
IJCA, Vol. 29, No. 4, Dec 2022 257

ISCA Copyright© 2022

An Efficient Maximal Free Submesh Detection Scheme for
Space-Multiplexing in 2D Mesh-Connected Manycore Computers

Ismail Ababneh* and Saad Bani-Mohammad*

Al al-Bayt University, Mafraq 25113, JORDAN

Abstract

For multicore systems, space-sharing (space-multiplexing)
is a promising core allocation strategy as the number of cores
grows into the hundreds and thousands because it can achieve
scalability and good system performance. In space-
multiplexing, an application is allocated its own set of cores
for the duration of its execution. In this paper, we propose a
new efficient maximal free submesh detection scheme for
two-dimensional mesh-connected manycore systems. Free
submeshes that are not contained in other free submeshes are
detected and placed in a free-list for direct support of space-
multiplexing. An advantage of the proposed scheme is that
its time complexity is quadratic in the number of free
submeshes, whereas the time complexity of the previous such
scheme is cubic in this number. In addition to complexity
analysis, detailed simulations are carried out to evaluate the
proposed scheme. In the simulations, we consider several
approaches to selecting allocation submeshes from the free-
list. The approaches range from a promising first-fit variant
to a scheme that aims to keep large free submeshes for future
allocation requests. The results show that the proposed
scheme is substantially more time-efficient than the previous
cubic recognition-complete maximal free submesh scheme.
It achieved up to seventy percent reduction in the average
combined allocation and de-allocation times in these
simulations.

Key Words: Manycore systems, mesh interconnection
network, space-sharing (space-multiplexing), maximal free
submesh, contiguous submesh allocation.

1 Introduction

Over the past two decades, there has been, mainly because

of the power wall, a shift from increasing the clock frequency
of single-thread microprocessors to multicore processors,
where several cores or processing units are built on a single
chip. As per Moore’s law, it has also been possible to
incorporate many cores and build manycore processors,
which are multicore systems with many relatively simple
cores that can support high explicit parallelism.

For communication among the cores in manycore systems,
a Network-on-Chip (NoC) architecture is used. This is to
avoid the bottleneck problem that the bus interconnection
architecture suffers from when the number of cores becomes
large. The mesh is a popular NoC interconnection topology,

* Computer Science Department, Prince Hussein Bin Abdullah
Faculty of Information Technology. Emails: ismael@aabu.edu.jo
and bani@aabu.edu.jo.

in both its two-dimensional (2D) and three-dimensional (3D)
forms [16, 17, 24]. An example is the 2D 8×10 mesh network
of an 80-core Intel manycore research chip, where each core
or Processing Element (PE) is associated with a 5-port router
for communication [23]. Four ports are used for
communicating with the four neighbors of internal cores.
Cores on mesh corners and on its edges have fewer neighbors.
The fifth port is for NoC-PE communication. Another
example is the TRIPS OCN that has a 4x10 wormhole-routed
2D mesh interconnection network [11]. A recent 1024-node
manycore system has the mesh topology, and comprises 32
clusters, where a cluster is a 4×8 mesh. To decrease the
system’s diameter, each cluster has in its middle a Radio Hub
(RH) that communicates with the four 2D routers of the
middle cluster node. Communication among clusters takes
place via the RHs. Within clusters, communication uses the
mesh interconnection network [13]. In [17], a NOC that
combines ring and 2D mesh interconnections and adapts to
application requirements is proposed for improved scalability
and energy efficiency up to 1024 processing elements.

Several studies indicate that space-multiplexing (space-
sharing) is a promising core allocation strategy for manycore
systems, as it can achieve scalability and good performance
for large core numbers [22, 25]. By allocating resources
spatially, traditional time multiplexing scheduling is
transformed into a layout and partitioning problem, where
jobs or applications, including possibly the OS, run on their
own sets of cores. In space-sharing, a job can be executed on
a submesh of the manycore system, which can reduce
communication distances, interference among jobs, message
delays, energy consumption and chip temperatures.
Supporting this, previous studies have shown that mapping
the communicating tasks of a parallel job to neighboring
cores, in particular the cores of a single submesh, can reduce
communication delays and power consumption, and improve
throughput and job execution times [5, 8, 18].

Based on this, we assume that allocation is contiguous,
where a job requests and is allocated a single submesh of a
width and a height that the job specifies. By running on a
single submesh, the job can achieve reduced distances among
the cores it is allocated. Also, a space-sharing allocation
policy is required to achieve high system utilization. It must
be capable of detecting all free core submeshes and should
aim to maximize the number of allocated cores (i.e.,
minimize core fragmentation) [9, 15, 26]. In addition, it must
be time-efficient, especially as the system size (i.e., number
of cores) of the manycore system grows. Migratory space-
sharing policies that carry out defragmentation of scattered
submeshes that result when jobs exit the system have been
considered. An issue in these policies is when to carry out

mailto:ismael@aabu.edu.jo
mailto:bani@aabu.edu.jo

258 IJCA, Vol. 29, No. 4, Dec 2022

defragmentation and the associated job migrations, the cost
of migration, and application size constraints imposed by
some of these policies to simplify defragmentation [19, 20].
Such constraints can result in internal fragmentation.

