
150 IJCA, Vol. 29, No. 3, Sept. 2022

ISCA Copyright© 2022

Application of Machine Learning on Software Quality
Assurance and Testing: A Chronological Survey

Mohammad Hossain*
University of Minnesota Crookston, MN, USA

Hongkai Chen†

University of California San Diego, CA, USA

Abstract

Ensuring the quality is essential for a successful Software

System. Software systems need to be tested in every stage of
the Software Development Life Cycle (SDLC) irrespective of
the type of software being developed. If a software bug remains
undetected in the early phase of the SDLC, it becomes harder
to fix it at a later stage and becomes very costly. The
application of machine learning in Software Quality Assurance
and Testing can help testers in the testing process, including the
early detection and prediction of a software bug. However,
employing machine learning techniques brings new challenges
to testing and quality assurance. Machine Learning (ML) uses
Artificial Intelligence (AI) techniques that focus on a given
dataset to find any trend present in the data. It has been
observed that some software testing activities can, in fact, be
represented as a learning problem. Thus, ML can be used as an
efficient tool to automate software-testing activities, especially
when the software system becomes very complex. This survey
aims to study and summarize the application of machine
learning on software quality assurance and testing in a
chronological manner by selecting from articles published in
the last twenty-six years or so.

Key Words: Software quality assurance and testing,
machine learning, artificial intelligence, chronological survey,
neural network, support vector machine.

1 Introduction

Machine learning (ML) is the study of computer algorithms
designed to exhibit intelligence by self-learning through
experience observed from its surrounding environment.
Machine learning is a branch of artificial intelligence. The basic
idea of machine learning is to build a model based on sample
data or training data to predict or make decisions without
programming. Today, machine learning is widely used in many
industries and applications, including pattern recognition,
computer vision, aeronautical engineering, finance,
entertainment, computational biology, biomedical engineering,
and medical applications [3].

Software quality assurance and testing refer to testing the

* hossain@crk.umn.edu.
† hongkai@ucsd.edu.

software and ensuring the proper quality of the software. It is a
crucial phase of SDLC in terms of time and money. Much effort
has been taken to reduce the cost of the testing phase to keep the
software development cost within the budget. For that, machine
learning has been introduced in software testing for a long time
[12, 45]. However, the use of machine learning brings some
new challenges to the quality assurance and testing field. At the
same time, it also provides some potential new methods for
software testing. This paper will discuss the application of
machine learning in software quality assurance and testing.

In the following section, we discussed our methodology for
this study. The next section summarizes our findings in various
subsections as found in different year groups. Finally, the
following section analyzed our findings on various machine
learning techniques.

2 Methodology

For this survey, we collected fifty different papers published

from 1995 to 2021. We tried to investigate the trend that might
be found in utilizing artificial intelligence in general and
machine learning in particular in software testing and quality
assurance over the period of the last twenty-six years or so. We
grouped the papers into five-year periods and tried to focus on
the main discussion topics of each group. Table 1 shows the
papers that we gathered for this purpose.

3 Summaries of Our Findings

This section listed the papers that we studied in chronological

order in the following subsections. We tried to group the papers
uniformly in a five-year span with the exception of 3.5 and 3.6
to keep the number of papers in each group somewhat uniform.
We discussed the authors’ motivation for their research and their
findings in each subgroup.

3.1 1995-1999

In this period, we have studied two papers. In [3], the authors

talked about the problem of a large volume of test cases
generated by automated tools as the effectiveness of these test
cases is not clear. The authors present experimental results on
using a neural network for pruning a test case set while
preserving its effectiveness. The authors concluded that based

mailto:hossain@crk.umn.edu

IJCA, Vol. 29, No. 3, Sept. 2022 151

Table 1: Articles sorted by year with key words
Year Number

of
Articles

Keywords References

1995 2 Neural Network (NN) [3], [12]
2002 1 Neural Network [45]
2003 1 Software Engineering [50]
2004 1 Active Learning, Automatic

Classification, Markov models
[6]

2006 3 Infeasible Paths, Data Flow Based
Testing, Classification, Value-Based
Software, Test Data Generation,
Decision Tree, Genetic Algorithms

[11], [46],
[49]

2007 2 Support Vector Machines,
MartiRank, Test Oracle, Statistical
Software Testing

[5], [32]

2008 4 Decision trees, Fault-proneness
prediction, Test Oracles Generation,
NN, Support Vector Machines,
Defect-prone Software Modules

[8], [7], [19],
[25]

2009 1 Category-Partition, Black Box
Testing

[9]

2010 2 Bayesian Reasoning, Asymmetric
Function, NN

[35], [41]

2011 4 Classification Framework,
Metamorphic Testing, GUI Testing,
Test Oracle, Support Vector
Machines, Grammar Induction,
Clustering, Regression Test

[13], [20],
[36], [48]

2012 5 Black Box Testing, Clustering, GUI
Testing, NN, Test Oracle, Mutation
Testing

[1], [21], [22],
[32], [43]

