
158 IJCA, Vol. 29, No. 3, Sept. 2022

ISCA Copyright© 2022

Semantic Reasoning to Support End User
Development in Intelligent Environment

Narayan C. Debnath*, Shreya Banerjee*, Giau Ung Van*, Phat Tat Quang*, and Dai Nguyen Thanh*
Eastern International University, Binh Duong, VIETNAM-

Abstract

Intelligent Environment (IE) creates complex applications

on top of an existing network of sensors and actuators.
Proliferation of Internet of Thing (IoT) objects in Intelligent
Environments exhibits the rapid growth of End User
Development (EUD). Trigger Action programming is a
popular approach for EUD in IE. However, the inability of
end users to interpret and compose suitable Trigger Action
rules often makes inconsistencies in behavior of IoT objects.
To address this issue, a semantic based reasoning framework
is proposed in this paper to support end users. The proposed
framework is based on an upper-level ontology specification
named as Trigger Action Ontology (TAO). This framework
includes a rule-based reasoner implemented in Apache Jena.
The framework will assist end users of IE applications on
various domains to represent triggers, actions and their
respective combinations. In addition, the proposed reasoner
can aid end users in recognizing programming bugs and
reason about how to fix them. Further, two case studies in two
different domains home automation and smart factory have
been specified to prove the efficiency of the proposed
framework. Moreover, a detailed comparison study has been
provided to demonstrate the usefulness of the proposed work
over the existing approaches.

Key Words: Intelligent environment, semantic reasoning,
end user development, inference rules, reasoner, trigger action
programming, ontology, programming bugs.

1 Introduction

End-User Development (EUD) empowers non-professional

developers to build or modify their own applications to
address their various and frequently changing requirements.
One of the approaches considered in this area is the use of
rule-based systems [16]. Trigger Action Programming (TAP)
is such kind of rule-based system in EUD. TAP is a
programming model enabling users to connect services and
devices by writing if-then rules in the form: if condition then
action [2, 20]. These kinds of rules are simple to implement.
However, nuances in their interpretation can lead to user
errors with consequences such as incorrect and undesirable
functionalities [20].

The term Intelligent Environments (IE) refers to a diverse
range of scenarios and applications that include smart homes,
smart factories, smart farming, autonomous vehicles, and so
on. Several commercial approaches facilitate end user to

* Department of Software Engineering. Email:
narayan.debnath@eiu.edu.vn, shreya.banerjee@eiu.edu.vn,
giau.ung@eiu.edu.vn, phat.tat@eiu.edu.vn, dai.nguyen@eiu.edu.vn.

specify the creation of trigger action rules in IE such as Smart
Home. Some popular names are IFTTT [13], Microsoft Flow
[14], Zapier [22], Mozilla’s Things Gateway [12], Stringify
[19], etc. Intelligent environments are full of diverse and
complicated device automation scenarios that constantly arise
with multiple devices. Unfortunately, in these kinds of
environments, end users may write rules with bugs or struggle
to understand why particular automations are running [24]. In
general, TAP connects a single trigger towards a single action.
However, these rules can become complicated based on
underlying behaviors, which require precise and rigorous
expressiveness [2]. To cope with these complexities, several
commercial platforms such as Stringify [19] and SmartRules
[21] support conjunctions in a single trigger. Nevertheless,
behaviors can become more complicated and will demand
creation of more complex rules.

In this context, existing TAP based approaches face several
challenges. Crucial challenges among these are as follows.
Firstly, these approaches have nil or very little support
towards empowering end users in order to realize different
types of triggers, actions and their in between various
connections. Existing literature [2, 8, 11] represents that
triggers can be of different kinds such as event and state.
Likewise, actions can be also of different kinds such as
immediate action, extended action and sustained actions.
Event kind of triggers happen in a specific moment. “When I
enter the room” is an example of an event type trigger. State
kind of triggers persist for a long period. “As long as it’s
raining” is an example of a state type trigger. On the other
hand, immediate actions can happen at a moment. “Sending
an e-mail” is an example of an immediate action. Extended
actions can persist for some time and then end. “Brewing the
coffee” is an example of extended action. Sustained actions
can persist until other behavior is defined on the same object
[21]. “Turn on the light” is an example of sustained action.
Identification of these different kinds of triggers and actions
are essential to form a correct and consistent TAP rule.
Besides these, to achieve complex behaviors in intelligent
environment, various triggers can be connected with each
other. Similarly, different actions also can be connected with
each other. These intra trigger or intra action connections can
be different kinds such as “and” connection, “or” connection.
However, non-expert end users have no or very little
interpreting capability of these kinds of semantics. Hence, a
semantically empowered framework is needed that can assist
end users to realize the correct semantics of TAP.

Secondly, existing approaches lack facilities that may help
end users to discover their mistakes and wrong interpretation
when they are composing the rules. A formal semantic based
tool can help end users to identify bugs in their rules and help
them to rectify their mistakes [4]. However, most of the

mailto:narayan.debnath@eiu.edu.vn
mailto:shreya.banerjee@eiu.edu.vn

IJCA, Vol. 29, No. 3, Sept. 2022 159

commercial approaches lack these features. Existing studies
[2, 11, 21] have shown that several bugs can be present in TAP
rules due to incorrect interpretation of users. Several crucial
examples of those bugs are infinite loop, contradict action,
and timing window fallacy. Infinite loop bugs occur when
rules trigger one another, resulting in loops [2]. Contradict
action bugs can happen if two rules include the same trigger
and create two contradictory actions on the same device.
Timing window fallacy bugs arise when the time window is
mismatched if multiple triggers or multiple actions are
combined. For example, two event kinds of triggers will
generate an immediate action. One event and one state kind
trigger will generate sustained or extended actions. In this
case, event trigger should happen within the time window of
the state kind trigger. In addition, if one event produces a
sustained or extended action, then it is also included in the
timing window fallacy bug since, an event can only create an
immediate action [2]. Similarly, a state kind of trigger can
only create sustained or extended action. Besides presence of
these crucial bugs, synthesis of TAP rules also includes
several issues such as redundant rules and unused rules. End
users create rules, which have the same triggers but different
actions happening at the same time. Similarly, end users can
also create rules, which have the same actions but different
triggers than those occurring at the same time. These kinds of
redundant rules are created by the end users very frequently.
Besides these, several TAP rules are created which are never
getting a chance to be executed. These kinds of rules are
unused rules [11]. Further, end users often forget to deactivate
the sustained action. This kind of bug is known as lack of
action reversal [20]. Sometimes end users have not specified
how long the extended action can be executed. This kind of
inconsistent behavior of TAP rules is known as extended
action related bugs [2]. All of these above-mentioned issues
are very crucial for creation of consistent and correct TAP
rules [21]. Hence, a tool is required that can detect these bugs
and other issues efficiently. Moreover, the specified issues
are related with precise semantics of different building blocks
of TAP rules. Therefore, a semantic based reasoning tool will
be in great demand that may assist an end user to discover
bugs and reasons to repair them.

