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Abstract 

 
Ensuring the quality is essential for a successful Software 

System.  Software systems need to be tested in every stage of 
the Software Development Life Cycle (SDLC) irrespective of 
the type of software being developed.  If a software bug remains 
undetected in the early phase of the SDLC, it becomes harder 
to fix it at a later stage and becomes very costly.  The 
application of machine learning in Software Quality Assurance 
and Testing can help testers in the testing process, including the 
early detection and prediction of a software bug.  However, 
employing machine learning techniques brings new challenges 
to testing and quality assurance.  Machine Learning (ML) uses 
Artificial Intelligence (AI) techniques that focus on a given 
dataset to find any trend present in the data.  It has been 
observed that some software testing activities can, in fact, be 
represented as a learning problem.  Thus, ML can be used as an 
efficient tool to automate software-testing activities, especially 
when the software system becomes very complex.  This survey 
aims to study and summarize the application of machine 
learning on software quality assurance and testing in a 
chronological manner by selecting from articles published in 
the last twenty-six years or so. 

Key Words:  Software quality assurance and testing, 
machine learning, artificial intelligence, chronological survey, 
neural network, support vector machine. 

 
1 Introduction 

 
Machine learning (ML) is the study of computer algorithms 
designed to exhibit intelligence by self-learning through 
experience observed from its surrounding environment. 
Machine learning is a branch of artificial intelligence.  The basic 
idea of machine learning is to build a model based on sample 
data or training data to predict or make decisions without 
programming.  Today, machine learning is widely used in many 
industries and applications, including pattern recognition, 
computer vision, aeronautical engineering, finance, 
entertainment, computational biology, biomedical engineering, 
and medical applications [3]. 

Software quality assurance and testing refer to testing the  
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software and ensuring the proper quality of the software.  It is a 
crucial phase of SDLC in terms of time and money.  Much effort 
has been taken to reduce the cost of the testing phase to keep the 
software development cost within the budget.  For that, machine 
learning has been introduced in software testing for a long time 
[12, 45].  However, the use of machine learning brings some 
new challenges to the quality assurance and testing field.  At the 
same time, it also provides some potential new methods for 
software testing.  This paper will discuss the application of 
machine learning in software quality assurance and testing. 

In the following section, we discussed our methodology for 
this study.  The next section summarizes our findings in various 
subsections as found in different year groups.  Finally, the 
following section analyzed our findings on various machine 
learning techniques. 

 
2 Methodology 

 
For this survey, we collected fifty different papers published 

from 1995 to 2021.  We tried to investigate the trend that might 
be found in utilizing artificial intelligence in general and 
machine learning in particular in software testing and quality 
assurance over the period of the last twenty-six years or so. We 
grouped the papers into five-year periods and tried to focus on 
the main discussion topics of each group.  Table 1 shows the 
papers that we gathered for this purpose.  
   

3 Summaries of Our Findings 
 
This section listed the papers that we studied in chronological 

order in the following subsections.  We tried to group the papers 
uniformly in a five-year span with the exception of 3.5 and 3.6 
to keep the number of papers in each group somewhat uniform.  
We discussed the authors’ motivation for their research and their 
findings in each subgroup. 
 
3.1 1995-1999 

 
In this period, we have studied two papers.  In [3], the authors 

talked about the problem of a large volume of test cases 
generated by automated tools as the effectiveness of these test 
cases is not clear.  The authors present experimental results on 
using a neural network for pruning a test case set while 
preserving its effectiveness.  The authors concluded that based 
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Table 1:  Articles sorted by year with key words 
Year Number 

of 
Articles 

Keywords References 

1995 2 Neural Network (NN) [3], [12] 
2002 1 Neural Network [45] 
2003 1 Software Engineering [50] 
2004 1 Active Learning, Automatic 

Classification, Markov models 
[6] 

2006 3 Infeasible Paths, Data Flow Based 
Testing, Classification, Value-Based 
Software, Test Data Generation, 
Decision Tree, Genetic Algorithms 

[11], [46], 
[49] 

2007 2 Support Vector Machines, 
MartiRank, Test Oracle, Statistical 
Software Testing 

[5], [32] 

2008 4 Decision trees, Fault-proneness 
prediction, Test Oracles Generation, 
NN, Support Vector Machines, 
Defect-prone Software Modules 

[8], [7], [19], 
[25] 

2009 1 Category-Partition, Black Box 
Testing 

[9] 

2010 2 Bayesian Reasoning, Asymmetric 
Function, NN 

[35], [41] 

2011 4 Classification Framework, 
Metamorphic Testing, GUI Testing, 
Test Oracle, Support Vector 
Machines, Grammar Induction, 
Clustering, Regression Test 