2013 3 Test Coverage Criteria, Combining
Testing Techniques, Data Mining

[14], [28],
[47]

2016 1 Metamorphic Relations, Graph
Kernels

[26]

2017 3 Aging Related Bug, Data Mining,
Big Data, Metamorphic Testing

[31], [32],
[33]

2018 4 Test Oracle, Dataset Diversity,
Metamorphic Testing

[34], [35],
[36], [37]

2019 8 Test Case Generation,
Classification, Clustering, Test
Automation, NN, Fault Localization

[38], [39],
[40], [41],
[42], [43],
[44], [45]

2020 4 Data Cleaning, NN, Code Review,
Continuous Integration

[46], [47],
[48], [49]

2021 1 Statistical Regression [50]

on their experiment, neural networks are promising test case
effectiveness predictors. They further concluded that their
method is able to adapt as the software matures with sufficient
accuracy. In [12], the authors tried to accurately estimate the
cost of software testing. Authors applied machine learning
techniques to determine the software testing attributes that are
important in predicting software testing costs and time.

Figure 1 shows the distribution of the articles over the years.

Figure 1: Distribution of the articles over the years

3.2 2000-2004

In this period, we selected three papers [6, 45, 50] to discuss.

In [45], the authors talked about a test oracle to determine
whether a given test case exposes a fault or not. This paper
presents a new concept of using a two-layered artificial neural
network as
an automated oracle for testing a real software system. The
authors concluded that the neural network is a promising
method of testing a software application capable of learning new
versions of evolving software. In [50], the authors discussed the
domain of the machine learning approach and how it can be
utilized in software engineering. They showed how the software
development and maintenance tasks could be formulated as
learning problems. In [6], the authors focused on the automatic
classification of program behavior using execution data. They
introduced a technique that models program executions as
Markov models and also devised a clustering method for
Markov models to combine multiple program executions to
form an effective behavior classifier.

3.3 2005-2009

We found ten papers [5, 8, 9, 11, 17, 19, 25, 32, 46, 49] to

study in this period. In [46], the authors spent on infeasible
paths, basically on three main approaches: prediction,
classification, and identification of infeasibility. They also
addressed these aspects in the scope of integration and object-
oriented testing. The authors claimed that the finding of this
paper would aid in the planning of the testing activity and in the
establishment of testing strategies. In [49], the authors proposed
a framework for value-based software test data generation.
Value-based software engineering considers value into the
software engineering principles and practices as opposed to
value-neutral software engineering where each product in
software development, such as requirement, use case, test case,
and defect, is treated as equally important. The authors talked
about applying machine learning methods to value-based
software engineering in this paper. In [11], the authors analyzed

0
2
4
6
8

10

19
95

20
02

20
03

20
04

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
16

20
17

20
18

20
19

20
20

20
21

No of Articles

152 IJCA, Vol. 29, No. 3, Sept. 2022

the problems in software code and proposed a model that will
help catch those problems earlier in the project life cycle using
machine learning methods. In [32], authors discussed issues of
testing machine learning applications and proposed machine
learning algorithms such as SVM and MurtiRank. In [5], the
authors presented an adaptive sampling mechanism using
machine learning for software testing. In [8], the author
provided a brief overview of state of art and reports on a number
of novel applications of machine learning in the area of software
testing. In [19], the author argued that there is no general
technique for estimating software fault-proneness. In this paper,
the author proposed the use of machine learning for software
fault-proneness prediction. In [25], the authors talked about the
artificial neural network for test oracles generation, the same
theme as seen in [45]. In [17], the authors evaluated the
capability of SVM in predicting defect-prone software modules
and claimed that the prediction performance of SVM is
generally better than the models they compared with. In [9], the
authors proposed a methodology and a tool based on machine
learning to help people understand the limitations of test suites
and their possible redundancies so that people are able to refine
them in a cost-effective manner. The authors claimed that their
proposed solution to show promising results on a case study
involving students as testers.

3.4 2010-2014

In this period, we found fourteen papers [1, 13-14, 20-22, 28,

32, 35-36, 41, 43, 47-48] to study. In [35], the authors provided
a brief overview of some popular Bayesian reasoning methods
for achieving reliable and efficient software testing and program
analysis. They also explained why those Bayesian reasoning
methods are applicable to software testing. In [41], the authors
focused on the application of machine learning tools and
variable selection tools in order to solve the problem of
estimating the execution effort of functional tests. The authors
concluded that there is a high complexity of the effort estimation
problem. Managers and other testing professionals require
easy-to-use and efficient estimation methods. In [36], the
authors introduced a classification framework that can help to
systematically review research work in the ML and software
testing domains. This framework can be used to construct
guidelines for choosing the most appropriate learning method
and then using it in the software testing stage. The authors
claimed that the classification framework is quite strong in
capturing various aspects of work in ML and software testing.
Furthermore, it helps researchers systematically investigate and
extract the prominent information from existing research works
in ML and software testing. In [48], the authors presented a
technique based on “metamorphic testing” for testing the
implementations of machine learning classification algorithms.
The authors claimed that their approach enables users and
programmers to easily and effectively verify and validate the
machine learning components of the software. In [20] and [21],
the authors talked about GUI software testing. They proposed
avoiding infeasible test cases altogether by predicting which test
cases are infeasible using two supervised machine learning