This paper is aimed to address these aforementioned
challenges. The proposed work deals with the following
research questions related with these specified challenges.
Q1. How a semantically empowered framework can assist end
users in order to create TAP rules? Q2. How a semantic based
reasoning tool can be developed that can empower end users
to identify crucial bugs and rectify those? With the objective
to answer these research questions, this paper has proposed a
semantic based reasoning framework. The proposed
framework is based on an ontology-based specification named
as Trigger Action Ontology (TAO) described in [6]. This
framework can assist end users to create TAP rules according
to precise semantics. These precise semantics are provided by
the upper ontology TAO [6]. Ontology is defined as an
explicit specification of shared conceptualization. It specifies
an abstract view of the world in terms of concepts and their in
between relationships [9]. The literature recognizes the value
of semantic enrichments, through ontologies, for facilitating
the event driven programming of IoT devices also in other
domains [5]. In addition, the proposed framework includes a

rule-based reasoner that can assist end users to identify
important bugs and reason about how to fix them.

The contribution of the proposed work are manifolds.
Firstly, it assists end users to synthesize TAP rules based on
precise semantics, since the framework is based on an upper-
level based ontology specification. To represent precise
semantics related to a single TAP rule, end users are asked a
set of questions related with the 5W1H (Why, Who, When,
What, Where and How) contextual information. Based on the
answers provided by end users and with the help of the formal
semantics of underlying ontology-based specification TAO,
the proposed framework assists the end users to create
efficient TAP rules. Secondly, the proposed framework
provides a rule based generic reasoner that can help end users
to identify crucial bugs. The proposed reasoner is based on a
set of inference rules. These inference rules are proposed
based on the formal semantics provided by axioms in TAO.
Using this proposed reasoner, end users can identify indefinite
loop, contradict actions, time-window fallacy, lack of action
reversal, extended action related bugs, redundant rules and
unused rules in the synthesized TAP rules. Thirdly, the
reasoner also helps end users to reason how to fix them. The
proposed semantic based reasoning framework is
implemented using Java based Ontology API Apache Jena
[1]. Fourthly, the proposed framework can be applied in
various IE domains such as smart healthcare, smart factory,
smart home etc. The framework is based on an upper-level
ontology specification TAO which is domain independent. In
addition, effective case studies in two different domains,
smart home and smart factory are used to prove the
effectiveness of the proposed framework. A detailed
comparison study is provided between the proposed approach
and the existing approaches to illustrate the improved
performance of the proposed work.

The rest of the paper is organized in the following way.
Related work is represented in Section 2. A brief description
of TAO [6] is represented in Section 3. Proposed
methodology is specified in Section 4. Further, the
effectiveness of the framework is evaluated using suitable
case studies in Section 5. A detailed comparison study is
provided in Section 6. Finally, in Section 7, the paper is
concluded with indication of crucial future works.

2 Related Work

Several state-of-the art approaches exist in the literatures
that have created framework and bug identification and fixing
tools to assist end users in IE. Very few approaches have
applied ontology. The majority of those approaches have used
other methodologies rather than ontology. Brief descriptions
of these approaches are specified next.

In [4], authors have created both user interface and a tool
that can identify bugs in TAP rules. Authors have developed
a debugging tool that generates the possible problems by the
rules synthesized by end users. The described debugging tool
also displays systematic simulation. Authors have applied a
hybrid approach named as Semantic Colored Petri Net Model
(SCPN) in devising the tool. This hybrid approach is based
on colored petri net models and an ontology specification.
However, in this approach the authors mainly focus on three
kinds of bugs indefinite loop, inconsistent rule and

160 IJCA, Vol. 29, No. 3, Sept. 2022

redundancy. Authors have not focused on bugs such as lack
of action reversal or extended action related bugs. The
approach is applicable in a smart home domain. In [23],
authors let end users represent desired properties for devices
and services. Authors have transformed these properties into
linear temporal logic (LTL) and then create property
satisfying TAP rules from scratch and repairs existing TAP
rules. However, proposed approach in [23] cannot consider
the fact, that an end user can make mistakes in specifying the
properties. The approach does not consider the identification
of different kinds of triggers, actions, intra-trigger, intra-
action combinations and related bugs. In [24], the authors
automatically synthesize TAP rules from traces. Traces are
time-stamped logs of sensor readings and manual actuations
of devices. This approach applies to both symbolic reasoning
and SAT to synthesize consistent TAP rules, although their
application area is mainly smart homes. They have also not
considered about bugs and wrong interpretation due to
different kinds of triggers and actions. In [21], authors have
verified Event-Condition-Action (ECA) in IE rules using
symbolic verification. They have mainly focused on three
criteria: unused rules, redundant rules and incorrect rules.
However, they have also not considered different kinds of
action related bugs such as extended action related bugs and
sustained action related bugs. In [15], authors have described
the use of visual analytics to support analysis of the
interactions carried out by users with trigger action rule-based
personalization tools. Authors have also presented the
application of the described method to data generated by the
use of the PersRobIoTE tool. However, the approach does not
include any tools that can identify bugs. In [18], the authors
have presented a technique that mainly identifies errors due to
missing triggers and the consequent unexpected behavior and
security vulnerabilities specifically in a smart home. The
authors have focused on event kinds of triggers. They also
have developed a tool based on the described methodology
and they considered that actions are defined by end users
correctly. Further, they did not mention other kinds of bugs
such as indefinite loop and contradict actions. In [3, 17],
authors have developed visual tools analyzing the users’
behavior when interacting with a trigger action rule editor for
personalizing their IoT context dependent applications. In
[17], authors also recommended how to combine multiple
triggers or actions. However, in both approaches, authors
have not developed any tool to find out bugs. In [25], authors
have introduced interfaces that help users compare and
contrast TAP program variants. The described interfaces help
users reason about syntax differences, differences in actions
under identical scenarios and property differences. However,
they have not considered differences among triggers. In [7],
authors have developed a composition paradigm of events and
actions in the domain of IoT. They also have considered about
5W1H. However, they did not consider about a bug
identifying tool. In [16], authors have developed a tool that
mainly focuses on semantic correctness of TAP rules. They
have provided end users the information related to “why/why
not”. Yet, they have not considered various bugs such as lack
of action reversal or indefinite loops.

