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Abstract

As robots become more ubiquitous in our daily life, designing
natural, easy to use, and meaningful interaction interfaces
relevant to robotic tasks is vitally important as not only it can
enhance user experience, but also can increase task reliability
by proving supplementary information. This paper presents
a flexible framework that integrates two natural interaction
interfaces: speech, and pointing gesture with the sensor input
streams to generate reliable task configurations for human-
robot collaborative environment. The proposed framework
takes the RGB image as input to detect the objects present
in the scene and to recognize the pointing gestures, and it
computes the corresponding pointing direction in the 2D image
frame to infer the target object in the scene. At the same
time, verbal instruction is received from the audio input which
is then converted to text to either be fed into the proposed
neural model or to compare against predefined grammar rules to
extract relevant task parameters. All this information is used to
resolve any missing or ambiguous task parameters. Structured
task configurations are formed for the desired human-robot
collaborative tasks. The proposed framework shows very
promising results in integrating the relevant task parameters
for the intended robotic tasks in different real-world interaction
scenarios.

Key Words: Interaction interface; gesture recognition;
multimodal inputs; input integration; robotics; human-robot
interaction; natural language processing.

1 Introduction

Recent technological advances in automation, engineering,
and artificial intelligence have provided the impetus for the
rapidly accelerating robotics revolution. While in the past
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few decades the number of industrial robots skyrocketed,
only recently robots are becoming more and more inclusive
in our daily life. The rapid advances in AI and robotics
have significantly shifted the focus of robotics research from
industrial robotics to service robots; these robots lend a
helping hand for tasks like cooking, cleaning, assistance,
companionship, education, and so on. In contrast to the
industrial robots, which repeatedly perform a specific task,
a service robot is expected to interact with humans while
performing tasks, and an ideal interaction should replicate a
human-to-human interaction.

Designing interaction interfaces that are more intuitive and
instinctive are prerequisites for ensuring the ease of use and
inclusion of robots in our daily life. However, to sustain this
inclusion, robots would need to build and maintain the trust of
the user, particularly the trust that the robot can reliably perform
a designated task. This warrants Human Robot Interaction
(HRI) framework that not only can establish a natural interaction
interface, but also can supplement the robotic task execution
with additional data to make it more reliable.

Robotic entities are set to become an essential part of modern
society and have the potential to shape our social experience.
However, the inclusion of robots in our daily life will be
dictated by one key factor: our trust in robots, specifically, the
confidence of the human user that a robotic agent can accurately
perform a task. To build and maintain this trust, it needs to be
made sure that the robots can consistently execute the tasks in a
proper manner.

Proper execution of robotic tasks requires instructions
containing a set of parameters that defines a task configuration.
We have identified two essential properties of a complete task
configuration:

1. The task configuration needs to have all the relevant task
parameter information for executing an intended task.
Depending on the task, the task configurations can have
different task parameters e.g. navigational task may only
require the direction, while an assisting task may involve
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knowledge of object(s), their attributes and locations in the
environment, order of task information, etc. The relevant
task parameters can be extracted from the robot sensors and
filtered to form a set of structured instructions that can be
correctly interpreted by the robotic entity.

2. The task configurations should be reliable enough for
intended task execution. The robot may follow the
instruction accordingly, but the instruction itself may
contain erroneous task parameters; for instance, the robot
may start moving toward its left, while the intended
instruction was to turn left. This can result either from the
noisy sensory data or ambiguities during task parameters
extraction. To address this, the instructions need to be
cross-validated to ascertain the intent of the user which can
be done by integrating sensory information with different
human robot interaction interfaces.

The first property is sufficient for executing a robotic task,
however, the second property provides more assurance for
the validity of the task configurations. Subsequently, if
required task parameters can not be inferred from sensor input
streams, then the interaction interfaces can be used to determine
and/or verify the task parameters and vice versa. Although,
achieving the second property may not be viable for every
task configuration, verifying instructions from multiple input
streams and interaction interfaces should definitely be one
of the objectives in collaborative HRI design as it will help
generate more reliable task configurations. More reliable task
configuration would aid in proper task completion, which would
help build more trust in robots as well.

Natural human interactions mostly involve gestures, speech,
and facial expressions. Amongst these interaction interfaces,
gestures and particularly pointing gestures are probably the
most natural for humans and can serve as an effective device
to convey a simple message or a command to the robot.
Unlike speech, pointing gestures are not suitable for conveying
sophisticated information; however, it provides with a more
natural interface for simpler instructions that can be relayed
even in noisy environments. Moreover, it provides the
possibility of specifying objects and their locations intuitively
and can be used as simple but meaningful commands. In
addition, distinct human gestures represent specific information
that can be used to convey the general intent of the user. This
inferred intent information then can be compared or matched
to predefined gesture configuration to provide additional
information or appropriate command for the robot to execute
certain tasks.