methods: support vector machines (SVMs) and grammar
induction. The authors concluded that classifying test case
feasibility is possible. In [13], the authors introduced a semi-
supervised clustering method named semi-supervised K-means
(SSKM) to improve cluster test selection. The authors claimed
that the semi-supervised clustering method SSKM could
improve test selection in most cases. In [32], the authors
discussed software quality improvement by early prediction of
error patterns. They advocated the use of case-based reasoning
(i.e., CBR) to build a software quality prediction system with
the help of human experts. In [1], the authors compared the use
of artificial neural networks (ANN) and info-fuzzy networks
(IFN) as automated oracles to confirm that the developed
software complies with its specification and determine whether
a given test case exposes faults. The authors concluded that IFN
outperforms the ANN for faults causing a large number of faulty
records, while the ANN appears to be more suitable for
identifying hard-to-detect faults in more stable versions. The
IFN clearly outperforms the ANN with respect to training time.
In [43], the authors proposed an approach to classifying mutants
as a tool to reduce the number of mutants to be executed and to
evaluate the quality of test suits without executing them against
all possible mutants. They concluded that the results obtained
so far are encouraging, but this approach still needs more
experiments to fully confirm its validity. In [22], the authors
discussed some of the relationships between the work of
Artificial Intelligence (AI) techniques and Software
Engineering (SE) problems. In [28], the authors proposed an
approach using machine learning techniques to link test results
from the application of different testing techniques. The authors
claimed that the major advantage of this approach is that it can
automatically determine equivalence classes, which are, in
general, manually determined according to subjective rules. In
[14], the authors presented a method that can combine testing
techniques adaptively during the testing process. The authors
concluded that this method could improve the fault detection
effectiveness with respect to single testing techniques and their
random combination. In [47], the authors presented cooperative
testing and analysis, including human-tool cooperation and
human-human cooperation. The authors claimed that this could
reduce human efforts and burden in software engineering
activities.

3.5 2015-2018

In this period, we found eight papers [15, 18, 24, 26-27, 30,

33-34] to study. In [26], authors conducted a feature analysis to
identify the most effective features for predicting metamorphic
relations for testing scientific software using graph kernels. In
[27], the authors presented a study on the application of machine
learning techniques and static source code metrics to predict
aging-related bugs. The authors concluded that static source
code metrics could be used as predictors for aging-related bugs.
In [18], the authors discussed many different works in the field
of software vulnerability analysis and discovery that utilize
machine-learning and data-mining techniques. In [15], the
authors presented a framework for validating the large-scale

IJCA, Vol. 29, No. 3, Sept. 2022 153

image data as well as adequately verifying both the software
tools and machine learning algorithms. They claimed that the
framework addresses the most important issues of verification
and validation in big data. In [30], the authors discussed
problems with ML applications and discovered software
engineering approaches and software testing research areas to
solve these problems. They concluded some key areas such as
deep learning, fault localization, and prediction. In [24], the
authors discussed the characteristics of some machine learning
algorithms and concluded the main challenges of testing
machine learning applications. Meanwhile, the authors
presented two techniques: comparing results of different
implementations and metamorphic testing to mitigate the test
oracle problem. In [33], the author reviewed two traditional
views of service and product qualities of a machine learning
software. In [34], the authors demonstrated a new metamorphic
testing method that can be used to test neural network learning
models. This method mainly lies on dataset diversity and
behavioral oracle. The authors conjectured that their approach
could be effective in the software testing of machine learning
programs.

3.6 2019-2021

In this period, we selected thirteen papers to discuss [2, 7, 10,

16, 23, 29, 31, 38-40, 42, 44, 51]. In [31], the authors proposed
a self-adaptive learning-based test framework that learns the
optimal policy of generating stress test cases for different types
of software systems. The paper [39] presented a strategy to
identify the tests that have passed or failed by combining
clustering and semi-supervised learning. The paper [23]
discussed that the Artificial Intelligence key pillars that can be
used in software testing and talked about how the future will
look like in terms of artificial intelligence and software testing.
In [40], authors used a deep neural network to build a software
defect prediction model and compared their proposed model
with other machine learning algorithms like random forests,
decision trees, and naive Bayesian networks. The authors
claimed that their results showed small improvement over the
other learning models in most cases. In [2], the authors
proposed a methodology predict and localize faults in a software
system. The authors used the random forest machine learning
technique to train their model. The articles [38] and [44] talked
about the use of machine learning in software quality assurance
and prediction. In the article [16], authors studied 48 different
papers focusing on making a survey of research efforts based on
using ML algorithms to support software testing. The authors
believed their mapping study would provide significant insights
into machine learning applied to software testing. In [7], the
authors discussed the current existing testing practices for ML
programs. And the authors also explained the main sources of
faults in an ML program. In [10], the authors focused on the
relevant features of a large dataset in order to improve the
accuracy of software quality estimation. The authors concluded
that machine learning algorithms could help to estimate the
quality level of software. In [51], the authors presented a
comprehensive survey of machine learning testing research.