The majority of the existing approaches have not
considered bugs that arose due to a wrong interpretation of
different kinds of action’s semantics. Further, very few

considered a generic tool that can be applied over various
kinds of domain. The proposed framework and the reasoning
tool in this paper have identified different kinds of bugs
related with both triggers and actions. The proposed
framework can also be applied in various domains, since it is
supported by an upper-level ontology specification TAO. A
detailed comparison study between the proposed work and
selected existing approaches have been provided in section 6.

3 Brief Description of Trigger Action Ontology (TAO) [6]

Trigger Action Ontology (TAO) described in [6] is an
upper-level ontology to represent meta-rules for TAP. TAO
consists of three layers - Rules, Context and IoT Resources.
The bottom most layer of proposed TAO is IoT Resources. It
provides ontology-based descriptions for IoT devices,
services and related attributes. Context is the middle layer that
represents the contextual information (5W1H) related to
triggers and actions. This 5W term presents the basic
information related to trigger and actions as follows. “Who”
represents who is responsible for triggering or performing an
action? “Who” can be an IoT device, a service or an end user.
“When” represents, the temporal aspects that when trigger or
action can happen. “Where” provides the location
information related to the trigger and action. “What”
represents what the trigger and the action specified. “Why”
describes the reason of the trigger and performing the action.
This contextual information is classified as primary context
and auxiliary context. The top most layer is Rules that
provides the precise semantics towards different kinds of
triggers, actions, multiple triggers and multiple actions.
Formal semantics of TAO is expressed in first order
mathematical logic. Figure 1 has demonstrated the TAO
model. Table 1 has described the facades of TAO.

4 Proposed Methodology

A semantic based reasoning framework is proposed in this

section in order to support end-users in IE to synthesize trigger
action rules. In addition, using the proposed framework, end
users can identify bugs in their TAP programming rules and
reasons to fix them. Section 4.1 has represented the modules
and workflow of the proposed semantic based reasoning
framework. Further, Section 4.2 has represented the proposed
inference rules and the generic reasoner to identify the bugs
in synthesized TAP rules. Section 4.3 represents the
implementation of the proposed framework.

4.1 Proposed Semantic Based Reasoning Framework

The proposed semantic model is based on an upper-level
ontology specification TAO described in Section 3. The
proposed framework includes interfaces for both end users
and service providers. In addition, it includes a rule based
generic reasoner. Figure 2 has illustrated the outline of the
proposed framework. The framework consists of two
modules. The first module is the User Interface module.
Using this user interface module, both end users and service
providers can connect with the framework. Second is
Reasoning Module. This module consists of a Generic rule-
based reasoner, Questionnaire Module and the Web

IJCA, Vol. 29, No. 3, Sept. 2022 161

Figure 1: Trigger action ontology (TA) model specified in [6]

Table 1: Brief description of different constructs of TAO
Principle Constructs in TAO [6] Description

IoT resource

layer

IoT devices Distinct domains based on IoT consists of different kinds of devices, such as

sensors, actuators, and tag devices.

Service IoT devices can provide and consume several services

Attributes This concept represents properties of different IoT devices and services

Different Kinds of

relationships

Provide, Consume and Has Attribute. Provide and Consume relationship exist

between device and service. Has Attribute relationship exist between either

device and attribute, or between service and attribute

Context layer

Primary Context Primary context represents 5Ws information – What, Why, Where, When and

Who

Auxiliary Context Auxiliary context represents additional information related to primary context

Rule layer Trigger This concept represents causes for activation of actions. Triggers can be further

categorized as two types – event and state

Action Actions are activated due to triggers. Actions can be further classified as two

types – immediate, extended, and sustained

Multiple Triggers and

Multiple Actions

Triggers can be connected to each other using different kinds of connections such

as “And”, “Or”. Likewise, actions are connected with each other using different

kinds of connections

Triggering Relationship This relationship exists between triggers and actions.

Ontology Language (OWL) specification of TAO. At first (1),
service providers are asked to enter the details about devices,
services and attributes related with the domain. Then, end
users are asked 5W1H questions to get the answers related
with a TAP rule. End users are asked to choose trigger, action,
and triggering relationships. They are also asked about the
devices, location and time related to triggers and actions.
Next in (2), based on these answers provided by end users, a
specific TAP rule is generated. In the proposed framework, a
rule file is created from TAP, which consists of inference rules
specified in Apache Jena rule Language [1]. Following in (3),
based on the inference rules, the generic reasoner evaluates
TAP rules synthesized by end users in order to find out the

bugs and inconsistencies within the rule. If any bug or
inconsistencies are discovered, then end users will be notified
through the user interface module.

Figure 3 has specified the workflow of the framework.
According to Figure 3, the first step (1), service providers are
asked to enter the details of triggers and actions. For example,
if the service providers belong to a Smart Home domain, they
will submit details related to triggers and actions included to
that domain. Likewise, if the service providers belong to
Smart Factory domain, they will submit detailed triggers and
actions related to the smart factory domain. In the second step
(2), the Web Ontology Language (OWL) specification of
TAO is populated based on the information entered by service

IoT Devices Concept Services Concept Attributes Concept

Primary Context Concept Auxiliary Context Concept

Trigger Concept Action Concept

Provide description of IoT devices, Services

and related Attribute description

Provide Contextual aspect

Rule Layer

Context Layer

IoT Resource Layer

162 IJCA, Vol. 29, No. 3, Sept. 2022

Figure 2: Proposed semantic reasoning framework

providers. In step (3), end users are asked to enter a behavior
description. For example, in the case of smart factory domain,
end users such as a manufacturing company can enter a
behavior such as, “We want to be notified when the RPM
count of our machine is unusual”. Similarly, in the case of
smart home domain, end users can enter a behavior such as,
“When it is raining, the doors and windows need to be
closed.” In step (4), end users are asked to choose triggers
and actions related with the entered behaviour from the list of
triggers and actions entered by the service providers. They
are also asked to enter detailed information related to triggers
and actions based on a set of questions. These questions are
based on 5W1H contextual information. The entered
information from end users is used to populate the OWL
specification of TAO. In step (5), the rule is synthesized by
the framework based on the answers achieved in the previous
step. Next, the rule is evaluated by the reasoner based on the
proposed inference rules in Section 4.2 to check if the rule
contains any bugs or inconsistencies. In step (6), the bugs and
inconsistent rules are displayed toward end users along with
the reason why the rule creates a problem. This helps end
users find the solution to fix those bugs. Table 2 has specified
an example set of questions related to 5W1H context asked to
the end users. This set of questions specified in Table 2 is
related with actions. Likewise, similar sets of questions are
asked to end users to acquire the 5W1H context related
information about triggers. These sets of questions are
derived from the context layer of TAO.