At the same time, speech can be used as a natural medium
to express intricate commands which can then be used to
effectively apply modern Natural Language Processing (NLP)
techniques to parse and extract language information. Proper
utilization of natural language can permit for a more intrinsic
and faster dialogue between human and the robot. However,
natural language communication needs to be translated into
a formal language which the robot can process and make a
decision upon. Subsequently, the robot needs to formulate a

structured message for the successive communication which
needs to be transformed into natural language to allow the user
for easier comprehension.

Gestures information can simultaneously be integrated
with verbal communication (speech recognition) to provide
auxiliary information to further disambiguate natural language
commands.

In our work, we focused on integrating two interaction
modalities: 1) pointing gesture that can be used to direct
the attention of the interacting robot toward an object or
a certain location in the scene, and 2) verbal commands
which are translated into simpler formal languages that are
more interpretable for the robot; both of these are natural
interaction interface for humans. Additional data containing the
information of detected objects in the scene is also passed to the
system to find and locate the Object of Interest (OOI). OOI is
the object that is requested by the human user to be manipulated
by the robotic entity.

We propose a simple and reliable HRI framework that
extracts a set of information from verbal instructions retrieved
from the audio input, detects pointing gestures, estimates the
general pointing direction and the object being pointed at
from individual RGB frames, and finally, assigns them to the
appropriate task parameters which then can be used to formulate
structured instructions. We have focused primarily on simpler
but more common collaborative task instructions targeting
scenarios where a user provides navigational instructions e.g.
"go to your right", "go there", etc. or commands that require
object manipulation e.g. "give me the bowl", "bring that red
book", etc. The task configuration has the following parameters:
a: action, o: general object, r: object attribute, p: position
of the object in the scene, d: general pointed direction, op:
estimated pointed object. These extracted parameters can be
used to generate a formal task description targeting a specified
goal. Our approach relies on Google’s speech to text API and
the skeletal joint points extracted by AlphaPose [5, 15] from the
RGB image to infer gesture.

The main contributions of this paper are of three folds:
1. We present a gesture recognition system that estimates

whether the user is performing a pointing gesture and the
pointing direction.

2. We leveraged a verbal command comprehension system to
extract certain information from a user command relevant
to specific robotic tasks by a) deep multi-task learning
model and b) matching to pre-defined language patterns.

3. We have implemented an object detection and pose
estimation system using template matching technique
suitable for fast prototyping and demonstrated how the
pointing gesture framework coupled with the extracted
information from verbal command can be used to generate
a list of task configurations corresponding to a sequence of
tasks.

This paper is outlined as follows: in the next section,
we provide a brief overview of previous work on gesture
recognition techniques and natural language understanding in
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HRI design. Next, we describe the methodology of our work in
detail. The following chapters include our evaluation including
experimental results and observations. Finally, we conclude this
paper by summarizing our work.

2 Literature Review

A large body of work has been published in the area of
HRI that focuses on pointing gestures and natural language
understanding. In the following sub-sections, some of the
previous works have been discussed.

2.1 Pointing Gesture Recognition

Early pointing gesture interfaces were built with the help of
wearable devices e.g. glove-based devices [25, 8]; Dipietro et
al. [2] surveyed Data-GLove like systems and their application
for gesture recognition. Kahn et al. [10, 11] introduced Perseus
architecture which operated on several feature maps (intensity,
edge, motion, disparity, color) to locate pointed objects by
interpreting the pointing gestures. With the continuing advances
in computer vision, gesture recognition research shifted more
toward vision-based methods. Kadobayashi et al. presented
VisTA-Walk, a gesture interpreter which could only infer left
or right; it uses the output recognition result of Pfinder [32]
which employed a multiclass statistical color and shape model
to derive a 2D representation of head and hands from a wide
range of viewing conditions. With the introduction of stereo
cameras, multi-cameras, time-of-flight (TOF) cameras, or depth
cameras like Kinect, Intel RealSense, etc. researchers were
able to come up with different approaches for solving pointing
gesture detection. [30, 12] used multi-camera setup while [3]
used TOF camera to segment body, localize forearm and elbow
for gesture detection, and subsequently used Gaussian Process
Regression for pointing direction estimation.