The authors summarized the current research status of different
ML testing properties, testing components, and testing
workflow. In [42], the authors presented their work that can
reduce the need for manual reviews by automatically identifying
which code fragments should be reviewed manually. The
authors concluded that their work could improve the speed of
code reviews. In [29], the authors investigated the application
for STEP of five machine learning (ML) models reported as the
most accurate ones when applied to SDLC effort prediction.

4 Analysis Based on Various ML Techniques

This section analyzed various ML techniques used in software

testing, which we study in this survey. Table 2 summarizes our
findings.

Table 2: ML techniques used for software testing in this survey
Techniques References Number of

Articles
Neural Network [1], [3], [8], [11], [19], [25],

[34], [40], [41], [42], [44], [45],
[51]

13

Support Vector
Machine

[8], [17], [19] [20], [21], [32],
[41], [43]

8

Clustering [1], [13], [39] 3
Decision Tree [8], [10], [11], [28], [38], [40] 6
Grammar
Induction

[20], [21] 2

Bayesian Based
Method

[14], [24], [35], [38], [40] 5

Random Forest [2], [10], [38], [40] 4
Generic ML
Techniques

[5], [7], [9], [12], [15], [16],
[18], [22], [23], [26], [27], [29],
[30], [31], [32], [33], [36], [46],
[47], [48], [49], [50]

22

4.1 Neural Network

Neural network is widely used in software testing. We found

thirteen articles talking about this technique. Among the
articles, neural network is used for fault-proneness prediction in
[19] and is used for automatic test oracles generation in [25] and
[1]. In [41], neural network is used to estimate the execution
effort of software testing. In [34], neural network is used for
metamorphic testing. In [40], neural network is used for
software defect prediction. In [42], neural network is used for
identifying code fragments for manual review.

4.2 Support Vector Machines

Support vector machines is widely used in software testing.

We found eight articles talking about this technique. Among
the articles, support vector machines is used for generating
reliable test oracle in [32]. In [19] and [17], a support vector

154 IJCA, Vol. 29, No. 3, Sept. 2022

machine is used for fault-proneness prediction. In [41], the
support vector machine is used to estimate the execution effort
of software testing. In [20] and [21], the support vector machine
is used for GUI testing. In [43], support vector machines is used
for mutation testing.

4.3 Clustering, Decision Tree, and Grammar Induction

We found three articles talking about the clustering technique.

In [13], clustering is used for improving regression test
selection. Clustering is used for automatic test oracles gener-
ation in [1] and is used for classifying test outcomes in [39].

We found six articles talking about the decision tree.
Decision tree is used for defect prediction in [8] and [11]. In
[40], decision tree is used for software defect prediction. In [10]
and [38], decision tree is used for software quality prediction.

We found two articles talking about grammar induction. In
both [20] and [21], grammar induction is used for GUI testing.

4.4 Bayesian Based Method and Random Forest

We found five articles talking about Bayesian based method.

In [14], Bayesian based method is used for combining testing
techniques. In [40], Bayesian based method is used for software
defect prediction. In [43], Bayesian based method is used for
software quality prediction.

We found four articles talking about random forest. In [40],
random forest is used for software defect prediction. In [2],
random forest is used for software fault localization. In [10] and
[38], random forest is used for software quality prediction.

5 Software Testing Activities Found in this Study

In our study we found different types of software testing

activities that uses different types of machine learning
techniques. We are discussing few of them in the following
subsections.

5.1 Creating Test Data

In [49], the authors proposed a framework for value-based

software test data generation. Value-based software engineering
considers value into the software engineering principles and
practices as opposed to value-neutral software engineering
where each product in software development, such as
requirement, use case, test case, and defect, is treated as equally
important. The authors talked about applying machine learning
methods to value-based software engineering in this paper.

5.2 Test Case Generation

In [31], the authors proposed a self-adaptive learning-based

test framework that learns the optimal policy of generating
stress test cases for different types of software systems. In test
case generation, one of the important tasks is to reduce manual
review of the code segments. In [42], the authors presented how
machine learning can be used to reduce the need for manual

reviews by automatically identifying which code fragments
should be reviewed manually.

5.3 User Interface Testing

The success of a software product largely depends on an error
free user interface. That is why user interface testing places a
vital role in software quality. In [20] and [21], the authors talked
about GUI software testing. They proposed avoiding infeasible
test cases altogether by predicting which test cases are infeasible
using two supervised machine learning methods: support vector

machines (SVMs) and grammar induction.

5.4 Regression Testing

A regression testing is done whenever a change has been

made to a software product to ensure that the change made did
not introduce any new error. For a large product, running an
effective regression test is challenging because of the amount of
test cases needed to run. In [13], the authors introduced a semi-
supervised clustering method named semi-supervised K-means
(SSKM) for improving regression test selection. The authors
claimed that the semi-supervised clustering method SSKM
could improve test selection in most cases.