4.2 Proposed Inference Rules and Reasoner

This section has represented a set of inference rules based

on whether the proposed generic reasoner will check if there

are any bugs present in the synthesized TAP rule or not. The
proposed inference rules are created based on the formal
axioms of TAO. These inference rules are based on IE and
domain independent. Hence, the proposed reasoner can check
the consistency or presence of bugs in TAP rules in various
kinds of domains such as smart home, smart factory, health
automation system etc. In this paper, the proposed inference
rules are related with identification of several crucial bugs and
consistency issues. Table 3 has represented those bugs with
brief descriptions and examples. Further, Figure 4 has
illustrated an example of an inference rule that can identify a
timing window fallacy bug. This example represents, that
there is a TAP rule r1. This rule has trigger t1 and t2. The
rule initiates an extended action a1. Trigger t1 is an event and
trigger t2 is a state. Trigger t1 happens at moment Ti1.
Trigger t2 is started at TiS time stamp and ended at TiE time
stamp. Now, if value of Ti1 is less than TiS or greater than
TiE, this means the event t1 is not occurring within the period
of the state t2. However, t1 needs to happen within the period
of t2 since, both have initiated an action a1. This rule is
defined to identify the bug as specified in Table 3 time
window fallacy bug description (iv).

4.3 Implementation of the Proposed Framework

In this section the proposed semantic based reasoning

framework is implemented using Java programming language
and Apache Jena [16]. Apache Jena is a java-based API used
for building semantic web and linked data applications. This
API supports different reasoners. Rule based generic reasoner
is one of those. Using this kind of reasoner, an ontology
specification can be reasoned based on inference rules in order
to get additional information. In this paper, the inference

Questionnaire Module

TAO model specified in
OWL

End User Interface

End User

2. Answer Set 2. Generated
Inference Rule Set

Generic rule based
Reasoner

3. Guide End User to define
suitable Trigger Action Rules

1. Provide Question

Service Provider

Service Provider
Interface

User Interface
Module

Reasoning
Module

IJCA, Vol. 29, No. 3, Sept. 2022 163

rules proposed in Section 4.2 are used to create a rule based
generic reasoner. The proposed inference rules are
implemented using Jena Rule Language [16]. The
implemented generic reasoner in Apache Jena will take OWL
specification of the populated TAO obtain after step 4 in
Figure 3. Then reasoner checks for bugs and inconsistencies
within the TAP rules using proposed inference rules. If bugs
or inconsistencies are found then the reasoner will display the

issues toward end users along with the solutions to fix them.
The proposed framework has two text-based user interfaces.
One interface is devised to interact with service providers.
Another interface is devised to interact with end users using a
5W1H questionnaire. Using Java programming language and
Apache Jena, both interfaces are implanted and information
users acquired through these are populated into OWL
specification of TAO. Figure 5 has specified the partial view

Figure 3: Workflow of proposed semantic reasoning framework

Service Providers have
entered device, service

description

OWL specification of
TAO [6] is populated using

individuals

End users are asked to enter
the behavior

End users are asked to
choose triggers and actions

End users are asked about
5W1H questions specified

in Table 2

Based on this information, OWL
specification of TAO is populated

TAP rules are synthesized and
displayed to end users

Synthesized TAP rules are evaluated
by the proposed rule based generic

reasoner

Bugs and inconsistent rules are displayed
towards the end users along with the reasons

why they are inconsistent

Proposed inference rule based
generic reasoner implemented

in Apache Jena [1]

1
1

2

3

4

5

5
6

164 IJCA, Vol. 29, No. 3, Sept. 2022

Table 2: Example of 5WlH context related question asked to end

Table 3: Descriptions of crucial bugs and related examples

Bug Name Bug Description Example

Indefinite Loop If several rules trigger each other, then

those rules have created indefinite loop

bug.

Rule 1: If AC in the room is switched on, then windows

in the room need to be closed.

Rule 2: If windows in the room are closed, then the AC

in the room will be switched on

Contradict Action If one similar trigger can activate

contradict actions in two different rules,

then those rules can create contradict

action bug.

Rule 1: Within 7 a.m. to 9 p.m. if room temperature is

beyond 30° centigrade, then temperature of AC needs to

be decreased.

Rule 2: Within 7 a.m. to 9 p.m. if it is raining, then

temperature of AC needs to be increased.

Redundant Rules If two triggers activate the same action

in different rules or one trigger activates

two different actions in different rules,

then those rules become redundant

rules.

Rule 1: If it is raining, then the windows need to be

closed.

Rule 2: If AC is switched on, then the windows need to

be closed.

Time-Window fallacy (i) Semantics of event and state trigger

can be changed based on the wrong

time-window interpretation.

Rule 1: If music system is on and someone is present in

the room, then lights in the room need to be dim.

In this rule, music system needs to be on within the time

window when someone is present in the room. This rule

is representing (iv) bug.

(ii) Semantics of immediate, sustained

and extended action can be changed

based on the wrong time interpretation.

Questions Descriptions

Q1: What do you want the action to do? What aspect of action

Q2: Do you want the action to do the job instantly or during

some time? Specify time information.

When aspect of action. Thus, end users can choose between

immediate action and other types of action

Q3: Do you want the action to be terminate itself or upon

activation of another trigger?

When aspect of action. Thus, end users can choose between

extended action and sustained action

Q4: Who is responsible to do the action? Who aspect of action

Q5: Do you want to make “AND” combinations with other

actions?

Add combination of triggers

Q6: Do you want to make “OR” combinations with other

actions?

Or combination of triggers

Q7: Do you want to prevent other actions to this job, when

this action is going on?

No combinations of trigger

Q8: Where the action will happen? Where aspect of the action

IJCA, Vol. 29, No. 3, Sept. 2022 165

(iii) When two states are combined, if

their time windows are not matched,

then this kind of bug is generated.

(iv) When one state and one event are

combined, if the event does not happen

within the time window of state, then

this kind of bug is generated.

(v) When different kinds of actions are

combined, then immediate action does

not happen within the time frame of

extended or sustained action, then this

kind of bug is generated.

(vi) One event and one state should

generate either extended or sustained

action. Two states can generate either

immediate or extended, sustained

actions.

Lack of Action

Reversal

If sustained action is not deactivated by

another rule, then it can be a continued.

This situation creates lack of action

reversal bug.

Rule 1: If requested item part is found inside the

warehouse, then it should be delivered by drone toward

the assembly line

In this rule, the delivery action should be deactivated after

it is finished. Otherwise, the drone will be in the

assembly line.

Extended Action Bug If end users forget to define the

finishing time or finishing condition of

extended actions, then the generated

bug is known as Extended Action Bug.

When it is 7 pm, the coffee starts to brew.