[13], [20], 
[36], [48] 

2012 5 Black Box Testing, Clustering, GUI 
Testing, NN, Test Oracle, Mutation 
Testing 

[1], [21], [22], 
[32], [43] 

2013 3 Test Coverage Criteria, Combining 
Testing Techniques, Data Mining 

[14], [28], 
[47] 

2016 1 Metamorphic Relations, Graph 
Kernels 

[26] 

2017 3 Aging Related Bug, Data Mining, 
Big Data, Metamorphic Testing 

[31], [32], 
[33] 

2018 4 Test Oracle, Dataset Diversity, 
Metamorphic Testing 

[34], [35], 
[36], [37] 

2019 8 Test Case Generation, 
Classification, Clustering, Test 
Automation, NN, Fault Localization 

[38], [39], 
[40], [41], 
[42], [43], 
[44], [45] 

2020 4 Data Cleaning, NN, Code Review, 
Continuous Integration 

[46], [47], 
[48], [49] 

2021 1 Statistical Regression [50] 

 
 
on their experiment, neural networks are promising test case 
effectiveness predictors.  They further concluded that their 
method is able to adapt as the software matures with sufficient 
accuracy.  In [12], the authors tried to accurately estimate the 
cost of software testing. Authors applied machine learning 
techniques to determine the software testing attributes that are 
important in predicting software testing costs and time. 

Figure 1 shows the distribution of the articles over the years. 
 
 

 
Figure 1:  Distribution of the articles over the years 

 
 

3.2 2000-2004 
 
In this period, we selected three papers [6, 45, 50] to discuss.  

In [45], the authors talked about a test oracle to determine 
whether a given test case exposes a fault or not.  This paper 
presents a new concept of using a two-layered artificial neural 
network as 
an automated oracle for testing a real software system.   The 
authors concluded that the neural network is a promising 
method of testing a software application capable of learning new 
versions of evolving software.  In [50], the authors discussed the 
domain of the machine learning approach and how it can be 
utilized in software engineering.  They showed how the software 
development and maintenance tasks could be formulated as 
learning problems.  In [6], the authors focused on the automatic 
classification of program behavior using execution data.  They 
introduced a technique that models program executions as 
Markov models and also devised a clustering method for 
Markov models to combine multiple program executions to 
form an effective behavior classifier.  

 
3.3 2005-2009 

 
We found ten papers [5, 8, 9, 11, 17, 19, 25, 32, 46, 49] to 

study in this period.  In [46], the authors spent on infeasible 
paths, basically on three main approaches:  prediction, 
classification, and identification of infeasibility.  They also 
addressed these aspects in the scope of integration and object-
oriented testing.  The authors claimed that the finding of this 
paper would aid in the planning of the testing activity and in the 
establishment of testing strategies.  In [49], the authors proposed 
a framework for value-based software test data generation.  
Value-based software engineering considers value into the 
software engineering principles and practices as opposed to 
value-neutral software engineering where each product in 
software development, such as requirement, use case, test case, 
and defect, is treated as equally important.  The authors talked 
about applying machine learning methods to value-based 
software engineering in this paper.  In [11], the authors analyzed  
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the problems in software code and proposed a model that will 
help catch those problems earlier in the project life cycle using 
machine learning methods.  In [32], authors discussed issues of 
testing machine learning applications and proposed machine 
learning algorithms such as SVM and MurtiRank.  In [5], the 
authors presented an adaptive sampling mechanism using 
machine learning for software testing.  In [8], the author 
provided a brief overview of state of art and reports on a number 
of novel applications of machine learning in the area of software 
testing.  In [19], the author argued that there is no general 
technique for estimating software fault-proneness.  In this paper, 
the author proposed the use of machine learning for software 
fault-proneness prediction.  In [25], the authors talked about the 
artificial neural network for test oracles generation, the same 
theme as seen in [45].  In [17], the authors evaluated the 
capability of SVM in predicting defect-prone software modules 
and claimed that the prediction performance of SVM is 
generally better than the models they compared with.  In [9], the 
authors proposed a methodology and a tool based on machine 
learning to help people understand the limitations of test suites 
and their possible redundancies so that people are able to refine 
them in a cost-effective manner.  The authors claimed that their 
proposed solution to show promising results on a case study 
involving students as testers. 

