
IJCA, Vol. 29, No. 2, June 2022 79

Logical Modeling of Adiabatic Logic Circuits using VHDL with Examples

Lee A. Belfore II *

Old Dominion University, Norfolk, Virginia, 23529, USA

Abstract

The underlying nature of adiabatic circuits is most accurately
characterized at the circuit level as it is for traditional
technologies. However, in order to scale system designs for
adiabatic logic technologies, modeling of adiabatic circuits
at the logic level is necessary. Logic level models of
adiabatic logic circuits can facilitate the design, development,
and verification of large scale digital systems that may be
infeasible using circuit simulators. Adiabatic logic circuits can
be powered with a four stage power clock consisting of idle,
charge, hold, and recover stages that provides for adiabatic
charging and charge recovery to give adiabatic circuits their
low power operation. By both discretizing the temporal aspects
of the power clock and the logic values, a logical model of
adiabatic circuit operation is proposed. Using the expressive
capabilities of Very High Speed Integrated Circuit (VHSIC)
Hardware Description Language (VHDL), the salient aspects of
adiabatic circuit models can be captured. In this work, a VHDL
framework is defined for modeling adiabatic logic circuits &
systems and its use is demonstrated in several example adiabatic
logic circuits.

Key Words: Low power electronics; Digital circuits; Logical
Model; Digital simulation; VHDL.

1 Introduction

Adiabatic logic circuit technology offers lower power
consumption compared with CMOS technologies by energizing
circuits adiabatically and then adiabatically recovering stored
energy from the circuit for later reuse [3, 7, 8, 10]. The
efficiency and behavior is established by the circuit level
behaviors that are quantified in circuit simulations and measured
in actual circuits. Once the circuits are suitably characterized,
the overall operation can be described symbolically. This
description of their operation is the basis for logical models of
adiabatic circuits.

With current digital system design requirements and
modeling practices, it is impractical to rely solely on circuit
simulations to validate a design because the circuit simulations
require substantial computational resources. As a result, the

*Department of Electrical and Computer Engineering. Email:
LBelfore@odu.edu

design process employs conservative models with conservative
margins, substitutes vetted approximate models for high fidelity
models, and/or, limits circuit simulation to special cases
requiring circuit level fidelity. The fidelity is not reduced in
an arbitrary fashion, but rather aspects of the circuit operation
are modeled symbolically. Circuit level properties associated
with the symbolic representations can be included using a circuit
extraction step to improve the fidelity of the model. Such is the
case with circuit delays, for example.

Approaches for modeling adiabatic and partially adiabatic
circuits appear in the literature [14, 15]. In Varga et al., the
adiabatic pipeline is modeled using the IEEE std_logic type
for logic values and guarded blocks to manifest the timing of
the power clock [14]. The motivation is to model the pipeline
structure in anticipation of synthesis. Finally, approaches for
modeling in Verilog are developed [15] with the observation
that VHDL is similarly capable. The clear intent of these
approaches is to facilitate modeling larger scale models and
support synthesis based on the logical behavior of the models.

More generally in the literature, adiabatic circuit dynamics
can be modeled with VHDL by one of two methods. First,
VHDL libraries can be created with the specific capacity to
model analog signals [9]. In addition, the VHDL standard
has been extended to support mixed analog/digital modeling
in VHDL-AMS [1]. In both of these approaches, the circuit
is ultimately represented by a system of differential equations.
In these works, it would be necessary to develop libraries to
support adiabatic circuit models. The principle disadvantage in
these approaches is the significant simulation time necessary for
large circuits. During system development, it is more pragmatic
to focus on logical modeling, constrained by conservative
performance metrics, to facilitate iterative design. Once the
design approaches the final phase, then it may become necessary
to shift to higher fidelity circuit simulations.

In this work, an approach is introduced for modeling
adiabatic circuits. The model defines a multivalued logic value
definition consistent with adiabatic circuit operating modes.
The logic values facilitate developing adiabatic logic pipelines
and troubleshooting of logic circuits. Importantly, the model
preserves the dual rail nature of adiabatic signals.

This paper is organized into five sections including an
introduction, an overview of the operation of adiabatic circuits,
a presentation of adiabatic VHDL models, simulation results for

ISCA Copyright© 2022

80 IJCA, Vol. 29, No. 2, June 2022

several examples, and a summary.

2 Adiabatic Logic Circuits Operation

In this section, the basis for logical models of adiabatic
circuit operation is presented. The intention is to identify
modes of circuit operation that can be represented symbolically
rather than actual circuit level behaviors. The interested reader
can find the details of adiabatic circuit operation elsewhere
[2, 3, 7, 8, 10].

Adiabatic circuits are capable of low power operation by
providing the energy to the circuit adiabatically and then later
adiabatically retrieving the energy for subsequent reuse. Note
that adiabatic operation implies that no heat is dissipated during
circuit operation. Since the circuit operation is not ideally
adiabatic, some energy will be dissipated, but can be greatly
reduced compared to traditional CMOS technologies.

2.1 Power Clocks

Adiabatic circuit operation can be divided into four segments
reflecting the modes of circuit operation. The segments are
idle, charge, hold, & recover, or abbreviated by I, C, H, &
R. The nature of each segment captures an adiabatic circuit’s
mode of operation and is manifest by the nature of the power
source during the segment as a function of time. Repeating
the segments in the order presented enables adiabatic operation.
Since segments are repeated periodically, the circuit’s power
source is henceforth termed the power clock.

