with prescribed Properties  

Consider a 4th-order LTV system described by the 
homogenous equation 

3

2

0 0 0 0
0 0 2 3

( )
1 0 0 0

3 0 0 0

t t
t

t

 
 
 = =
 
 
 

x A x x . (3-1) 

It is an LTV system investigated in [10] that has interesting 
properties, for example,  

A(t)A(s) ≠  A(s)A(t), (3-2a) 

but 

( ) ( ) ( ) ( ) .( ) , ( )
t t t

o o o
t d d t t dτ τ τ τ τ τ = ⇒ =  ∫ ∫ ∫A A A A 0A A  

(3-2b) 

(3a):  Design a feedback control system for (3-1) such that 
the resulting closed-loop system matrix  

( ) ( ) ( ) ( )cl t t t t= −A A B K  (3-3) 

is triangular and commutative, where K(t)= [ ]1 2 3 4k k k k , 
is the feedback gain matrix.  Determine K(t) and the analytical 
solutions for the fundamental matrix ( )cl tX  and state transition 
matrix ( , 0)cl tΦ  associated with Acl(t) given by (3-3). 

(3b):  Design an observer for (3-1) such that the observer 
matrix 

Ao(t) = A(t) - H(t)C(t) (3-4) 

is triangular and commutative, where 
H(t)= [ ]1 2 3 4

Th h h h is the observer gain matrix. 
Determine H(t) and the analytical solutions for the fundamental 
matrix ( )o tX  and state transition matrix ( , 0)o tΦ  associated 
with Ao(t) given by (3-4). 

Solutions: 

(3a): Design of LTV feedback control system with 
prescribed properties  

Since (3-1) is a system with no input, we need to modify it 
for feedback control analysis as  

( ) ( ) ,t t= +x A x B u  (3-5) 

where B(t) is to be chosen such that the rows of B(t)K(t) can 
modify the rows of A(t) to mach the design criteria, in 
particular Acl(t) being a triangular and commutative matrix. 

Design algorithm: 

Step 1: Examining the structure of A(t), it follows that an 
upper triangular and commutative matrix Acl(t) can be obtained 
by replacing the terms 32t  and 3t in the second row of A(t) by 
an 0 (zero).  This suggests that B(t) should be chosen with a 
nonzero row  and has the form 

0
1

( )
0
0

t

 
 
 =
 
 
 

B , (3-6) 
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Substituting (3-6) into (3-3) yields 

3
1 2 3 4

2

0 0 0 0
2 3

( ) ( ) ( ) ( )
1 0 0 0

3* 0 0 0

cl

k k t k t k
t t t t

t

 
 − − − − = − =
 
 
 

A A B K . 

(3-7) 

Setting k1=0, k2=0, k3= 32t and  k4=3t  into (3-7) yields 

2

0 0 0 0
0 0 0 0

( ) ( ) ( ) ( )
1 0 0 0

3* 0 0 0

cl t t t t

t

 
 
 = − =
 
 
 

A A B K , (3-8) 

which is a lower triangular and commutative matrix.  It is 
emphasize that Acl(t) given by (3-8) was obtained without 
regard to whether the pair [A(t), B(t] is controllable or 
uncontrollable. 

Step 2: Check the controllability matrix M(t) of the pair 
[A(t), B(t)] given by (36), Theorem 1 with B(t) given by (3-6). 
We have: 

M(t) [ ]1 2 3( ) ( ) ( ) ( )o t t t t= M M M M , (3-9a) 

where 

Mo(t)=B(t), (3-9b) 

M1(t)= ( ) ( ) ( )o ot t t− +A M M =

0
0
0
0

 
 
 
 
 
 

,  2 ( )tM =

0
0
0
0

 
 
 
 
 
 

,  

3 22( ) ( ) ( ) ( )M t t t t= − +MA M =

0
0
0
0

 
 
 
 
 
 

.  (3-9c) 

which yields 

M(t)=

0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 
 
 
 
 
 

. (3-9d) 

The determinant det(M(t)) of M(t)) is given by 

det(M(t))=0   ⇒    LTV system is uncontrollable.  (3-10) 

Hence, there exists no feedback gain matrix K(t) in (3-3) that 
can change the structure of A(t) to that of Acl(t).  However, the 
method proposed in the paper has just accomplished the design 
objective as shown by (3-8).  On the other hand, given a 
general A(t), the proposed method may fail. 