Several contiguous space-sharing allocation policies were
proposed for multicomputers with 2D mesh interconnection
topologies. Several of these policies do not scale well. They
have time complexities that grow with the system size (its
number of PEs) [7, 10, 26, 27]. However, more efficient
policies that build lists of free submeshes and/or allocated
submeshes were proposed. The allocation decisions they
make are based on the elements in these lists, and their time
complexities are functions of list sizes [1, 6, 9, 12, 14]. A
major advantage of such policies is that list sizes can be much
smaller than system sizes [1, 3].

An advantage of submesh allocation that is based on free
submeshes is its flexible submesh selection. When multiple
large-enough free submeshes exist, they all can readily and
simply be considered for allocation to the current request,
which can lead to superior allocation. A free-list allocation
policy that can detect all maximal free submeshes in a 2D
mesh system has been proposed [12]. However, the submesh
detection algorithm it uses is not efficient. It has time
complexity that is cubic in the number of free submeshes. A
free submesh is maximal if it is not contained in another free
submesh. More efficient algorithms for building the free-list
have been proposed [1, 14]. However, they are not
recognition-complete. They fail to detect some available
submeshes, which can result in unsuccessful allocation to the
current allocation request although there is in fact at least one
large-enough free submesh for satisfying this request.

In this paper, we propose an efficient recognition-complete
maximal free submesh detection scheme for 2D mesh-
connected manycore systems. An advantage of this scheme
over the previous recognition-complete scheme, proposed in
[12], is that its time complexity is quadratic in the number of
free submeshes, while the time complexity of the previous
scheme is cubic in this number. Using detailed simulations,
we evaluated and compared these two detection schemes. In
these simulations, various previous promising policies for
deciding where allocation will take place are considered.

They range from a promising first-fit variant [10] to a policy
that aims to keep large free submeshes for future allocation
using a reservation function [12], and a policy that gives
priority to mesh corner then peripheral allocation [3]. Corner
and peripheral placements have for goal leaving large free
submeshes for future allocation. The simulation results show
that when allocation and de-allocation times are considered,
the proposed submesh detection scheme substantially
outperforms the previous maximal free submesh detection
scheme. It has achieved up to seventy percent improvement
in the measured combination of these times.

We limit our attention here to 2D meshes; however, this
work can be adapted for 3D meshes. This paper is organized
as six sections. Section 2 below contains a few preliminaries.
Section 3 has a review of related schemes. The proposed
detection scheme is defined and analyzed in Section 4. The
system model, and simulation parameters and results are in
Section 5. Finally, Section 6 contains the research
conclusions.

2 Preliminaries

The target manycore system, M(W, H), is of width W and

height H. A core is denoted by the coordinates (i, j), where 1
≤ i ≤ W and 1 ≤ j ≤ H. Cores are interconnected by
bidirectional communication links as shown in Figure 1. The
size of the mesh is the number of its cores, N, where N=W*H.

A w × h submesh is represented by a 4-tuple (i1, j1, i2, j2),
where (i1, j1) represent its base node, and (i2, j2) its end node.
We have that w = i2 – i1 + 1 and h = j2 – j1 + 1. In Figure 1,
(1, 3, 3, 4) represents the 3 × 2 submesh S1.

A submesh is said to be free if none of its cores is allocated.
As indicated previously, a free submesh is said to be maximal
if it is not contained in another free submesh. Also, a
submesh is said to be busy or allocated if all its cores are
allocated to the same job. In Figure 1, the maximal free
submeshes are (1, 1, 1, 4), (1, 3, 5, 4), and (3, 1, 5, 4). For
example, (3, 1, 5, 2) is not maximal as it is contained in (3,
1, 5, 4). If the cores (2, 1) and (2, 2) in Figure 1 are allocated
to the same job, then (2, 1, 2, 2) is a busy or allocated
submesh.

Figure 1. M(5, 4) 2D mesh

3,3 1,3 2,3

2,2 1,2 3,2

1,1

4,2

4,3

2,1 3,1 4,1

 Allocated:

Free:

4,4 3,4 2,4

5,1

1,4

5,2

5,3

5,4

 S1

IJCA, Vol. 29, No. 4, Dec 2022 259

3 Previous Works

Several contiguous allocation policies based on free and/or
busy submeshes have been proposed for 2D meshes. They
differ in how they detect free submeshes, how they select a
free submesh for allocation, and where the allocated
submesh is located within the free submesh selected. A major
aim of a contiguous allocation policy should include reducing
external fragmentation. That is, reducing the number of free
cores that remain idle although they are sufficient in number
to satisfy the allocation request of the job that the scheduling
algorithm has selected for execution. For instance, a policy
may fail to detect some of the free submeshes, and it may
make some poor placement choices that result in a relatively
large number of small free submeshes, rather than fewer large
ones. In what follows, N is the size of the target manycore
system, and f and b are the numbers of free and busy
submeshes, respectively. We also assume that a job’s
allocation request upon arrival is for an α × β free submesh,
where the width and height of the submesh requested are α
and β.