 
3.4 2010-2014 

 
In this period, we found fourteen papers [1, 13-14, 20-22, 28, 

32, 35-36, 41, 43, 47-48] to study.  In [35], the authors provided 
a brief overview of some popular Bayesian reasoning methods 
for achieving reliable and efficient software testing and program 
analysis.  They also explained why those Bayesian reasoning 
methods are applicable to software testing.  In [41], the authors 
focused on the application of machine learning tools and 
variable selection tools in order to solve the problem of 
estimating the execution effort of functional tests.  The authors 
concluded that there is a high complexity of the effort estimation 
problem.  Managers and other testing professionals require 
easy-to-use and efficient estimation methods.  In [36], the 
authors introduced a classification framework that can help to 
systematically review research work in the ML and software 
testing domains.  This framework can be used to construct 
guidelines for choosing the most appropriate learning method 
and then using it in the software testing stage.  The authors 
claimed that the classification framework is quite strong in 
capturing various aspects of work in ML and software testing.  
Furthermore, it helps researchers systematically investigate and 
extract the prominent information from existing research works 
in ML and software testing.  In [48], the authors presented a 
technique based on “metamorphic testing” for testing the 
implementations of machine learning classification algorithms.  
The authors claimed that their approach enables users and 
programmers to easily and effectively verify and validate the 
machine learning components of the software.  In [20] and [21], 
the authors talked about GUI software testing.  They proposed 
avoiding infeasible test cases altogether by predicting which test 
cases are infeasible using two supervised machine learning 

methods:  support vector machines (SVMs) and grammar 
induction.  The authors concluded that classifying test case 
feasibility is possible.  In [13], the authors introduced a semi-
supervised clustering method named semi-supervised K-means 
(SSKM) to improve cluster test selection.  The authors claimed 
that the semi-supervised clustering method SSKM could 
improve test selection in most cases.  In [32], the authors 
discussed software quality improvement by early prediction of 
error patterns.  They advocated the use of case-based reasoning 
(i.e., CBR) to build a software quality prediction system with 
the help of human experts.  In [1], the authors compared the use 
of artificial neural networks (ANN) and info-fuzzy networks 
(IFN) as automated oracles to confirm that the developed 
software complies with its specification and determine whether 
a given test case exposes faults.  The authors concluded that IFN 
outperforms the ANN for faults causing a large number of faulty 
records, while the ANN appears to be more suitable for 
identifying hard-to-detect faults in more stable versions.  The 
IFN clearly outperforms the ANN with respect to training time.  
In [43], the authors proposed an approach to classifying mutants 
as a tool to reduce the number of mutants to be executed and to 
evaluate the quality of test suits without executing them against 
all possible mutants.  They concluded that the results obtained 
so far are encouraging, but this approach still needs more 
experiments to fully confirm its validity.  In [22], the authors 
discussed some of the relationships between the work of 
Artificial Intelligence (AI) techniques and Software 
Engineering (SE) problems.  In [28], the authors proposed an 
approach using machine learning techniques to link test results 
from the application of different testing techniques.  The authors 
claimed that the major advantage of this approach is that it can 
automatically determine equivalence classes, which are, in 
general, manually determined according to subjective rules.  In 
[14], the authors presented a method that can combine testing 
techniques adaptively during the testing process.  The authors 
concluded that this method could improve the fault detection 
effectiveness with respect to single testing techniques and their 
random combination.  In [47], the authors presented cooperative 
testing and analysis, including human-tool cooperation and 
human-human cooperation.  The authors claimed that this could 
reduce human efforts and burden in software engineering 
activities.  

 
3.5 2015-2018 

 
In this period, we found eight papers [15, 18, 24, 26-27, 30, 

33-34] to study.  In [26], authors conducted a feature analysis to 
identify the most effective features for predicting metamorphic 
relations for testing scientific software using graph kernels.  In 
[27], the authors presented a study on the application of machine 
learning techniques and static source code metrics to predict 
aging-related bugs.  The authors concluded that static source 
code metrics could be used as predictors for aging-related bugs.  
In [18], the authors discussed many different works in the field 
of software vulnerability analysis and discovery that utilize 
machine-learning and data-mining techniques.  In [15], the 
authors presented a framework for validating the large-scale 
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image data as well as adequately verifying both the software 
tools and machine learning algorithms.  They claimed that the 
framework addresses the most important issues of verification 
and validation in big data.  In [30], the authors discussed 
problems with ML applications and discovered software 
engineering approaches and software testing research areas to 
solve these problems.  They concluded some key areas such as 
deep learning, fault localization, and prediction.  In [24], the 
authors discussed the characteristics of some machine learning 
algorithms and concluded the main challenges of testing 
machine learning applications.  Meanwhile, the authors 
presented two techniques: comparing results of different 
implementations and metamorphic testing to mitigate the test 
oracle problem.  In [33], the author reviewed two traditional 
views of service and product qualities of a machine learning 
software.  In [34], the authors demonstrated a new metamorphic 
testing method that can be used to test neural network learning 
models.  This method mainly lies on dataset diversity and 
behavioral oracle.  The authors conjectured that their approach 
could be effective in the software testing of machine learning 
programs. 