In more detail, the segment operation is described as follows.
In the idle mode, the circuit voltage source is 0V, the circuit is
unpowered, and thus consumes no power. In the charge mode,
the voltage supplied slowly increases, charging capacitive
elements in the circuit that when fully charged, enabling the
circuit to provide its designated function. A key aspect of the
charge mode is the “slow” increase in the voltage supplied.
By “trickle charging” the capacitive elements, the net power
consumed can be shown to be reduced [7]. In the limit where
the voltage increases over an indefinitely long time interval, the
circuit operates in a truly adiabatic fashion. In the hold mode,
the circuit is fully charged. With no current entering the circuit,
the circuit consumes no power. Finally, in the recover mode,
the circuit is discharged through its voltage source, returning its
charge for later reuse. Similar to the charge mode, the slow ramp
down of the voltage source retrieves the charge adiabatically.
An important observation is that, unlike traditional CMOS
circuits where such charge is resistively dissipated, the charge
is recovered through the voltage source for later reuse.

Further, to simplify the discussions, a trapezoidal clock
is assumed, although many adiabatic circuits operate using
sinusoidal or other periodic shapes that are more easily
generated. Figure 1 shows four power clock phases, shifted 90◦

with respect to one another.

φ1

φ2

φ3

φ4

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

C
I

 R

I
C

I

C

C C

C

C

C

I

II I

I

I

I II

I

H H H

HHH

H H H H

HHH

 R R

 R R R R

 R R R C

 R R RC C C C

Figure 1: Four power clock phases

2.2 Adiabatic Circuit Dynamic Behavior

Figure 2 gives a circuit level schematic for the simplest
adiabatic logic gate, the buffer-inverter, along with its
schematic symbol. High fidelity models of the buffer-inverter

 A

 F

Q
1

Q
2

Q
4

Q
3A

φ
i

 F A

A

φ
i

F

F

(a) Circuit (b) Schematic symbol

Figure 2: Buffer-inverter adiabatic logic circuit

unsurprisingly also require high fidelity models of transistors
modeled by nonlinear differential equations. Describing the
adiabatic circuits in terms of its logical modes of operation
requires several simplifying assumptions. First, transistors
operate as simple switches that are either open or closed
depending on the gate voltage. The circuit schematic includes
two types of transistors, NMOS (Q3 & Q4) and PMOS (Q1 &
Q2) making the fabrication of adiabatic logic circuits compatible
with traditional CMOS circuits. The transistor has three
terminals: gate, source, and drain. For NMOS transistors,
when a voltage across the gate and source, VGS, exceeds a
characteristic threshold voltage, the transistor turns on. PMOS
transistors operate similarly with polarities reversed. To
simplify interpreting the circuit models that follow, the NMOS
transistors are on when V NMOS

GS > 0V and the PMOS transistors
are on when V PMOS

GS < 0V . Second, when transistors are on, they
have a constant characteristic resistance Ron. Third, transistors
have zero leakage currents when off. Fourth, all parasitic
capacitances and resistances are ignored. Fifth and finally, only
the transistor’s gate capacitance is considered. The different
simplified modes of transistor operation are shown in Figure 3.
Applying the transistor models in Figure 3 to Figure 2(a)
for A='1', the different modes of operation are illustrated in

IJCA, Vol. 29, No. 2, June 2022 81

Vcc

S

G
D

S

G
D

Circuit Model Circuit Model
(a) NMOS on (b) NMOS off

Vcc

D

G
S

Vcc Vcc

D

G
S

Vcc

Circuit Model Circuit Model
(c) PMOS on (d) PMOS off

Figure 3: Simplified transistor operational modes

Figure 4. Note that CF and CF are the lumped capacitances for
the circuit fanout. More concretely observed from the figure is
the circuit charging and charge recovery in Figures 4(c) & 4(e)
with no power consumed in Figures 4(b) & 4(d).

2.3 Adiabatic Combinational Circuit Architecture

The architecture of adiabatic combinational logic circuits
is organized into several consecutive layers of logic powered
by power clocks that are shifted in phase to facilitate the
transfer of signal values from one layer to the next. Unlike
traditional CMOS circuits where a wire conveys the logical
signal, adiabatic circuits require two wires that operate in
a complementary fashion when the circuit’s power clock is
operating in any segment except idle. This manner of signal
is often referred to as dual-rail. Furthermore, the evaluation of
adiabatic logic gates is synchronous with respect to its power
clock unlike CMOS circuits which are entirely asynchronous.
Indeed, adiabatic combinational logic circuits can be naturally
pipelined with new inputs accepted at suitable times during the
respective power clock phase. Figure 5 presents the architecture
of a simple multilayered adiabatic logic circuit consisting of
four buffer-inverters powered by four power clocks operated at
phases displaced by 90◦. Note transfer of values from one layer
to the next when the current power clock is in the hold segment
while the subsequent layer is in the charge segment.

3 Adiabatic VHDL Models

Refining the ideas introduced in §2, VHDL models for
adiabatic circuits are presented here. Recall, hardware
description languages (HDLs) are programming languages that
model complex digital systems and are the source for hardware
synthesis. HDLs facilitate specification of digital systems by
modeling systems logically rather than at the circuit level. In
addition, HDLs include familiar high-level language (HLL)
programming capabilities for computing static constants, to
support system modeling, and to provide desired modeling
capabilities. For adiabatic logic circuits modeled at a temporal
resolution where the influence of the power clock is important,
the HLL features will be used to implement the logical
behaviors of adiabatic logic circuits.