3.1 Busy-List with Global Adjacency (BLGA)

This policy [9] uses a list of allocated processors. It
attempts to satisfy the allocation request in its α × β or β × α
orientations using a submesh that has the largest number of
adjacent busy cores and mesh boundary cores. The rationale
is that this can reduce fragmentation. The time complexity of
allocation in BLGA is in O(b3), and that of de-allocation is in
O(1). In [28], a BLGA improvement that aims to allocate
adjacent submeshes to requests served close in time is
proposed. However, such heuristic assumes that jobs that
start execution close in time tend to have close exit times.

3.2 Free-List with First-Fit Adjacency (FLFFA)

This scheme [14] builds a free-list that approximates the

maximal free list (MFL), and a busy-list. The free-list
elements are sorted in the non-decreasing order of their
shorter edge. The first free submesh that can accommodate
the current allocation request as (α × β) or (β × α) is the

allocation candidate. Allocation for both orientations is
considered in the corners of the candidate submesh, and a
placement with the maximum number of adjacent busy cores
and mesh peripheral cores is the allocation submesh. The
number of adjacent busy processors is computed using the
busy-list. FLFFA was compared to BLGA using simulations,
where it achieved superior waiting delays. Also, FLFFA
outperformed BLGA overall in another simulation study
[12].

The allocation and de-allocation operations have O(f2) time
complexities. In [1], an O(f) heuristic for approximating
MFL has been proposed. In both heuristics, building the free-
list starts with expanding, if possible, the released submesh
into the current elements of the free-list when a job
terminates. This step produces new free submeshes. Then,
expansions of the current elements into the new submeshses
are attempted. The expanded and new submeshes are used in
forming the new free-list. A problem is that this approach is
not recognition-complete, as can be seen in Example 1 below.

Example 1. In Figure 2, if the job running on (2, 1, 2, 4)

terminates, the released submesh cannot be expanded into the
existing free submeshes ({(1, 1, 1, 2), (3, 1, 5, 2)}), and the
new free submesh is {(2, 1, 2, 4))}. Then, (1, 1, 1, 2) is
expanded into (2, 1, 2, 4) to produce the free submesh (1, 1,
2, 2). Likewise, expanding (3, 1, 5, 2) into (2, 1, 2, 4)
produces (2, 1, 5, 2). Thus, (1, 1, 5, 2) is not detected, and
the detected submeshes (1, 1, 2, 2) and (2, 1, 5, 2) are not
maximal as they are proper submeshes of the undetected
maximal free submesh (1, 1, 5, 2).

3.3 Reservation Best-Fit (RBF)

This policy [12] builds the MFL and sorts its elements in
their non-increasing size order. The submesh size is the
number of cores it contains. The policy also builds a busy
list. The MFL is scanned for large enough free submeshes.
In these submeshes, all possible α × β and β × α submesh
corner placements are considered candidate submeshes. A
reservation function is employed for computing leftover free
submeshes with the aim of preserving large free submeshes
for later use. Using simulations, RBF outperformed FLFFA

Figure 2. An example illustrating incomplete recognition

3,3 1,3 2,3

2,2 1,2 3,2

1,1

4,2

4,3

2,1 3,1 4,1

 Allocated:

Free:

4,4 3,4 2,4

5,1

1,4

5,2

5,3

5,4

260 IJCA, Vol. 29, No. 4, Dec 2022

and BLGA in terms of average job waiting delays [12]. The
time complexity for building MFL upon a job exit is in O(f3),
and that needed upon an allocation operation is in O(f2). Both
use submesh subtraction operations, instead of expansions.

3.4 Right Border Line (RBL)

This strategy [6] keeps a busy-list and uses it to determine

the allocation right border lines. These lines consist of nodes
that can serve as bases for the current allocation request. By
construction, the lines either have to their left an allocated
submesh or they are the left boundary of the mesh itself. A
policy that re-builds the RBLs and looks for an allocation
RBL for β × α when none is found for α × β was also
proposed. In both cases, the upper end core of the first
allocation RBL to be found is chosen as base node for the
allocated submesh. The allocation time of RBL is in O(b2),
and that of de-allocation is in O(1). Using simulations, the
performance of the orientation-switching RBL policy was
evaluated and compared to the performance of BLGA and
several other allocation policies. The policies considered
produced almost similar average job waiting delays, with
BLGA performing slightly better than the others [6].

4 Proposed Submesh Detection Scheme

In the free submesh detection scheme proposed in this paper,

the maximal free submeshes are found and form an unordered
MFL. Initially, this list contains the entire mesh. It is then
reconstructed after each job departure (i.e., submesh release),
and each allocation.