Different Hidden Markov Model (HMM) have been used to
detect pointing gestures. Wilson et al. [31] proposed parametric
HMM for recognition, representation, and interpretation of
parameterized gestures, such as pointing gestures. Jojic et al. [9]
used only the dense disparity maps for gesture detection, while
Nickel et al. [20] calculated the dense disparity maps to track the
positions of a person’s face and hands together with an HMM-
based approach for detecting pointing gestures. Park et al. [21]
applied Cascade HMM and particle filters but depended on a
large number of HMM states for accurate gesture recognition
which required large amounts of training data and thus, incurred
higher processing time.

Richarz et al. [27] used Gabor wavelets to extract features
and multilayer perceptron to approximate pointing direction
estimator, but it was sensitive to pose variations. Pateraki
et al. [22] exploited the prior information of the location of
possible pointed targets and used the Dempster–Shafer theory
of evidence to fuse the estimated head pose and hand pointing
orientation information to locate the pointed target.

Rautaray et al [26] extensively reviewed hand gesture

recognition and pointed out the well known limitations of the
leading technologies related to the field.

In our work, we used the estimated (pixel) location of the
forearm joints (elbow and wrist) of the user to 1) determine
whether the person is performing the pointing gestures and 2)
infer the general direction the user is pointing e.g. left, right,
straight and estimate the pointing direction by computing the
line that goes through the arm joints.

2.2 Natural Language Understanding in HRI

Natural language based interaction has been explored in
various human-robot interaction tasks that include instructing
the robot with direction for navigation, commanding for
performing certain robotic tasks, specifying the object to
manipulate, etc. Natural language understanding is also used
as a modality along with other sensory information like vision
to disambiguate human instructions or the scene configuration
in general.

Kollar et al. [13] presented a system that infers the probable
path for an agent by taking the environmental geometry and
the detected objects as inputs along with the extracted sequence
of spatial description clauses from the linguistic information.
Matuszek et al. [18] investigated statistical machine translation
techniques to follow natural language route instructions within
a tractable manner. Macmohan et al. [17] introduced MARCO,
an agent that infers implicit actions from knowledge of
linguistic conditional phrases and spatial action information
along with environmental configuration. This method performs
the explicit, implicit actions required to reach the instructed
state, and subsequently executes exploratory actions to learn
about the environment. In [29] an approach was introduced
to automatically generate a probabilistic graphical model
with respect to the hierarchical and compositional semantic
structure of natural language navigation or mobile manipulation
commands.

Dzifcak et al. [4] proposed an integrated robotic architecture
that translates natural language instructions incrementally and
simultaneously generating logical goal representation and
action language, which can be further analyzed to measure
the achievability of the goal as well as to create new
action scripts targeting specified goals. Kuo et al. [14]
demonstrated that the combination of a hierarchical recurrent
network with a sampling-based planner can be utilized to
generate a model that learns to understand a sequence of
natural language commands in a continuous configuration
space. The use of spatial relationships to establish natural
communication mechanism between humans and robots was
investigated in [28]; a multimodal robotic interface comprising
of linguistic spatial descriptions and other spatial information
extracted from an evidence grid map was used to show how this
information can be used in a natural, human-robot dialog. [1]
described a robotic architecture featuring a planner that utilized
discovered information by learning the pre and post conditions
of previously unknown action sequences from natural language
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construction.
We have leveraged the recent natural language processing

methods in our work to retrieve text from speech, generate
grammatical patterns to match, and extract relevant command
information from the user.

3 Methodology

The system receives gesture information and verbal
communication from an RGB image, and an audio input stream
respectively. The speech in audio is converted to text to
further extract the action instruction and the object information
corresponding to the robotic tasks. RGB image is used for
pointing gesture recognition, pointed direction estimation along
with object detection, and pointed object prediction. The
overview of the system architecture is illustrated in the Figure 1;
the green boxes indicate the extracted task parameters.

3.1 Information Extraction from Verbal Commands

In the course of a typical human-to-human collaborative
interaction, the instructions that the participants interchange
usually consists of a set of particular information; this includes
the action to be performed, the object of interest, direction
information for navigation, location of interest in the scene, etc.
Furthermore, humans generally describe an object in terms of
a general color, pattern, shape, size, and the relative position to
disambiguate [24], e.g., "bring that red shirt", "The book on the
left", "take the small box", etc. This information defines certain
parameters of a task. We have developed two techniques: 1)
neural network model, 2) natural language pattern matching, to
extract the task parameters from verbal commands. These two
approaches are outlined in the following sub sections.

