
236 IJCA, Vol. 29, No. 4, Dec. 2022

Time Complexity Analysis for Cullis/Radic and Dodgson’s Generalized/Modified
Method for Rectangular Determinants Calculations

Armend Salihu∗,Halil Snopce∗, Artan Luma∗, Jaumin Ajdari∗

South East European University, Tetovo, NORTH MACEDONIA.

Abstract

In this paper we present an analysis of the time complexity
of algorithms based on Cullis/Radic Definition and Dodgson’s
Generalized/Modified Method for calculating rectangular/non-
square determinants. We have identified the asymptotic time
complexity of these algorithms, and that both algorithms have
their advantages in relation to time complexity. From the
time complexity analysis, we observed that the Cullis/Radic
definition has an asymptotic time complexity of O(C

(m
n

)
·

m3), while Dodgson’s Generalized/Modified Method has an
asymptotic time complexity of O(22m · (n−m)2). Further, we
noticed that in cases where the number of rows is less than
or equal to half the number of columns, it is more appropriate
to use the algorithm based on Dodgson’s Generalized/Modified
Method, while in cases where the number of rows is greater
than half the number of columns, then Cullis/Radic Definition
based algorithm is more suitable to use. Based on this analysis,
we have also presented an algorithm which is a combination
of these two algorithms and depending on the ratio between
the number of rows and columns the rectangular determinant
is calculated with the most appropriate method, for which
we calculated the worst-case asymptotic time complexity as
O(n!

((n/2)!)2 · n
2

3) while the best-case asymptotic time complexity

is calculated as O(n3)
Key Words: Rectangular determinants; time complexity;

Dodgson’s method; pivotal condensation; execution time.

1 Cullis/Radic and Generalized/Modified Dodgson’s
Method for Rectangular Determinants Calculation

The following presents the determinant calculation method
based on the Cullis/Radic definition:

Theorem 1. Let A be m×n a rectangular matrix:

Am×n =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 . (1)

Its determinant, where m ≤ n is the sum (See: [4] [8]):

∗ Faculty of Contemporary Sciences and Technologies,
Emails: as28364@seeu.edu.mk, h.snopce@seeu.edu.mk,
a.luma@seeu.edu.mk, and j.ajdari@seeu.edu.mk.

det(Am×n) = |Am×n|=

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣

= ∑
1< j1<···< jm<n

(−1)r+s

∣∣∣∣∣∣∣∣∣
a1 j1 a1 j2 · · · a1 jn
a2 j1 a2 j2 · · · a2 jn

...
...

. . .
...

am j1 am j2 · · · am jn

∣∣∣∣∣∣∣∣∣ . (2)

where r = 1+ · · ·+m,s = j1 + · · ·+ jm.

Proof. See definition 1 in [8].

The following the pseudocode of the algorithm based on
the above-mentioned method for calculating determinant of
rectangular matrices.

P 1: Algorithm (det A) based on Cullis-Radic method to
calculate rectangular determinants

Step 1: Identify all combinations for determining m×m square
determinants from columns combinations:

if m = n
Calculate square determinant with known methods.

else

B = nchoosek(1 : n,m);

Step 2: Identify all square determinants from the combination
of columns:

Create loop from 1 to total number of combinations (length
of vector B)

D{i}= A(1 : m,B(i,1 : m)));

Step 3: Calculate determinants of square blocks from D
Create loop from 1 to total number of combinations (length

of vector B)

d = d +(−1)∧(sum(1 : m)+ sum(B(i,1 :
m)))∗SquareDet(D{i});

Step 4: Display the result of the determinant

ISCA Copyright© 2022

IJCA, Vol. 29, No. 4, Dec. 2022 237

Theorem 2. (Generalized Dodgson’s formula) [2] Let A be
m× n a rectangular matrix. Then for p = min(m,n) ≥ 2, we
have:

det
(

A 1≤i≤m
1≤ j≤n

)
·det

(
A i̸=m−1,m

j ̸=n−1,n

)
=

det
(ε, p−1)

(
A 1≤i<m

1≤ j<n

)
· det
(ε, p−1)

(
A 1<i≤m

1< j≤n

)
(3)

− det
(ε, p−1)

(
A 1≤i<m

1< j≤n

)
· det
(ε, p−1)

(
A 1<i≤m

1≤ j<n

)
+

det
(ε, p)

(
A 1≤i≤m

1< j<n

)
· det
(ε, p−2)

(
A 1<i<m

1≤ j≤n

)

Proof. See theorem 5.1 in [2].

In the following, we have developed the computer algorithm
(det Dodgson) for theorem 1.

Since this method is applied for m ≥ 3, and m ≤ n − 2,
m-number of rows, n-number of columns of the matrix. The
following is presented on the pseudocode of theorem 1.

P 2: Algorithm (det Dodgson) for generalized Dodgson
method to calculate rectangular determinants

Step 1: Checking for conditions:
if m < 3 or m = n−1

Calculate rectangular determinant with known methods,
like Laplace, Radic, Chios-like, etc.

else if m = n
Calculate square determinant with known methods.

else
Step 2: Calculate submatrices:

Calculate submatrices presented on theorem 1, calling
det Dodgson algorithm until the conditions of step 1 are met,
as following:

d1 = det Dodgson(A(1 : m−1,1 : n−1));
d2 = det Dodgson(A(1 : m−1,2 : n));
d3 = det Dodgson(A(2 : m,1 : n−1));

d4 = det Dodgson(A(2 : m,2 : n));
d5 = det Dodgson(A(2 : m−1,1 : n));
d6 = det Dodgson(A(1 : m,2 : n−1));

d7 = det Dodgson(A(2 : m−1,2 : n−1));

Step 3: After calculating submatrices, calculate the result of the
determinant as following:

d = (d1∗d4−d2∗d3+d5∗d6)/d7;

Recently, in 2022 we identified 9 different cases of
Dodgson’s generalization formula for rectangular determinant
calculation, which is provided in theorem 3.

