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Abstract 
 
This paper examines the use of digital video in public safety 

and surveillance systems.  Traditionally video recordings are 
used by law enforcement to review events retrospectively and 
for evidential purposes in the pursuance of criminal 
prosecution.  We also examine how, due to the proliferation of 
cameras around cities, human operators are challenged to 
monitor these data feeds in real-time and how the emergence of 
AI and computer vision solutions can process this data.  
Computer vision can enable the move from a purely reactive to 
a predictive, real-time analysis platform.  As camera numbers 
and the resolution and framerate of cameras grow, existing 
network infrastructure frequently causes challenges 
provisioning low latency, high bandwidth networking to private 
or public cloud infrastructure for evidential storage.  These 
technical challenges can provide issues for law enforcement 
providing a data chain of custody to ensure its admissibility 
during court proceedings.  Emerging technologies offer 
solutions to overcome these challenges:  the use of emerging 
edge compute capabilities, including the use of on-camera and 
mobile edge compute nodes providing compute capabilities 
closer to the data source and new software paradigms, including 
CI/CD methodologies, and the use of micro-services and 
containerization to manage and deliver applications across the 
portfolio of devices, at the edge of the network.  Using Amazon 
Web Services as an example, we review how cloud providers 
are now overcoming challenges in delivering real time video 
analytics solutions in the classical cloud model, and how they 
are enabling services and platforms closer to the edge, while 
delivering the cloud computing experience of scalability and 
manageability across different edges of the network. 
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1 Introduction 
 
The use of closed-circuit television systems (CCTV) has its 

roots in the 1940s, with the first documented use of CCTV 
systems in Durham, UK, in 1956 [95].  This system enabled a 
police officer to monitor and operate traffic lights.  The use of 
cameras in law enforcement has been, to date, mainly for 
evidential purposes, with data stored and then manually 
reviewed post-incident by CCTV operators.  The migration 
from magnetic tape recordings to digital media stored on 
centralized computer systems has enabled the deployment of 
surveillance cameras at a much higher density than would have 
been possible previously.  

The challenges of transporting data to the cloud for 
processing have long been acknowledged as problematic, 
especially for large datasets such as streaming video. On cloud 
platforms, Network latency is the primary challenge to 
processing streaming data in real-time [2].  Numerous methods 
of moving compute closer to the data source have been 
proposed to alleviate this latency, including Fog[9], Cloudlets 
[76] and Edge computing.  Lin, et al. [50] discuss the difference 
between edge and fog computing: "edge computing builds the 
architecture of computing at the edge, while fog computing uses 
edge computing and further defines the network connection 
over edge devices, edge servers, and the cloud." These edge 
devices can provide traditional CPU and accelerator compute 
capabilities to enable computer vision code to run on resource-
constrained edge devices.  On-camera compute already 
provides significant bandwidth reductions in several use cases 
including motion detection and automatic number plate 
recognition[57].  The camera then only returns metadata, along 
with an evidential photograph of a speeding car, rather than a 
full video stream from the cameras to be processed in the cloud.  
By processing on the camera, both network traffic and the 
amount of storage required in the system[32] are reduced 
compared to traditional evidential recording platforms.  To 
deliver timely, predictive and proactive computer vision 
analytics platforms, the design of conventional evidential 
recording systems needs to be reviewed to move the compute 
capabilities closer to the source of the data. 
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2 Evidential Recording Platforms 
 
To provide evidence for law enforcement agencies after an 

incident and provide a chain of custody of video footage to be 
used in prosecutions, Digital (DVR) or Network (NVR) video 
recording systems provide a platform to deploy and manage the 
cameras and storage of the data they create.  The systems also 
include management structures for the stored data to ensure 
storing, access and deletion according to legal data governance 
requirements.  Centrally managed digital surveillance systems 
have several key platform components, described in Figure 1. 