6 Conclusion

Software testing has been a great area of research as it is a

vital issue for producing quality software [4]. Researchers are
interested in performing successful testing with minimal effort
possible by doing test automation. Machine learning can play
an important role in this regard. It is evident from our study that
the intersection of these fields has drawn attention from many
researchers for a long time. From our study, we have seen many
early techniques of machine learning, such as neural network,
decision tree, etc., and modern techniques like deep learning are
equally applicable in software testing.

Our citations in the paper are arranged in chronological order.
A smaller reference number indicates an earlier publication, and
a larger number indicates a recent publication. The summary of
our study shown in Table 2 shows the popular techniques of ML
as applied in software testing. For instance, neural network has
been a popular technique all through our selected period. Also,
we see that SVM and grammar induction are the techniques
found in the middle period, whereas the recent trends are
focused on the techniques like decision tree, Bayesian-based
method, and random forest. Of course, a substantial number of
papers applied machine learning in general without being
specific to any particular techniques.

The papers in our study discussed many different approaches
to applying ML in software testing and introduced the
challenges in them. Researchers have proposed some potential
ways to solve those challenges and suggested a number of future
directions. The common theme we found in those works is that
machine learning techniques can be employed during the
software testing process. Using machine learning techniques

IJCA, Vol. 29, No. 3, Sept. 2022 155

can assist testers in predicting software defects, localizing
software faults, finding some specific bugs, and improve
effectiveness and efficiency. We hope the researchers and
practitioners in this field will be benefited from our study.

We have also studied the techniques of the machine learning
that can be used for different types of software testing activities
such as creating test data, test case generation, testing user
interfaces, and regression testing.

In the future, we will explore how machine learning is used
for improving the testing of different categories of the software
such as object-oriented software, distributed software, etc.

References

[1] D. Agarwal, D. E. Tamir, M. Last, and A. Kandel, “A

Comparative Study of Artificial Neural Networks and
Info-Fuzzy Networks as Automated Oracles in Software
Testing,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, 42(5):1183-
1193, 2012.

[2] H. Ali and T. A. Khan, “On Fault Localization Using
Machine Learning Techniques,” 2019 International Con-
ference on Frontiers of Information Technology (FIT), pp.
357-3575, doi: 10.1109/FIT47737.2019.00073, 2019.

[3] C. Anderson, A. Von Mayrhauser, and R. Mraz, “On the
Use of Neural Networks to Guide Software Testing
Activities,” Proceedings of 1995 IEEE International Test
Conference (ITC), IEEE, pp. 720-729, October 1995.

[4] A. Bandi and P. Heeler, “Usability Testing: A Software
Engineering Perspective,” 2013 International Conference
on Human Computer Interactions (ICHCI), pp. 1-8, doi:
10.1109/ICHCI-IEEE.2013.6887809, 2013.

[5] N. Baskiotis, M. Sebag, M. C. Gaudel, and S. D. Gouraud,
A Machine Learning Approach for Statistical Software
Testing,” Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI), pp. 2274-
2279, January 2007.

[6] J. F. Bowring, J. M. Rehg, and M. J. Harrold, “Active
Learning for Automatic Classification of Software
Behavior,” ACM SIGSOFT Software Engineering Notes,
29(4):195-205, 2004.

[7] H. B. Braiek. and F. Khomh, “On Testing Machine
Learning Programs,” Journal of Systems and Software,
164:110542, 2020.

[8] L. C. Briand, “Novel Applications of Machine Learning in
Software Testing,” 2008 The Eighth International
Conference on Quality Software, IEEE, pp. 3-10, August
2008,

[9] L. C. Briand, Y. Labiche, Z. Bawar, and N. T. Spido,
“Using Machine Learning to Refine Category-Partition
Test Specifications and Test Suites,” Information and
Software Technology, 51(11):1551-1564, 2009.

[10] A. A. Ceran and Ö. Ö. Tanriover, “An Experimental Study
for Software Quality Prediction with Machine Learning
Methods,” 2020 International Congress on Human-
Computer Interaction, Optimization and Robotic
Applications (HORA), IEEE, 2020.

[11] E. Ceylan, F. O. Kutlubay and A. B. Bener, “Software
Defect Identification Using Machine Learning
Techniques,” 32nd EUROMICRO Conference on
Software Engineering and Advanced Applications
(EUROMICRO'06), pp. 240-247, 2006, doi:
10.1109/EUROMICRO.2006.56.

[12] T. J. Cheatham, J. P. Yoo, and N. J. Wahl, “Software
Testing: A Machine Learning Experiment,” Proceedings
of the 1995 ACM 23rd Annual Conference on Computer
Science, pp. 135-141, February 1995.

[13] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using
Semi-Supervised Clustering to Improve Regression Test
Selection Techniques,” 2011 Fourth IEEE International
Conference on Software Testing, Verification and
Validation, IEEE, pp. 1-10, March 2011.