Theorem 3. [10] The pivot block det
(ε,p−1)

(
A 1<i<m

1< j<n

)
of

Bayat’s formula can be any block of order (m − 2)× (n− 2)
from the given determinant, and the following cases are:

Case 1: Pivot block is: det
(ε,p−1)

(
A 1≤i≤m−2

1≤ j≤n−2

)
Case 2: Pivot block is: det

(ε,p−1)

(
A 1≤i≤m−2

2≤ j≤n−1

)
Case 3: Pivot block is: det

(ε,p−1)

(
A 1≤i≤m−2

3≤ j≤n

)
Case 4: Pivot block is: det

(ε,p−1)

(
A 2≤i≤m−1

1≤ j≤n−2

)
Case 5: Pivot block is: det

(ε,p−1)

(
A 2≤i≤m−1

2≤ j≤n−1

)
Case 6: Pivot block is: det

(ε,p−1)

(
A 2≤i≤m−1

3≤ j≤n

)
Case 7: Pivot block is: det

(ε,p−1)

(
A 3≤i≤m

1≤ j≤n−2

)
Case 8: Pivot block is: det

(ε,p−1)

(
A 3≤i≤m

2≤ j≤n−1

)
Case 9: Pivot block is: det

(ε,p−1)

(
A 3≤i≤m

3≤ j≤n

)
Proof. See theorem 3 in [10].

The pseudocode of each case from theorem 2 is like
pseudocode presented in P 2, and changes in steps 2 for each
case. For example, the pseudocode for case 1 is changed as
following:

P 3: Modified algorithm (det Blocks) based on theorem 2 (as
example is considered case 1)

Step 1: Checking for conditions:
if m < 3 or m = n−1

Calculate rectangular determinant with known methods,
like Laplace, Radic, Chios-like, etc.

else if m = n
Calculate square determinant with known methods.

else
Step 2: Calculate submatrices:

Calculate submatrices presented on theorem 1, calling
det Dodgson algorithm until the conditions of step 1 are met:

d1 = det Blocks(A(1 : m−1,1 : n−1));
d2 = det Blocks(A(1 : m−1, [1 : n−2 n]));
d3 = det Blocks(A([1 : m−2 m],1 : n−1));

d4 = det Blocks(A([1 : m−2 m], [1 : n−2 n]));
d5 = det Blocks(A(1 : m−2,1 : n));
d6 = det Blocks(A(1 : m,1 : n−2));

d7 = det Blocks(A(1 : m−2,1 : n−2));

Step 3: After calculating submatrices, calculate the result of the
determinant as following:

238 IJCA, Vol. 29, No. 4, Dec. 2022

d = (d1∗d4−d2∗d3+d5∗d6)/d7;

The pseudocode presented in P 3 represents case 1 of
theorem 2. However, the same algorithm can be used for each
case of theorem 2, with changes in step 2 while selecting pivot
block and reflecting that pivot block in each submatrix.

The above-mentioned theorem and pseudocode, has its
advantage in cases of matrices with several zero elements. We
have developed the algorithm that finds pivot block with highest
number of zero elements, which is presented in pseudocode P 4
[10].

P 4: Find the block of order (m − 2)× (n − 2) with highest
number of zero elements

Step 1: Insert the rectangular determinant A
Step 2: Calculate number of nonzero elements for each
row/column

Initialize R for rows and C for columns
Create loop for i from 1 to m

Create loop for j from 1 to n
if A(i, j) ̸= 0

R(i) = R(i)+1;

C(i) =C(i)+1;

Step 3: Find the best case with the highest number of zero
elements

Initialize first case: k = 1
if C(2)+C(n−1)<C(1)+C(n)

k = 2;

else if C(1)+C(2)<C(n−1)+C(n)

k = 3;

if R(2)+R(m−1)< R(1)+R(m)

k = k+3;

else if R(1)+R(2)> R(m−1)+R(m)

k = k+6;

Step 4: Return best case

2 Time Complexity Analysis

In the following we present the time complexity analysis of
the above-mentioned algorithms [7] [12] [9] [3].

Time complexity analysis of function (det A) of algorithm
P 1, based on Cullis-Radic method, is presented in Table 1.

Table 1: Time complexity of det A function
Function: det A Cost time

[m,n] = size(A); T1 = const1 1
d = 0; T2 = const2 1
if m == n

d = det(A); T3 = n3 1

else B = nchoosek(1 : n,m); T4 = const4 1
for i = 1 : length(B)

d=d+ (-1)ˆ(sum(1:m)
+sum(B(i,[1:m])))
*det((A([1:m],[
B(i,[1:m])])));

end

There are several methods to calculate square determinants with different
time complexity, however we will be based on LU factorization method [16]:

T4 = m3
C
(n

m

)

Based on Table 1, we have:

Total Cost = 1 ·T1 +1 ·T2 +1 ·T3 +Max(1 ·T4,C
(

n
m

)
·T4)

= 1 · const1 +1 · const2 +1 · const3 +Max(1 ·n3,C
(

n
m

)
·m3).

Hence, the highest order is C
(n

m

)
· m3. After eliminating

constants, the asymptotic time complexity is O(C
(n

m

)
·m3).

Time complexity analysis of function (det Dodgson) of
algorithm P 2, based on Dodgson’s generalized method
provided by Bayat, is presented in Table 2.

IJCA, Vol. 29, No. 4, Dec. 2022 239

Table 2: Time complexity of det Dodgson function
Function: det Dodgson Cost Times
[m,n] = size(A); T1 = const1 1
if m==n

d=det(A); T2 = n3 1

if m==n-1
d = det Ones(A);

Based on Algorithm 2.2 (See [11]), transforms
determinant of order (n−1)×n to n×n

by adding one row of elements equal to 1.
Square determinant’s time complexity is T3 = O(n3).

1

else if m < 3
d = det A(A);

As it is calculated the det A time complexity is:
T4(3,n) =C

(n
3

)
·33 = n·(n−1)·(n−2)·(n−3)!