In this rule, there is no finishing time or condition about

how long coffee will be brewed.

Unused Rules Several times end users have defined

some rule, which yet cannot be used in

real time. This kind of bug is known as

Unused Rules.

If it is raining heavy outside, then close the windows of

the garage room.

In this rule, if garage room has no window, then this rule

will never be executed.

of the proposed framework implemented in Java. Figure 6 has
represented a partial view of OWL specification of TAO in
Protégé Tool [10].

5 Illustration of the Proposed Framework using Case

Studies

In this section, proposed framework is evaluated based on
two case studies from two different domains based on IE.
Section 5.1 has demonstrated the applicability of the proposed
framework using a case study from smart home domain.
Section 5.2 has illustrated the effectiveness of the proposed
framework using a case study from smart factory domain.

5.1 Illustration of Case Study 1

The case study specified in this section is based on smart
home domain. Let’s assume, an end user in smart home
domain wants to implement the following behavior: Jenny
wants to open the windows of the living room from morning
to night. During this time, if it is raining, then windows will
be closed. When the rain is over, then windows will be
opened again. If the temperature of the living room exceeds
28° centigrade, then temperature in AC situated in that room
will be decreased. If it is raining, then the temperature in AC
situated in the living room will be increased. When the coffee
maker starts to brew then the music system will be

166 IJCA, Vol. 29, No. 3, Sept. 2022

Figure 4: Example of a proposed inference rule for identifying time window fallacy bug

turned on in the living room. When someone turns on the
music system in the living room, then the coffee is starts to
brew.

Let assume based on this behaviour, the end user has
created the following TAP rules using the proposed
framework.

(1) If it is 7 a.m., the window in the living room will be
opened.

(2) If it is 9 p.m., the window in the living room will be
closed.

(3) If the time is between 7 a.m. and 9 p.m. and it is
raining, the window in the living room will be
closed.

(4) If the temperature goes beyond 28°centigrade in the
living room, the AC temperature situated in the
living room will be decreased.

(5) If coffee starts to brew, then the music system will be
turned on in the living room.

(6) If music system is turned on, then coffee starts to
brew.

(7) If it is raining, then the AC temperature in the living
room will be increased.

Among these above-mentioned rules, rule number 5 and
rule number 6 have created an indefinite loop, because both
rules have triggered each other. Rule number 3 has
produced lack of action reversal bug. In this case, the action

is a sustained type of action. End users have not defined
any rule to deactivate the rule. Rule number 4 and rule
number 7 have created contradictory actions. There may be
situations when raining and the temperature of the room
exceeds 28° centigrade can occur at the same time. Rule
number 1 and 2 will produce time window fallacy bugs. In
both rules triggers are event kinds, but actions are not
immediate types of actions. These rules also create bugs
such as how long the extended action should be continued.
Figure 7 has demonstrated that the proposed framework has
helped the end users to create the above-mentioned rules.
Figure 8 has illustrated, that illustrated, that the proposed
framework has assist to find the bugs in the created TAP
rules.

5.2 Illustration of Case Study 2

The case study specified in this section is based on smart

factory domain. Let’s assume an end user in a smart factory
domain wants to implement the following behavior.
ABC is a manufacturing company. It wants to monitor the
work performance of a water purification system if the
water pressure is greater than 50 and water flow is greater
than 15. It also wants to check the stock of parts of the water
purification system. If the stock of parts is nil, then the
suppl ier employee is notified through Short Message
Service (SMS). Further, when the warehouse has received

IF r1 is an instance of concept Rule
t1 is an instance of concept Event
a1 is an instance of concept Extended Action
t2 is an instance of concept State
Ti1 is a value of date time stamp
TiS is a value of date time stamp
TiE is a value of date time stamp
AiS is a value of date time stamp
AiE is a value of date time stamp
has_Trigger is a relationship
has_Action is a relationship
has_Start_Time is a relationship
has_End_Time is a relationship
has_Time_Stamp is a relationship
And_Connection is a relationship
r1 has_Trigger t1
r1 has_Action a1
r1 has_Trigger t2
t1 has_Time_Stamp Ti1
t2 has_Start_Time TiS
t2 has_End_Time TiE
a1 has_Start_Time AiS
a1 has_End_Time AiE
t1 And_Connection t2
greaterThan(TiS, Ti1)
lessThan(TiE,Ti1)

Then, print (Rule r1 has a bug. Trigger t1 need to be occurred within
the time span if Trigger t2)

IJCA, Vol. 29, No. 3, Sept. 2022 167

a request on a particular lightweight material and the material
is found in the warehouse, then it will be delivered to the
assembly line.

Let’s assume based on this behavior, the end user has
created the following TAP rules using the proposed
framework:

(1) If water pressure is greater than 50, then working

performance of the water purification needs to be
monitored.

(2) If water pressure is greater than 25, then working
performance of the water purification needs to be
monitored.

(3) If the stock of parts is nil, then the supplier employee
is notified through email.

(4) If the warehouse received a request on a particular
lightweight material, the material will be delivered to
the assembly line using a drone.

(5) If the requested material is found in the warehouse, the

material will be delivered to the assembly line using a
drone.

Among the previous specified rules, rule 1 and rule 2 are

redundant, since they have created the same actions.
Likewise, rule 4 and rule 5 are redundant. Hence, these rules
can be combined. Rule 3 can be an example of an unused rule,
since in the rule how suppliers will be notified is mentioned
by SMS. However, in rule 3, the end user wants that supplier
employee to be notified through email. Figure 9 has
demonstrated that the proposed framework has helped the end
users to create the above-mentioned rules. Figure 10 has
illustrated that the proposed framework has assist to find the
bugs in the created TAP rules.

6 Comparison Study

In this section, the proposed work is evaluated based on the
comparison with several selected existing works. All of these

 public class Main {
 public static void main(String[] args) {
 BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));
 String choice=null, choiceRule=null,
choiceBehavioure=null;
 DomainExpert expert=new DomainExpert();
 //EndUser user=new EndUser();
 Interface inter=new Interface();
 System.out.println("What is your role? Please enter
either 'Service Provider' or 'End User'.");
--
 //expert.readOntology();
 expert.createDomainTrigger();
 expert.createDomainAction();
 expert.createContradictRelation();
 expert.writeOntology();
 } catch (Exception e) {

 e.printStackTrace();
 }
 System.out.println("..You as a Service Provider done
your Job....");
 }
 if(choice.equalsIgnoreCase("End User"))
 {

--
 System.out.println("..You as an End User done
your Job....");
 System.out.println("Debugging is started");
 inter.reasoningRule();
 System.out.println("Debugging is stopped");

 }
 }
}

Figure 5: Partial view of proposed semantic reasoning framework implemented in Java and Apache Jena [1]

168 IJCA, Vol. 29, No. 3, Sept. 2022

Figure 6: Partial view of OWL specification of TAO in Protégé tool [10]

Figure 7: Illustration of Case study 1 - end users are supported to enter Answers of 5W1H questions and synthesize TAP rules

works have devised frameworks to support end users in
synthesizing TAP rules. However, the proposed framework in
this paper is distinct from these existing works due to
possessing some useful features. The set of those useful
features is specified next. Table 4 has summarized the
comparison.