3.1 Anatomy of a VHDL Model

A VHDL model consists of an entity and an architecture [5].
The entity defines the model interface including the entity’s
signals, signal types, and signal modes (input, output, etc.).
Further, model meta-information can be passed through optional
generic parameters. Not unexpectedly, VHDL built-in types
include the bit and bit_vector types. In addition, IEEE
Standard 1164 [4] defines the more comprehensive std_logic
type that better models use cases that occur in traditional
digital circuits. For example, the std_logic type handles high
impedance connections and wired logic connections for passive
logic that are circuit level effects that extend to logic circuits.
Considering the operation of adiabatic circuits described in
§2, neither bit nor std_logic provides suitable models for
adiabatic logic circuits.

Figure 6 shows an example of a VHDL model for a two-input
AND gate using the std_logic type. The AND gate model
shows declarations consisting of two inputs & one output and
includes the behavioral model code for a two-input AND gate.
Delays, extracted using a separate circuit analysis process, can
be inserted consistent with the synthesized circuit.

3.2 Adiabatic Logic Values

At the circuit level, adiabatic logic values are more
complicated than traditional logic values for several reasons.
First, in adiabatic circuits, gate outputs are “dual railed” where
a circuit structure generates both the true and complementary
output values. Second, due to the effect of the power clock, the
circuit output value is only valid at certain times as previously
shown in Figure 5. Indeed, a logic one is a pulse that coincides
with the circuit’s power clock on the true sense gate output and
a logic zero is a pulse on the complementary sense gate output
while the circuit’s power clock is active. While this operation is
inherently analog, the circuit outputs can be categorized as logic
one and logic zero. Taking a broader view of timing and circuit
state, a suitable discretization of the behavior can be proposed
in a manner that is consistent with adiabatic circuit operation.
What follows is a discussion of the discretizing of the timing
and circuit logic values.

The nature of the power clock provides straightforward
guidance for discretizing time. With the dynamics of adiabatic
circuits naturally falling into four distinct operating modes, it

82 IJCA, Vol. 29, No. 2, June 2022

Q
1

Q
4F

C

 F

C
F

Q
2

Q
3 A

φ
i

A

 F

A=0V

A=Vcc

Q
1

Q
4F

C C
F

Q
2

Q
3 A

 F =0V

φ
i

A

I

I=0A

=0V

 F =0V

Q
1

Q
4F

C C
F

Q
2

Q
3 A

C

C
=V (t)

V (t)
C

≅
 F =0V

φ
i

A

C

 F

I=I (t)

(a) Circuit model (b) Idle (c) Charge

Q
1

Q
4F

C C
F

Q
2

Q
3 A

 F =0V

φ
i

A

H

I=0A

=Vcc

 F =Vcc

Q
1

Q
4F

C C
F

Q
2

Q
3 A

R

 F =0V

φ
i

A

R

 F

I=I (t)

=V (t)
R

R
≅V (t)

(d) Hold (e) Recover

Figure 4: Simplified buffer-inverter circuit models for input A='1'

makes sense to discretize the phase into four segments. The
following type declaration reflects the discretization suitable for
adiabatic VHDL models.

type simplePhaseSegment is

('I','C','H','R');

The simplePhaseSegment type specifies the values 'I', 'C',
'H', and 'R', representing idle, charge, hold, and recover
respectively. For segments where the power clock is changing
(in 'C' and 'R'), no circuit dynamics are modeled, rather
the logical result reflecting the values at the end of the
segment are reported. Any varying circuit level quantities
will be represented symbolically in that segment. Extending
simplePhaseSegment is phaseGeneral which is a record
including a simplePhaseSegment and phase index fields.

A new basic type, aBitSimple, is an eleven valued logic
system defined to represent the range of adiabatic signal values
that reflect the logic value, nature of the circuit, and value in
relation to the phase. In this work, we have chosen to not
differentiate the signal strengths during the charge and hold
phases to facilitate interpretation of timing diagrams. Including
these are straightforward and results in five additional signal
values covering respective activities during the charge phase.
The permissible values for this type are summarized in Table 1.

The fully qualified signal VHDL model is defined record type
that includes both the signal value and the phase:

type aBit is record

val : aBitSimple;

myPhase : phaseGeneral;

end record;

Including the phase in the signal definition enables run time
checking to confirm the aBit phase is consistent with the
assigned phase of the gate’s power clock.

Several utility routines have been created to help manage
signal values and phases. Some routines facilitate the

Table 1 Summary of adiabatic signal
values for the aBitSimple
type

Value Description
'U' driving uninitialized value
'X' driving unknown value
'0' driving logic zero
'1' driving logic one
'Z' high impedance
'u' recover uninitialized value
'x' recover unknown value
'L' recover logic zero
'H' recover logic one
'z' recover high impedance
'*' fully discharged

conversion between standard signal types (bit and std_logic)
and the new aBit type. Furthermore, operator overloading for
the new logic type has been implemented to permit the natural
composition of logic expressions. In the event indeterminate
inputs or phase errors occur, the logic operations evaluate to
unknown values ('X' or 'x') to facilitate troubleshooting.
Finally, the logic values 'Z' and 'z', along with the requisite
bus resolution functions, permit high impedance bus modeling.