3!·(n−3)! ·33

= n · (n−1) · (n−2) ·4.5 ≈ n3.
1

else

d1 = det Dodgson(A(1 : m−1,1 : n−1));
d2 = det Dodgson(A(1 : m−1,2 : n]));
d3 = det Dodgson(A(2 : m,1 : n−1));
d4 = det Dodgson(A(2 : m,2 : n]));

T5−1(m,n) = 4 ·T5−1(m−1,n−1)+1,
T5−1(m−1,n−1) = 4 ·T5−1(m−1−1,n−1−1)+1

= 4 ·T5−1(m−2,n−2)+1,
T5−1(m,n) = 4 · (4 · (T5−1(m−2,n−2))+1+1

= 42 ·T5−1(m−2,n−2)+2
for any k, we have:

T5−1(m,n) = 4k ·T5−1(m− k,n− k)+ k,
for m− k = 2 ⇒ k = m−2,

T5−1(m,n) = 4m−2 ·T5−1(1,n−m+2)+m−2
Based on the first condition:

T5−1(2,n−m+2 =C
(n−m+2

2

)
·23

(n−m+2)·(n−m+1)
2 ·23 = 4 · (n−m+2) · (n−m+1).

T5−1(m,n) = 4m−2 ·4 · (n−m+2) · (n−m+1)+m−2
≈ 4m−1 · (n−m+2) · (n−m+1).

d5 = det Dodgson(A(2 : m−1,1 : n));

T5−2(m,n) = T 5−2(m−1,n−1)+1,
T5−2(m−1.n−1) = T5−2(m−1−1,n−1−1)+1

= T5−2(m−2,n−2)+1,
T5−2(m,n) = T5−2(m−2,n−2)+1+1 = T5−2(m−2,n−2+2,

for any k, we have:
T5−2(m,n) = T5−2(m− k,n− k)+ k,

for m− k = 2 ⇒ k = m−2,
T5−2(m,n) = T5−2(2,n−m−+2)+m−2.

Based on first condition:
T5−2(2,n−m+2) =C

(n−m+2
2

)
·23 = (n−m+2)·(n−m+1)

2 ·23

= 4 · (n−m+1) · (n−m+1).
T5−2(m,n) = 4 · (n−m+2) · (n−m+1)+m−2

≈ 4 · (n−m+2) · (n−m+1).

d6 = det Dodgson(A(1 : m,2 : n−1));

T5−3(m,n) = T5−3(m,n−1)+1,
T5−3(m,n−1) = T5−3(m,n−1−1)+1 = T5−3(m,n−2)+1,

T5−3(m,n) = T5−3(m,n−2)+1+1 = T5−3(m,n−2)+2,
for any k, we have:

T5−3(m,n) = T5−3(m,n− k)+ k,
for n− k = m+1 ⇒ k = n−m−1,

T5−3(m,n) = T5−3(m,n−n+m+1)+n−m−1
= T5−3(m,m+1)+n−m−1.

Based on first condition:
T5−3(m,m+1) =C

(m+1
m

)
·m3 = (m+1) ·m3 = m4 +m3.

T5−3(m,n) = m4 +m3 +n−m−1 ≈ m4.

240 IJCA, Vol. 29, No. 4, Dec. 2022

d7 = det Dodgson(A(2 : m−1,2 : n−1));

T5−4(m,n) = T5−4(m−2,n−2)+1,
T5−4(m−2,n−2) = T5−4(m−2−2,n−2−2)+1

= T5−4(m−4,n−4)+1
T5−4(m,n) = T5−4(m−4,n−4)+1+1 = T5−4(m−4,n−4)+2,

for any k, we have:
T5−4(m,n) = T5−4(m− k,n− k) = k

2 ,
for m− k = 2 ⇒ k = m−2,

T(m,n) = T5−4(2,n−m+2)+ m
2 −2.

Based on first condition:
T5−4(2,n−m+2) =C

(n−m+2
2

)
·23 = (n−m+1)·(n−m+1)

2 ·23

= 4 · (n−m+2) · (n−m+1).
T5−4(m,n) = 4 · (n−m+2) · (n−m+1)+ m

2 −2
≈ 4 · (n−m+2) · (n−m+1).

T5 = T5−1 +T5−2 +T5−3 +T5−4 = 4m−1 · (n−m+2) · (n−m+1)+4 · (n−m+2) · (n−m+1)+m4 +4
·(n−m+2) · (n−m+1 ≈ 4m−1 · (n−m+2) · (n−m+1).

1

d = (d1∗d4−d2∗d3+d5∗d6)/d7; T6 = const6 1

Based on Table 2, we have:

Total Cost = 1 ·T1 +Max(1 ·T2,1 ·T3,1 ·T4,1 ·T5)+1 ·T6

= 1 ·Const1 +Max(1 ·n3,1 ·n3,1 ·n3,1 ·4m−1

·(n−m+2) · (n−m+1))+1 ·Const6.

Hence, the highest order is 4m−1 · (n−m+ 2) · (n−m+ 1).
After eliminating constants and other lower grades, we can
summarize the asymptotic time complexity as O(22m · (n −
m)2).

Time complexity analysis of function (det Blocks) of
algorithm P 3, based on modified Dodgson’s generalized
method, is presented in Table 3.

Table 3: Time complexity of det Blocks function

Function: det Blocks Cost Times
[m,n] = size(A); T1 = const1 1
if m==n

d=det(A); T2 = n3 1

if m==n-1
d = det Ones(A);

Based on Algorithm 2.2 (See [11]), transforms
determinant of order (n−1)×n to n×n

by adding one row of elements equal to 1.
Square determinant’s time complexity is T3 = O(n3).

1

else if m < 3
d = det A(A);

As it is calculated the det A time complexity is:
T4(3,n) =C

(n
3

)
·33 = n·(n−1)·(n−2)·(n−3)!

3!·(n−3)! ·33

= n · (n−1) · (n−2) ·4.5 ≈ n3.
1

else

d1 = det Blocks(A(1 : m−1,1 : n−1));
d2 = det Blocks(A(1 : m−1,2 : n]));
d3 = det Blocks(A(2 : m,1 : n−1));
d4 = det Blocks(A(2 : m,2 : n]));

T5−1(m,n) = 4 ·T5−1(m−1,n−1)+1,
T5−1(m−1,n−1) = 4 ·T5−1(m−1−1,n−1−1)+1

= 4 ·T5−1(m−2,n−2)+1,
T5−1(m,n) = 4 · (4 · (T5−1(m−2,n−2))+1+1

= 42 ·T5−1(m−2,n−2)+2
for any k, we have:

T5−1(m,n) = 4k ·T5−1(m− k,n− k)+ k,
for m− k = 2 ⇒ k = m−2,

T5−1(m,n) = 4m−2 ·T5−1(1,n−m+2)+m−2
Based on the first condition:

T5−1(2,n−m+2 =C
(n−m+2

2

)
·23

(n−m+2)·(n−m+1)
2 ·23 = 4 · (n−m+2) · (n−m+1).

