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Abstract

In this paper we present an analysis of the time complexity
of algorithms based on Cullis/Radic Definition and Dodgson’s
Generalized/Modified Method for calculating rectangular/non-
square determinants. We have identified the asymptotic time
complexity of these algorithms, and that both algorithms have
their advantages in relation to time complexity. From the
time complexity analysis, we observed that the Cullis/Radic
definition has an asymptotic time complexity of O(C

(m
n

)
·

m3), while Dodgson’s Generalized/Modified Method has an
asymptotic time complexity of O(22m · (n−m)2). Further, we
noticed that in cases where the number of rows is less than
or equal to half the number of columns, it is more appropriate
to use the algorithm based on Dodgson’s Generalized/Modified
Method, while in cases where the number of rows is greater
than half the number of columns, then Cullis/Radic Definition
based algorithm is more suitable to use. Based on this analysis,
we have also presented an algorithm which is a combination
of these two algorithms and depending on the ratio between
the number of rows and columns the rectangular determinant
is calculated with the most appropriate method, for which
we calculated the worst-case asymptotic time complexity as
O( n!

((n/2)!)2 · n
2

3) while the best-case asymptotic time complexity

is calculated as O(n3)
Key Words: Rectangular determinants; time complexity;

Dodgson’s method; pivotal condensation; execution time.

1 Cullis/Radic and Generalized/Modified Dodgson’s
Method for Rectangular Determinants Calculation

The following presents the determinant calculation method
based on the Cullis/Radic definition:

Theorem 1. Let A be m×n a rectangular matrix:

Am×n =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 . (1)

Its determinant, where m ≤ n is the sum (See: [4] [8]):
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det(Am×n) = |Am×n|=

∣∣∣∣∣∣∣∣∣
a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣

= ∑
1< j1<···< jm<n

(−1)r+s

∣∣∣∣∣∣∣∣∣
a1 j1 a1 j2 · · · a1 jn
a2 j1 a2 j2 · · · a2 jn

...
...

. . .
...

am j1 am j2 · · · am jn

∣∣∣∣∣∣∣∣∣ . (2)

where r = 1+ · · ·+m,s = j1 + · · ·+ jm.

Proof. See definition 1 in [8].

The following the pseudocode of the algorithm based on
the above-mentioned method for calculating determinant of
rectangular matrices.

P 1: Algorithm (det A) based on Cullis-Radic method to
calculate rectangular determinants

Step 1: Identify all combinations for determining m×m square
determinants from columns combinations:

if m = n
Calculate square determinant with known methods.

else

B = nchoosek(1 : n,m);

Step 2: Identify all square determinants from the combination
of columns:

Create loop from 1 to total number of combinations (length
of vector B)

D{i}= A(1 : m,B(i,1 : m)));

Step 3: Calculate determinants of square blocks from D
Create loop from 1 to total number of combinations (length

of vector B)

d = d +(−1)∧(sum(1 : m)+ sum(B(i,1 :
m)))∗SquareDet(D{i});

Step 4: Display the result of the determinant
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Theorem 2. (Generalized Dodgson’s formula) [2] Let A be
m× n a rectangular matrix. Then for p = min(m,n) ≥ 2, we
have:

det
(

A 1≤i≤m
1≤ j≤n

)
·det

(
A i̸=m−1,m

j ̸=n−1,n

)
=

det
(ε, p−1)

(
A 1≤i<m

1≤ j<n

)
· det
(ε, p−1)

(
A 1<i≤m

1< j≤n

)
(3)

− det
(ε, p−1)

(
A 1≤i<m

1< j≤n

)
· det
(ε, p−1)

(
A 1<i≤m

1≤ j<n

)
+

det
(ε, p)

(
A 1≤i≤m

1< j<n

)
· det
(ε, p−2)

(
A 1<i<m

1≤ j≤n

)

Proof. See theorem 5.1 in [2].

In the following, we have developed the computer algorithm
(det Dodgson) for theorem 1.

Since this method is applied for m ≥ 3, and m ≤ n − 2,
m-number of rows, n-number of columns of the matrix. The
following is presented on the pseudocode of theorem 1.