(a) Trigger Related Features: These kinds of features
represent semantics related to different kinds of
triggers – event and state.

(b) Action Related Features: These kinds of feature
represent semantics related to different kinds of actions
– immediate, extended and sustained.

(c) Triggering Feature: This feature represents semantics
that will specify the kind of triggering, single triggering
or multiple triggering. Single triggering specifies that,

a single trigger can activate a single action. On the
other hand, multiple triggering represented the
presence of either multiple triggers, multiple actions or
both in a triggering

(d) Context Support: This feature represents the support
towards representation of 5W1H contextual
information. 5W1H has represented Why, Who, What,
Where, When and How related context for a particular
trigger and action.

(e) Domain Independency: This feature represents the
scope of the application towards different domains.

(f) Reasoning Support: This feature represents the support
devise TAP rules.

(g) Easy Interaction: Interface between user and the
framework needs to be simple and convenient for use.
provided to the end users in making reasons when they

IJCA, Vol. 29, No. 3, Sept. 2022 169

Figure 8: Illustration of Case study 1 – Identification of bugs in synthesized TAP rules and reasons to fix those bugs

Figure 9: Illustration of Case study 2 – end users are supported to enter Answers of 5W1H questions and

synthesize TAP rules

(h) Debugging Support: The feature indicates the support

to identification of bugs’ presence and reasons to fix
them.

(i) Identification of Crucial Bugs: This feature represents
support to important bugs – (i) Time Window Fallacy,
(ii) Contradict Rules, (iii) Indefinite Rules, (iv)
Redundant Rules, (v) Lack of Action Reversal Bugs,
(vi) Extended Action Related Bug, and (vii) Unused
Rules.

(j) Interoperability: This feature indicates the
representation of interoperable TAP rules that can be
applied on different domains at the same time.

From Table 4 it is proved that the proposed framework has

supported different specified features such as trigger, action,
triggering and contextual information related semantics. On

the other hand, the majority of existing approaches have
represented trigger related semantics. Very few have
recognized the importance of action, triggering and contextual
information related semantics. However, semantics related to
all of these building blocks of TAP are essential in order to
interpret the create a TAP TAP rule effectively. Proposed
framework can be applied to various domain on IE since it is
based on an upper-level ontology specification. In addition,
the proposed framework is domain independent and also
capable to represent domain interoperable rules. This feature
is not exhibited in the majority of the approaches. This
reasoning support has been provided by very approaches
partially. The majority of the existing approaches have
support to identifications of bugs applied to various domains
such as smart home, smart factory, autonomous vehicle etc.
Two separate interfaces have been such as contradict action,

170 IJCA, Vol. 29, No. 3, Sept. 2022

Figure 10: Illustration of Case study 2 – Identification of bugs in synthesised TAP rules and reasons to fix those bugs

Table 4: Comparison of proposed work with existing work based on several crucial features of TAP
Approach

es
(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(i) (ii) (iii) (iv) (v) (vi) (vii)
[4] Y - Y P - P Y Y P Y Y Y - - - -

[23] - - - - - - Y Y - P P P - - - -
[24] - - - - - Y Y - - P P P - - - -
[21] Y - P P Y Y Y Y P Y Y Y - - Y Y
[15] Y Y Y P - - Y - - - - - - - - -
[18] P - P - - - Y Y P - - P - - - -

[3, 17] Y Y Y Y - - Y - - - - - - - - -
[25] - Y P - - Y Y Y - - - - - - - -
[7] Y Y Y Y - Y Y - - - - - - - - -

[16] Y P Y Y - Y Y Y P P - P - P P -
Proposed

Framework
Y Y Y Y Y Y P Y Y Y Y Y Y Y Y Y

Notes: P: Partial support; Y: Full support; –: Not Mentioned.

redundant rules, and indefinite rules. Very few have support to
other mentioned bugs. These drawbacks of the existing
approaches can be resolved by the proposed framework.
Further, the user interface of proposed framework is textual
based which is inconvenient for end users. Hence, there is a
need to devise a graphical user interface for the proposed
framework and this need is identified as a future work.

7 Conclusion

In Intelligent Environment (IE) context, end user
development still exhibits a lack of tool supports that can assist
end users to create Trigger Action programming (TAP) rules
effectively. In order to address this issue, this paper has
proposed a semantic based reasoning framework that may help

end users to create TAP rules. In addition, the proposed
framework also can help end users to check the semantic
correctness of the TAP rules. The contributions of the proposed
work are manifolds. Firstly, the proposed framework is based
on an upper-level ontology TAO thus, it can support end users
to devise TAP rules based on precise and rigorous semantics.
Secondly, it has proposed a rule based generic reasoner that can
check the semantic correctness of the synthesized TAP rules.
The proposed reasoner also helps end users to reason about the
mistakes and fixing those. Thirdly, a set of inference rules have
been proposed based on the formal semantics provided by the
underlying upper ontology TAO. The proposed reasoner can
check the semantic correctness of TAP rules based on these
inference rules. The proposed inference rules are aiming to find
crucial bugs present in TAP. Examples of those bugs are, time

IJCA, Vol. 29, No. 3, Sept. 2022 171

window fallacy, contradict rules, indefinite rules, redundant
rules, lack of action reversal bugs, extended action, related bug,
and unused rules. Fourthly, the proposed rules are domain
independent based on an upper-level ontology. Hence, the
proposed framework and the reasoner can be provided to
support both service provider and end users. In addition, a
comparative study has been conducted to demonstrate the
usefulness of the proposed work. Future work includes
developing a graphical user interface application based on the
proposed framework that can make easy interaction with both
end users and service providers. Further, an exploratory user
test of the proposed framework in various domains will be
important. In addition, a security vulnerability test of
synthesized TAP rules will be a crucial future work. Moreover,
integration of the proposed framework within the intelligent
environment architecture will be a prime future work.

References

[1] Apache Jena. Retrieved June 10, 2022, from
https://jena.apache.org.

[2] W. Brackenbury, A. Deora, J. Ritchey, J. Vallee, W. He,
G. Wang, and B. Ur, “How Users Interpret Bugs in
Trigger-Action Programming,” Proceedings of the 2019
CHI Conference on Human Factors in Computing
Systems, pp. 1-12, May 2019.