T5−1(m,n) = 4m−2 ·4 · (n−m+2) · (n−m+1)+m−2
≈ 4m−1 · (n−m+2) · (n−m+1).

IJCA, Vol. 29, No. 4, Dec. 2022 241

d5 = det Blocks(A(2 : m−1,1 : n));

T5−2(m,n) = T 5−2(m−1,n−1)+1,
T5−2(m−1.n−1) = T5−2(m−1−1,n−1−1)+1

= T5−2(m−2,n−2)+1,
T5−2(m,n) = T5−2(m−2,n−2)+1+1 = T5−2(m−2,n−2+2,

for any k, we have:
T5−2(m,n) = T5−2(m− k,n− k)+ k,

for m− k = 2 ⇒ k = m−2,
T5−2(m,n) = T5−2(2,n−m−+2)+m−2.

Based on first condition:
T5−2(2,n−m+2) =C

(n−m+2
2

)
·23 = (n−m+2)·(n−m+1)

2 ·23

= 4 · (n−m+1) · (n−m+1).
T5−2(m,n) = 4 · (n−m+2) · (n−m+1)+m−2

≈ 4 · (n−m+2) · (n−m+1).

d6 = det Blocks(A(1 : m,2 : n−1));

T5−3(m,n) = T5−3(m,n−1)+1,
T5−3(m,n−1) = T5−3(m,n−1−1)+1 = T5−3(m,n−2)+1,

T5−3(m,n) = T5−3(m,n−2)+1+1 = T5−3(m,n−2)+2,
for any k, we have:

T5−3(m,n) = T5−3(m,n− k)+ k,
for n− k = m+1 ⇒ k = n−m−1,

T5−3(m,n) = T5−3(m,n−n+m+1)+n−m−1
= T5−3(m,m+1)+n−m−1.

Based on first condition:
T5−3(m,m+1) =C

(m+1
m

)
·m3 = (m+1) ·m3 = m4 +m3.

T5−3(m,n) = m4 +m3 +n−m−1 ≈ m4.

d7 = det Blocks(A(2 : m−1,2 : n−1));

T5−4(m,n) = T5−4(m−2,n−2)+1,
T5−4(m−2,n−2) = T5−4(m−2−2,n−2−2)+1

= T5−4(m−4,n−4)+1
T5−4(m,n) = T5−4(m−4,n−4)+1+1 = T5−4(m−4,n−4)+2,

for any k, we have:
T5−4(m,n) = T5−4(m− k,n− k) = k

2 ,
for m− k = 2 ⇒ k = m−2,

T(m,n) = T5−4(2,n−m+2)+ m
2 −2.

Based on first condition:
T5−4(2,n−m+2) =C

(n−m+2
2

)
·23 = (n−m+1)·(n−m+1)

2 ·23

= 4 · (n−m+2) · (n−m+1).
T5−4(m,n) = 4 · (n−m+2) · (n−m+1)+ m

2 −2
≈ 4 · (n−m+2) · (n−m+1).

T5 = T5−1 +T5−2 +T5−3 +T5−4 = 4m−1 · (n−m+2) · (n−m+1)+4 · (n−m+2) · (n−m+1)+m4 +4
·(n−m+2) · (n−m+1 ≈ 4m−1 · (n−m+2) · (n−m+1).

1

d = (d1∗d4−d2∗d3+d5∗d6)/d7; T6 = const6 1

Based on Table 3, we have:

Total Cost = 1 ·T1 +Max(1 ·T2,1 ·T3,1 ·T4,1 ·T5)+1 ·T6

= 1 ·Const1 +Max(1 ·n3,1 ·n3,1 ·n3,1 ·4m−1 · (n−m+2)

·(n−m+1))+1 ·Const6

.

Hence, the highest order is 4m−1 · (n−m+ 2) · (n−m+ 1).
After eliminating constants and other lower grades, we can
summarize the asymptotic time complexity as O(22m · (n −
m)2).

The time complexity similarly can be concluded for each 9
cases.

Calculation of asymptotic time complexity of algorithm P 4,
which is used to identify the pivot block with highest number of
zero elements is presented on Table 4.

242 IJCA, Vol. 29, No. 4, Dec. 2022

Table 4: Time complexity of Most Zero Elements Block function

Function: Most Zero Elements Block Cost Time
[m,n] = size(A); T1 = const1 1
for i = 1 : m

for j = 1 : n
if A(i, j)∼= 0

B(i) = B(i)+1;
C(j) =C(j)+1;

T2(m,n) = m ·n
Due to nested loop. 1

if C(1)+C(2)<C(n−1)+C(n)
k = 1; T3 = const3 1

elseif C(2)+C(n−1)<C(1)+C(n)
k = 2; T4 = const4 1

else k = 3; T5 = const5 1
if B(2)+B(m−1)< B(1)+B(m)

k = k+3; T6 = const6 1

elseif B(1)+B(2)> B(m−1)+B(m)
k = k+6; T7 = const7 1

Based on Table 4, we have:

Total Cost = 1 ·T1 +1 ·T2 +Max(1 ·T3,1 ·T4,1 ·T5)

+Max(1 ·T6,1 ·T7) = 1 ·Const1 +1 ·m ·n+Max(1 ·Const3,
1 ·Const4,1 ·Const5)+Max(1 ·Const6 +1 ·Const7).

After eliminating constants, we get the asymptotic time
complexity of algorithm P 4 as O(m ·n).

The analysis of the growth of time complexity graphically
is presented on following graph for cases: number of columns
from 50 to 54 and number of rows from 3 to 28.

As can be seen from Figure 1, the break point is on about
half of number of columns.