3.1.1 Neural Network Model. For our work, we
generated a dataset for collaborative robotic commands.
Subsequently, we considered 8 different architectures for
training our model and found single layer Bi-directional Long
Short Term Memory (Bi-LSTM) based model to be optimum.
As our goal was to extract multiple task parameters from
the verbal commands, we formulated deep multi-task learning
model. Multi task learning (MTL) is a sub-division of
machine learning, where multiple tasks are jointly learned by
a shared model. Deep multi task learning tries to produce a
generalized representation that are powerful enough to be shared
across multiple tasks; here, each task denotes a multi-class
classification.

Dataset: We generated a dataset of commands where each
of the commands contains action information, and information
about one or more of the following three things: object name,
object color, and object size. The dataset contains 60769
samples, each of which has four labels.

Model Architecture: The model contains three neural
layers: an embedding layer, a Bi-LSTM layer, and a fully

connected layer. Let’s assume the vocabulary length of the
dataset is V, then every word is represented with a one-hot
encoding of size W ∈ R1×V. The input sequences or sentences
each contains n elements or words. These inputs are fed into an
embedding layer E .

An embedding is a mapping of a discrete or categorical
values to a vector of continuous numbers. A neural netwrok
embedding provides a low-dimensional, learned continuous
vector representations of these discrete variables. The key
advantage of neural network embeddings is that they can reduce
the dimensionality of categorical variables to represent them in
the transformed space. E ∈ RV×d, where d << V denotes the
lower dimensional embedding vector; this lower dimensional
vector is then passed to the Bi-LSTM layer.

LSTMs [7] are a particular form of Recurrent Neural Network
(RNN). LSTM (or Bi-LSTM) are ideal for sequential data such
as text, speech, video, audio, etc. Our key motivation for
choosing Bi-LSTM is that it can make use of both the past and
future context information of a sentence, and can learn long-
term temporal activities as well as avoid exploding or vanishing
gradient that the traditional RNN suffers from during the back
propagation optimization. In Figure 2, fi and bi denote forward
and backward LSTM respectively.

The output of the Bi-LSTM cells are concatenated and fed
into the four fully connected (FCN) layers. Finally, the output
of the FCN layers goes through softmax activation to classify
four task parameters. For each classifier, we measured the
Cross Entropy loss Lc and used the mean of these losses Lm =
1
4 Σ4

c=1Lc to update our model.

3.1.2 Natural Language Pattern Matching. A set of
language patterns can provide sufficient information about the
parameters of collaborative interaction while excluding other
verbal communications that may not contain a command. The
language patterns are arranged in Table 1. These patterns
are represented in terms of regular expressions with different
language elements as terms. The angled brackets(<>) encloses
each term. The terms with capital letters indicate different
language elements, while the exact words are enclosed within
quotes. An array of words, surrounded by square brackets e.g.
[”right”, ”left”, ”front”, ”back”], specifies only one of them
needs to be present. The symbols after each term e.g. +, ?, * are
the quantifiers that represent how many times the preceding term
needs to be matched; + indicates the term needs to be matched
1 or more times, * means 0 or more, ? means 0 or 1, and if there
are no quantifiers then the preceding term needs to be matched
exactly once.

The Action pattern extracts the general task needed to
be executed; simultaneously, it can distinguish between a
traditional instructive command and a non-instructive verbal
communication. The Object pattern is almost similar to Action
pattern except for that it needs to match with a NOUN at the
end which would contain the name of the object. The Attribute
pattern identifies certain visual characteristics of the object and
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Figure 1: System architecture

Figure 2: NN model for parameter extraction from verbal commands.
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– bring that

– bring that book

– bring the red book

– bring the red book on the left

Figure 3: Green box represents the task action; red box indicates
the location of the object in the scene; yellow and
blue boxes specify the object of interest and the
corresponding attributes

the Position pattern determines the general location, both of
which can be utilized as identifiers/specifiers to disambiguate
objects that fall into similar categories. Figure 3 presents a set
of sample instructions iterated with additional information and
illustrates the retrieved relevant information as well.

3.2 Pointing Gesture Recognition

AlphaPose [5] was used to extract the skeletal joint locations
to predict the pointing gestures and the general pointing
direction. For simplicity, we assumed the user is using one
hand at a time for pointing. Park et al. [21] categorized
the pointing gestures into large and small pointing gestures,
which we labeled them as extended (Figure 4(a, b)) and bent
(Figure 4(c, d)) arm gestures. Additionally, for the pointing
gesture, the forearm’s relative direction with respect to the body
can be generalized in three categories: across (Figure 4(b, d)),
outward (Figure 4(a, c)), and straight (Figure 5(b)).