3.3 Logical Adiabatic Gate Model

The logical adiabatic gate model requires changes both to
the gate entity and to the behavior defined in its architecture
compared with conventional gate models. The adiabatic gates
perform logic functions, so one reasonable approach would
be to adopt traditional logic values in the gate model. In
this approach, phase information would be lost. Furthermore,
adiabatic gates are dual rail, whose representation is not
as important as the power clock phase in logical modeling.

IJCA, Vol. 29, No. 2, June 2022 83

L
a
y
e
r 3

L
a
y
e
r 2

L
a
y
e
r 1

φ
1

φ
2

φ
3

φ
4

L
a
y
e
r 4

Inputs Outputs

Power Clock

Phases

(a) Circuit architecture

A

A

φ
4

φ
3

φ
2

φ
1

F

F

Z

Z

Y

Y

X

X

(b) Buffer-inverter chain

φ1

φ2

φ3

φ4

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10

t
11

C
I

 R

I
C

I

C

C C

C

C

C

I

II I

I

I

I II

I

H H H

HHH

H H H H

HHH

 R R

 R R R R

 R R R C

 R R RC C C C

X

Y

Z

A

’1’ ’0’ ’1’

’1’’0’’1’

’1’ ’0’ ’1’

’1’
’0’’1’

’1’ ’0’ ’1’

F

(c) Timing diagram for buffer-inverter chain.

Figure 5: Adiabatic circuit architecture and operation

entity and2 is

port(a,b: in std_logic;z:out std_logic);

end entity and2;

architecture behavioral of and2 is

begin

if a='0' or b='0' then z<='1' after 500 ps;

elsif a='1' and b='1' then z<='0' after 200 ps;

else z<='X' after 350 ps;

end if;

end architecture behavioral;

Figure 6: Example VHDL model

However, their explicit inclusion provides an opportunity to
have visibility of all signals in the circuit. Apropos, the entity
for the AND gate shown in Figure 7 includes dual rail input &
output logic signals and the clock phase driving the gate.

entity adbAnd2 is

port(

phi : in generalPhase;

a,an: in aBit;

b,bn: in aBit;

z,zn:out aBit

);

end entity adbAnd2;

Figure 7: Entity for two-input adiabatic AND gate

Determining the gate outputs is no longer a simple matter of
evaluating the gate’s logic function based on the circuit inputs
because of the dependence on the power clock segment. The
model presented in Figure 8 implements the behavior for the
two-input adiabatic AND gate that accounts for the power clock.
When the clock phase changes, the gate inputs are verified to

be in phase and to be correctly lagging the gate’s power clock
phase. When a phase error is detected, the output signal is
assigned an 'X' value. Since logical operations have been
overloaded, the gate logic function is expressed in a natural
fashion, permitting logic equations to model the respective
MOS switching networks. Logic operations are evaluated in
their respective common phase, facilitating the composition of
complex logic functions. The resulting output value is stored
in a temporary variable so that the phase can be correctly
updated to be consistent with the power clock for the gate. In
transitioning to and during the hold segment, the logic gate
outputs remain constant in the model.

3.4 Extending to Other Logic Gates

The dual rail nature of the logic gates simplifies creating
families of logic gates. Signal inversion is accomplished simply
by swapping the true and complementary signal rails requiring
no additional circuitry. Indeed, with DeMorgan’s Theorem, it is
easy to show that by swapping dual rail signals to complement
inputs & outputs, the two-input AND gate can also serve as an

84 IJCA, Vol. 29, No. 2, June 2022

Table 2 Utility functions and procedures

Name Purpose
isCharging function, returns true when power clock is charging
isHolding function, returns true when power clock is maximal
isRecovering function, returns true when power clock is discharging
isIdle function, returns true when power clock is off
deenergize procedure, reduces the strength of signal while retaining logic value
assignToPhase procedure, assigns a phase to a signal

process(phi)

variable zInt ,znInt:aBit;

begin

-- check for valid input and output

-- phase segments

if(isCharging(phi)) then

zInt <= a AND b;

zIntn <= an OR bn;

elsif isHolding(phi) then

-- by VHDL semantics ,

-- no update -no signal change

elsif isRecovering(phi) then

zInt := deenergize(zInt);

znInt := deenergize(znInt);

else -- idle

zInt.val := '*';
znInt.val := '*';

end if;

assignToPhase(zInt , phi);

assignToPhase(znInt , phi);

z <= zInt;

zn <= znInt;

end process;

Figure 8: Behavioral model for two-input adiabatic AND gate

OR, NAND, or NOR gate. In addition, more complex logic
functions can be modeled using the logic equation for the true
input values and the dual logic equation for the complementary
input values.

For example, the logic equations for a full adder are

S = A⊕B⊕Ci
Co = A ·B+A ·Ci +B ·Ci

(1)

With traditional CMOS logic, the full adder can be
implemented with several gates. In adiabatic logic, each
logic function can be implemented with an NMOS switching
network, so the full adder can be implemented with
two adiabatic logic gates. The logic equations for the
complementary networks are

S = A⊕B⊕Ci
Co = (A+B) · (A+Ci) · (B+Ci)

(2)

The second example is a multiplexer with dedicated, mutually
exclusive select lines. The general true and complementary
logic equations are

Z =
N−1

∑
i=0

SiDi Z =
N−1

∏
i=0

(Si +Di), (3)

where N is the number of data inputs. It is also easy to show that,
for N = 2, (3) can specify two-input XOR and XNOR gates.