P 2: Algorithm (det Dodgson) for generalized Dodgson
method to calculate rectangular determinants

Step 1: Checking for conditions:
if m < 3 or m = n−1

Calculate rectangular determinant with known methods,
like Laplace, Radic, Chios-like, etc.

else if m = n
Calculate square determinant with known methods.

else
Step 2: Calculate submatrices:

Calculate submatrices presented on theorem 1, calling
det Dodgson algorithm until the conditions of step 1 are met,
as following:

d1 = det Dodgson(A(1 : m−1,1 : n−1));
d2 = det Dodgson(A(1 : m−1,2 : n));
d3 = det Dodgson(A(2 : m,1 : n−1));

d4 = det Dodgson(A(2 : m,2 : n));
d5 = det Dodgson(A(2 : m−1,1 : n));
d6 = det Dodgson(A(1 : m,2 : n−1));

d7 = det Dodgson(A(2 : m−1,2 : n−1));

Step 3: After calculating submatrices, calculate the result of the
determinant as following:

d = (d1∗d4−d2∗d3+d5∗d6)/d7;

Recently, in 2022 we identified 9 different cases of
Dodgson’s generalization formula for rectangular determinant
calculation, which is provided in theorem 3.

Theorem 3. [10] The pivot block det
(ε,p−1)

(
A 1<i<m

1< j<n

)
of

Bayat’s formula can be any block of order (m − 2)× (n− 2)
from the given determinant, and the following cases are:

Case 1: Pivot block is: det
(ε,p−1)

(
A 1≤i≤m−2

1≤ j≤n−2

)
Case 2: Pivot block is: det

(ε,p−1)

(
A 1≤i≤m−2

2≤ j≤n−1

)
Case 3: Pivot block is: det

(ε,p−1)

(
A 1≤i≤m−2

3≤ j≤n

)
Case 4: Pivot block is: det

(ε,p−1)

(
A 2≤i≤m−1

1≤ j≤n−2

)
Case 5: Pivot block is: det

(ε,p−1)

(
A 2≤i≤m−1

2≤ j≤n−1

)
Case 6: Pivot block is: det

(ε,p−1)

(
A 2≤i≤m−1

3≤ j≤n

)
Case 7: Pivot block is: det

(ε,p−1)

(
A 3≤i≤m

1≤ j≤n−2

)
Case 8: Pivot block is: det

(ε,p−1)

(
A 3≤i≤m

2≤ j≤n−1

)
Case 9: Pivot block is: det

(ε,p−1)

(
A 3≤i≤m

3≤ j≤n

)
Proof. See theorem 3 in [10].

The pseudocode of each case from theorem 2 is like
pseudocode presented in P 2, and changes in steps 2 for each
case. For example, the pseudocode for case 1 is changed as
following:

P 3: Modified algorithm (det Blocks) based on theorem 2 (as
example is considered case 1)

Step 1: Checking for conditions:
if m < 3 or m = n−1

Calculate rectangular determinant with known methods,
like Laplace, Radic, Chios-like, etc.

else if m = n
Calculate square determinant with known methods.

else
Step 2: Calculate submatrices:

Calculate submatrices presented on theorem 1, calling
det Dodgson algorithm until the conditions of step 1 are met:

d1 = det Blocks(A(1 : m−1,1 : n−1));
d2 = det Blocks(A(1 : m−1, [1 : n−2 n]));
d3 = det Blocks(A([1 : m−2 m],1 : n−1));

d4 = det Blocks(A([1 : m−2 m], [1 : n−2 n]));
d5 = det Blocks(A(1 : m−2,1 : n));
d6 = det Blocks(A(1 : m,1 : n−2));

d7 = det Blocks(A(1 : m−2,1 : n−2));

Step 3: After calculating submatrices, calculate the result of the
determinant as following:
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d = (d1∗d4−d2∗d3+d5∗d6)/d7;

The pseudocode presented in P 3 represents case 1 of
theorem 2. However, the same algorithm can be used for each
case of theorem 2, with changes in step 2 while selecting pivot
block and reflecting that pivot block in each submatrix.

The above-mentioned theorem and pseudocode, has its
advantage in cases of matrices with several zero elements. We
have developed the algorithm that finds pivot block with highest
number of zero elements, which is presented in pseudocode P 4
[10].

P 4: Find the block of order (m − 2)× (n − 2) with highest
number of zero elements

Step 1: Insert the rectangular determinant A
Step 2: Calculate number of nonzero elements for each
row/column

Initialize R for rows and C for columns
Create loop for i from 1 to m

Create loop for j from 1 to n
if A(i, j) ̸= 0

R(i) = R(i)+1;

C(i) =C(i)+1;

Step 3: Find the best case with the highest number of zero
elements

Initialize first case: k = 1
if C(2)+C(n−1)<C(1)+C(n)

k = 2;

else if C(1)+C(2)<C(n−1)+C(n)

k = 3;

if R(2)+R(m−1)< R(1)+R(m)

k = k+3;

else if R(1)+R(2)> R(m−1)+R(m)

k = k+6;

Step 4: Return best case

2 Time Complexity Analysis

In the following we present the time complexity analysis of
the above-mentioned algorithms [7] [12] [9] [3].