Figure 1: Comparison of growth of complexity depending on
the number of rows, 50 ≤ n ≤ 54, and 3 ≤ m ≤ 28

Based on the analysis we can note that the Cullis/Radic
definition (Algorithm P 1) is more efficient than the Dodgson’s

method (Algorithms P 2 and P 3) if the number of rows is
higher than the half of number of columns, and in cases where
the number of rows is lower or equal to half of number of
columns, then the Dodgson’s modified method is more efficient.
Hence, we propose an algorithm which is a combination of both
algorithms.

P 3: Modified algorithm (det Blocks) based on theorem 2 (as
example is considered case 1)

Step 1: Checking for conditions:
if m = n

Calculate square determinant with known methods.
else if m = n−1

Transform determinant to square determinant, by adding
one row with elements equal to 1.

d = det Ones(A);

else if m < 3 or m = n/2
Step 2: Identify all square determinants from the

combination of columns:
Create loop from 1 to total number of combinations

D{i}= A(1 : m,B(i,1 : m)));

Step 3: Calculate determinants of square blocks from D
Create Loop from 1 to total number of combinations

d = d +(−1)∧(sum(1 : m)+ sum(B(i,1 :
m)))∗SquareDet(D{i});

else
Step 4: Calculate submatrices:

Calculate submatrices presented on theorem 1, calling
det Comb algorithm until the conditions of step 1 are met:

d1 = det Comb(A(1 : m−1,1 : n−1));
d2 = det Comb(A(A(1 : m−1,2 : n));

IJCA, Vol. 29, No. 4, Dec. 2022 243

d3 = det Comb(A(2 : m,1 : n−1));
d4 = det Comb(A(2 : m,2 : n));

d5 = det Comb(A(2 : m−1,1 : n));
d6 = det Comb(A(1 : m,2 : n−1));

d7 = det Comb(A(2 : m−1,2 : n−1));

Step 5: Calculate the result of the determinant as following:

d = (d1∗d4−d2∗d3+d5∗d6)/d7;

Step 6: Display the result of the determinant

Note: The algorithm P 5 can also be combined with
algorithm P 3, with changes only in step 4, where in cases of
several elements of original matrix equal to zero can be more
efficient.

The worst-case time complexity of the above presented
algorithm is where the number of rows is half the number of
columns.

The asymptotic time complexity of the algorithm presented
in P 5, is calculated in Table 5, where we have identified the
worst-case and best-case time complexity as follows.

Table 5: Time complexity analysis of (det Comb) function

Function: det Comb Cost Time
[m,n] = size(A); T1 = const1 1
if m == n

d = det(A); T2 = n3 1

if m == n−1
d = det Ones(A);

Based on Algorithm 2.2 (See [11]), transforms determinant of order
(n−1)×n to n×n by adding one row of elements equal to 1. Square
determinant’s time complexity is: T3 = O(n3).

1

else if m < 3
d = det A(A);

As it is calculated the detA time complexity is:
T4(3,n) =C

(n
3

)
·33 = n·(n−1)·(n−2)·(n−3)!

3!·(n−3)! ·33 = n · (n−1) · (n−2) ·4.5 ≈ n3. 1

else if B = nchoosek(1 : n,n/2); T5 = const5 1

for i = 1 : length(B)
d = d +(−1)∧(sum(1 : (n/2))+ sum(B(i, [1 : (n/2)])))
∗det((A([1 : (n/2)], [B(i, [1 : (n/2)])])));

There are several methods to
calculate square determinants with

different time complexity,
however we will be based

on LU factorization method [16]:
T6 = (n

2)
3

C
(n

n/2

)

else

d1 = det Comb(A(1 : n/2−1,1 : n−1));
d2 = det Comb(A(1 : n/2−1,2 : n]));
d3 = det Comb(A(2 : n/2,1 : n−1));
d4 = det Comb(A(2 : n/2,2 : n]));

T7−1(n/2,n) = 4 ·T7−1(n/2−1,n−1)+1,
T7−1(n/2−1,n−1) = 4 ·T7−1(n/2−1−1,n−1−1)+1

= 4 ·T7−1(n/2−2,n−2)+1,
T7−1(n/2,n) = 4 · (4 ·T7−1(n/2−2,n−2))+1+1

= 42 ·T7−1(n/2−2.n−2)+2,
for any k, we have:

T7−1(n/2,n) = 4k ·T7−1(n/2− k,n− k)+ k,
for n/2− k = 2 ⇒ k = n/2−2,

T7−1(n/2,n) = 4n/2−2 ·T7−1(2,n−n/2+2)+n/2−2
= 4n/2−2 ·T7−1(2,n/2+2)+n/2−2.

Based on first condition:
T7−1(2,n/2+2) =C

(n/2+2
2

)
·23 = (n/2+2)·(m/2+1)

2 ·23

= 4 · (n/2+2) · (n/2+1).
T7−1(n/2,n) = 4n/2−2 ·4 · (n/2+2) · (n/2+1)+n/2−2

≈ 4n/2−1 · (n/2+2) · (n/2+1).

244 IJCA, Vol. 29, No. 4, Dec. 2022

d1 = det Comb(A(1 : n/2−1,1 : n−1));
d2 = det Comb(A(1 : n/2−1,2 : n]));
d3 = det Comb(A(2 : n/2,1 : n−1));
d4 = det Comb(A(2 : n/2,2 : n]));

T7−1(n/2,n) = 4 ·T7−1(n/2−1,n−1)+1,
T7−1(n/2−1,n−1) = 4 ·T7−1(n/2−1−1,n−1−1)+1

= 4 ·T7−1(n/2−2,n−2)+1,
T7−1(n/2,n) = 4 · (4 ·T7−1(n/2−2,n−2))+1+1

= 42 ·T7−1(n/2−2.n−2)+2,
for any k, we have:

T7−1(n/2,n) = 4k ·T7−1(n/2− k,n− k)+ k,
for n/2− k = 2 ⇒ k = n/2−2,

T7−1(n/2,n) = 4n/2−2 ·T7−1(2,n−n/2+2)+n/2−2
= 4n/2−2 ·T7−1(2,n/2+2)+n/2−2.