4.1 Detection of Maximal Free Submeshes upon De-

allocation

When a job terminates and the submesh it is allocated is
released, an attempt is made first to expand the released
submesh into the current elements in MFL using two patterns.
The first is a horizontal-vertical expansion, and the second is
a vertical-horizontal expansion. In horizontal expansion, a
submesh may expand into a free submesh located to its left

or right. In vertical expansion, the expanded into submesh
may be above or below the expanding submesh. At most two
new different submeshes can result from these expansions.
The first is generated by the horizontal-vertical expansion,
and the second is generated by the vertical-horizontal
expansion. If expansion is not possible, the only new
submesh is the released submesh itself. In all cases, if an
expanding submesh covers an expanded into submesh after
the expansion, the latter is removed from MFL because its
free cores are covered. The expansions of the released
submesh into the elements of MFL are of the complete type,
as defined below [1].

Definition 1. A free submesh (i1, j1, i2, j2) is completely

expandable right into an adjacent free submesh (i3, j3, i4, j4)
if i2 ≥ i3 - 1, i2 < i4, i1 < i3, j2 ≤ j4, and j1 ≥ j3. This
expansion turns (i1, j1, i2, j2) into (i1, j1, i4, j2). Complete
expansions down, up, and left are defined similarly. If j2 =
j4 and j1 = j3, we have that (i3, j3, i4, j4) ⊂ (i1, j1, i4, j2).
When (i3, j3, i4, j4) is an element of MFL, it is removed
because its free cores are in (i1, j1, i4, j2). Expansions in the
remaining directions are handled similarly.

Example 2. In Figure 3, MFL = {(4, 3, 5, 4), (1, 3, 5, 3),
(3, 1, 3, 3)}. Assume S = (1, 4, 3, 4) is released. The
horizontal step of the horizontal-vertical complete expansion
of S into the elements of MFL produces (1, 4, 5, 4) by the
complete expansion of S into (4, 3, 5, 4), then (1, 4, 5, 4)
becomes (1, 3, 5, 4) by its complete expansion into (1, 3, 5,
3) in the vertical step and (1, 3, 5, 3) is removed.

As a result of the release of a submesh and its expansions,

it may be possible to expand MFL elements completely or
partially (see Definition 2 below) into the new submeshes to
produce larger or additional free submeshes. This expansion
is conducted next. If an edge of a submesh in MFL is
partially or completely covered by or borders a new
submesh, the submesh or parts of it are extended to the
other end of the new submesh. An element in MFL that is
covered by one of the new submeshes before or after
expansion is removed from this list.

Figure 3: Submesh release example

3,3 1,3 2,3

2,2 1,2 3,2

1,1

4,2

4,3

2,1 3,1 4,1

 Allocated:

Free:

4,4 3,4 2,4

5,1

1,4

5,2

5,3

5,4

IJCA, Vol. 29, No. 4, Dec 2022 261

Example 3. Continuing with Example 2. The new free
submesh is (1, 3, 5, 4), and the submeshes that remain in
MFL are (3, 1, 3, 3) and (4, 3, 5, 4). The submesh (4, 3, 5,
4) is covered by (1, 3, 5, 4), therefore it is removed. The
submesh (3, 1, 3, 3) is expanded completely into (1, 3, 5, 4),
producing the maximal free submesh (3, 1, 3, 4).

Definition 2. The partial expansion of a free submesh into

a second one is the horizontal and/or vertical expansion of the
largest subpart(s) of this free submesh into the second one.

Example 4. If the submesh (5, 4, 6, 5) in Figure 4 is

released, the part (5, 1, 5, 3) of (4, 1, 5, 3) is expanded
partially into (5, 4, 6, 5), producing (5, 1, 5, 5). Also, (5, 6,
5, 6) is completely expanded into (5, 4, 6, 5) to produce (5,
4, 5, 6).

It can be noticed that the free submesh (5, 1, 5, 6) in

Example 4 is not detected by the expansions considered so
far. Partial and complete expansions across the released
submesh are needed. To carry out such expansions, the free
submeshes must be processed further for possible inter-
expansions. For example, (5, 1, 5, 5) can be expanded
completely into (5, 4, 5, 6) to produce the maximal free
submesh (5, 1, 5, 6). In this expansion, the expanded into
submesh is removed because it is covered by the result of
the expansion. In all cases, a free submesh is removed
and does not appear in the final MFL if it is covered by
any other free submesh.

Another reason for missing maximal free submeshes by
the expansions considered so far is the existence of free
submeshes around a corner of the released submesh or its
expansions. A maximal free submesh is missed if the sides
of corner free submeshes are shorter than the sides they face
in the released submesh or its expansion. For example, if
the submesh (2, 2, 3, 4) is released in Figure 4, then the
partial expansions of (1, 1, 1, 3) and (1, 1, 2, 1) into this
submesh will produce (1, 2, 3, 3) and (2, 1, 2, 4). However,
(1, 1, 2, 3) is not detected. To detect this maximal free

submesh, (1, 1, 2, 1) should be expanded into (1, 2, 3, 3).
Finally, once these additional expansions are carried out the
detected free submeshes should be processed for coverage.
In the current example, (1, 1, 2, 3) covers (1, 1, 1, 3),
therefore the latter submesh is removed. The complete de-
allocation algorithm is in Figure 5.