3.5 Test Bench

A test bench is a special VHDL model which is used to verify
the circuit model. The test bench instantiates the unit under
test, generates all stimulus, and can include code to verify the
model’s outputs are correct. Figure 9 gives the VHDL process
that generates the ith power clock. For four power clock phases,
each power clock phase i has the same period T and is delayed
by (i− 1)× 90◦, or T(i− 1)/4 with respect to a reference time
at the start of the simulation. This can be easily generalized
for a different number of power clock phases. In Figure 9,
the power clock process includes one full clock period interval
at the beginning of the simulation with no activity among all
clocks. The first wait statement ensures that all power clocks
are inactive for at least one full period of the power clock and
the start of each is delayed to ensure each clock will be in the
appropriate relative phase.

...

constant T: time := 100 ns;

...

process

-- generate the ith power clock phase

-- i in {1,2,3,4}

begin

Phi_i <= ('I',i-1);
wait for T*(3+i)/4; -- See narrative

loop

Phi_i.segment <='C'; wait for T/4;

Phi_i.segment <='H'; wait for T/4;

Phi_i.segment <='R'; wait for T/4;

Phi_i.segment <='I'; wait for T/4;

end loop;

end process;

Figure 9: Generating the ith phase of the power clock

In order for outputs to conform to proper adiabatic operation,
inputs must be set in the appropriate manner to ensure the
adiabatic operation of the gate receiving the input. In addition,
it is possible that different inputs may be required at different
logic layers, and hence must be synchronized to the correct
power clock phase. This can be accommodated in one of two
ways. First, the inputs can be provided at the same time and
always on the same phase. In this case, buffers will need to be
inserted to delay the signal until it has the required phase for
its respective input layer. Second, the inputs can be provided
and synchronized to the required phase. The modeling satisfies
either case.

IJCA, Vol. 29, No. 2, June 2022 85

4 Examples

Three examples of adiabatic logic circuit models are
presented here. In the first, a full adder model is presented. In
the second, a Kogge-Stone adder model is presented. In the
third, a more complex model of the AES S-Box is presented.
The models were verified using GHDL Version 0.33 under the
IEEE-1164 1993 release of the VHDL standard on Ubuntu
16.04. In addition, while the modeling is based on the 1993
standard, no issues are anticipated for later VHDL standard
releases. Waveforms are displayed using the GTKWave V3.3
waveform viewer.

4.1 Full Adder

A simple but useful example to consider is the full adder. The
full adder is a key building block used to implement computer
arithmetic hardware. The full adder model consists of two
logic gates and operates using one power clock phase using the
logic functions defined in (1) and (2). The behavior is modeled
by modifying the code in Figure 8 by substituting the logic
equations for the sum and carry functions respectively in place
of the AND gate logic equations. The simulation results are
presented in Figure 10. The inputs provided to the full adder
sequence through all eight input combinations in successive
power clock cycles, noted with cursors A-H.

4.2 Kogge-Stone Adder

The next example is a Kogge-Stone adder (KSA) [2, 6] and
demonstrates the operation of a more complex multilayered
combinational circuit. The KSA adds two binary integers and is
among the fastest combinational adders, whose implementation
requires log2N + 2 layers of adiabatic logic. The KSA adder
can be fully implemented with commonly known gates such as
AND, OR, XOR, & etc. By implementing certain composite
functions to provide carry generates & propagates as individual
logic gates, the circuit architecture can be simplified. Indeed,
these composite gates are part of the formulation of KSA adders
and are summarized in Table 3. Note that the Buffer cell is not
a part of the traditional KSA adder formulation. Rather, the
Buffer cell is included in this model to support proper adiabatic
circuit operation to match the power clock phase for the values
propagating from layer to layer in the adder. Note also that
subscripts on gate input values are nominal and are related to the
local interconnections required to implement the KSA adder.

Table 3 Kogge-Stone logic cells

Cell Logic Equation
Black cell Gout = (P1 ·G0)+G1 Pout = P1 ·P0
Gray cell Gout = (P0 ·G0)+G1
White cell Gout = P1 ·P0 Pout = P1 ⊕P0
Buffer cell Gout = G0 Pout = P0

The VHDL model for the KSA adder has been implemented

in a generic fashion so that the same architecture can implement
any power-of-2 sized KSA adder. Figure 11 gives the entity used
to model the KSA adder. In order to simplify the presentation
of results, a four-bit KSA adder is demonstrated. Specifically,
the VHDL model for the four-bit adiabatic KSA adder modeled
here requires log2N + 2 = 4 layers of logic to implement.
Figure 12 shows the simulation beginning at 4 µs for a circuit
powered by power clocks with 100 ns periods. Note that signal
complements have been omitted. At cursor A (4.0875 µs),
the input Op1A=0101, Op2A=1001 and CinA=1. The output
layer is charging at cursor C (4.1875 µs) and CoutC=0, and
SumC=1111. In addition, at cursor C, the inputs are changed
to Op1C=1010, Op2C=0101 and CinC=0 resulting in CoutF=0,
and SumF=1111 at 4.2875 µs.