Time complexity analysis of function (det A) of algorithm
P 1, based on Cullis-Radic method, is presented in Table 1.

Table 1: Time complexity of det A function
Function: det A Cost time

[m,n] = size(A); T1 = const1 1
d = 0; T2 = const2 1
if m == n

d = det(A); T3 = n3 1

else B = nchoosek(1 : n,m); T4 = const4 1
for i = 1 : length(B)

d=d+ (-1)ˆ(sum(1:m)
+sum(B(i,[1:m])))
*det(( A([1:m],[
B(i,[1:m])])));

end

There are several methods to calculate square determinants with different
time complexity, however we will be based on LU factorization method [16]:

T4 = m3
C
(n

m

)

Based on Table 1, we have:

Total Cost = 1 ·T1 +1 ·T2 +1 ·T3 +Max(1 ·T4,C
(

n
m

)
·T4)

= 1 · const1 +1 · const2 +1 · const3 +Max(1 ·n3,C
(

n
m

)
·m3).

Hence, the highest order is C
(n

m

)
· m3. After eliminating

constants, the asymptotic time complexity is O(C
(n

m

)
·m3).

Time complexity analysis of function (det Dodgson) of
algorithm P 2, based on Dodgson’s generalized method
provided by Bayat, is presented in Table 2.
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Table 2: Time complexity of det Dodgson function
Function: det Dodgson Cost Times
[m,n] = size(A); T1 = const1 1
if m==n

d=det(A); T2 = n3 1

if m==n-1
d = det Ones(A);

Based on Algorithm 2.2 (See [11]), transforms
determinant of order (n−1)×n to n×n

by adding one row of elements equal to 1.
Square determinant’s time complexity is T3 = O(n3).

1

else if m < 3
d = det A(A);

As it is calculated the det A time complexity is:
T4(3,n) =C

(n
3

)
·33 = n·(n−1)·(n−2)·(n−3)!

3!·(n−3)! ·33

= n · (n−1) · (n−2) ·4.5 ≈ n3.
1

else

d1 = det Dodgson(A(1 : m−1,1 : n−1));
d2 = det Dodgson(A(1 : m−1,2 : n]));
d3 = det Dodgson(A(2 : m,1 : n−1));
d4 = det Dodgson(A(2 : m,2 : n]));

T5−1(m,n) = 4 ·T5−1(m−1,n−1)+1,
T5−1(m−1,n−1) = 4 ·T5−1(m−1−1,n−1−1)+1

= 4 ·T5−1(m−2,n−2)+1,
T5−1(m,n) = 4 · (4 · (T5−1(m−2,n−2))+1+1

= 42 ·T5−1(m−2,n−2)+2
for any k, we have:

T5−1(m,n) = 4k ·T5−1(m− k,n− k)+ k,
for m− k = 2 ⇒ k = m−2,

T5−1(m,n) = 4m−2 ·T5−1(1,n−m+2)+m−2
Based on the first condition:

T5−1(2,n−m+2 =C
(n−m+2

2

)
·23

(n−m+2)·(n−m+1)
2 ·23 = 4 · (n−m+2) · (n−m+1).

T5−1(m,n) = 4m−2 ·4 · (n−m+2) · (n−m+1)+m−2
≈ 4m−1 · (n−m+2) · (n−m+1).

d5 = det Dodgson(A(2 : m−1,1 : n));

T5−2(m,n) = T 5−2(m−1,n−1)+1,
T5−2(m−1.n−1) = T5−2(m−1−1,n−1−1)+1

= T5−2(m−2,n−2)+1,
T5−2(m,n) = T5−2(m−2,n−2)+1+1 = T5−2(m−2,n−2+2,

for any k, we have:
T5−2(m,n) = T5−2(m− k,n− k)+ k,

for m− k = 2 ⇒ k = m−2,
T5−2(m,n) = T5−2(2,n−m−+2)+m−2.

Based on first condition:
T5−2(2,n−m+2) =C

(n−m+2
2

)
·23 = (n−m+2)·(n−m+1)

2 ·23

= 4 · (n−m+1) · (n−m+1).
T5−2(m,n) = 4 · (n−m+2) · (n−m+1)+m−2

≈ 4 · (n−m+2) · (n−m+1).

d6 = det Dodgson(A(1 : m,2 : n−1));

T5−3(m,n) = T5−3(m,n−1)+1,
T5−3(m,n−1) = T5−3(m,n−1−1)+1 = T5−3(m,n−2)+1,

T5−3(m,n) = T5−3(m,n−2)+1+1 = T5−3(m,n−2)+2,
for any k, we have:

T5−3(m,n) = T5−3(m,n− k)+ k,
for n− k = m+1 ⇒ k = n−m−1,

T5−3(m,n) = T5−3(m,n−n+m+1)+n−m−1
= T5−3(m,m+1)+n−m−1.