For analyzing this de-allocation algorithm, it can be seen
that the number of possible complete expansions in Step 2
is in O(f). Also, because of the generation of S1 and S2
the number of free submeshes at the end of Step 2 is at
most f + 2. As a result of the partial and complete
expansions in Steps 3 and 4, the number of known free
submeshes at the end of these steps is also in O(f). The
number of tests needed for coverage detection and

processing in Step 6 is in O(f2). After this coverage
detection, the number of free submeshes detected is in O(f)
because only a subset of maximal free submeshes has been
detected so far. Consequently, the number of operations

needed in Step 7 is in O(f2).
Upon completion of Step 7, the maximal free submeshes

that are generated by the partial and complete expansions
across the released submesh are detected. Also, are detected
the additional maximal free submeshes associated with the
corner free submeshes. Intuitively, the number of
additional maximal free submeshes detected in Step 7 is
in O(f), and the number of tests needed for coverage

detection and processing in Step 8 is in O(f2). It is easy to
see that Steps 1 and 5 take constant time. Hence, the

complexity of this algorithm is in O(f2).

4.2 Detection of Maximal Free Submeshes upon
Allocation

Upon allocation, a selection scheme that determines the

submesh where allocation will take place, such as first-fit,
is employed. Then, where allocation takes place in this
submesh is determined. This placement could, for example,

Figure 4: Submesh release example

3,3 3,1 3,2

2,2 2,1 2,3

1,1

2,4

3,4

1,2 1,3 1,4

 Allocated:

Free:

4,4 4,3

5,3

1,5

4,1

2,5

3,5

4,5

3,6

2,6

1,6

4,6

6,5 6,4 6,6 6,3 6,2 6,1

5,1

4,2

5,2 5,5 5,4 5,6

262 IJCA, Vol. 29, No. 4, Dec 2022

Procedure de-allocate(S) /* An allocated submesh S is
released */

Step 1) num_free_cores += size(S) /* update the
number of free cores */

S1=S; S2=S
Step 2) Completely expand S1 horizontally into the

elements of MFL
Completely expand S2 vertically into the elements of

MFL
Completely expand S1 vertically into the elements of

MFL
Completely expand S2 horizontally into the elements

of MFL
R = S1
Step 3) for each submesh F in MFL {
if F is outside R and they are not adjacent go to next F
else if F ⊆ R remove F from MFL
else if no node in F is adjacent to a node in S go to next

iteration of this loop else if complete expansion of F into
R is possible {

completely expand F into R (down, right, up, or left)
if R ⊆ F then R = F and remove F from MFL
}
else if partial expansion from F into R is possible
 form resulting fragments and add them at the head

of a temporary list TL
 else completely expand R into F (up, right, left, or

down) if possible
}
Step 4) repeat Step 3) for R = S2 if S2 ≠ S1
Step 5) Append TL at the head of MFL to form the

list FL: FL = TL + MFL
TL = ∅
Step 6) /* Remove FL elements that are non-maximal:

*/
for each element Si in FL
for each element Sj that is after Si in FL
if (Sj ⊆ Si) remove Sj from FL
else if (Si ⊆ Sj) mark Si for removal before going on to

the next Si
Step 7) /* Carry out expansions across the released

submesh and around corners */
Carry out all additional complete and partial

expansions among FL elements
Add the fragments that result from partial expansions

at the head of TL
Step 8) FL = TL+FL; Remove non-maximal FL

elements; MFL = FL; TL = ∅
} /* end of procedure de-allocate */

Figure 5: The de-allocation algorithm

be in the lower-left or lower-right corner of the allocation
submesh. Then, MFL is rebuilt. The allocation submesh is
removed from MFL and the fragments that result from the
subtraction of the allocated submesh from it are added at the
head of a temporary list, TL. Also, the allocated submesh is
subtracted from overlapping MFL elements, and the results
are added at the beginning of TL. Finally, TL is appended at

the head of MFL. The list that results is scanned, and a
submesh in this list is removed if it is covered by another
element in the list. Thus, the elements that remain in the list
are maximal, and they constitute the new MFL. The
allocation algorithm is given in Figure 6.