[14] D. Cotroneo, R. Pietrantuono, and S. Russo, “A Learning-
Based Method for Combining Testing Techniques,” 2013
35th International Conference on Software Engineering
(ICSE) , IEEE, pp. 142-151, May 2013.

[15] J. Ding, X.-H. Hu, and V. Gudivada. “A Machine
Learning Based Framework for Verification and
Validation of Massive Scale Image Data,” IEEE
Transactions on Big Data, 2017.

[16] V. H. S. Durelli, R. Durelli, S. Borges, A. Endo, M. Elder,
D. Dias, and M. Guimaraes, “Machine Learning Applied
To Software Testing: A Systematic Mapping Study,”
IEEE Transactions on Reliability, 68.3:1189-1212, 2019.

[17] K. O. Elish and M. O. Elish, “Predicting Defect-Prone
Software Modules Using Support Vector Machines,”
Journal of Systems and Software, 81(5):649-660, 2008.

[18] S. M. Ghaffarian, and H. R. Shahriari. “Software
Vulnerability Analysis and Discovery Using Machine-
Learning and Data-Mining Techniques: A Survey.” ACM
Computing Surveys (CSUR) 50.4:1-36, 2017.

[19] I. Gondra, “Applying Machine Learning to Software
Fault-Proneness Prediction,” Journal of Systems and
Software, 81(2):186-195, 2008.

[20] R. Gove and J. Faytong, “Identifying Infeasible GUI Test
Cases Using Support Vector Machines and Induced
Grammars,” 2011 IEEE Fourth International Conference
on Software Testing, Verification and Validation
Workshops, IEEE, pp. 202-211, March 2011.

[21] R. Gove and J. Faytong, “Machine Learning and Event-
Based Software Testing: Classifiers for Identifying
Infeasible GUI Event Sequences,” Advances in
Computers, Elsevier, 86:109-135, 2012.

[22] M. Harman, “The Role of Artificial Intelligence in
Software Engineering,” 2012 First International
Workshop on Realizing AI Synergies in Software
Engineering (RAISE), IEEE pp. 1-6, June 2012.

[23] H. Hourani, A. Hammad, and M. Lafi, “The Impact of
Artificial Intelligence on Software Testing,” 2019 IEEE
Jordan International Joint Conference on Electrical
Engineering and Information Technology (JEEIT), pp.
565-570, doi: 10.1109/JEEIT.2019.8717439, 2019.

[24] S. Huang, E. H. Liu, Z. W. Hui, S. Q. Tang, and S. J.
Zhang, “Challenges of Testing Machine Learning

156 IJCA, Vol. 29, No. 3, Sept. 2022

Applications,” International Journal of Performability
Engineering, 14(6):1275, 2018.

[25] H. Jin, Y. Wang, N. W. Chen, Z. J. Gou, and S. Wang,
“Artificial Neural Network for Automatic Test Oracles
Generation,” 2008 International Conference on Computer
Science and Software Engineering, IEEE, 2:727-730,
December 2008.

[26] U. Kanewala, J. M. Bieman, and A. Ben ‐ Hur,
“Predicting Metamorphic Relations For Testing Scientific
Software: A Machine Learning Approach Using Graph
Kernels,” Software Testing, Verification and Reliability,
26(3):245-269, 2016.

[27] L. Kumar and A. Sureka, “Aging Related Bug Prediction
using Extreme Learning Machines,” 2017 14th IEEE India
Council International Conference (INDICON), pp. 1-6,
2017, doi: 10.1109/INDICON.2017.8487925, 2017.

[28] A. R. Lenz, A Pozo, and S. R. Vergilio, “Linking Software
Testing Results with a Machine Learning Approach,”
Engineering Applications of Artificial Intelligence, 26(5-
6):1631-1640, 2013.

[29] C. López-Martín, “Machine Learning Techniques for
Software Testing Effort Prediction,” Software Quality
Journal, 30(1):65-100, 2022, https://doi.org/10.1007/
s11219-020-09545-8, 2022.

[30] S. Masuda, K. Ono, T. Yasue, and N. Hosokawa,. A
survey of software quality for machine learning
applications. In 2018 IEEE International conference on
software testing, verification and validation workshops
(ICSTW), IEEE, pp. 279-284, April 2018.

[31] M. H. Moghadam, M. Saadatmand, M. Borg, M. Bohlin,
and B. Lisper, “Machine Learning to Guide Performance
Testing: An Autonomous Test Framework,” 2019 IEEE
International Conference on Software Testing,
Verification and Validation Workshops (ICSTW), IEEE,
pp. 164-167, April 201.

[32] C. Murphy, G. E. Kaiser, and M. Arias, “An Approach to
Software Testing of Machine Learning Applications,”
Proceedings of the 19th International Conference on
Software Engineering & Knowledge Engineering,
Technical Program, Hyatt Harborside Hotel, Boston,
Massachusetts, USA, July 9-11, January 2007.