2.1 Cameras 
 
The first digital IP cameras became commercially available 

in 1996, with the release of Axis Communications Neteye 200 
camera [25], which supported a resolution of 352x288 pixels at 
a frame rate of 1 frame per second (FPS)  in JPEG format [10].  
Currently, the most popular resolution for digital surveillance 
systems is full HD (1920x1080), producing uncompressed data 
streams of up to 1.5Gbit/S [28].  Using H.264/AVC 
compression reduces this data stream by up to 70%. As 
H.264/AVC is an asymmetric process, with more compute 
required at the encoder than at the decoder [40], onboard 
microprocessors in cameras have evolved in parallel with the 
image sensor capabilities, with CPU, GPU & FGPA capabilities 
or by a specialist Digital Signal Processor (DSPs) [62].  
Alongside compression, the compute capabilities also provide 
remote management capabilities, essential for large suites of 
cameras.  The ONVIF [63] specification for camera 
management is included in published standards, such as IEC 
62676, for Video Surveillance Systems.  

 
2.2 Network 

 
Digital surveillance cameras have standardized TCP/IP over 

ethernet and generally use IEEE standard 802.3u (Fast Ethernet/ 
100Base-T).  As TCP/IP is bi-directional, it also enables the 
management and manipulation of Point, Tilt & Zoom (PTZ) 

cameras movement controls [14] without the need for 
secondary cabling.  Cameras connect to local area network 
(LAN) switches, which can also act as power sourcing 
equipment to provide power and data to cameras via one cable, 
using IEEE 802.3a(x) standards [60].  The use of Wi-Fi for 
surveillance systems to connect static cameras, using IEEE 
802.11 is used in limited circumstances but provides range, 
reliability, and security challenges for critical systems.  [23], 
but Wi-Fi and 4G cellular connectivity are widely utilized for 
body-worn and mobile/vehicle cameras[54]; however, these 
devices frequently have localized storage to overcome 

connectivity issues and limited recording periods due to battery 
charge longevity [33].  Backhaul to the datacenter is dependent 
upon each installation, with fully private fiber networks utilized 
in very high-security environments or built upon virtual private 
networks (VPN) provided by 3rd party telecom providers, with 
networking and security capabilities such as NAT, Firewalls, 
and VPN Tunnels used to protect the transmission of the data. 
[18]  The ESTI standard for TErrestrial Trunked RAdio 
(TETRA) provides a data carrier protocol, with up to 600mbps 
throughput, to provide fully encrypted, secure communications 
but requires a separate infrastructure for broadcasting 
capabilities, aside from regular telco operated environments.  
One of the significant examples of the use of TETRA in 
surveillance was its use at the Athens Olympics, where feeds 
from live CCTV cameras were broadcast via Tetra to 
security/law enforcement officers handsets on the ground [75].  

 
2.3 Datacenter 

 
The core of all video surveillance systems is the network 

video recording (NVR) system, with leading providers 
including Milestone Systems, Avigilon, Bosch, Huawei and 
Genetec [26].  The NVR provides a range of features, including 
management of the cameras, storage management, including 
writing data to storage, and managing data, ensuring timely 
deletion, the chain of custody reporting, and access for users to 
review the recorded footage. 

 
 

Figure 1:  Evidential recording infrastructure 
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Servers are predominantly Intel x86 platforms, with many 
NVR providers using Microsoft Windows© Server or Linux 
operating systems.  Depending on the scale of requirements, 
storage may be anything from a single hard disk to a complete 
server & storage area network configuration, as shown in  

Figure 2 below.  Storage Area Networks (SAN) provide 
network-attached storage, using iSCSI, or Fiber-channel over 
IP connectivity with Redundant Array of Inexpensive Disks 
(RAID) offering fault-tolerant, highly scalable storage 
platforms for storage and data throughput capabilities [90].  
Disk configuration is dependent on several factors from the 
dataflow: the number of cameras, frame resolution & speed; 
motion detection; compression algorithms; the number of days 
storage, expected activity levels in the cameras [20, 48] and the 
hardware in the SAN, including the number of disks, IOPs for 
each disk, RAID or other redundancy/data protection systems 
and SAN processor speed.  
 