Based on first condition:
T7−1(2,n/2+2) =C

(n/2+2
2

)
·23 = (n/2+2)·(m/2+1)

2 ·23

= 4 · (n/2+2) · (n/2+1).
T7−1(n/2,n) = 4n/2−2 ·4 · (n/2+2) · (n/2+1)+n/2−2

≈ 4n/2−1 · (n/2+2) · (n/2+1).

d5 = det Comb(A(2 : n/2−1,1 : n));

T7−2(n/2,n) = T7−2(n/2−1,n)+1,
T7−2(n/2−1,n) = T7−2(n/2−1−1,n)+1 = T7−2n/2−2,n)+1,

T7−2(n/2,n) = T7−2(n/2−2,n)+1+1 = T7−2(n/2−2,n)+2,
for any k, we have:

T7−2(n/2,n) = t7−2(2,n/2−2)+n/2−2.
Based on first condition:

T7−2(2,n/2−2) =C
(n/2−2

2

)
·23 = (n/2−2)·(n/2−3)

2 ·23

= 4 · (n/2−2) · (n/2−3).
T7−2(n/2,n) = 4 · (n/2−2) · (n/2−3)+n/2−2

≈ 4 · (n/2−2) · (n/2−3).

d6 = det Comb(A(1 : n/2,2 : n−1));

T7−3(n/2,n) = T7−3(n/2,n−1)+1,
T7−3(n/2,n−1) = T7−3(n/2,n−1−1)+1 = T7−3(n/2,n−2)+1,

T7−3(n/2,n) = T7−3(n/2,n−2+1+1 = T7−3(n/2,n−2)+2,
for any k, we have:

T7−3(n/2,n) = T7−3(n/2,n− k)+ k,
for n− k = n/2+1 ⇒ k = n−n/2−1 = n/2−1,
T7−3(n/2,n) = T7−3(n/2,n−n/2+1)+n/2−1

= T7−3(n/2,n/2+1)+n/2−1.
Based on first condition:

T7−3(n/2,n/2+1) =C
(n/2+1

n/2

)
· (n/2)3 = (n/2+1) · (n/2)3

= (n/2)4 +(n/2)3.
T7−3(n/2,n) = (n/2)4 +(n/3)3 +n/2−1 ≈ (n/2)4.

d7 = det Comb(A(2 : n/2−1,2 : n−1));

T7−4(n/2,n) = T7−4(n/2−2,n−2)+1,
T7−4(n/2−2,n−2) = T7−4(n/2−2−2,n−2−2)+1

= T7−4(n/2−4,n−4)+1,
T7−4(n/2,n) = T7−4(n/2−4,n−4)+2,

for any k, we have:
T7−4(n/2,n) = T7−4(n/2− k,n− k)+ k/2,

for n/2− k = 2 ⇒ k = n/2−2,
T7−4(n/2,n) = T7−4(2,n/2+2)n/4−2.

Based on first condition:
T7−4(2,n/2+2) =C

(n/2+2
2

)
·23 = (n/2+2)·(n/2+1)

2 ·23

= 4 · (n/2+2) · (n/2+2).
T7−4(n/2,n) = 4 · (n/2+2) · (n/2+1)+n/4−2

≈ 4 · (n/2+2) · (n/2+1).
T7 = T7−1 +T7−2 +T7−3 +T7−4 = 4n/2−1 · (n/2+2) · (n/2+1)+

4 · (n/2−2) · (n/2−3)+(n/2)4 +4 · (n/2+2) · (n/2+1)≈ 4n/2−1 · (n/2+2) · (n/2+1).
1

d = (d1∗d4−d2∗d3+d5∗d6)/d7; T8 = const8 1

IJCA, Vol. 29, No. 4, Dec. 2022 245

Based on Table 5, we have:

Total Cost = 1 ·T1 +Max(1 ·T2,1 ·T3,1 ·T4,1 ·T5,C
(

n
n/2

)
·T6,1 ·T7)+1 ·T8 = 1 ·Const1 +Max(1 ·n3,1 ·n3,1 ·n3,

1 ·Const5+C
(

n
n/2

)
·(n

2
)3,1 ·4n/2−1 ·(n/2+2) ·(n/2+1))+1)

+1 ·Const8

.
Hence, the highest order is C

(n
n/2

)
· (n

2)
3. After eliminating

constants and other lower grades, we can summarize the worst-
case asymptotic time complexity as O(n!

((n/2)!)2 · (n/2)3).

While the best-case is O(n3), for m = 3, calculated as
follows:

For Cullis/Radic we have:

Total Cost = 1 ·T1 +1 ·T2 +1 ·T3 +Max(1 ·T4,C
(

n
n/2

)
·T5)

= 1 ·Const1 +1 ·Const2 +1 ·Const3 +Max(1 ·n3,C
(

n
3

)
·33)

.
While,

Max(1 ·n3,C
(

n
3

)
·33) = Max(1 ·n3,

n!
3! · (n−3)!

·33)

= Max(1 ·n3,
n · (n−1) · (n−2) · (n−3)!

3! · (n−3)!
·33)

Since the n3 is the highest order, the asymptotic time
complexity is O(n3).

For generalized/modifed Dodgson’s method, we have:

Total Cost = 1 ·T1 +Max(1 ·T2,1 ·T3,1 ·T4,1 ·T5)+1 ·T6

= 1 ·Const1 +Max(1 ·n3,1 ·n3,1 ·n3,1 ·43−1 · (n−3+2)

·(n−3+1))+1 ·Const6

.
Also, in this case since the n3 is the highest order, the

asymptotic time complexity is O(n3).

3 Conclusions

In this paper we have analyzed the asymptotic time
complexity of algorithms based on Cullis/Radic definition and
generalized/modified Dodgson’s Condensation method/s for
rectangular determinant calculations. From the calculations
we noted that the asymptotic time complexity for Cullis/Radic
definition is O(C

(n
m

)
·m3), while for the generalized/modified

Dodgson’s Condensation method/s the asymptotic time
complexity is O(22m · (n−m)2).