Based on first condition:
T5−3(m,m+1) =C

(m+1
m

)
·m3 = (m+1) ·m3 = m4 +m3.

T5−3(m,n) = m4 +m3 +n−m−1 ≈ m4.
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d7 = det Dodgson(A(2 : m−1,2 : n−1));

T5−4(m,n) = T5−4(m−2,n−2)+1,
T5−4(m−2,n−2) = T5−4(m−2−2,n−2−2)+1

= T5−4(m−4,n−4)+1
T5−4(m,n) = T5−4(m−4,n−4)+1+1 = T5−4(m−4,n−4)+2,

for any k, we have:
T5−4(m,n) = T5−4(m− k,n− k) = k

2 ,
for m− k = 2 ⇒ k = m−2,

T(m,n) = T5−4(2,n−m+2)+ m
2 −2.

Based on first condition:
T5−4(2,n−m+2) =C

(n−m+2
2

)
·23 = (n−m+1)·(n−m+1)

2 ·23

= 4 · (n−m+2) · (n−m+1).
T5−4(m,n) = 4 · (n−m+2) · (n−m+1)+ m

2 −2
≈ 4 · (n−m+2) · (n−m+1).

T5 = T5−1 +T5−2 +T5−3 +T5−4 = 4m−1 · (n−m+2) · (n−m+1)+4 · (n−m+2) · (n−m+1)+m4 +4
·(n−m+2) · (n−m+1 ≈ 4m−1 · (n−m+2) · (n−m+1).

1

d = (d1∗d4−d2∗d3+d5∗d6)/d7; T6 = const6 1

Based on Table 2, we have:

Total Cost = 1 ·T1 +Max(1 ·T2,1 ·T3,1 ·T4,1 ·T5)+1 ·T6

= 1 ·Const1 +Max(1 ·n3,1 ·n3,1 ·n3,1 ·4m−1

·(n−m+2) · (n−m+1))+1 ·Const6.

Hence, the highest order is 4m−1 · (n−m+ 2) · (n−m+ 1).
After eliminating constants and other lower grades, we can
summarize the asymptotic time complexity as O(22m · (n −
m)2).

Time complexity analysis of function (det Blocks) of
algorithm P 3, based on modified Dodgson’s generalized
method, is presented in Table 3.

Table 3: Time complexity of det Blocks function

Function: det Blocks Cost Times
[m,n] = size(A); T1 = const1 1
if m==n

d=det(A); T2 = n3 1

if m==n-1
d = det Ones(A);

Based on Algorithm 2.2 (See [11]), transforms
determinant of order (n−1)×n to n×n

by adding one row of elements equal to 1.
Square determinant’s time complexity is T3 = O(n3).

1

else if m < 3
d = det A(A);

As it is calculated the det A time complexity is:
T4(3,n) =C

(n
3

)
·33 = n·(n−1)·(n−2)·(n−3)!

3!·(n−3)! ·33

= n · (n−1) · (n−2) ·4.5 ≈ n3.
1

else

d1 = det Blocks(A(1 : m−1,1 : n−1));
d2 = det Blocks(A(1 : m−1,2 : n]));
d3 = det Blocks(A(2 : m,1 : n−1));
d4 = det Blocks(A(2 : m,2 : n]));

T5−1(m,n) = 4 ·T5−1(m−1,n−1)+1,
T5−1(m−1,n−1) = 4 ·T5−1(m−1−1,n−1−1)+1

= 4 ·T5−1(m−2,n−2)+1,
T5−1(m,n) = 4 · (4 · (T5−1(m−2,n−2))+1+1

= 42 ·T5−1(m−2,n−2)+2
for any k, we have:

T5−1(m,n) = 4k ·T5−1(m− k,n− k)+ k,
for m− k = 2 ⇒ k = m−2,

T5−1(m,n) = 4m−2 ·T5−1(1,n−m+2)+m−2
Based on the first condition:

T5−1(2,n−m+2 =C
(n−m+2

2

)
·23

(n−m+2)·(n−m+1)
2 ·23 = 4 · (n−m+2) · (n−m+1).