Step 3: Determination of the fundamental matrix Xcl(t) and 
transition matrix ( , 0)cl tΦ . 

Since Acl(t) given by (3-8) is a triangular and commutative 
matrix, its associated fundamental matrix Xcl(t) and state 
transition matrix ( , 0)cl tΦ  can be determined readily as follows. 
We have 

( )
t

clo
dτ τ =∫ A  

2

0 0 0 0
0 0 0 0

0 0 0
0 0 0

t
t

 
 
 
 
 
 

 and ( )2

( )
t

clo
dτ τ =∫ 0A . (3-11)

Since ( )2

( )
t

clo
dτ τ =∫ 0A , ( )cl tX  is given by 

( )
( ) e

t
clo

d

cl t
τ τ∫=

A
X ( )

0

1
( )

!

kt

clok
d

k
τ τ

∞

=

= ∑ ∫ A 4 ( ) ,
t

clo
dτ τ= + ∫I A  

 (3-12) 

which yields the finite-sum solution 

4( ) ( )
t

c l clo
t dτ τ= + ∫X I A =X=

3

1 0 0 0
0 1 0 0

0 1 0
0 0 1

t
t

 
 
 
 
 
 

,    4(0)c l =X I . 

  (3-13) 

Using (3-13), the state transition matrix ( , 0)cl tΦ  is obtained as 

1( , 0) ( ) (0)cl cl clt t −=Φ X X =

3

1 0 0 0
0 1 0 0

0 1 0
0 0 1

t
t

 
 
 
 
 
 

,   4( , 0)cl t =Φ I . 

(3-14) 

Equations (3-13) and (3-14) satisfy, respectively, the matrix 
differential equations: 

( ) ( ) ( ), (0)cl cl cl clt t t=X A X X ,    (3-15) 

4( , 0) ( ) ( , 0), (0, 0)cl cl cl clt t t= =Φ A Φ Φ I ,    (3-16) 

which confirm that ( )cl tX  and ( , 0)cl tΦ  solve (3-15) and (3-
16), respectively. 
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(3b): Design of LTV Observer with Prescribed Properties 

Since (3-1) is a system with no output, we need to modify it 
for observer design as  

( ) , ( )t t= =x A x y C x , (3-17) 

where C(t) is to be chosen such that H(t)C(t) satisfies the 
design criteria.  An LTV observer for (3-17) can be designed as 

 ˆ ˆ ˆ( ) ( )[ ( ) ( ) ]t t t C t= + −x A x H y H x

ˆ ˆ[ ( ) ( ) ( )] ( ) ( ) ( )ot t t t t t= − + = +A H C x H y A x H y , (3-18) 

where H(t) is the observer gain matrix given by 

1

2

3

4

( )
( )

( )
( )
( )

h t
h t

t
h t
h t

 
 
 =
 
 
 

H . (3-19) 

Design Algorithm 

Step 1: Once again, examining the structure of A(t), it 
follows that a lower triangular and commutative matrix Ao(t) 
can be obtained by replacing the third and fourth elements in 
the first column of A(t).  This suggests that C(t) can be chosen 
as 

C(t)=[1   0   0   0]. (3-20) 

Substituting (3-20) into (3-18) yields 

Ao(t)=

1
3

2

3
2

4

0 0 0
0 2 3

1 0 0 0
3 ( ) 0 0 0

h
h t t
h

t h t

− 
 − 
 −
 

− 

. (3-21) 

Setting h1=0, h2=0, h3=1 and h4= 23t  yields 

Ao(t)=
3

0 0 0 0
0 0 2 3
0 0 0 0
0 0 0 0

t t
 
 
 
 
 
 

, (3-22) 

which is an upper triangular and commutative matrix. 