4.3 Advanced Encryption Standard (AES) Substitution
Box

In this section, we present a significantly more complex
model which is the logic for the Advanced Encryption Standard
(AES) substitution box (S-box). The purpose of the S-box is
to introduce a nonlinear, but difficult to reverse, transform to
enhance the security of the encryption. The interested reader
can find more information by consulting the AES standard [12].
The S-box is a complex combinational logic function devised
by others [11, 13]. Their proposed circuit, however, cannot be
directly implemented using adiabatic logic circuits because of
the multiphase nature of the adiabatic logic circuits.

The logic for the S-Box follows from the implementation
method proposed by Satoh et al. [13] and detailed
combinational logic S-Box implementation described by Mui
[11]. The respective authors note the efficiency of their
implementation in terms of hardware. Figure 13 gives
an overview of the S-Box and inverse S-Box logic. A
transformation, (δ), is applied to the original GF(28) system
to permit decomposition in terms of a GF(24) system, and
subsequently a GF(22) system to permit derivation of logic
functions for intermediate values [11, 13]. Once the system is
expressed in terms of a GF(22) system, the logic functions at
this level can be expressed directly as four-input, two-output
logic expressions. From the GF(22) logic functions, logic
expressions for the GF(24) and then ultimately GF(28) can be
derived.

Figure 14 shows the individual logic blocks that are used in
both the S-Box and inverse S-Box transformations. The number
of layers of adiabatic logic are indicated above each block. The
logic is mostly implemented with two-input gates along with
a handful of three-input gates. The δ and affine transforms T
are matrix/vector operations on individual bits using AND and
exclusive-OR operations, i.e. GF(2).

Inspection of Figures 13 & 14 reveal a complex hardware
organization with a multitude of paths for logical results that
flow through varying numbers of layers of logic. For proper
operation, the phases of inputs received for any block must be
identical and the block must be energized by the next sequential

86 IJCA, Vol. 29, No. 2, June 2022

0ns 100ns 200ns 300ns 400ns 500ns 600ns 700ns 800ns 900ns

phi1 ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’

A ’0’ ’1’

An ’1’ ’0’

B ’0’ ’1’ ’0’ ’1’

Bn ’1’ ’0’ ’1’ ’0’

Ci ’0’ ’1’ ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Cin ’1’ ’0’ ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Co ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’

Con ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’

S ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’

Sn ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’

A B C D E F G H

Figure 10: Full adder simulation results

entity KsaGeneric is

generic(order : integer := 2); -- width =2**2=4

port (

phi1 ,phi2 ,phi3 ,phi4 : in phaseGeneral;

adbCin , adbCinN : in aBit;

adbOp1 , adbOp1n : in aBit_vector (2** order -1 downto 0);

adbOp2 , adbOp2n : in aBit_vector (2** order -1 downto 0);

adbSum , adbSumN : out aBit_vector (2** order -1 downto 0);

adbCout , adbCoutN : out aBit

);

end KsaGeneric;

Figure 11: Entity for Kogge-Stone adder. Note that ** has been overloaded for integer types

power clock phase. Figure 15 gives the annotated block diagram
for the adiabatic logic implementation. Differing from previous
examples, the logic circuit is implemented using six power clock
phases so that complementary power clock phases, power clocks
exactly 180◦ out of phase, are nonoverlapping. Further, because
the input phases to a logic block must match, the phase for an
unmatched signal is matched with its destination by adding a
suitable number of buffer-inverter gates and are denoted by the
ΦN blocks. The solution attempts to optimize the hardware by
not fully pipelining the forwarding in some cases.

Both the S-Box and inverse S-Box models were simulated
for all possible input combinations and verified for correctness
in the test bench. Figure 16 gives an example timing result for
an S-Box input of 11000011.

5 Summary and Future Work

A modeling framework has been presented that is consistent
with the logical operation of adiabatic logic circuits. A new
type, aBit, was defined that captures the main modes of
operation for adiabatic circuits. The type models the principle
adiabatic signal features and ties the operation of the logic
circuits to the power clock. The framework for defining logic
functions was presented. Finally, three modeling examples with
their respective simulation results were presented.

Future work will include verifying the operation of the
modeling framework on a wider variety of adiabatic and
reversible circuits. In addition, applicability to different
clocking schemes & timing, energy modeling, and transistor
level synthesis will be investigated as well.

References

[1] E. Christen and K. Bakalar. “VHDL-AMS – A
Hardware Description Language for Analog and Mixed-
Signal Applications.” IEEE Transactions on Circuits and
Systems–II Analog and Digital Signal Processing, 46(10):
1263–1272, October 1999.

[2] M. Cutitaru. IDPAL A Partially-Adiabatic Energy-
Efficient Logic Family: Theory and Applications to Secure
Computing. PhD Thesis, Old Dominion University,
Norfolk, Virginia, USA, August 2014.

[3] J. S. Denker. “A Review of Adiabatic Computing.” IEEE
Symposium on Low Power Electronics, 94–97, San Diego,
California, USA, pp. 94–97, September 1994.

[4] IEEE Computer Society. IEEE Standard Multivalue Logic
System for VHDL Model Interoperability (Std logic 1164),
March 1993.

[5] IEEE Computer Society. IEEE Standard VHDL Language
Reference Manual, IEEE Std 1076TM-2008, January 2009.

[6] P. M. Kogge and H. S. Stone. “A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations.” IEEE Transactions on Computers, C-22(8):
783–791, August 1973.