T5−1(m,n) = 4m−2 ·4 · (n−m+2) · (n−m+1)+m−2
≈ 4m−1 · (n−m+2) · (n−m+1).
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d5 = det Blocks(A(2 : m−1,1 : n));

T5−2(m,n) = T 5−2(m−1,n−1)+1,
T5−2(m−1.n−1) = T5−2(m−1−1,n−1−1)+1

= T5−2(m−2,n−2)+1,
T5−2(m,n) = T5−2(m−2,n−2)+1+1 = T5−2(m−2,n−2+2,

for any k, we have:
T5−2(m,n) = T5−2(m− k,n− k)+ k,

for m− k = 2 ⇒ k = m−2,
T5−2(m,n) = T5−2(2,n−m−+2)+m−2.

Based on first condition:
T5−2(2,n−m+2) =C

(n−m+2
2

)
·23 = (n−m+2)·(n−m+1)

2 ·23

= 4 · (n−m+1) · (n−m+1).
T5−2(m,n) = 4 · (n−m+2) · (n−m+1)+m−2

≈ 4 · (n−m+2) · (n−m+1).

d6 = det Blocks(A(1 : m,2 : n−1));

T5−3(m,n) = T5−3(m,n−1)+1,
T5−3(m,n−1) = T5−3(m,n−1−1)+1 = T5−3(m,n−2)+1,

T5−3(m,n) = T5−3(m,n−2)+1+1 = T5−3(m,n−2)+2,
for any k, we have:

T5−3(m,n) = T5−3(m,n− k)+ k,
for n− k = m+1 ⇒ k = n−m−1,

T5−3(m,n) = T5−3(m,n−n+m+1)+n−m−1
= T5−3(m,m+1)+n−m−1.

Based on first condition:
T5−3(m,m+1) =C

(m+1
m

)
·m3 = (m+1) ·m3 = m4 +m3.

T5−3(m,n) = m4 +m3 +n−m−1 ≈ m4.

d7 = det Blocks(A(2 : m−1,2 : n−1));

T5−4(m,n) = T5−4(m−2,n−2)+1,
T5−4(m−2,n−2) = T5−4(m−2−2,n−2−2)+1

= T5−4(m−4,n−4)+1
T5−4(m,n) = T5−4(m−4,n−4)+1+1 = T5−4(m−4,n−4)+2,

for any k, we have:
T5−4(m,n) = T5−4(m− k,n− k) = k

2 ,
for m− k = 2 ⇒ k = m−2,

T(m,n) = T5−4(2,n−m+2)+ m
2 −2.

Based on first condition:
T5−4(2,n−m+2) =C

(n−m+2
2

)
·23 = (n−m+1)·(n−m+1)

2 ·23

= 4 · (n−m+2) · (n−m+1).
T5−4(m,n) = 4 · (n−m+2) · (n−m+1)+ m

2 −2
≈ 4 · (n−m+2) · (n−m+1).

T5 = T5−1 +T5−2 +T5−3 +T5−4 = 4m−1 · (n−m+2) · (n−m+1)+4 · (n−m+2) · (n−m+1)+m4 +4
·(n−m+2) · (n−m+1 ≈ 4m−1 · (n−m+2) · (n−m+1).

1

d = (d1∗d4−d2∗d3+d5∗d6)/d7; T6 = const6 1

Based on Table 3, we have:

Total Cost = 1 ·T1 +Max(1 ·T2,1 ·T3,1 ·T4,1 ·T5)+1 ·T6

= 1 ·Const1 +Max(1 ·n3,1 ·n3,1 ·n3,1 ·4m−1 · (n−m+2)

·(n−m+1))+1 ·Const6

.

Hence, the highest order is 4m−1 · (n−m+ 2) · (n−m+ 1).
After eliminating constants and other lower grades, we can
summarize the asymptotic time complexity as O(22m · (n −
m)2).

The time complexity similarly can be concluded for each 9
cases.

Calculation of asymptotic time complexity of algorithm P 4,
which is used to identify the pivot block with highest number of
zero elements is presented on Table 4.
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Table 4: Time complexity of Most Zero Elements Block function

Function: Most Zero Elements Block Cost Time
[m,n] = size(A); T1 = const1 1
for i = 1 : m

for j = 1 : n
if A(i, j)∼= 0

B(i) = B(i)+1;
C( j) =C( j)+1;

T2(m,n) = m ·n
Due to nested loop. 1

if C(1)+C(2)<C(n−1)+C(n)
k = 1; T3 = const3 1

elseif C(2)+C(n−1)<C(1)+C(n)
k = 2; T4 = const4 1

else k = 3; T5 = const5 1
if B(2)+B(m−1)< B(1)+B(m)

k = k+3; T6 = const6 1

elseif B(1)+B(2)> B(m−1)+B(m)
k = k+6; T7 = const7 1

Based on Table 4, we have:

Total Cost = 1 ·T1 +1 ·T2 +Max(1 ·T3,1 ·T4,1 ·T5)

+Max(1 ·T6,1 ·T7) = 1 ·Const1 +1 ·m ·n+Max(1 ·Const3,
1 ·Const4,1 ·Const5)+Max(1 ·Const6 +1 ·Const7).