Further we have analyzed which complexity grows faster
and tested for rectangular determinant of order for 50 ≤ n ≤ 54,
and 3≤m≤ 28, and from analysis it is noted that the break point
is on about half of number of columns compared to number of
rows. In cases where the number of columns is less than the
half of the number of rows, then the Dodgson’s Condensation
method/s are growing slower than the Cullis/Radic definition,
otherwise the Cullis/Radic definition is growing slower. From
this analysis we have proposed a combined algorithm where
it calculates determinants with Cullis/Radic definition in cases
where the number of columns is higher than the half of
number of rows and calculates determinants with Dodgson’s
Condensation method/s in cases where the number of columns
is lower than the half of number of rows.

From where we calculated the worst-case asymptotic
time complexity as O(n!

((n/2)!)2 · (n/2)3), while the best-case
asymptotic time complexity is when the m = 3, and it is
calculated as O(n3).

References

[1] A. Amiri, M. Fathy, and M. Bayat. ”Generalization of
Some Determinantial Identities for Non-Square Matrices
Based on Radic’s Definition.” TWMS Journal of Pure and
Applied Mathematics, 1(2):163-175, 2010.

[2] M. Bayat, ”A Bijective Proof of Generalized
Cauchy–Binet, Laplace, Sylvester and Dodgson
Formulas.” Linear and Multilinear Algebra, 2020.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, R. L., and
C. Stein, Introduction to Algorithms 4th Edition. The MIT
Press Cambridge, Massachuestts London, England, 2022.

[4] C. E. Cullis, Matrices and Determinoids. Cambridge:
University Press, 1913.

[5] A. Makarewicz and P. Pikuta, ”Cullis–Radic Determinant
of a Rectangular Matrix Which Has a Number of
Identical Columns.” Annales Universitatis Mariae Curie-
Sklodowska, 74(2):41-60, 2020.

[6] A. Makarewicz, P. Pikuta, and D. Szalkowski, ”Properties
of the Ddeterminant of a Rectangular Matrix.” Annales
Universitatis Mariae Curie-Sklodowska, 68(1):31-41,
2014.

[7] R. E. Neaplitan, Foundations of Algorithms. Cambridge:
Jones and Bartlett Learning, 2015.

[8] M. Radic, ”Definition of Determinant of Rectangular
Matrix.” Glasnik Matematicki, pp. 17-22, 1966.

[9] K. H. Rosen, Discrete Mathematics and Its Applications
8th Edition. New York: McGraw-Hill Education, 2019.

[10] A. Salihu, H. Snopce, J. Ajdari, and A. Luma,
”Generalization of Dodgson’s Condensation Method for
Calculating Determinant of Rectangular Matrices.” 2nd
IEEE International Conference on Electrical, Computer
and Energy Technologies (ICECET), Prague, 2022.

246 IJCA, Vol. 29, No. 4, Dec. 2022

[11] A. Salihu and F. Marevci, ”Chio’s-like Method for
Calculating the Rectangular (Non-Square) Determinants:
Computer Algorithm Interpretation and Comparison.”
European Journal of Pure and Applied Mathematics,
14(2):431-450, 2021.

[12] S. S. Skiena, The Algorithm Design Manual. London:
Springer-Verlag London Limited, 2008.

[13] P. Stanimirovic and M. Stankovic, ”Determinants of
Rectangular Matrices and the Moore-Penrose Inverse.”
Novi Sad J Math., 27(1):53-69, 1997.

[14] M. Stojakovic, ”Determinante Nekvadratnih Matrica.”
Vesnik DMNRS, 1952.

[15] A. P. Sudhir, ”Generalisations of the Determinant
to Interdimensional Transformations: A Review.”
arXiv:1904.08097v1, 2019

[16] W. Xingbo and X. Yaoqi, ”How Difficult To Compute
Coefficients of Characteristic Polynomial?” International
Journal of Research Studies in Computer Science and
Engineering (IJRSCSE),, 3(1):7-12, 2016.

Armend Salihu is a PhD Candidate at
the South East European University,
Faculty of Contemporary Sciences.
In 2009 he has received bachelor
degree at the University of Prishtina,
Faculty of Electrical and Computer
Engineering, while in 2017 he
received master degree in the field

of computer Science from the University for Business and
Technology, Faculty of Computer Sciences and Engineering.
Currently he is engaged as teaching assistant at the University
of Prishtina, Faculty of Mathematics and Natural Sciences.

Halil Snopce is a full professor at the
South East European University. He
has been graduated in Mathematics
in 1997 at the University of ”St.
Cyril and Methodius”, Faculty of
Natural and Mathematical Sciences.
In 2007 he received master degree
in Mathematics at the University of

Tirana, Faculty of Natural and Mathematical Sciences, with the
main topics in numerical analysis. In 2011 he has received his
PhD in Computer Science and Applied Mathematics in the CST-
Faculty at the South East European University. His speciality is
parallel processing.

Artan Luma is a full professor at
the South East European University.
He has been graduated as Engineer
of Informatics in Computer Science
at the State University of Tetovo
in 1997. He received Master of
Electrical Engineering Science at the
University of Prishtina, Faculty of

Electrical and Computer Engineering in 2007. In 2011
he received PhD in Computer Science at the South East
European University, Faculty of Contemporary Sciences and
Technologies. His speciality is cryptography.

Jaumin Ajdari is a full professor at
the South East European University.
He has been graduated as Engineer
in Applied Mathematics, as well
as Master in Mathematics at the
University of Zagreb, Faculty of
Natural Science and Mathematics. He
also received Master of Science in

Mathematics at the University of Tirana, Faculty of Natural
Sciences, Department of Numerical Mathematic and Parallel
processing in 2006. In 2011 he has received his PhD in
Mathematical Sciences at the University of Tirana, Faculty of
Natural Sciences. His speciality is parallel processing.