 
3.6 2019-2021 

 
In this period, we selected thirteen papers to discuss [2, 7, 10, 

16, 23, 29, 31, 38-40, 42, 44, 51].  In [31], the authors proposed 
a self-adaptive learning-based test framework that learns the 
optimal policy of generating stress test cases for different types 
of software systems.  The paper [39] presented a strategy to 
identify the tests that have passed or failed by combining 
clustering and semi-supervised learning.  The paper [23] 
discussed that the Artificial Intelligence key pillars that can be 
used in software testing and talked about how the future will 
look like in terms of artificial intelligence and software testing.  
In [40], authors used a deep neural network to build a software 
defect prediction model and compared their proposed model 
with other machine learning algorithms like random forests, 
decision trees, and naive Bayesian networks.  The authors 
claimed that their results showed small improvement over the 
other learning models in most cases.  In [2], the authors 
proposed a methodology predict and localize faults in a software 
system.  The authors used the random forest machine learning 
technique to train their model.  The articles [38] and [44] talked 
about the use of machine learning in software quality assurance 
and prediction.  In the article [16], authors studied 48 different 
papers focusing on making a survey of research efforts based on 
using ML algorithms to support software testing.  The authors 
believed their mapping study would provide significant insights 
into machine learning applied to software testing.  In [7], the 
authors discussed the current existing testing practices for ML 
programs.  And the authors also explained the main sources of 
faults in an ML program.  In [10], the authors focused on the 
relevant features of a large dataset in order to improve the 
accuracy of software quality estimation.  The authors concluded 
that machine learning algorithms could help to estimate the 
quality level of software.  In [51], the authors presented a 
comprehensive survey of machine learning testing research.  

The authors summarized the current research status of different 
ML testing properties, testing components, and testing 
workflow.  In [42], the authors presented their work that can 
reduce the need for manual reviews by automatically identifying 
which code fragments should be reviewed manually.  The 
authors concluded that their work could improve the speed of 
code reviews.  In [29], the authors investigated the application 
for STEP of five machine learning (ML) models reported as the 
most accurate ones when applied to SDLC effort prediction. 

 
4 Analysis Based on Various ML Techniques 

 
This section analyzed various ML techniques used in software 

testing, which we study in this survey.  Table 2 summarizes our 
findings. 

 
 

Table 2:  ML techniques used for software testing in this survey 
Techniques References Number of 

Articles 
Neural Network [1], [3], [8], [11], [19], [25], 

[34], [40], [41], [42], [44], [45], 
[51] 

13 

Support Vector 
Machine 

[8], [17], [19] [20], [21], [32], 
[41], [43] 

8 

Clustering [1], [13], [39] 3 
Decision Tree [8], [10], [11], [28], [38], [40] 6 
Grammar 
Induction 

[20], [21] 2 

Bayesian Based 
Method  

[14], [24], [35], [38], [40] 5 

Random Forest [2], [10], [38], [40] 4 
Generic ML 
Techniques 

[5], [7], [9], [12], [15], [16], 
[18], [22], [23], [26], [27], [29], 
[30], [31], [32], [33], [36], [46], 
[47], [48], [49], [50] 

22 

 
 
4.1 Neural Network 

 
Neural network is widely used in software testing. We found 

thirteen articles talking about this technique.  Among the 
articles, neural network is used for fault-proneness prediction in 
[19] and is used for automatic test oracles generation in [25] and 
[1].  In [41], neural network is used to estimate the execution 
effort of software testing.  In [34], neural network is used for 
metamorphic testing.  In [40], neural network is used for 
software defect prediction.  In [42], neural network is used for 
identifying code fragments for manual review. 

 
4.2 Support Vector Machines 

 
Support vector machines is widely used in software testing. 

We found eight articles talking about this technique.  Among 
the articles, support vector machines is used for generating 
reliable test oracle in [32].  In [19] and [17], a support vector 
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machine is used for fault-proneness prediction.  In [41], the 
support vector machine is used to estimate the execution effort 
of software testing.  In [20] and [21], the support vector machine 
is used for GUI testing.  In [43], support vector machines is used 
for mutation testing. 

 
4.3 Clustering, Decision Tree, and Grammar Induction 

 
We found three articles talking about the clustering technique.  