2.4 Users 

 
Users require a method of accessing the stored data, either 

from individual cameras or in Command & Control walls using 
multiple screens, with thumbnail streaming video images of 
multiple cameras displaying concurrently.  This gives the user 
the ability to observe many screens simultaneously, and to click 
into one of the thumbnails to maximize screens of interest.  The 
NVR software also provides the user with methods to view 
historical material and protect the material of interest against 

overwriting by the NVR storage management schedule.  User 
feeds are delivered to a proprietary application running on a 
personal computer or via HTTP/s web browser.  NVR 
Manufacturers recommend that the user workstation provide 
substantial processing power, both from the CPU and Graphics 
Processing Unit (GPU), with 8GB RAM and a 64-bit Windows 
operating system, to deliver a satisfactory user experience 
significant numbers of camera feeds on screen [6, 59]. 

 
3 Video Analysis Platforms 

 
The UK has led the global growth of surveillance [80], with 

over 500,000 cameras in London and 15,000 on the 
Underground alone.  Research shows that video surveillance 
was useful to investigators in some 29% of crimes committed 
on the British transport systems [5].  With the proliferation of 
cameras for surveillance purposes, it is impossible to monitor 

video feeds in real-time. Alongside the growth of surveillance 
systems, the rise of computer vision technologies built upon 
research in artificial intelligence (AI) has provided the building 
blocks for video analysis.  Using large previously labelled sets 
of data to train the convolutional neural networks (CNN) [79, 
92] built upon deep neural networks (DNN) [72] before 
deployment to analyze real-time video feeds.  AI-enabled video 
analysis provides evidential data and provides opportunities for 
law enforcement to offer proactive capabilities using motion 
detection, facial recognition, individual and crowd behavior 
analysis. 

The software stack must provide the ability to allow 
developers to build scalable, manageable software platforms 
that can be remotely managed.  Microservices container-based 
platforms such as Docker, Openstack and container 
management such as Kubernetes [46] and K3S [64] for 
resource-constrained hardware provide the infrastructure and 
management layers.  Open-source toolkits such as YoLo 
provide a convolutional network framework for image 
recognition, [100] and Edge-X from the Linux Foundation 
provides an IIoT platform framework, to enable this scalability.  

One of the challenges called out by Sada, et al. [73] in edge 
video analysis is the fragmentation of the original inference 
model across edge devices.  They propose a federated learning 
platform for CNN across edge devices.  Li, et al. [47] describe 
federated analytics as "decentralized privacy-preserving 
technology to overcome challenges of data silos and data 
sensibility."  Deng, et al. [21] propose a federated system using 

neural networks spanning from the video cameras to mobile 
edge compute capabilities and an edge optimization capability, 
thereby optimizing latency and accuracy of queries to a video 
analytics system.  

As camera resolution increases, H.264/AVC becomes less 
efficient, and H.265/HEVC provides a decrease the size of the 
bitstream by at least 50% compared to H.264/AVC, whilst 
supporting resolutions up to  8192x4320 with equivalent quality 
to H.264 [74, 87].  Tan, et al. [89] report up to 64% 
H.265/HEVC Bitrate deduction vs H.264/AVC for the same 
resolutions.  H.265/HEVC does come with increased 
computational overheads. Sullivan, et al. [87] estimate that with 
more modern computing capabilities, the 40% increase in 
processing requirements over H.264/AVC for encoding is not a 
significant constraint for new equipment, but the existing install 
base of cameras will continue to use H.264/AVC due to 
compute constraints of the hardware [43].   

 
 

Figure 2:   NVR architecture 
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3.1 Cloud Video Analytics 
 
Alam, et al. [1] discusses the benefits of cloud computing and 

its ability to deliver platform, software, and infrastructure as a 
service to users.  Research has identified several areas of 
challenges to processing streaming video analysis in the cloud.  
Three of the major industries using computer vision are 
autonomous vehicles, manufacturing and sport [51].  Mach and 
Becvar [56] identify some challenges of cloud computing.  
These technical challenges can be aligned into three main areas: 
connectivity, latency and security [27].  They are well 
documented in different vertical industries, as identified in1 
Table 1. 