[7] J. Koller and W. Athas. “Adiabatic Switching, Low
Energy Computing, and the Physics of Storing and Erasing
Information.” Workshop on Physics and Computation,
1992. PhysComp ’92, Dallas, Texas, USA, pp. 267–270,
October 1992.

IJCA, Vol. 29, No. 2, June 2022 87

4us 4.1us 4.2us 4.3us 4.4us 4.5us

Phi1 ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’

Phi2 ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’

Phi3 ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’

Phi4 ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’ ’R’ ’I’ ’C’ ’H’

Op1(3) ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Op1(2) ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Op1(1) ’0’ ’1’ ’0’ ’1’ ’0’

Op1(0) ’1’ ’0’ ’1’ ’0’ ’1’

Op2(3) ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Op2(2) ’1’ ’0’ ’1’ ’0’ ’1’ ’0’

Op2(1) ’0’ ’1’ ’0’ ’1’

Op2(0) ’1’ ’0’ ’1’ ’0’

Cin ’0’ ’1’ ’0’ ’1’ ’0’ ’1’

Cout ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’0’

Sum(3) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(2) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(1) ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

Sum(0) ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’ ’H’ ’*’ ’1’ ’H’ ’*’ ’0’ ’L’ ’*’ ’1’

A B C D E

Figure 12: KSA Simulation results at 4us

D
in

δ
8 8

x2 xλ

4

4

x−1

4

4

4

4

4
4

44

4

4

4

8

δ−1
8

D
out

8

T
A

GF(2)
4

GF(2)
4

GF(2)
4

4

4

4

GF(2)
4

GF(2)

(a) Forward S-Box transformation

δ
8

x2 xλ

4

GF(4)

4

x−1

4

4

4

4

4
4

44

4

4

4

8

δ−1 D
out

8

D
in

GF(2)
4

GF(2)
4

GF(2)
4

GF(2)
4

4

4

−1T
A

8 8

(b) Inverse S-Box transformation

Figure 13: S-Box block diagram based on composite field decomposition [11, 13]

[8] A. Kramer, J. S. Denker, B. Flower, and J. Moroney.
“2nd Order Adiabatic Computation with 2n-2p and 2n-
2n2p Logic Circuits.” Proceedings of the International
Symposium on Low Power Design ISLPD’95, Dana Point,
California, USA, pp. 191–196, 1995.

[9] R. Mita and G. Palumbo. “Modeling of Analog Blocks by
Using Standard Hardware Description language.” Analog
Integrated Circuits and Signal Processing, 48(2):107–120,
August 2006.

[10] Y. Moon and D.-K. Jeong. “An Efficient Charge Recovery
Logic Circuit.” IEEE Journal of Solid-State Circuits, 31
(4):514–522, April 1996.

[11] E. N. Mui. “Practical Implementation of Rijndael S-
Box Using Combinational Logic.” unpublished technical
report, 2007.

[12] NIST. “FIPS PUB 197, Advanced Encryption Standard

(AES),” U.S. Department of Commerce/National Institute
of Standards and Technology, 2001.

[13] A. Satoh, S. Morioka, K. Takano, and S. Munetoh.
“A Compact Rijndael Hardware Architecture with S-
Box Optimization.” 7th International Conference on the
Theory and Application of Cryptology and Information
Security (ASIACRYPT 2001), Gold Coast, Australia, pp.
239–254, December 2001.

[14] L. Varga, G. Hosszú, and F. Kovács. “Two-level Pipeline
Scheduling of Adiabatic Logic.” International Spring
Seminar on Electronics Technology (ISSE 2006), St.
Marienthal, Germany, pp. 390–394, May 2006.

[15] D. J. Willingham. Asynchrobatic Logic for Low-Power
VLSI Design. PhD thesis, University of Westminster,
London, England, March 2010.

88 IJCA, Vol. 29, No. 2, June 2022

δ
8 8

5
4

4

4

GF(2)
4

1

x2

4 4

2

xλ
4 4

2

Φ+N

4 4

N

(a) δ transform (b) GF(24) sum (c) GF(24) square (d) GF(24) product with λ=1100 (e) Forward input N phases

4

4

4

GF(2)
4

5

x−1
44

5

δ−1
88

7

T
A

8 8

3

−1T
A

8 8

2

(f) GF(24) product (g) GF(24) inverse (h) δ−1 transform (i) Affine transform (j) Inverse affine transform

Figure 14: S-Box block components. The number above each component is its respective number of logic layers.

x−1 δ−1

Φ+2

D
in

δ

x2 xλ

Φ+5Φ+1

D
out

Φ+0

GF(2)
4

GF(2)
4

GF(2)
4

GF(2)
4

GF(2)
4

V
2

L

V
3

L

V
H

2
V

3

H
V

3

H,+2

V
0

H,+0

V
1

L,+5

V
4

V
5

V
6

H

V
6

L

V
6

V
7

V
1

L

V
1

H

V
1

V
L,+1

T
A

3

1

5

2 2 2

51

1

5

1 5

5

7

5

buffer 11 mod 6 = 5 layers

buffer 12 mod 6 = 0 layers

Figure 15: Annotated S-Box block diagram.