/* Current job requests the allocation of an α × β
submesh */

Procedure allocate (α, β){
Step 1) if num_free_cor < αβ return Failure
Step 2) Select an allocation submesh S from MFL, and

position the allocated submesh A
within S

if no S is found return Failure
Step 3) Remove S from MFL
Step 4) Subtract A from S
Step 5) Add fragments that result from the subtraction

at the head of a temporary list TL
Step 6) for each submesh Si in MFL
if Si overlaps with A{
Remove Si from MFL
Subtract the overlapping part A ∩ Si from Si
Add the resulting fragments at the head of TL
}
Step 7) Append TL at the head of MFL producing a

list FL
Step 8) Remove FL elements that are non-maximal
Step 9) num_free_cores = num_free_cores - αβ; MFL

= FL; return Success
} /* end of procedure allocate */

Figure 6: Allocation algorithm

The subtraction operation used in the allocation algorithm

is one that produces maximal difference submeshes. For
example, subtracting (1, 1, 2, 2) from (1, 1, 5, 4) in Figure 7
yields the fragments (3, 1, 5, 4) and (1, 3, 5, 4). The
subtraction of (3, 2, 4, 3) from (1, 1, 5, 4) produces the four
difference submeshes (1, 1, 5, 1), (1, 1, 2, 4), (1, 4, 5, 4), and
(5, 1, 5, 4), as another example.

Example 5. This example illustrates how allocation

works. Assume a free system, and a request for a 2 × 2
submesh arrives. Initially, MFL consists of the whole mesh
(1, 1, 5, 4). If the request is allocated (1, 1, 2, 2), then (1, 1,
5, 4) is removed from MFL, and the subtraction of (1, 1, 2,
2) from (1, 1, 5, 4) yields the fragments (3, 1, 5, 4) and (1,
3, 5, 4), which are added at the head of TL. Then, TL is
appended at the head of MFL to produce FL = {(3, 1, 5, 4),
(1, 3, 5, 4)}. This is the final MFL because all its elements
are maximal. If a 4 × 2 allocation request arrives, the
allocation selection algorithm may choose the allocation
submesh S = (1, 3, 5, 4) and allocate A = (1, 3, 4, 4). In this
case, (1, 3, 5, 4) is removed from MFL, and the subtraction
of A from S produces the fragment (5, 3, 5, 4), which is added
to a new TL. Then A is subtracted from (3, 1, 5, 4), yielding
the fragments (3, 1, 5, 2) and (5, 1, 5, 4), which are added
to TL. The submesh (3, 1, 5, 4) is removed from MFL.
Finally, (5, 3, 5, 4) is removed because it is covered by (5,
1, 5, 4). The final MFL is {(3, 1, 5, 2), (5, 1, 5, 4)}.

IJCA, Vol. 29, No. 4, Dec 2022 263

Figure 7: Subtraction and allocation example

Analyzing the allocation algorithm, we assume that a

scheme that can select an allocation submesh in O(f2) time
is used. The first-fit is an example of such schemes as it
requires O(f) steps for this selection. The number of
fragments that results from subtracting the allocated
submesh from the free submeshes in Step 6 is in O(f); their
number is at most 4f as the subtraction operation of a 2D
submesh from another 2D submesh results in at most four
submeshes. Therefore, the number of operations in Step 8

and the complexity of the algorithm are in O(f2).

4.3 Selection of Allocated Submeshes

A comparison of several policies for selecting where
allocation takes place when the maximal free submesh
detection scheme proposed in [12] is used can be found in an
earlier work [2]. For the comparison of the maximal free
submesh detection scheme that we propose to that
proposed in [12], the following promising schemes for
determining where allocation takes are considered:

4.3.1 Switching First-Fit (SFF). The first MFL element

that is large enough for the current α × β request is the
allocation submesh, and the α × β submesh in its lower-left
corner is allocated for the request. If this fails, first-fit
allocation is re-attempted for the β × α orientation.
Switching request sides was first proposed in [10], and it
has been used in many studies [1, 3, 6, 9, 14, 26].

4.3.2 Maximum Mesh Peripheral Length (MMPL). This

policy gives priority to allocating mesh corner submeshes
because they have the most peripheral cores. In scanning MFL,
if there is a corner submesh that is large enough for α × β or
β × α request shapes, the requesting job is placed in this
mesh corner in the right orientation and scanning is
terminated. Any corner placement will have the most
peripheral cores. If a large enough submesh in MFL has a side
aligned with a mesh edge, the peripheral lengths associated
with possible α × β and β × α placements are computed.
When there is no corner allocation, the first placement with

the most peripheral cores is assigned to the request. If no
corner or peripheral placement is possible, the request is
placed at the base of the first large-enough internal submesh
in MFL [3]. A generalization of the orientation switching
transformation that permits all viable request shapes has also
been proposed; when combined with giving preference to
allocating peripheral submeshes it resulted in significant
system performance improvements [4].

4.3.3 Reservation Best-Fit (RBF). In this scheme,

proposed in [12], switching the orientation of requests is
also allowed, and the goal of the allocation submesh
selection scheme is to leave large free submeshes for future
allocation, as was discussed earlier. Also, because our
simulations have shown that the system performance of RBF
depends on the order of MFL elements, we have ordered
them as in [12] in the proposed MFL detection scheme when
it was used with RBF so as to have the same performance as
the original proposal.