For across and outward pointing gestures, we can simply
measure the angle θa (Figure 5(a)) of each forearm with respect
to a vertical line and compare it to some smaller angle threshold
θt to determine whether the user is performing the pointing
gesture or not. In other words, if the user is not pointing
(Figure 5(b)) then the forearm would produce a smaller angle
compared to when the user is pointing. However, if the
user points straight with respect to the camera (robot’s vision)
(Figure 5(c)), the angle would be close to 0 and to address
this, we measured the ratio of the lengths of the forearms ρa;
intuitively, if the user is not pointing, the lengths of the detected
forearms should be virtually the same (Figure 5(c)), but if one of
the forearm’s length is significantly shorter than the other, it can
be assumed that the user is pointing straight (or its proximity)
toward the camera using that corresponding arm (Figure 5(b)).
Furthermore, the general direction d of pointing was determined
from the relative position of the wrist and the elbow of the
pointing arm to supplement navigational command.

3.2.1 θa Calculation from Wrist and Elbow Location.
From the extracted skeletal joints’ locations, only the following
joints were needed: left elbow, left wrist, right elbow, and right
wrist. This means even if some body part is occluded, our

(a) Extended outward (b) Extended across

(c) Bent outward (d) Bent across

Figure 4: Gesture categories

approach should still work as long as pointing hand’s joints
are detected. Let us define the skeletal joint coordinate of the
elbow as (x1,y1), the wrist as (x2,y2); the pointing 2D vector
centered at the origin can be defined as a⃗ = (x2 − x1,y2 − y1
and the vertical vector to compare with is set to v⃗ = (0,1). The
pointing angle θa is measured using equation 1.

θa = cos−1 a⃗ · v⃗
|a||v|

(1)

If θa > θt , then we consider the corresponding forearm is
performing the pointing gesture and subsequently, compare the
x coordinate of the wrist and the elbow to further detect the
general pointing direction towards the left or right of the scene
(across or away with respect to the body). Next, the ratio of the
length of the forearms ρa =

Length of the arm of interest
Length of the other arm is compared

against a ratio ρt to further decide whether the user is pointing
straight. We set 0.8 as the value of ρt and 15◦ for θt .

3.3 Object Detection

Our object detection module consists of two phases: (i)
feature extraction and matching, and (ii) homography estimation
and perspective transformation. In the following sections, we
will focus on the detailed description of the aforementioned
steps.

3.3.1 Feature Extraction and Matching. Our object
detection starts with extracting features from the images of the
planar objects and then matching them with the features found
in the images acquired from the camera. Image features are
patterns in images based on which we can describe the image.
A feature detecting algorithm takes an image and returns the
locations of these patterns - they can be edges, corners or interest
points, blobs or regions of interest points, ridges, etc. This
feature information then needs to be transformed into a vector
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Table 1: Grammatical patterns for information extraction

Information Type Grammatical Pattern Example
Action <VERB><"me">?<DET‡ >?<["this", "that"]>?<ADJ§>*<>? bring me that; give me that book;bring it here
Object <VERB><"me">?<DET>?<["this", "that"]>?<ADJ>*<NOUN> take the red cup; bring me that dress

Attribute <ADJ>+<NOUN> red dress; large blue bowl
Position <["right", "left", "front", "back"]> the box on the left

(a) (b) (c)

Figure 5: (a) Generated angle θa , (b) length of forearms dl,drwhen not pointing, and (c) straight

space using a feature descriptor, so that it gives us the possibility
to execute numerical operations on them. A feature descriptor
encodes these patterns into a series of numerical values that
can be used to match, compare, and differentiate one feature
to another; for example, we can use these feature vectors to find
the similarities in different images to detect objects as well as
distinguish each object in the scene. Ideally, this information
should be invariant to image transformations e.g. change in
illumination of the scene, different degrees of image blur and
compression, variance in viewpoint, etc. However, every feature
detector and descriptor is unique and can be tolerant to certain
image transformations and to certain degrees. We selected
SIFT [16] as both the feature detector and descriptor for our
work as it provides reliable detection with adequate speed as
reported in [23].

Once the features are extracted and transformed into vectors,
we compare the features to determine the presence of an object
in the scene. Usually, the Nearest Neighbor algorithm is used
to find matches, however, finding the nearest neighbor matches
within high dimensional data is computationally expensive,
and with more objects introduced it can affect the process
of updating the pose in real-time. To counter this issue to
some extent, we used the FLANN [19] implementation of KD-
Tree Nearest Neighbor Search, which is an approximation of
the K-Nearest Neighbor algorithm that is optimized for high
dimensional features. Finally, if we have more than ten matches,
we presume the object is present in the scene.

‡DET refers to the determinant i.e. "the"
§ADJ refers to adjective part of speech e.g. small, red, etc.