Research from the challenges associated with cloud 
processing of data has focused on moving compute closer to the 
data source and has resulted in the emergence of edge 
computing capabilities.  Sunyaev [88] reviews the emergence 
of edge computing and identifies the key goals these platforms 
aim to provide, overcoming the challenges posed by processing 
workloads in the cloud.  Areas of focus for edge computing are 
around the hardware platforms, connectivity, and management 
of software to these remote devices, and the use of artificial 
intelligence algorithms within the software to undertake 
computer vision workloads.  With emerging connectivity 
capabilities offered by 5G and the evolution of Mobile Edge 
Compute (MEC), new workload management platforms for 
edge compute such as Docker (with Kubernetes management 
for large deployments across edge devices), the ability to 
process streaming data at the edge is moving forward.  Zhou, et 
al. [99] review the capabilities of edge platforms for AI Models 
to run at the edge: "hardware acceleration technologies, such 
as field-programmable gate arrays (FPGAs), graphical 
processing units (GPUs)".  Research by Najafi, et al. [61] 
suggests Application-specific integrated circuits (ASICs) offer 
significant promise for accelerating video analysis edge 
computing, and the use of smart network interface cards 

(SmartNiC) enables the offload of tasks from the computing 
platform.  Emerging technologies, such as neuromorphic 
computing, look to overcome some challenges traditional edge 
hardware platforms are constrained by[58].  

Cloud providers, such as Amazon Web Services, provide 
solutions across the globe, and in different Regions, to ensure 
that data sovereignty requirements can be maintained [3].     

 
3.2 Edge Video Analytics 

 
Moving the analytical processing of the image closer to the 

camera, or even onto it, can increase the performance of a 
system.  This is especially evident where connectivity is limited 
or unreliable, or information from the processed data is deemed 
to be time-sensitive and is to be consumed at the edge, for 
example, real-time management of relays for complex traffic 
light systems.  Processing can be either on the camera, Mobile 
Edge Compute platforms, or the cloud.  The hardware required 
to enable a computer vision system has several separate 
components, outlined in Table 2, from the compute on the 
camera delivering specific tasks such as ANPR or motion 
detection using  CNNs, or edge compute devices, the use of 
MEC to analyze data from multiple local cameras, backend 
cloud platform compute capabilities, with access to historical 
data sets for deep learning algorithms to process, the latency of 
the networks, and the compute capacity, in terms of memory 
and processor capabilities at each node in the infrastructure all 
play a role in identifying where the most efficient location to 
undertake the compute.  

 
3.3 On Camera 

 
Shi and Lichman [84] discuss cameras with "Application 

Specific Information Processing".  The inbuilt microprocessors 
used to run code for specific purposes, such as motion and 
object detection, provide data to automated control systems.  

Table 1:  Cloud computing challenges 
Connectivity Sporadically connected devices and the use of streaming video data (along with lidar and radar)  

in autonomous vehicles to enable object detection[4], platooning [55], or to enable parking in 
cities [68] require reliable connectivity to the cloud. Environments with high levels of radio 
interference, such as manufacturing facilities [53] provide challenges to connect to cloud 
infrastructures.  

Latency Autonomous vehicles are highly dependent on reliable, low-latency communication, with round 
trip response times of under 100ms required due to the high speeds of the vehicles, especially in 
the realms of object detection and avoidance,  and in interaction with other vehicles, such as 
intersection management[42].  The use of cloud analysis in the area of sports analysis, to provide 
statistics that can be used for presentation purposes [82] is well established. The framerate 
required by cameras to enable Goal Line monitoring requires localized compute to provide the 
referee with timely and accurate analysis and information [86]. Wireless connectivity using LTE 
and Wi-Fi [85] to the cloud also presents challenges where sub 100ms response times are required. 