5 Simulation Results

Simulation was employed for evaluating and comparing

the maximal free submesh detection schemes when they
were used with the three allocation submesh selection
schemes considered. To this end, we implemented the
detection and selection schemes in the ProcSimity simulator
that we have been adding our proposed scheduling and
allocation algorithms to for the last two decades. The
original ProcSimity is a C-language tool that was developed
initially at the University of Oregon for research in
processor allocation and job scheduling for distributed
memory multicomputers [21].

As in many previous related works, the 2D mesh system
has equal sides of length L [1, 3, 6, 9, 12, 14, 26]. Job
interarrival times follow an exponential distribution, and the
scheduling algorithm assumed is first-come-first-served. Job
execution times follow an exponential distribution with a
mean of one time-unit. The side-lengths of allocation
requests are generated using two distributions: the uniform
over the interval [1, L], and a uniform-decreasing distribution

3,3 1,3 2,3

2,2 1,2 3,2

1,1

4,2

4,3

2,1 3,1 4,1

 Allocated:

Free:

4,4 3,4 2,4

5,1

1,4

5,2

5,3

5,4

264 IJCA, Vol. 29, No. 4, Dec 2022

that uses four probabilities pr1, pr2, pr3 and pr4, and four side
lengths sl1, sl2, sl3, and sl4. These probabilities are for the
α and β of a request to fall within [1, sl1], [sl1+1, sl2],
[sl2+1, sl3] and [sl3+1, s l4]. The side lengths within a
range are distributed uniformly. In this paper, we use pr1 =
0.4, pr2 = pr3 = pr4 = 0.2, sl1 = L/8, sl2 = L/4, sl3 = L/2,
and sl4 = L. The distributions adopted here were used in
several previous research works [1, 3, 6, 9, 14, 15].
Independent simulation runs are repeated so as to have a
95% confidence level that relative errors do not exceed 5%
of the means. In each simulation run, 1000 jobs are
executed.

The system performance parameter measured in this study
is the average turnaround time for all jobs, where a job’s
turnaround time is the time the job spends in the system.
The efficiency of the detection schemes is evaluated using
the time taken allocating and de-allocating. This second
performance parameter is the main parameter because the
two detection schemes are expected to produce similar
system performance since they are both based on detecting
the set of maximal free submeshes and are recognition-
complete. In what follows, we denote the policies as
<D>(<S>), where D is the detection scheme and S is the
allocation submesh selection scheme. The proposed MFL

detection scheme is denoted as PMFL, and that proposed by
Kim and Yoon in [12] is denoted as KYMFL.

We first compare the system performance of the schemes
for the workload models assumed. In Figure 8, the
average turnaround times are plotted against average job
arrival rates for the detection and allocation schemes and
the uniform-decreasing size distribution in a 32 × 32
system. It can be seen in this figure that PMFL and
KYMFL have, as expected, similar system performance.
The results for the uniform distribution lead also to a similar
conclusion, however they are not shown to conserve space.
Also, simulations for other system sizes that grow to
thousands of cores (16 × 16, 64 × 64, 128 × 128 and 256
× 256) do not modify this system performance conclusion for
PMFL and KYMFL. The detection schemes PMFL and
KYMFL have similar system performance because they
both detect the unique set of maximal free submeshes. Also,
MMPL and RBF have similar performance, and they
outperform SFF substantially. Note that MMPL is a simpler
scheme when compared with RBF.

To compare the policies in terms of allocation and de-
allocation times, we measured the average actual times
taken by the combination of these operations for five hundred
runs of the simulator. In Figures 9 and 10, we show the.
combined measured times against the job arrival rates under

Figure 8: Average job turnaround times in a 32 × 32 system for the uniform-decreasing size distribution

Figure 9: Measured combined times in a 32 × 32 system for the uniform-decreasing size distribution

IJCA, Vol. 29, No. 4, Dec 2022 265

Figure 10: Measured combined times in a 32 × 32 system for the uniform size distribution

the size distributions considered in a 32 × 32 system. In these
figures PMFL outperforms KYMFL substantially.
Moreover, the advantage of PMFL is superior when the
size distribution is uniform-decreasing. The reduction in
the combined times for PMFL reaches 70% in Figure 9,
and30% in Figure 10. Under the uniform-decreasing
distribution, the average job size is smaller than under the
uniform distribution, leading to a larger number of allocated
(and free submeshes). This results in superior advantage for
PMFL.

The average number of maximal free submeshes was
computed for the simulations. This number increases with
the system load and depends on the allocation scheme. As
expected, it is comparatively small and varied from 1.16 to
3.22 for the uniform distribution. For the uniform-decreasing
distribution, it varied from 1.5 to 9.85.

To illustrate the efficiency advantage of PMFL more
clearly, we plot, in Figures 11 and 12, the relative measured
times for PMFL with respect to KYMFL. In these figures,
we have R(S) =T(PMFL(S))/T(KYMFL(S)), where
T(PMFL(S)) is the measured simulation allocation and de-
allocation time for PMFL when the selection algorithm is S,
and T(KYMFL(S)) is this time for KYMFL and the same

selection algorithm. Figure 11 shows that the efficiency
advantage of PMFL over KYMFL is substantial under most
loads. It increases with the load because the number of free
submeshes, f, also increase with the load. The reduction in
the combined times reaches about 50% for RBF, and it
reaches about 70% for SFF and MMPL.