After eliminating constants, we get the asymptotic time
complexity of algorithm P 4 as O(m ·n).

The analysis of the growth of time complexity graphically
is presented on following graph for cases: number of columns
from 50 to 54 and number of rows from 3 to 28.

As can be seen from Figure 1, the break point is on about
half of number of columns.

Figure 1: Comparison of growth of complexity depending on
the number of rows, 50 ≤ n ≤ 54, and 3 ≤ m ≤ 28

Based on the analysis we can note that the Cullis/Radic
definition (Algorithm P 1) is more efficient than the Dodgson’s

method (Algorithms P 2 and P 3) if the number of rows is
higher than the half of number of columns, and in cases where
the number of rows is lower or equal to half of number of
columns, then the Dodgson’s modified method is more efficient.
Hence, we propose an algorithm which is a combination of both
algorithms.

P 3: Modified algorithm (det Blocks) based on theorem 2 (as
example is considered case 1)

Step 1: Checking for conditions:
if m = n

Calculate square determinant with known methods.
else if m = n−1

Transform determinant to square determinant, by adding
one row with elements equal to 1.

d = det Ones(A);

else if m < 3 or m = n/2
Step 2: Identify all square determinants from the

combination of columns:
Create loop from 1 to total number of combinations

D{i}= A(1 : m,B(i,1 : m)));

Step 3: Calculate determinants of square blocks from D
Create Loop from 1 to total number of combinations

d = d +(−1)∧(sum(1 : m)+ sum(B(i,1 :
m)))∗SquareDet(D{i});

else
Step 4: Calculate submatrices:

Calculate submatrices presented on theorem 1, calling
det Comb algorithm until the conditions of step 1 are met:

d1 = det Comb(A(1 : m−1,1 : n−1));
d2 = det Comb(A(A(1 : m−1,2 : n));



IJCA, Vol. 29, No. 4, Dec. 2022 243

d3 = det Comb(A(2 : m,1 : n−1));
d4 = det Comb(A(2 : m,2 : n));

d5 = det Comb(A(2 : m−1,1 : n));
d6 = det Comb(A(1 : m,2 : n−1));

d7 = det Comb(A(2 : m−1,2 : n−1));

Step 5: Calculate the result of the determinant as following:

d = (d1∗d4−d2∗d3+d5∗d6)/d7;

Step 6: Display the result of the determinant

Note: The algorithm P 5 can also be combined with
algorithm P 3, with changes only in step 4, where in cases of
several elements of original matrix equal to zero can be more
efficient.

The worst-case time complexity of the above presented
algorithm is where the number of rows is half the number of
columns.

The asymptotic time complexity of the algorithm presented
in P 5, is calculated in Table 5, where we have identified the
worst-case and best-case time complexity as follows.

Table 5: Time complexity analysis of (det Comb) function

Function: det Comb Cost Time
[m,n] = size(A); T1 = const1 1
if m == n

d = det(A); T2 = n3 1

if m == n−1
d = det Ones(A);

Based on Algorithm 2.2 (See [11]), transforms determinant of order
(n−1)×n to n×n by adding one row of elements equal to 1. Square
determinant’s time complexity is: T3 = O(n3).

1

else if m < 3
d = det A(A);

As it is calculated the detA time complexity is:
T4(3,n) =C

(n
3

)
·33 = n·(n−1)·(n−2)·(n−3)!

3!·(n−3)! ·33 = n · (n−1) · (n−2) ·4.5 ≈ n3. 1

else if B = nchoosek(1 : n,n/2); T5 = const5 1

for i = 1 : length(B)
d = d +(−1)∧(sum(1 : (n/2))+ sum(B(i, [1 : (n/2)])))
∗det((A([1 : (n/2)], [B(i, [1 : (n/2)])])));

There are several methods to
calculate square determinants with

different time complexity,
however we will be based

on LU factorization method [16]:
T6 = ( n

2 )
3

C
( n

n/2

)

else

d1 = det Comb(A(1 : n/2−1,1 : n−1));
d2 = det Comb(A(1 : n/2−1,2 : n]));
d3 = det Comb(A(2 : n/2,1 : n−1));
d4 = det Comb(A(2 : n/2,2 : n]));