3.3.2 Homography Estimation and Perspective
Transformation. A homography is an invertible mapping
of points and lines on the projective plane that describes a
2D planar projective transformation (Figure 6) that can be
estimated from a given pair of images. In simple terms, a
homography is a matrix that maps a set of points in one image
to the corresponding set of points in another image. We can use
a homography matrix H to find the corresponding points using
equation 2 and 3, which defines the relation of projected point
(x
′
,y
′
) (Figure 6) on the rotated plane to the reference point

(x,y).
A 2D point (x,y) in an image can be represented as a 3D

vector (x,y,1) which is called the homogeneous representation
of a point that lies on the reference plane or image of the planar
object. In equation (2), H represents the homography matrix
and [x y 1]T is the homogeneous representation of the reference
point (x,y) and we can use the values of a,b,c to estimate the
projected point (x

′
,y
′
) in equation (3).

a
b
c

= H

x
y
1

=

h11 h12 h13
h21 h22 h23
h31 h32 h33

x
y
1

 (2)


x
′
=

a
c

y
′
=

b
c

(3)

We estimate the homography using the matches found from
the nearest neighbor search as input; often these matches
can have completely false correspondences, meaning they
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Figure 6: Object in different orientations from the camera

don’t correspond to the same real-world feature at all which
can be a problem in estimating the homography. So, we
chose RANSAC [6] to robustly estimate the homography by
considering only inlier matches as it tries to estimate the
underlying model parameters and detect outliers by generating
candidate solutions through random sampling using a minimum
number of observations.

While the other techniques use as much data as possible
to find the model parameters and then pruning the outliers,
RANSAC uses the smallest set of data point possible to estimate
the model, thus making it faster and more efficient than the
conventional solutions. This estimated homography can also
be effectively used for the planar pose estimation of textured
objects [23].

3.4 OOI Estimation from Pointing Gesture

For each detected object, the bounding box can be defined as
a list of four 2D line segments BB = [s1,s2,s3,s4]; si is defined
by the following parametric equation:

si = (ai, tbi) =

(
Vi,

{
t(Vi+1−Vi) if i < 4,
t(V1−Vi) else

)
(4)

where, Vi represents the ith(1 ≤ i ≤ 4) vertex of the quadrangle
bounding box, 0 ≤ ti ≤ 1, and the value of ti determines the
location of a point on the segment; if ti = 0 then it’s the initial
point and if it’s equal to 1 then it’s the final point in the segment
(Figure 7). Additionally, the center of each detected object is
computed by taking the average of the four vertices.

Similarly to equation 4, we can estimate the pointing
direction by computing a 2D line from the pixel location of the
arm joints (equation 5).

lp = ((x1,y1), t(x2− x1,y2− y1)) = (ap, tbp) (5)

where, lp denotes the pointing direction in the image frame,
(x1,y1),(x2,y2) corresponds to the 2D pixel locations of the
elbow and the wrist respectfully, and −∞ < t <+∞.

For each si we can solve for t using equation 6 and find
the intersecting point pi = ai + tibi. Next, the distance from

Figure 7: Visualization of the parametric equation of a segment

the object center to each corresponding intersecting point
is measured and the minimum distance δ is computed and
specified as the object distance δ . Algorithm 1 lists the steps
for computing minimum distance δ for each detected object.
Object with the least δ is estimated to be the pointed object.

ti = (ap−ai)×
bp

bi×bp
(6)

Algorithm 1: Minimum distance computation given 2D
pointed vector and object boundary vertices

1 MinimumObjectDistance (lp,V );
Input : lp is the 2D pointing vector

V is a list of vertices representing
the bounding box

Output: δ least distance from the object center
2 /* C is the center of the object */

3 C = 1
4

4
∑

i=1
Vi

4 δ = null
5 for i = 1 to 4 do
6 si←− equation 4
7 ti←− equation 6
8 pi← ai + tbi
9 d = ||pi−C||

10 if δ == null or d < δ then
11 δ = d
12 end if
13 end for
14 return δ

Algorithm 2 describes the steps for extracting relevant task
parameters.