[3] L. Corcella, M. Manca, F. Paternò, and A. Santoro, “A
Visual Tool for Analysing IoT Trigger/Action
Programming,” International Conference on Human-
Centred Software Engineering, Springer, Cham, pp. 189-
206, September 2018.

[4] F. Corno, L. De Russis, and A. Monge Roffarello,
“Empowering End Users in Debugging Trigger-Action
Rules” Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pp. 1-13, May
2019.

[5] F. Corno, L. De Russis, and A. Monge Roffarello,
“RecRules: Recommending IF-THEN Rules for End-
User Development,” ACM Transactions on Intelligent
Systems and Technology (TIST), 10(5):1-27, 2019.

[6] N. C. Debnath, S. Banerjee, G. U. Van, and P. T. Quang,
“An Ontology Based Approach towards End User
Development of IoT,” Proceedings of 37th International
Confer, 82:1-10, 2022.

[7] G. Desolda, C. Ardito, and M. Matera, “End-User
Development for the Internet of Things: EFESTO and the
5W Composition Paradigm,” International Rapid Mashup
Challenge, Springer, Cham, pp. 74-93, June 2016.

[8] G. Gallitto, B. Treccani, and M. Zancanaro, “If When is
Better Than if (and While Might Help): On the
Importance of Influencing Mental Models in EUD (A Pilot
Study),” EMPATHY@ AVI, pp. 7-11, September 2020.

[9] N. Guarino, D. Oberle, and S. Staab, “What is an
Ontology?” Handbook on Ontologies, Springer, Berlin,
Heidelberg, pp. 1-17, 2009.

[10] M. Horridge, “A Practical Guide to Building OWL
Ontologies using Protégé 4 and COODETools, Edition

1.3, The University of Manchester, Retrieved June 10,
2022, from https://mariaiulianadascalu.files.word
press.com/2014/02/owl-cs-manchester-ac-uk_-
eowltutorialp4_v1_3.pdf.

[11] J. Huang and M. Cakmak, “Supporting Mental Model
Accuracy in Trigger-Action Programming,” Proceedings
of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pp. 215-225,
September 2015.

[12] Matthew Hughes, “Mozilla’s New Things Gateway is an
Open Home for Your Smart Devices,” TheNextWeb,
2018.

[13] IFTTT, Retrieved June 10, 2022, from
https://ifttt.com/explore.

[14] Nat Levy, “Microsoft Updates IFTTT Competitor Flow
and Custom App Building Tool PowerApps”, GeekWire,
2017.

[15] M. Manca, F. Paternò, and C. Santoro, “Analyzing
Trigger-Action Programming for Personalization of Robot
Behaviour in IoT Environments,” International
Symposium on End User Development, Springer, Cham,
pp. 100-114, July 2019.

[16] M. Manca, F. Paternò, C. Santoro, and L. Corcella,
“Supporting End-User Debugging of Trigger-Action
Rules for IoT Applications,” International Journal of
Human-Computer Studies, 123:56-69, 2019.

[17] A. Mattioli and F. Paternò, “A Visual Environment for
End-User Creation of IoT Customization Rules with
Recommendation Support,” Proceedings of the
International Conference on Advanced Visual Interfaces,
pp. 1-5, September 2020.

[18] C. Nandi and M. D. Ernst, “Automatic Trigger Generation
for Rule-Based Smart Homes,” Proceedings of the 2016
ACM Workshop on Programming Languages and
Analysis for Security, pp. 97-102, October 2016.

[19] Ed Oswald, “IFTTT Competitor Stringify gets a Major
Update,” TechHive, 2016.

[20] M. Palekar, F. Earlence and R. Franziska, “Analysis of the
Susceptibility of Smart Home Programming Interfaces to
End User Error,” IEEE Security and Privacy Workshops
(SPW), IEEE, pp. 138-143, 2019.

[21] C. Vannucchi, M. Diamanti, G. Mazzante, D.
Cacciagrano, R. Culmone, N. Gorogiannis, and F.
Raimondi, “Symbolic Verification of Event–Condition–
Action Rules in Intelligent Environments,” Journal of
Reliable Intelligent Environments, 3(2):117-130, 2017.

[22] Zapier, Retrieved June 10, 2022, from https://zapier.com/.
[23] L. Zhang, W. He, J. Martinez, N. Brackenbury, S. Lu, and

B. Ur, “AutoTap: Synthesizing and Repairing Trigger-
Action Programs using LTL Properties,” 2019
IEEE/ACM 41st International Conference on Software
Engineering (ICSE), IEEE, pp. 281-291, May 2019.

[24] L. Zhang, W. He, O. Morkved, V. Zhao, M. L. Littman, S.
Lu, and B. Ur, “Trace2tap: Synthesizing Trigger-Action
Programs from Traces of Behavior,” Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 4(3):1-26 (2020).

https://jena.apache.org/
https://mariaiulianadascalu.files.word/
https://ifttt.com/explore
https://zapier.com/

172 IJCA, Vol. 29, No. 3, Sept. 2022

[25] V. Zhao, L. Zhang, B. Wang, S. Lu, and B. Ur,
“Visualizing Differences to Improve End-User
Understanding of Trigger-Action Programs,” Extended
Abstracts of the 2020 CHI Conference on Human Factors
in Computing Systems, pp. 1-10, April 2020.

Narayan C. Debnath is currently
the Founding Dean of the School
of Computing and Information
Technology at Eastern
International University (EIU),
Vietnam. He is also serving as the
Head of the Department of
Software Engineering at EIU,
Vietnam. Dr. Debnath has been the
Director of the International

Society for Computers and their Applications (ISCA), USA
since 2014. Formerly, Dr. Debnath served as a Full Professor of
Computer Science at Winona State University, Minnesota, USA
for 28 years where he also served as the Chairperson of the
Computer Science Department for 7 years. Dr. Debnath earned
a Doctor of Science (D.Sc.) degree in Computer Science and
also a Doctor of Philosophy (Ph.D.) degree in Physics. In the
past, he served as the elected President and Vice President of
ISCA, and has been a member of the ISCA Board of Directors
since 2001. Professor Debnath has made significant
contributions in teaching, research, and services across the
academic and professional communities. Dr. Debnath is an
author or co-author of over 500 publications in numerous
refereed journals and conference proceedings in Computer
Science, Information Science, Information Technology, System
Sciences, Mathematics, and Electrical Engineering. Dr.
Debnath is an editor of several books published by Springer,
Elsevier, CRC Press, and Bentham Science Press on emerging
fields of computing. He also served as a guest editor of the
Journal of Computational Methods in Science and Engineering
(JCMSE) published by the IOS Press, the Netherlands.