A

1370ns 1371ns 1372ns 1373ns 1374ns 1375ns 1376ns 1377ns 1378ns 1379ns 1380ns

test

tick

Din C2 C3 C4

Dout (idle) 25 25(idle) 25 25(idle) 25 25(idle) 25 25(idle) 25 25(idle) 25 25(idle) 3A 3A(idle) 2E 2E(idle) 2E 2E(idle) 2E

V_1 68(idle) 68 68(idle) 68 68(idle) 68 68(idle) 69 69(idle) 69 69(idle) 69 69(idle) 69 69(idle) 69 69(idle) 69 69(idle) 69

V_1^H 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6

V_2^H 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0

V_3^H 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6

V_3^H+2 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6

V_1^L 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1

V_1^L,+1 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle)

V_2^L 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle)

V_3^L 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 7 7 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0 0 (idle) 0

V_4 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle)

V_5 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 5 5 (idle) 5 5 (idle) 5 5 (idle) 5 5 (idle) 5

V_0^H,+0 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6

V_1^L,+5 2 2 (idle) 2 2 (idle) 2 2 (idle) 2 2 (idle) 2 2 (idle) 3 3 (idle) 3 3 (idle) 3 3 (idle) 3 3 (idle) 3 3 (idle) 3

V_5^H 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 1 1 (idle) 1 1 (idle) 1 1 (idle) 1

V_5^H 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 6 6 (idle) 7 7 (idle) 2 2 (idle) 2 2 (idle) 2 2 (idle) 2

V_7 2F 2F(idle) 2F 2F(idle) 2F 2F(idle) 2F 2F(idle) 2F 2F(idle) 2F 2F(idle) 2E 2E(idle) 23 23(idle) 23 23(idle) 23 23

B

Figure 16: S-Box simulation result for an input of 11000011

Lee A. Belfore II joined the
Department of Electrical and
Computer Engineering at Old
Dominion University, Norfolk,
Virginia, in 1997 and is currently
an Associate Professor. He
received his Ph.D. in Electrical
Engineering from The University
of Virginia, his MSE in Electrical
Engineering/Computer Science
from Princeton University, and

his BSEE in Electrical Engineering from Virginia Tech.
His research interests include modeling and analysis of
low power digital electronics technologies, custom data
processing systems using FPGAs, machine learning, and
autonomous vehicles.

	Final IJCA Journal for June 2022
	International Society for Computers
	Guest Editorial . 57
	Proposal and Evaluation of a Chinese Character Hash Function Based on Strokes for Fingerprinting . 59
	Antoine Bossard
	Robert N. K. Loh and K. C. Cheok

	Logical Modeling of Adiabatic Logic Circuits using VHDL with Examples 79
	Lee A. Belfore II
	Thomas Bidinger, Hannah Buzard, James Hearne, Amber Meinke, and Steven Tanner

	Integration of Multimodal Inputs and Interaction Interfaces for Generating Reliable Human-Robot Collaborative Task Configurations . 97
	Shuvo Kumar Paul, Pourya Hoseine, Arjun Vettath Gopinath, Mircea Nicolescue, and Monica Nicolescu
	In Fra_OE: An Integrated Framework for Ontology Evaluation . 111
	Narayan C. Debnath;, Archana Patel, Debarshi Mazumder, Phuc Nguyen Manh, and Ngoc Ha Minh

	new IJCA Jrnl inside front cover June 2022
	A publication of the International Society for Computers and Their Applications
	ASSOCIATE EDITORS

	Dr. Hisham Al-Mubaid
	Dr. Mark Burgin
	Dr. Sergiu Dascalu
	University of Nevada
	Reno, USA
	dascalus@cse.unr.edu
	Dr. Sami Fadali

	Dr. Vic Grout
	Glyndŵr University
	v.grout@glyndwr.ac.uk
	Dr. Yi Maggie Guo
	University of Michigan,
	Dearborn, USA
	hongpeng@brandeis.edu
	Dr. Wen-Chi Hou
	Southern Illinois University, USA
	hou@cs.siu.edu
	Dr. Ramesh K. Karne
	Towson University, USA
	Dr. Bruce M. McMillin
	Dr. Muhanna Muhanna
	Princess Sumaya University
	for Technology
	Amman, Jordan
	m.muhanna@psut.edu.jo
	Dr. Mehdi O. Owrang
	Dr. Xing Qiu
	University of Rochester, USA
	xqiu@bst.rochester.edu
	Dr. Abdelmounaam Rezgui
	Dr. Ramalingam Sridhar
	Dr. Junping Sun
	Dr. Jianwu Wang
	Dr. Yiu-Kwong Wong

	Dr. Rong Zhao

	Hu revised guest editorial-2
	1 Bossard j_hash
	Introduction
	Preliminaries
	Methodology
	Theoretical Evaluation: Size and Sparsity
	Memory Size Requirements
	Hash Function Sparsity

	Practical Evaluation: Collision Analysis
	Methodology
	Results
	Discussion

	Conclusions

	2h loh Cheok IJCA June 2022
	3c Belfore ijca_manuscript
	4 Bidinger Buzard Hearne Meinke Tanner
	Abstract
	1 Introduction
	2 Approach
	sufficient for the effect. Formally, this means that the search for causes is equivalent to searching for valid implications whose right-hand side is the effect and whose left-hand side is a disjunctive normal form expressing configurations of condit...
	3 Related Work
	4 Method
	4.1 A Brief Description

	9 Future Work

	5 Hoseine Gopinath Nicolescu Nicolscu
	6 Debnath Mazumber Nanh Minh
	Journal Submission Instructions2022
	Journal Submission

	IJCA Jrnl back outside cover June 2022