Security The security of data flowing to the cloud, both in transit and at the final location are concerns for 
many cloud-based platforms. In Healthcare, patient confidentiality and protection of Individually 
Identifiable Health information is enshrined in standards (HIPPA, GDPR etc.) [22]. Liu, et al. [52] 
discusses the security requirements in vehicle to everything (V2X) autonomous vehicles in the 
realm of safety as the backbone to all autonomous vehicle systems. 
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The benefits of onboard processing can reduce the bandwidth 
required to transmit the data from many megabits to several 
bytes, denoting motion or object detected.  The first use of 
onboard compute within a camera was in the area of motion 
detection.   While compression algorithms identify activity for 
prediction purposes, motion detection is used to determine the 
movement within the camera's view and trigger an action when 
identified.  Sehairi, et al. [81] identified three separate 
categories of motion detection:  Background Subtraction, 
Temporal Difference and Optical flow techniques, and 
evaluated the effectiveness of the differing algorithms. 
Challenges such as bad weather, thermal changes, vibration etc. 
[39] can cause difficulties for motion detection. Large bodies of 
work exist exploring the areas of false positive and false 
negative identification of motion detection. [82]  As part of the 
processing of motion detection, cameras also allow for the 
masking of images.  Masking allows regions of the image not 
of interest to the operator to be eliminated from processing, 
saving time and compute. [70]  Automatic Numberplate 
Recognition (ANPR) or License Plate Recognition (LPR) have 
been in use extensively since the early 2000s [94].  They are 
based on Optical Character Recognition performed on video 
captured and streamed to a central video management system.  
Jeffrey, et al. [38] discuss the use of ARM-based processors and 
FPGAs to undertake ANPR on-camera analysis.  With the 
increasing compute power on the camera, ANPR enabled 
camera algorithms can now provide descriptive feedback across 
the network (i.e., the number plate details), rather than just the 
video stream that would have to be further processed.  Farhat, 
et al. [24] demonstrated that a Zynq-7000 programmable 
system on a chip (SoC) within a camera could provide ANPR 
recognition with a success rate of 99.5%, and with a power 
consumption rate 80% less than that of a Intel PC based 
platform undertaking the same calculations.  Apostolo, et al. [4] 
discuss the use of video analytics to control Pan-Tilt-Zoom 
(PTZ) functions on cameras, allowing enabling real time 
actuation of PTZ functions, allowing tracking of objects of 
interest, enabling an active, “human-out-of-the-loop” 
automation of the camera functions. 

 
3.4 Mobile Edge Compute 

 
Processing IoT data closer to the data source was first 

discussed in 2009 [77], using virtual machines to provide 
'Cloudlets' close to a 'thin' or mobile client which has limited 
computing capabilities [76].  The evolution of Edge computing 
led to ETSI launching a Mobile Edge Compute (MEC) working 
group in 2015 [4] with a goal to "…enable ultra-low-latency 
requirements as well as a rich computing environment for 
value-added services closer to end users." [31]  MEC is a key 
component in the promise of high speed, low latency Massive 
IoT (MIOT) platforms described in 3GPP 5G Release 16 [30]. 
Baek, et al. [11] discuss 3GPP R16 and the use of mmWave 
[78] and MEC to provide ultra-reliable and low-latency 
communications (URLLC) and massive-input, massive-output 
(MIMO) capabilities, enabling sensor densities of up to one 
million sensors per square kilometer.  This low latency, high-
speed connectivity [65] is critical for the effective delivery of 
emerging technologies such as traffic management and 
collision avoidance systems in robotic and autonomous 
systems.  Interlinked with the platform and communications, 
research into the real time processing of video streams has 
developed, and the emerging use of artificial intelligence (AI) 
for the extraction of information from streaming video. Xu, et 
al. [98] discuss the challenges of running AI-based video 
analytics on resource-constrained edge devices, such as CCTV 
cameras.  Research into the use of deep learning algorithms [93] 
and federated analytics [49] are currently at the forefront of 
computing research.  Deploying these models to the edge 
requires significant computing power [73].  Edge computing 
devices are evolving in terms of CPU, accelerators [61] and 
SmartNiC providing offload of networking functions [37], are 
enabling more complex workloads to run on edge compute 
platforms.  