Shreya Banerjee is presently a
Faculty Member in the Department
of Software Engineering, Eastern
International University, Vietnam.
She received her PhD degree in
Computer Science and Engineering
from National Institute of
Technology, Durgapur, India, in
2019. She received a Master degree
in Software Engineering from
National Institute of Technology,
Durgapur, India, in 2013. She is an

author and co-author of several publications in numerous
refereed journals and conference proceedings. Her main areas
of research interests include Software Engineering, Ontology

Engineering, Semantic Reasoning, Database Management
System and Service Oriented Computing.

Van-Giau Ung graduated MSc at
HCMC University of Science in Dec
2015. After that, he continued
working in software development
companies for many years. He began
teaching and research at University
of Information Technology –
Vietnam National University HCMC
in 2017. In 2019, he moved to
Software Engineering Department at
Eastern International University. His
research interests include Software

Engineering, System and application Security, and Natural
language processing. He loves to research new technologies,
and share his knowledge and experience with students.

Phat Tat Quang received Master
degree of Computer Science from
VNU - University of Science, Ho
Chi Minh, Vietnam in 2011, and
Bachelor degree in Information
Technology from Binh Duong
University – Vietnam in 2007.
Since 2011, he has been a full-
time lecturer in School of
Computing & Information

Technology at Eastern International University, Binh Duong,
Vietnam. His research areas include Computer Vision, Deep
learning and their applications, and Software engineering.

Dai Thanh Nguyen joined The
Eastern International University in
2015 as a lecturer in the School of
Computing and Information
Technology. He achieved a
Bachelor's degree in Engineering
in Computer Networks and
Communication at Vietnam
National University - Ho Chi
Minh City - the University of
Information Technology in 2012.
He received his Master's degree in
Computer Science at the
University of Houston - Clear

Lake, Houston, Texas, US in 2014. He is interested in software
development and sharing knowledge to help students develop
their careers

	International Society for Computers
	Guest Editorial . 127
	Improving Road Safety by Blockchain-based Monetization of Driver Behavior 129
	Sruthi Rachamalla and Henry Hexmoor
	Jeff McCann, Liam Quinn, Sean McGrath, and Colin Flanagan

	Application of Machine Learning on Software Quality Assurance and Testing: A Chronological Survey . 150
	Mohammed Hossain and Hongkai Chen
	Narayan C. Debnath, Shreya Banerjee, Giau Ung Van, Phat Tat Quant, and Dai Nguyen Thanh

	Univariatae and Bivariate Entropy Analysis for Modbus Traffic over TCP/IP in Industrial Control Systems . 173
	Tirthankar Ghosh, Sikha Bagui, Subhash Bagui, Martin Kadzis, Logan Day, and Jackson Bare
	The Implementation of Content Planner Application with MobileNetV2 Classification for Hashtag Automation . 181
	Bevan Christian and Trianggoro Wiradinata

	Covid-19 Detection Based on Cascade-Correlation Growing Deep Learning Neural Network Algorithm . 190
	Soha Abd El-Moamen Mohamed, Marghany Hassan Mohamed, and Mohammed F. Farghally
	A Comparative Study of Classification Algorithms of Moodle Course Logfile using Weka Tool . 202
	Iman Al-Kindi and Zuhoor Al-Khanjari
	2 McCain IJCA Sept 2022.pdf
	Abstract
	1 Introduction
	2 Evidential Recording Platforms
	2.2 Network
	2.3 Datacenter
	2.4 Users

	3 Video Analysis Platforms
	3.1 Cloud Video Analytics
	3.2 Edge Video Analytics
	3.3 On Camera
	3.4 Mobile Edge Compute

	4 Moving Cloud to the Edge
	4.1 Local Datacenters
	4.2 Cellular Service Provider Datacenters
	4.3 On Premise
	4.4 Sporadically Connected / Disconnected Systems

	5 Conclusions
	References

	3 Hossain IJCA Sept 2022.pdf
	Abstract
	1 Introduction
	2 Methodology
	3 Summaries of Our Findings
	3.1 1995-1999
	3.2 2000-2004
	3.3 2005-2009
	3.4 2010-2014
	3.5 2015-2018
	3.6 2019-2021

	4 Analysis Based on Various ML Techniques
	4.1 Neural Network
	4.2 Support Vector Machines
	4.3 Clustering, Decision Tree, and Grammar Induction
	4.4 Bayesian Based Method and Random Forest

	5 Software Testing Activities Found in this Study
	5.1 Creating Test Data
	5.2 Test Case Generation
	5.3 User Interface Testing
	5.4 Regression Testing

	6 Conclusion
	References

	5 Gosh Sept 2022 IJCA.pdf
	1 Introduction
	2 Related Literature
	3 Entropy Analysis for Modbus Over TCP/IP
	3.1 Univariate Entropy Analysis
	Table 1: Correlation matrix between features
	3.2 Relative Entropy and Kullback-Leibler Divergence
	Table 2: Entropy values for three selected features against three attack types
	3.3 Bivariate Joint Entropy Analysis
	Table 4: Entropy averages and standard deviation for each pair of selected features for non-malicious traffic
	Table 5: Entropy averages and standard deviation for each pair of selected features for malicious traffic
	Table 6: Entropy averages and standard deviation for each pair of selected features for non-malicious+MITM traffic
	Table 7: Entropy averages and standard deviation for each pair of selected features for non-malicious+DOS traffic
	Table 8: Entropy averages and standard deviation for each pair of selected features for non-malicious+recon traffic

	6 Wiradinata IJCA Sept 2022 .pdf
	2.1 Terminology
	3 Design & Analysis
	3.1 Analysis of the Problem
	3.2 Analysis of Needs
	3.3 Application Architecture
	3.4 Usecase Diagram
	3.5 Application and Design Flow

	4 Implementation
	4.1 Automatic Hashtag Generation
	4.2 UI Display

	5 Results and Discussion
	5.1 User Persona & Test Case
	5.2 Test Results

	6 Conclusion
	6.1 Conclusion
	6.2 Future Studies

	8 Al-Kindi Khanjari IJCA Sept 2022.pdf
	1 Introduction
	2 Background
	2.1 Moodle Logfile
	2.2 Student Engagement
	2.3 Student Behavior
	2.4 Student Personality
	2.5 Student Performance
	2.6 Classification Algorithms
	2.7 Weka

	3 Literature Review
	4 Method
	4.1 Materials and Dataset
	4.2 Data Preprocessing

	5 Results
	6 Comparison
	7 Discussion
	8 Conclusions
	Acknowledgement
	References

	Journal Submission Instructions2022.pdf
	Journal Submission