[33] S. Nakajima, “Quality Assurance of Machine Learning
Software,” 2018 IEEE 7th Global Conference on
Consumer Electronics (GCCE), IEEE, pp. 601-604,
October 2018.

[34] S. Nakajima, “Dataset Diversity for Metamorphic Testing
of Machine Learning Software,” International Workshop
on Structured Object-Oriented Formal Language and
Method, Springer, Cham, pp. 21-38, November 2018.

[35] A. S. Namin and M. Sridharan, “Bayesian Reasoning for
Software Testing,” Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research,
pp. 349-354, November 2010.

[36] M. Noorian, E. Bagheri, and W. Du, “Machine Learning-
based Software Testing: Towards a Classification
Framework,” In SEKE, pp. 225-229, July, 2011.

[37] E. Rashid, P. Srikanta, and V. Bhattacherjee. “A Survey in

the Area of Machine Learning and Its Application for
Software Quality Prediction,” ACM SIGSOFT Software
Engineering Notes, 37.5:1-7, 2012.

[38] S. Reddivari and J. Raman. “Software Quality Prediction:
 an Investigation Based on Machine Learning,” 2019 IEEE
20th International Conference on Information Reuse and
Integration for Data Science (IRI), IEEE, 2019.

[39] M. Roper, Using Machine Learning to Classify Test
Outcomes,” 2019 IEEE International Conference on
Artificial Intelligence Testing (AITest), IEEE, pp. 99-100,
April 2019.

[40] M. Samir, M. El-Ramly and A. Kamel, “Investigating the
Use of Deep Neural Networks for Software Defect
Prediction,” 2019 IEEE/ACS 16th International
Conference on Computer Systems and Applications
(AICCSA), pp. 1-6, doi: 10.1109/AICCSA47632.2019.
9035240, 2019.

[41] D. G. e Silva, M. Jino, and B. T. de Abreu, “Machine
Learning Methods and Asymmetric Cost Function to
Estimate Execution Effort of Software Testing,” 2010
Third International Conference on Software Testing, Veri-
fication and Validation, IEEE, pp. 275-284, April 2010.

[42] M. Staron and O. Soder, “Using Machine Learning to
Identify Code Fragments for Manual Review,” 2020 46th
Euromicro Conference on Software Engineering and
Advanced Applications (SEAA), IEEE, 2020.

[43] J. Strug and B. Strug, “Machine Learning Approach in
Mutation Testing,” IFIP International Conference on
Testing Software and Systems, Springer, Berlin,
Heidelberg, pp. 200-214, November 2012.

[44] L. Surya, “Machine Learning-Future of Quality
Assurance,” International Journal of Emerging
Technologies and Innovative Research (www. jetir. org),
ISSN:2349-5162, 2019.

[45] M. Vanmali, M. Last, and A. Kandel, “Using a Neural
Network in the Software Testing Process,” International
Journal of Intelligent Systems, 17(1):45-62, 2002.

[46] S. R. Vergilio, J. C. Maldonado, and M. Jino,” Infeasible
Paths in the Context of Data Flow Based Testing Criteria:
Identification, Classification, and Prediction,” Journal of
the Brazilian Computer Society, 12(1):73-88, 2006.

[47] T. Xie, “The Synergy of Human and Artificial Intelligence
in Software Engineering,” 2013 2nd International Work-
shop on Realizing Artificial Intelligence Synergies in
Software Engineering (RAISE), IEEE, pp. 4-6, May 2013.

[48] X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu, and T. Y.
Chen, “Testing and Validating Machine Learning
Classifiers by Metamorphic Testing,” Journal of Systems
and Software, 84(4):544-558, 2011.

[49] D. Zhang, “Machine Learning in Value-Based Software
Test Data Generation,” 2006 18th IEEE International
Conference on Tools with Artificial Intelligence
(ICTAI'06), IEEE, pp. 732-736, November 2006..

[50] D. Zhang and J. J.Tsai, “Machine Learning and Software
Engineering,” Software Quality Journal, 11(2):87-119,
2003.

[51] J. M. Zhang, M Harman, L. Ma, and Y. Liu, , “Machine

https://doi.org/10.1007/%20s11219-020-09545-8
https://doi.org/10.1007/%20s11219-020-09545-8

IJCA, Vol. 29, No. 3, Sept. 2022 157

Learning Testing: Survey, Landscapes and Horizons,”
IEEE Transactions on Software Engineering, 2020.

Mohammad Hossain is an Assistant
Professor of Software Engineering and IT
Management at the University of Minnesota
Crookston where he teaches various software
engineering courses. He earned his Ph.D.
from North Dakota State University in 2016.

His Ph.D. dissertation title was “Foundational Algorithms
Underlying Horizontal Processing of Vertically Structured Big
Data Using pTrees”. His research interest includes Data
Mining, Machine Learning, Software Engineering,
Cybersecurity, Algorithm etc. He is a member of ISCA and
served as the Program Chair of CATA 2021 and CATA 2022.