Figure 3 demonstrates the locations of the compute aspects 
of a surveillance system, including the on-camera, localized 
edge compute and MEC in 5G environments, but also the 
analytics backend platform, providing meta-analysis across the 
system, but also uses the combined datasets to train the 
algorithms for use at the edge, improving accuracy and ensuring 
that federated systems do not become fragmented, due to 
differing datasets flowing through the DNN. 

 
4 Moving Cloud to the Edge 

 
Cloud providers, such as Amazon Web Services (AWS),  

Table 2:  Processing matrix in machine vision systems 
Characteristics Edge LTE/5G MEC WAN Cloud 
 
 
 
 
 
  

    

Network 
Latency 

 100ms+  75ms  

GPU Cores 240  5120  20,480 
Data set Scale GB  TB  PB 

 
 
 
 
 

WAN Latency
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Figure 3:  Edge compute 

 
Google Cloud Platform (GCP), Microsoft Azure and VMWare 
Cloud, provide platform as a service (PaaS) and Software as a 
Service (SaaS) cloud computing platforms global availability 
zones across the globe.  AWS, provides SaaS video analysis 
platform, Amazon Recognition Video.  Amazon Recognition is 
a machine learning based video analysis platform that can be 
used for video analytics, including facial recognition, designed 
to analyze streaming video data in conjunction with AWS in 
real time [29].   

AWS divides their cloud based platforms into physically 
different geographical regions, to overcome the challenges of 
connectivity, latency, security 37] and data sovereignty [3] with 
over two hundred data centers globally,  AWS offers users the 
ability to deploy virtual machines, and SaaS platforms in twenty 
six separate global zones, as shown in Figure 4.  

While the geographic regions provide the capabilities to 
ensure data sovereignty requirements be provided for, 
especially where PII information such as surveillance and 
security video footage is being processed, AWS also currently 
offers eighty four availability zones [8] across these geographic 
regions, to reduce latency between the edge and the cloud 
compute capabilities [12].    

Despite these regions and zones, Chen and Ran [17] discuss 
video frame transmission latency to an AWS cloud to execute a 
computer vision process can take upwards of 200ms, depending 
on the proximity of the regional datacenter.  Rao, et al. [71] 
suggest that the 100ms+ round trip processing time experienced 
in classical cloud models cannot meet the sub 10ms 

requirements posed for low latency video analysis using 
inference engines. 

Cloud providers want to deliver a cloud experience to users, 
with consistent programming interfaces for application, 
consistent operations no matter where their code is executed, 
and a scalable, reliable platform to deliver video surveillance 
and analytics platforms on.  The global cloud providers are 
building and deploying new platform models, to enable them to 
offer cloud services closer to or at the customers edge, where 
the video data is being created, with the goals to reduce latency, 
increase security and reliability and ensure legal data 
management policies such as GDRP/HIPPA etc. are delivered 
within the offering. 
4.1 Local Datacenters 
 

While having local regions globally will overcome issues 
with data sovereignty, the WAN network can cause challenges, 
depending on the infrastructure, bandwidth and utilization of 
the networks connecting the metropolitan centers to the 
regional cloud-based datacenters in the system.    

To reduce potential latency, AWS are providing Local Zones, 
AWS instances that are close to metropolitan and industrial 
zones, to reduce the latency of the WAN [34], by bringing the 
compute capabilities closer to the user.  Customers can then 
extend their existing Virtual Private Cloud (VPC) to this local 
zone [67], to manage the entire AWS platform as one virtual 
platform. 

Koch and Hao [49] review the use of AWS Lambda platform 
and document the difference the number of network hops and 
distance the user is from the AWS instance.  They identify that 
the AWS Local Zones platform performs significantly better 
with large data streams, than using the regional AWS cloud 
platforms.  