In [13], clustering is used for improving regression test 
selection.  Clustering is used for automatic test oracles gener-
ation in [1] and is used for classifying test outcomes in [39].  

We found six articles talking about the decision tree.  
Decision tree is used for defect prediction in [8] and [11].  In 
[40], decision tree is used for software defect prediction.  In [10] 
and [38], decision tree is used for software quality prediction. 

We found two articles talking about grammar induction.  In 
both [20] and [21], grammar induction is used for GUI testing. 

 
4.4 Bayesian Based Method and Random Forest 

 
We found five articles talking about Bayesian based method.  

In [14], Bayesian based method is used for combining testing 
techniques.  In [40], Bayesian based method is used for software 
defect prediction.  In [43], Bayesian based method is used for 
software quality prediction. 

We found four articles talking about random forest.  In [40], 
random forest is used for software defect prediction.  In [2], 
random forest is used for software fault localization.  In [10] and 
[38], random forest is used for software quality prediction. 

 
5 Software Testing Activities Found in this Study 

 
In our study we found different types of software testing 

activities that uses different types of machine learning 
techniques. We are discussing few of them in the following 
subsections. 

 
5.1 Creating Test Data 

 
In [49], the authors proposed a framework for value-based 

software test data generation. Value-based software engineering 
considers value into the software engineering principles and 
practices as opposed to value-neutral software engineering 
where each product in software development, such as 
requirement, use case, test case, and defect, is treated as equally 
important. The authors talked about applying machine learning 
methods to value-based software engineering in this paper. 

 
5.2 Test Case Generation 

 
In [31], the authors proposed a self-adaptive learning-based 

test framework that learns the optimal policy of generating 
stress test cases for different types of software systems.  In test 
case generation, one of the important tasks is to reduce manual 
review of the code segments.  In [42], the authors presented how 
machine learning can be used to reduce the need for manual 

reviews by automatically identifying which code fragments 
should be reviewed manually. 

 
5.3 User Interface Testing 
 

The success of a software product largely depends on an error  
free user interface.  That is why user interface testing places a 
vital role in software quality.  In [20] and [21], the authors talked 
about GUI software testing.  They proposed avoiding infeasible 
test cases altogether by predicting which test cases are infeasible 
using two supervised machine learning methods:  support vector  
 
machines (SVMs) and grammar induction. 
 
5.4 Regression Testing 

 
A regression testing is done whenever a change has been 

made to a software product to ensure that the change made did 
not introduce any new error.  For a large product, running an 
effective regression test is challenging because of the amount of 
test cases needed to run.  In [13], the authors introduced a semi-
supervised clustering method named semi-supervised K-means 
(SSKM) for improving regression test selection.  The authors 
claimed that the semi-supervised clustering method SSKM 
could improve test selection in most cases. 

 
6 Conclusion 

 
Software testing has been a great area of research as it is a 

vital issue for producing quality software [4].  Researchers are 
interested in performing successful testing with minimal effort 
possible by doing test automation.  Machine learning can play 
an important role in this regard.  It is evident from our study that 
the intersection of these fields has drawn attention from many 
researchers for a long time.  From our study, we have seen many 
early techniques of machine learning, such as neural network, 
decision tree, etc., and modern techniques like deep learning are 
equally applicable in software testing. 

Our citations in the paper are arranged in chronological order. 
A smaller reference number indicates an earlier publication, and 
a larger number indicates a recent publication.  The summary of 
our study shown in Table 2 shows the popular techniques of ML 
as applied in software testing.  For instance, neural network has 
been a popular technique all through our selected period.  Also, 
we see that SVM and grammar induction are the techniques 
found in the middle period, whereas the recent trends are 
focused on the techniques like decision tree, Bayesian-based 
method, and random forest.  Of course, a substantial number of 
papers applied machine learning in general without being 
specific to any particular techniques.  

The papers in our study discussed many different approaches 
to applying ML in software testing and introduced the 
challenges in them.  Researchers have proposed some potential 
ways to solve those challenges and suggested a number of future 
directions.  The common theme we found in those works is that 
machine learning techniques can be employed during the 
software testing process.  Using machine learning techniques 
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can assist testers in predicting software defects, localizing 
software faults, finding some specific bugs, and improve 
effectiveness and efficiency.  We hope the researchers and 
practitioners in this field will be benefited from our study. 

We have also studied the techniques of the machine learning 
that can be used for different types of software testing activities 
such as creating test data, test case generation, testing user 
interfaces, and regression testing. 

In the future, we will explore how machine learning is used 
for improving the testing of different categories of the software 
such as object-oriented software, distributed software, etc. 
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