T7−1(n/2,n) = 4 ·T7−1(n/2−1,n−1)+1,
T7−1(n/2−1,n−1) = 4 ·T7−1(n/2−1−1,n−1−1)+1

= 4 ·T7−1(n/2−2,n−2)+1,
T7−1(n/2,n) = 4 · (4 ·T7−1(n/2−2,n−2))+1+1

= 42 ·T7−1(n/2−2.n−2)+2,
for any k, we have:

T7−1(n/2,n) = 4k ·T7−1(n/2− k,n− k)+ k,
for n/2− k = 2 ⇒ k = n/2−2,

T7−1(n/2,n) = 4n/2−2 ·T7−1(2,n−n/2+2)+n/2−2
= 4n/2−2 ·T7−1(2,n/2+2)+n/2−2.

Based on first condition:
T7−1(2,n/2+2) =C

(n/2+2
2

)
·23 = (n/2+2)·(m/2+1)

2 ·23

= 4 · (n/2+2) · (n/2+1).
T7−1(n/2,n) = 4n/2−2 ·4 · (n/2+2) · (n/2+1)+n/2−2

≈ 4n/2−1 · (n/2+2) · (n/2+1).
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d1 = det Comb(A(1 : n/2−1,1 : n−1));
d2 = det Comb(A(1 : n/2−1,2 : n]));
d3 = det Comb(A(2 : n/2,1 : n−1));
d4 = det Comb(A(2 : n/2,2 : n]));

T7−1(n/2,n) = 4 ·T7−1(n/2−1,n−1)+1,
T7−1(n/2−1,n−1) = 4 ·T7−1(n/2−1−1,n−1−1)+1

= 4 ·T7−1(n/2−2,n−2)+1,
T7−1(n/2,n) = 4 · (4 ·T7−1(n/2−2,n−2))+1+1

= 42 ·T7−1(n/2−2.n−2)+2,
for any k, we have:

T7−1(n/2,n) = 4k ·T7−1(n/2− k,n− k)+ k,
for n/2− k = 2 ⇒ k = n/2−2,

T7−1(n/2,n) = 4n/2−2 ·T7−1(2,n−n/2+2)+n/2−2
= 4n/2−2 ·T7−1(2,n/2+2)+n/2−2.

Based on first condition:
T7−1(2,n/2+2) =C

(n/2+2
2

)
·23 = (n/2+2)·(m/2+1)

2 ·23

= 4 · (n/2+2) · (n/2+1).
T7−1(n/2,n) = 4n/2−2 ·4 · (n/2+2) · (n/2+1)+n/2−2

≈ 4n/2−1 · (n/2+2) · (n/2+1).

d5 = det Comb(A(2 : n/2−1,1 : n));

T7−2(n/2,n) = T7−2(n/2−1,n)+1,
T7−2(n/2−1,n) = T7−2(n/2−1−1,n)+1 = T7−2n/2−2,n)+1,

T7−2(n/2,n) = T7−2(n/2−2,n)+1+1 = T7−2(n/2−2,n)+2,
for any k, we have:

T7−2(n/2,n) = t7−2(2,n/2−2)+n/2−2.
Based on first condition:

T7−2(2,n/2−2) =C
(n/2−2

2

)
·23 = (n/2−2)·(n/2−3)

2 ·23

= 4 · (n/2−2) · (n/2−3).
T7−2(n/2,n) = 4 · (n/2−2) · (n/2−3)+n/2−2

≈ 4 · (n/2−2) · (n/2−3).

d6 = det Comb(A(1 : n/2,2 : n−1));

T7−3(n/2,n) = T7−3(n/2,n−1)+1,
T7−3(n/2,n−1) = T7−3(n/2,n−1−1)+1 = T7−3(n/2,n−2)+1,

T7−3(n/2,n) = T7−3(n/2,n−2+1+1 = T7−3(n/2,n−2)+2,
for any k, we have:

T7−3(n/2,n) = T7−3(n/2,n− k)+ k,
for n− k = n/2+1 ⇒ k = n−n/2−1 = n/2−1,
T7−3(n/2,n) = T7−3(n/2,n−n/2+1)+n/2−1

= T7−3(n/2,n/2+1)+n/2−1.
Based on first condition:

T7−3(n/2,n/2+1) =C
(n/2+1

n/2

)
· (n/2)3 = (n/2+1) · (n/2)3

= (n/2)4 +(n/2)3.
T7−3(n/2,n) = (n/2)4 +(n/3)3 +n/2−1 ≈ (n/2)4.

d7 = det Comb(A(2 : n/2−1,2 : n−1));

T7−4(n/2,n) = T7−4(n/2−2,n−2)+1,
T7−4(n/2−2,n−2) = T7−4(n/2−2−2,n−2−2)+1

= T7−4(n/2−4,n−4)+1,
T7−4(n/2,n) = T7−4(n/2−4,n−4)+2,

for any k, we have:
T7−4(n/2,n) = T7−4(n/2− k,n− k)+ k/2,

for n/2− k = 2 ⇒ k = n/2−2,
T7−4(n/2,n) = T7−4(2,n/2+2)n/4−2.