Providing a reduced set of AWS services, AWS Local Zones 
are available currently in seventeen cities  in the USA, but plans 
to launch local zones in thirty two cities across twenty six 
countries in the near future [7]. 
 
4.2 Cellular Service Provider Datacenters 

 
As 5G infrastructure is deployed, the high speed, low latency 

from edge devices to the cellular network will reduce the 

 

Figure 4:  AWS regions [1] 
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challenge of latency significantly, with 3GPP URLLC 
specifications proposing end to end latencies of sub 5ms, not 
including the backhaul across the internet to the cloud platform 
providing the video analytics platform [36].  AWS Wavelength 
Zones have been designed to be physically hosted in Cellular 
Service Providers (CSP) local datacenters as a shared user MEC 
platform, on which users can run PaaS and SaaS workloads in 
these CSPs, while being able to manage the applications using 
the AWS management suite – without the data having to leave 
the CSPs network.  This removes the latency of connections 
from the CSP to the AWS cloud platform.  AWS Wavelength 
Zones are connected via high speed, low latency networks 
directly to the AWS regional core infrastructure using Amazon 
VPC to enable backhaul to other centrally hosted applications 
on AWS infrastructure, and carrier gateways to allow 
connectivity from the user application running on the 
Wavelength Zone access to the CSPs 5G network, or directly to 
the internet. 

The goal of the Wavelength Zone is to provide a limited range 
of S3 virtual machine configurations compared to the regional 
or local accessibility zones, with one of these offerings being a 
platform designed specifically for ML and video analytics 
workloads.   

Premkumar and Bhandari [69] discuss the use of AWS 
Wavelength with Verizon CSP, and demonstrates significant 
reduction in time taken to process streaming video while 
connected to a Verizon 5G network, when using AWS 
Wavelength, compared to the same code running on a 
traditional AWS S3 cloud node.  

There are currently few AWS Wavelength Zones globally, 
with five separate CSPs, as listed in Table 3, however Amazon 
estimates that 34% of all mobile data traffic will move to 5G by 
2030 and is aggressively deploying Wavelength Zones 
platforms to CSPs globally. 

 
4.3 On Premise 

 
The ease of use and manageability of Cloud platforms such 

as AWS is a key reason for users to select the ‘As a Service’ 
model.  AWS provides a fully managed, dedicated on-premise 
offering to customers, called AWS Outposts.  AWS Outposts 
can scale from a 1U rack server, to full 42U Racks of 
equipment, as shown in Figure 5.  Using AWS Outposts, the 
customer only pays for the resource utilization as an operational 
expense, rather than the traditional capital expenditure required 
to deploy traditional IT enterprise platforms.  Outposts is built 
on the same hardware platforms as deployed in the AWS 
regional and local datacenters globally, to ensure exactly the 
same hardware performance on prem or in the cloud.  Other 
benefits also include the ability to manage and deploy 
workloads using the same AWS services and APIs available in 
the cloud, and manage these centrally across multiple sites [19].  
As the platform is onsite, latency is reduced, but for mission 
critical and sensitive datasets such as law enforcement, 
surveillance and pharmaceutical research, data never leaves the 
confines of the user, overcoming concerns of hosting data 
Table 3:  AWS wavelength zones1 

CSP Region 
Wavelength 

Zone 
Bell Canada Toronto 
Verizon  US East (N. Virginia) Boston 
Verizon  US East (N. Virginia) Atlanta 
Verizon  US East (N. Virginia) Washington DC 
Verizon  US East (N. Virginia) New York City 
Verizon  US East (N. Virginia) Miami 
Verizon  US East (N. Virginia) Dallas 
Verizon  US East (N. Virginia) Houston 
Verizon  US East (N. Virginia) Chicago 
Verizon  US East (N. Virginia) Charlotte 
Verizon  US East (N. Virginia) Detroit 
Verizon  US East (N. Virginia) Minneapolis 
Verizon US West (Oregon) San Francisco  
Verizon US West (Oregon) Las Vegas 
Verizon US West (Oregon) Denver 
Verizon US West (Oregon) Seattle 
Verizon US West (Oregon) Phoenix 
Verizon US West (Oregon) Los Angeles 
KDDI Asia Pacific (Tokyo) Tokyo 
KDDI Asia Pacific (Tokyo) Osaka 
SK Telecom  Asia Pacific (Seoul) Daejeon 
Vodafone Europe (London) London 
Vodafone Europe (Frankfurt) Dortmund 
Vodafone Europe (Frankfurt) Berlin 
Vodafone Europe (Frankfurt) Munich 
 