Hongkai Chen received his BS in Software
Engineering from University of Minnesota
Crookston in 2021. He was a honor student
at UMC and received UROP scholarship
from University of Minnesota. He is
currently pursuing his MS in Computer
Science at University of California, San

Diego. His research interest includes Software Engineering,
Machine Learning, Cybersecurity, etc.

	International Society for Computers
	Guest Editorial . 127
	Improving Road Safety by Blockchain-based Monetization of Driver Behavior 129
	Sruthi Rachamalla and Henry Hexmoor
	Jeff McCann, Liam Quinn, Sean McGrath, and Colin Flanagan

	Application of Machine Learning on Software Quality Assurance and Testing: A Chronological Survey . 150
	Mohammed Hossain and Hongkai Chen
	Narayan C. Debnath, Shreya Banerjee, Giau Ung Van, Phat Tat Quant, and Dai Nguyen Thanh

	Univariatae and Bivariate Entropy Analysis for Modbus Traffic over TCP/IP in Industrial Control Systems . 173
	Tirthankar Ghosh, Sikha Bagui, Subhash Bagui, Martin Kadzis, Logan Day, and Jackson Bare
	The Implementation of Content Planner Application with MobileNetV2 Classification for Hashtag Automation . 181
	Bevan Christian and Trianggoro Wiradinata

	Covid-19 Detection Based on Cascade-Correlation Growing Deep Learning Neural Network Algorithm . 190
	Soha Abd El-Moamen Mohamed, Marghany Hassan Mohamed, and Mohammed F. Farghally
	A Comparative Study of Classification Algorithms of Moodle Course Logfile using Weka Tool . 202
	Iman Al-Kindi and Zuhoor Al-Khanjari
	2 McCain IJCA Sept 2022.pdf
	Abstract
	1 Introduction
	2 Evidential Recording Platforms
	2.2 Network
	2.3 Datacenter
	2.4 Users

	3 Video Analysis Platforms
	3.1 Cloud Video Analytics
	3.2 Edge Video Analytics
	3.3 On Camera
	3.4 Mobile Edge Compute

	4 Moving Cloud to the Edge
	4.1 Local Datacenters
	4.2 Cellular Service Provider Datacenters
	4.3 On Premise
	4.4 Sporadically Connected / Disconnected Systems

	5 Conclusions
	References

	3 Hossain IJCA Sept 2022.pdf
	Abstract
	1 Introduction
	2 Methodology
	3 Summaries of Our Findings
	3.1 1995-1999
	3.2 2000-2004
	3.3 2005-2009
	3.4 2010-2014
	3.5 2015-2018
	3.6 2019-2021

	4 Analysis Based on Various ML Techniques
	4.1 Neural Network
	4.2 Support Vector Machines
	4.3 Clustering, Decision Tree, and Grammar Induction
	4.4 Bayesian Based Method and Random Forest

	5 Software Testing Activities Found in this Study
	5.1 Creating Test Data
	5.2 Test Case Generation
	5.3 User Interface Testing
	5.4 Regression Testing

	6 Conclusion
	References

	5 Gosh Sept 2022 IJCA.pdf
	1 Introduction
	2 Related Literature
	3 Entropy Analysis for Modbus Over TCP/IP
	3.1 Univariate Entropy Analysis
	Table 1: Correlation matrix between features
	3.2 Relative Entropy and Kullback-Leibler Divergence
	Table 2: Entropy values for three selected features against three attack types
	3.3 Bivariate Joint Entropy Analysis
	Table 4: Entropy averages and standard deviation for each pair of selected features for non-malicious traffic
	Table 5: Entropy averages and standard deviation for each pair of selected features for malicious traffic
	Table 6: Entropy averages and standard deviation for each pair of selected features for non-malicious+MITM traffic
	Table 7: Entropy averages and standard deviation for each pair of selected features for non-malicious+DOS traffic
	Table 8: Entropy averages and standard deviation for each pair of selected features for non-malicious+recon traffic

	6 Wiradinata IJCA Sept 2022 .pdf
	2.1 Terminology
	3 Design & Analysis
	3.1 Analysis of the Problem
	3.2 Analysis of Needs
	3.3 Application Architecture
	3.4 Usecase Diagram
	3.5 Application and Design Flow

	4 Implementation
	4.1 Automatic Hashtag Generation
	4.2 UI Display

	5 Results and Discussion
	5.1 User Persona & Test Case
	5.2 Test Results

	6 Conclusion
	6.1 Conclusion
	6.2 Future Studies

	8 Al-Kindi Khanjari IJCA Sept 2022.pdf
	1 Introduction
	2 Background
	2.1 Moodle Logfile
	2.2 Student Engagement
	2.3 Student Behavior
	2.4 Student Personality
	2.5 Student Performance
	2.6 Classification Algorithms
	2.7 Weka

	3 Literature Review
	4 Method
	4.1 Materials and Dataset
	4.2 Data Preprocessing

	5 Results
	6 Comparison
	7 Discussion
	8 Conclusions
	Acknowledgement
	References

	Journal Submission Instructions2022.pdf
	Journal Submission