Step 2: Check the observability matrix N(t) of the pair [A(t), 
C(t)] given by (40), Theorem 2, for n=4.  We have: 

N(t) [ ]1 2 3( ) ( ) ( ) ( )o t t t N t= N N N , (3-23a) 

where 

No(t)=C(t), (3-23b) 

N1(t)= ( ) ( ) ( )o ot t t+N A N = 0 , 2 1 1( ) ( ) ( ) ( )t t t t= +N N A N  =0, 

 3 2 2( ) ( ) ( )t t t= +N N A N =0,  (3-23c) 

which yields 

N(t)=

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 
 
 
 
 
 

. (3-23d) 

The determinant det(N(t)) of N(t)) is given by 

det(N(t))=0   ⇒    LTV system is uncontrollable. (3-24) 

Hence, there exists no observer gain H(t) that can change the 
structure of A(t) to that of Acl(t).  But the method proposed in 
this paper has just accomplished the design objective as shown 
by (3-22).  On the other hand, given a general A(t), the 
proposed method may not work. 

Step 3: Determination of the fundamental matrix Xo(t) and 
transition matrix ( , 0)o tΦ . 

Since Ao(t) given by (3-22) is a triangular and commutative 
matrix, its associated fundamental matrix Xo(t) and state 
transition matrix ( , 0)o tΦ  can be determined readily as follows: 
We have 

( )
t

oo
dτ τ =∫ A

4 2

0 0 0 0
0 0 0.5 1.5
0 0 0 0
0 0 0 0

t t
 
 
 
 
 
 

and ( )2

( )
t

oo
dτ τ =∫ 0A .

(3-25) 

Since ( )2

( )
t

oo
dτ τ =∫ 0A , ( )o tX  is given by 

( )
( ) e

t
oo

d

o t
τ τ∫=

A
X ( )

0

1
( )

!

kt

ook
d

k
τ τ

∞

=

= ∑ ∫ A 4 ( ) ,
t

oo
dτ τ= + ∫I A   (3-26)

which yields a finite-sum solution 

4( ) ( )
t

c l clo
t dτ τ= + ∫X I A =X=

4 2

1 0 0 0
0 1 0.5 1.5
0 0 1 0
0 0 0 1

t t
 
 
 
 
 
 

,    4(0)c l =X I . 

  (3-27) 
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Using (3-26), the state transition matrix ( , 0)o tΦ  is obtained as 

1( , 0) ( ) (0)o o ot t −=Φ X X =
4 2

1 0 0 0
0 1 0.5 1.5
0 0 1 0
0 0 0 1

t t
 
 
 
 
 
 

, 4( , 0)o t =Φ I . 

 (3-28) 

Equations (3-27) and (3-14) satisfy, respectively, the matrix 
differential equations: 

( ) ( ) ( ), (0)o o o ot t t=X A X X ,    (3-29) 

4( , 0) ( ) ( , 0), (0, 0)o o o ot t t= =Φ A Φ Φ I ,    (3-30) 

which confirm that 0 ( )tX  and ( , 0)o tΦ solve (3-29) and (3-30), 
respectively.  

4 Conclusions 

Determination of the analytical solutions for the fundamental 
and state transition matrices associated with linear time-varying 
(LTV) systems of the form given by (5), which is a matrix 
exponential, was investigated.  It is well known that 
determining a matrix exponential is a difficult task.  The 
investigation consisted of two types of LTV systems, namely, 
feedback control systems and observers.  For the design of 
LTV control systems, one of the main objectives was to require 
the closed-loop system matrices to have specific structures, 
specifically, being upper or lower triangular matrices with 
identical elements on their main diagonal.  The same objective 
was imposed on the observer matrices.  Upper and lower 
triangular matrices have many desirable properties, such as 
they are commutative as wasstated in fact F.2 in the paper.  The 
commutativity of a matrix will ease the determination of its 
fundamental and state transition matrices.  Examples were 
given to demonstrate the analysis and design.  Simulations and 
Matlab solutions using its command EXPM were provided as 
well.  Future research will address disturbance cancellation 
control of LTV systems and the design of unknown input LTV 
observers. 
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