 

in the cloud [35].  While the data is hosted locally, there are 
connections to the AWS cloud required, both for of the  
 

 
 

Figure 5:  AWS outposts rack 
____________________ 
1 [9] AWS.  (2022, ¼).  AWS Wavelength Zones.  Available:  
https://aws.amazon.com/wavelength/location. 
workloads, and also for AWS to provide out of band 

https://aws.amazon.com/wavelength/location
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management for the underlying infrastructure onsite, which 
may create security concerns and attack vectors for some 
customers [96].   

Microsoft Azure can also extend cloud based runtime 
environments to a local on premise deployment using Azure 
Stack Edge platform, and Azure Video Analyzer software [97].  
Microsoft supply and support the hardware in the same way as 
AWS Outposts, but users also have the option to  supply 
certified hardware from vendors such as Dell Technologies and 
HPE [16], and use the cloud based Azure platform to then 
manage the workloads on the Azure edge platform.  

 
4.4 Sporadically Connected / Disconnected Systems 

 
The one thing in common with all cloud-based platforms, is 

the requirement to have a reliable internet connection with the 
capacity and latency to deliver and enable the workloads 
required, and on premise, or local instantiations of cloud-based 
platforms have similar requirements.  For edge systems that 
have sporadic, or no connectivity to the internet, a different 
regime is required, especially where the user wants to leverage 
the capabilities cloud computing can offer.  AWS Snow range 
of devices are ruggedized hardware platforms, originally 
designed to be used to transport large amounts of data from 
local datacenters to an AWS facility, for ingestion into an AWS 
Cloud VPC, but AWS Snowball also offers the capability of 
running Amazon Machine Images, with workloads pre-loaded 
[before being sent into the field.  This allows machine learning 
and video analytics models to be ran offline, outside of the 
datacenter [91].  

 

 
 

Figure 6:  AWS snowball 
 

Pawloski, et al. [66] demonstrated the use of AWS Snowball 
platform to provide off-grid, ruggedized compute capabilities, 
in which the workloads could be loaded onto the system before 
deployment, for use in areas of natural or man-made disasters, 
where reliable internet connectivity may be sporadic, or not 
available. 

 
5 Conclusions 

 
The use of edge compute capabilities, combined with modern 

coding and management capabilities, can overcome challenges 
with network latency and enable real-time, preventative 

surveillance solutions for law enforcement.  The reduction in 
compute cost and the emergence of lightweight neural network 
algorithms for computer vision can allow resource-constrained 
edge compute nodes to deliver an accurate analysis of streaming 
data in a timely manner.  

The emergence of data-focused wireless technologies such as 
5G, with mobile edge compute capabilities built into the core 
design of the networks to provide ultra-low latency analysis of 
the video data, will drive more analysis out of the central and 
cloud data centers.  Moving these compute capabilities closer 
to the source of the data on edge devices will provide benefits 
to deliver surveillance solutions.  The removal of latency due to 
network backhaul to cloud platforms will improve decision 
making processes locally in time-critical applications, such as 
facial recognition for law enforcement.  Cloud providers are 
providing new capabilities combining the ease of deployment 
and management of workloads in the cloud, on platforms at, or 
closer to the edge of the network.  Emerging technologies 
provide the capability to analyze the video stream at the edge 
using autonomous decision making provided by neural network 
algorithms to decide when data should be transmitted.  These 
capabilities can enable proactive interaction and intervention by 
users or for evidential purposes. 
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