4 Experimental Results

We set up experiments that involved the participants
performing a specific pointing gesture within a predefined
scenario. The scene contained three objects: two books, and
a cheez-it box, and the user could point at one object at a
given time. For instance, in one of the scenarios the user was
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Algorithm 2: Task parameters extraction

1 ExtractTaskParameters (lp,O);
Input : I : RGB image

C : verbal command
Output: Parameters of a robotic task

2 [a,og, r,p]← extracted from C using the language
patterns arranged in Table 1

3 [O,BB]← detected object name and the corresponding
estimated boundary from image I

4 Jl ,Jr← Extract elbow and wrist joints location of left
and right forearm using AlphaPose

5 Estimate if the user is pointing and the pointing arm from
Jl ,Jr according to section 3.2

6 if user is pointing then
7 lp← compute the 2D pointing vector as described in

section 3.2.1
8 d← estimated general pointing direction
9 /* object with minimum distance is the estimated

pointed object op */
10 op =

argminV{(lp,V )|LeastOb jectDistance(lp,V ),V ∈
BB}

11 return [a,og, r,p,os,d]
12 else
13 return [a,og, r,p]

instructed to point at the leftmost object by extending their right
hand; therefore, for this data sample, we know the user was
performing a pointing gesture using their right hand, pointing
to their left, and pointing at the rightmost object (leftmost from
user’s perspective). This information was set as the ground truth
for quantitative evaluation. The participants were positioned at
the center of the image frame and were instructed to point at
different parts of the scene. The pointing direction was labeled
as either away, across, or straight for the operating/directing
hand and "not pointing" for the other. These experiments were
carried out where the user was standing at 1.22, 2.44, 3.66, and
4.88 meters distance from the camera.

As our work depends on several modules, we have
decoupled them to evaluate how each of the modules performs.
These modules include extracting task parameters from verbal
commands, detecting the operating hand, estimating the
pointing direction, and predicting the object of interest. Finally,
we have presented the final result in terms of extracted task
parameters in a tabular form.

The system receives the verbal command and extracts the
parameters using the NLP techniques described in section 3.1.1
and 3.1.2. We examined RNN and LSTM based model each
with 4 different variants: bidirectional and non bidirectional;
1 and 2 layers. We found the single layer Bi-LSTM network
to be superior in performance. Figure 8 illustrates the superior
performance of the Bi-LSTM network compared to other neural
network architectures in terms of validation accuracy.

Figure 8: Validation accuracy

These parameters are stored so that each task can be executed
sequentially. Table 2 arranges different verbal commands
received from the user and the corresponding extracted task
parameters; if no matches found, the corresponding parameters
are set to None. Each command initiates a task and is stored
according to the order of task initiation (Table 3).

For each reliable frame, we compared the prediction with the
label and measured the accuracy, precision, and recall. For
a sample frame that has a label of "Right hand: pointing;
Left hand: not pointing", if the prediction is "Right hand:
pointing" then the sample is labeled as True Positive, else
False Negative, if the prediction is "Left hand: pointing" then
the sample is labeled as False Positive, else True Negative.
Table 4 tabulates the accuracy, precision, and recall for varying
distances. Figure 11 illustrates the system output for different
pointing scenarios.

Next, we experimented on scenarios where multiple objects
were placed on top of the table, each of which had predefined
attributes (Figure 9). Additionally, the participants were
instructed to point at a specific object. The system takes
this information along with the natural language instruction
to devise the task parameters and thereafter emits a follow-up
response in the presence of any ambiguities. Two example
scenarios are illustrated in Figure 10. Sample scenario
configuration along with extracted task parameters have been
arranged in Table 5. The Structured Information column
exhibits the information extracted from the Pointing State and
the Verbal Command. The first column indicates whether
the user was pointing or not, the second column enumerates
experiments (shortened to "Exp") for corresponding pointing
states, the third column lists different verbal commands with
fixed task action "bring", the fourth presents the extracted
information from the verbal commands and the simultaneous
pointing state, the fifth column arranges the predicted object
of interest (OOI) that needs the action to be performed upon,
and the sixth column tabulates the corresponding response
formulated by the system. Light blue cells indicate the presence
of ambiguity.
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Table 2: Extracted task parameters from different verbal
commands

Verbal command: "give me the plate"
Object: plate | Action: give | Attributes: None | Position: None

Verbal command: "bring me that red cup"
Object: cup | Action: bring | Attributes: [red] | Position: None

Verbal command: "go left"
Object: None | Action: go | Attributes: None | Position: left

Verbal command: "grab the large green box on your right"
Object: box | Action: grab | Attributes: [green, large] | Position: right

Verbal command: "put the jar on the table"
Object: jar | Action: put | Attributes: None | Position: None

Table 3: Stored sequential task parameters

+====+========+========+================+==========+
| NO | Object | Action | Attributes | Position |
+====+========+========+================+==========+
| 1 | plate | give | None | None |
+====+========+========+================+==========+
| 2 | cup | bring | [red] | None |
+====+========+========+================+==========+
| 3 | None | go | None | left |
+====+========+========+================+==========+
| 4 | box | grab | [green, large] | right |
+====+========+========+================+==========+
| 5 | jar | put | None | None |
+====+========+========+================+==========+