Based on first condition:
T7−4(2,n/2+2) =C

(n/2+2
2

)
·23 = (n/2+2)·(n/2+1)

2 ·23

= 4 · (n/2+2) · (n/2+2).
T7−4(n/2,n) = 4 · (n/2+2) · (n/2+1)+n/4−2

≈ 4 · (n/2+2) · (n/2+1).
T7 = T7−1 +T7−2 +T7−3 +T7−4 = 4n/2−1 · (n/2+2) · (n/2+1)+

4 · (n/2−2) · (n/2−3)+(n/2)4 +4 · (n/2+2) · (n/2+1)≈ 4n/2−1 · (n/2+2) · (n/2+1).
1

d = (d1∗d4−d2∗d3+d5∗d6)/d7; T8 = const8 1
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Based on Table 5, we have:

Total Cost = 1 ·T1 +Max(1 ·T2,1 ·T3,1 ·T4,1 ·T5,C
(

n
n/2

)
·T6,1 ·T7)+1 ·T8 = 1 ·Const1 +Max(1 ·n3,1 ·n3,1 ·n3,

1 ·Const5+C
(

n
n/2

)
·(n

2
)3,1 ·4n/2−1 ·(n/2+2) ·(n/2+1))+1)

+1 ·Const8

.
Hence, the highest order is C

( n
n/2

)
· ( n

2 )
3. After eliminating

constants and other lower grades, we can summarize the worst-
case asymptotic time complexity as O( n!

((n/2)!)2 · (n/2)3).

While the best-case is O(n3), for m = 3, calculated as
follows:

For Cullis/Radic we have:

Total Cost = 1 ·T1 +1 ·T2 +1 ·T3 +Max(1 ·T4,C
(

n
n/2

)
·T5)

= 1 ·Const1 +1 ·Const2 +1 ·Const3 +Max(1 ·n3,C
(

n
3

)
·33)

.
While,

Max(1 ·n3,C
(

n
3

)
·33) = Max(1 ·n3,

n!
3! · (n−3)!

·33)

= Max(1 ·n3,
n · (n−1) · (n−2) · (n−3)!

3! · (n−3)!
·33)

Since the n3 is the highest order, the asymptotic time
complexity is O(n3).

For generalized/modifed Dodgson’s method, we have:

Total Cost = 1 ·T1 +Max(1 ·T2,1 ·T3,1 ·T4,1 ·T5)+1 ·T6

= 1 ·Const1 +Max(1 ·n3,1 ·n3,1 ·n3,1 ·43−1 · (n−3+2)

·(n−3+1))+1 ·Const6

.
Also, in this case since the n3 is the highest order, the

asymptotic time complexity is O(n3).

3 Conclusions

In this paper we have analyzed the asymptotic time
complexity of algorithms based on Cullis/Radic definition and
generalized/modified Dodgson’s Condensation method/s for
rectangular determinant calculations. From the calculations
we noted that the asymptotic time complexity for Cullis/Radic
definition is O(C

(n
m

)
·m3), while for the generalized/modified

Dodgson’s Condensation method/s the asymptotic time
complexity is O(22m · (n−m)2).

Further we have analyzed which complexity grows faster
and tested for rectangular determinant of order for 50 ≤ n ≤ 54,
and 3≤m≤ 28, and from analysis it is noted that the break point
is on about half of number of columns compared to number of
rows. In cases where the number of columns is less than the
half of the number of rows, then the Dodgson’s Condensation
method/s are growing slower than the Cullis/Radic definition,
otherwise the Cullis/Radic definition is growing slower. From
this analysis we have proposed a combined algorithm where
it calculates determinants with Cullis/Radic definition in cases
where the number of columns is higher than the half of
number of rows and calculates determinants with Dodgson’s
Condensation method/s in cases where the number of columns
is lower than the half of number of rows.

From where we calculated the worst-case asymptotic
time complexity as O( n!

((n/2)!)2 · (n/2)3), while the best-case
asymptotic time complexity is when the m = 3, and it is
calculated as O(n3).
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