	Final Dec IJCA Journal Issue
	International Society for Computers
	Guest Editor’s Editorial . 213
	CTChain: Blockchain Platform for Contact Tracing and Mapping Active Infections . . . 215
	Blake Bleem, Vishwanath Varma Indukuri, Reshmi Mitra, and Indranil Roy
	Rania Shaqbou’a, Nedal Tahat, O. Y. Ababneh, and Obaida M. lAl-Hazaimeh
	Armend Salihu, Halil Snopce, Artan Luma, and Jaumin Ajdari
	Delphi Hanggoro, Jauzak Hussaini Windiatmaja, and Riri Fitri Sari

	An Efficient Maximal Free Submesh Detection Scheme for Space-Multiplexing in 2D Mesh-Connected Manycore Computers . 257
	Ismail Ababneh and Saad Bani-Mohammad
	The Combination of Ontology-Driven Conceptual Modeling and Ontology Matching for Building Domain Ontologies: E-Government Case Study . 269
	Shaimaa Haridy, Rasha M. Ismail, Nagwa Badr, and Mohamed :Hashem

	Index . 283

	EditorialBoardforfront inside coverDecember2022
	IJCA-editarial-Dec2022-WF(1)
	1 ISCA__CTChain-1
	2 Shagbou, Tahat, Abbnak, Al-Hazimet IJCA Dec 2022
	3 Salihu IJCA Dec 2022
	4 ISCA_Rev _VI Delphi Hanggoro
	5 Abaneh Bani-Mohammad Dec 2022 IJCTA
	1 Introduction
	2 Preliminaries
	3.1 Busy-List with Global Adjacency (BLGA)
	3.2 Free-List with First-Fit Adjacency (FLFFA)
	3.3 Reservation Best-Fit (RBF)
	3.4 Right Border Line (RBL)

	4 Proposed Submesh Detection Scheme
	4.1 Detection of Maximal Free Submeshes upon De-allocation
	4.2 Detection of Maximal Free Submeshes upon Allocation

	5 Simulation Results
	6 Conclusions

	6 Haridy Ismail Badr Hashem
	Key Words: Artificial intelligence, digital government (e-government), ontology-driven conceptual modeling, ontology engineering, ontology enrichment, ontology matching, OntoUML, semantic web.
	1 Introduction
	2 Related work
	2.1 Ontology-Driven Conceptual Modeling
	A. 2.2 Ontology Matching
	2.3 E-Government

	3 Proposed Architecture
	3.1 Requirement Specification Module
	3.2 Ontology Development Module
	3.2.1 Specification
	3.2.2 Conceptualization. A model of the relevant domain knowledge is built in this step. This model can take any shape that domain experts accept and understand [15]. The proposed conceptual model is implemented using OLED [19], which is a model-ba...
	3.2.3 Formalization. The aim of this activity is to output a model in an implementation language. Therefore, the preceding activity’s well-founded conceptual model is transformed into a formal model using OLED code generation feature. As a result, ...
	Individuals are defined to classes such as Ministry, Company, Authority, Office, Organization, Governorate and Request.
	3.2.5 Maintenance. This activity involves making any necessary updates or corrections to the ontology.

	3.3 Ontology Enrichment Module
	3.3.1 Ontology Matching. This activity identifies correspondences between proposed ontology’s entities and those in already existing domain ontologies. This can be accomplished by using one of the available matchers. AML [32] is one of the most eff...
	3.3.2 Ontology Selection. Based on the mappings produced by the previous activity, the most pertinent domain ontology is selected. one with the greatest number of mappings to the proposed ontology (EGYGOV). It is O18 as shown in Table 3.
	3.3.3 Classes and Relations Extraction. The aim of this activity is to extract the list of classes and relations that will be injected later in the proposed ontology. To do this, there are two key steps: first, find the classes that exist in the mapp...
	3.3.4 Ontology Enrichment. This activity is the last step in the enriching process in which classes and relationships are inserted into the proposed ontology. To eliminate duplications or inappropriate insertions, the extracted list must first under...

	3.4 Ontology Quality Assessment Module.
	In this module, the proposed ontology is evaluated. This assessment process is applied twice, once following the development module and once following the enrichment module. The ontology’s quality can be assessed in multiple ways. In this case stud...
	Table 2: AML matcher results – lexicon and relationship map

	4 Experimental Results
	4.1 Overall Metrics
	4.2 Accuracy
	4.3 Understandability
	4.4 Cohesion
	4.5 Conciseness

	5 Conclusion And Future Work
	References

	Index templet for Dec
	B
	K-L
	P-Q
	T-V
	Access patterns
	Amazon web services
	Analytics
	Approximate query processing
	Artificial intelligence
	Aura
	AWS
	Blockchain
	Bootstrap sampling
	Casual regularity
	Chaining
	Chaotic maps
	Chinese
	Client-server
	Clique
	Cloud management
	IJCA v29 no3 Sept 2022 181-189
	Commutativity
	Constructive deep learning
	Contact tracing
	Contiguous submesh allocation
	Controller
	Crypto-system
	CT scan
	Data

	IJCA v29 no1 March 2022 27-37
	Data mining
	Diagnosis systems

	Digital signature
	Digital simulation
	Document processing
	Dodgson’s method
	Edge

	End user development
	Entropy analysis

	Error estimation
	ETL (extract, transform, load)
	Execution time
	Feedback
	Gradient boosting regressor
	Gesture recognition
	Hash chaining
	Human-robot interaction
	IJCA v29 no2 June 2022 97-110
	I-J

	Image classification
	IJCA v29 no3 Sept 2022 181-189
	Industrial control systems security
	Infection containment
	IJCA v29 no4 Dec 2022 215-228
	INUS condition

	Interaction interface
	iOS framework
	Japanese

	kanji
	Knowledge representation
	Linear time-varying (LTV)
	Lock-chain
	Logical model
	Low power electronics
	Machine learning
	Manycore systems
	Maximal free submesh
	Mesh interconnection network
	Monetization
	Multimodal inputs
	Natural language processing
	Network design

	Non-parametric method
	Ontology-driven conceptual modeling
	Ontology engineering
	IJCA v29 no4 Dec 2022 269-282
	Ontology enrichment
	Ontology matching
	OntoUML
	OOPS!
	Observer
	PaaS
	Platooning
	Pivotal condensation
	Programming bugs
	Proof-of-authority
	Quadratic residue problem
	Ranking
	Rectangular determinants
	Robotics
	S

	SaaS
	Security
	Space-sharing (space-multiplexing)
	Semantic
	Semantic web
	Surveillance
	Symbol
	Systemd-nspawn
	Tamper evident
	Time complexity
	Tracking
	Veteran services
	Virtual reality
	Web application
	Wireless sensor network

	Journal Submission Instructions2022
	Journal Submission

	IJCA Jrnl back outside cover Dec 2022