Figure 9: Object attributes

Table 4: Pointing gesture recognition

Distance Accuracy Precision Recall
4.88 1 1 1
3.66 0.995 1 0.99
2.44 0.995 1 0.99
1.22 0.995 1 0.99

Ambiguity occurs when the OOI cannot be determined from
the given verbal command and pointing gesture; the system fails
to identify the object of interest and responds with the feedback
"Need additional information to identify object". Subsequently,
the system waits for the user to perform the pointing gesture
and/or amend the command; once these inputs are received, it
repeats the entire process.

From the Table 5 we can see, for the "Not Pointing"
state, ambiguity occurred when there was a lack of object
attribute(s) (Exp 1, 3) for uniquely identifying the OOI,
and thus, the system asked for additional information. For
the "Pointing" state, the ambiguity arises when the pointing
direction does not intersect with any of the object boundaries;
in these scenarios, verbal commands can alleviate the ambiguity
by providing additional information. Ambiguity can also arise
if the inferred objects from the extracted identifiers and the
pointing gesture are different. However, the system prioritizes
the object inferred from the pointing gesture as the speech-to-
text module may sometimes miss transcribe.

5 Conclusion and Further Research

In this paper, we have presented a HRI framework for
extracting human-robot collaborative task parameters taking
multiple inputs, and processing them simultaneously in real-
time. Verbal communication is used to extract intricate
information about the task e.g. action command, object
attributes, etc., which is supported by pointing gesture
recognition, the general direction along pointed object
estimation to facilitate a natural interaction interface for the user.
This information is assembled into a set of named parameters
and can then be further analyzed to form a structured command
that can be passed to and easily translated by a robotic entity.

We presented a pointing gesture recognition approach from
a 2D image frame that can detect the gesture, and estimate
the pointing direction and the pointed object in the scene.
We implemented a template matching based object detection
and planar pose estimation technique that provides information
about the object present in the scene. We have also devised
two approaches to extract the task information prevalent in
collaborative interactions. The verbal command is received
from the sensor and then converted to text to further match with
the previously formulated language patterns to extract relevant
task specific parameters. All this information is integrated to
form the final task configuration; if an essential parameter is
missing or there are ambiguities, the system responds with
appropriate feedback.
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(a) Pointing to the object labeled "book-1" (b) Pointing to the object labeled "cheez-it"

Figure 10: Example scenarios where the user points to different objects while voicing the command "give me that"

(a) Pointing across with left hand (b) Pointing away with right hand

(c) No pointing (d) Pointing across with right hand

Figure 11: System output with different pointing scenarios
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Table 5: Generated task parameters

Pointing State Exp # Verbal Command Structured information Identified Object Feedback

1 bring that, bring me that
{action: "bring", pointing_identifier: True, object: "book",

object_identifiers: {attributes: null, position: null}} "book-1" None

2 bring the red book
{action: "bring", pointing_identifier: True, object: "book",

object_identifiers: {attributes: "red", position: }} "book-2" None
Pointing

3 bring that red thing
{action: "bring", pointing_identifier: True,

object: null, object_identifiers: {attributes: "red", position: }} "cheez-it" None

1 bring that, bring me that
{action: "bring", pointing_identifier: False,

object: null, object_identifiers: {attributes: null, position: null}} None (ambiguous)
"Need additional information

to identify object"

2 bring the red book
{action: "bring", pointing_identifier: False,

object: "book", object_identifiers: {attributes: "red", position: null}} "book-2" None
Not Pointing

3 bring that red thing
{action: "bring", pointing_identifier: False,

object: null, object_identifiers: {attributes: "red", position: "right"}} None (ambiguous)
"Need additional information

to identify object"

We carried out experiments to measure the performance of
our pointing gesture recognition system at different distances
and it was able to recognize the state of the pointing gesture
with very high accuracy. Next, we investigated the formation
of the task configurations by passing different natural language
instructions along with different gesture states. We have
tabulated the extracted task parameters for different verbal
commands along with how the task instructions are stored in a
sequential list. Subsequently, we have illustrated the integration
of these sensor data and interaction information with sample
experimental results. Finally, we have listed the final task
configurations along with the system feedback for different
interaction scenarios.

The system can be further improved by introducing reliable
3D information. Having reliable depth information will
effectively eliminate these limitations. Furthermore, more
complex interaction scenarios comprising of multiple users and
more intricate dialogues can be investigated to further develop
more meaningful HRI systems.
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