In Figure 12, the performance advantage of PMFL for
medium to heavy loads is less substantial because f is smaller
when the size distribution is uniform. The reduction in the
combined times reaches about 10% for RBF, and it reaches
about 30% for SFF and MMPL under heavy loads.

In summary, PMFL and KYMFL have similar system
performance as they have identical submesh recognition
capability, however PMFL can be much more time efficient
than KYMFL, especially when the number of free submeshes
is large. The numbers of allocated and free submeshes are
larger when the core allocation requirements of jobs are
small.

In Figure 13, we show the combined allocation and de-
allocation times of the detection and selection policies for
various side lengths under the system load of 4.5 jobs/time
unit and the uniform-decreasing side-length distribution.
Figure 14 is for a load of 1.8 jobs/time unit and the uniform

Figure 11: Ratio of the measured times for the allocation submesh selection policies and the uniform-

decreasing size distribution in a 32 × 32 system

266 IJCA, Vol. 29, No. 4, Dec 2022

Figure 12: Ratio of the measured times for the allocation submesh selection policies and the uniform size
distribution in a 32 × 32 system

Figure 13: Measured combined times for doubled side lengths under the uniform-decreasing size distribution
and a system load of 4.5 jobs/time unit

Figure 14: Measured combined times for doubled side lengths under the uniform size distribution and a
system load of 1.8 jobs/time unit

IJCA, Vol. 29, No. 4, Dec 2022 267

performance advantage of PMFL can remain substantial as
the size of the computer system grows to tens of thousands
of cores.

6 Conclusions

In this paper, we have proposed an efficient maximal free

submesh detection scheme for space-sharing allocation in
manycore systems with 2D NoCs. Several studies indicate
that space-sharing is a promising core allocation strategy in
manycore systems, as it can achieve scalability and good
performance for large core numbers [22, 25]. Parallel jobs or
applications, including the OS, run on their own sets of cores,
which can reduce interference among jobs, message delays,
energy consumption and chip temperatures. Studies have
shown that mapping the communicating tasks of a parallel
job to neighboring cores, in particular those forming a
submesh, can reduce communication delays and power
consumption, and improve throughput and job execution
times [5, 8, 18]. In this research, maximal free submeshes
that are not contained in other free submeshes are detected
and placed in a free-list. An advantage of this scheme over
that proposed previously is that its time complexity is
quadratic in f, whereas that of the previous scheme is cubic
in this number. In addition to this theoretical comparison,
the two recognition-complete detection schemes were
evaluated and compared using detailed simulations when
three promising allocation submesh selection schemes were
used in combination with these detection schemes. The
results show that the detection schemes have similar free
submesh recognition-capability and average turnaround
times, however the proposed scheme is overall substantially
more efficient than the previous scheme in terms of the
combined allocation and de-allocation times. Also, the
simulated time performance advantage increases with the
number of free submeshses, which is compatible with the
time complexity advantage. It is to be noted that detecting
maximal free submeshes is suitable for achieving simple,
flexible, and efficient selection of allocation submeshes as
the largest free submeshes are readily available in a list. The
results also show that the simple scheme MMPL achieves
good system performance. It outperforms SFF and achieves
similar performance to the more complicated RBF scheme.
As extensions to this work, more general defragmentation
algorithms that make use of the efficient MFL detection
mechanisms proposed in this work could be investigated.

Acknowledgment

We would like to thank Al al-Bayt University as this

research has been carried out during a sabbatical leave for
Ismail Ababneh.

References

[1] I. Ababneh, “An Efficient Free-List Submesh

Allocation Scheme for Two-Dimensional Mesh-
Connected Multicomputers,” Journal of Systems and
Software, 79:1168-1179, 2006.

[2] I. Ababneh, “A Performance Comparison of
Contiguous Allocation Placement Schemes for 2D

Mesh-Connected Multicomputers,” 2007 ACS/IEEE
International Conference on Computer Systems and
Applications, (AICCSA 2007), Amman, Jordan, May
13-16, 2007.

[3] I. Ababneh, “On Submesh Allocation for 2D Mesh
Multicomputers using the Free-List Approach: Global
Placement Schemes,” Performance Evaluation,
66(2):105-120, 2009.

[4] I. Ababneh, S. Bani-Mohammad, and M. Ould-
Khaoua, “All Shapes Contiguous Submesh
Allocation for 2D Mesh Multicomputers,”
International Journal of Parallel, Emergent, and
Distributed Systems, 25(5):411-421, 2010.

[5] M. O. Agyeman, A. Ahmadinia, and N. Bagherzadeh,
“Energy and Performance-Aware Application
Mapping for Inhomogeneous 3D Networks-on-Chip,”
Journal of Systems Architecture, 89:103-117,
September 2018.

[6] G.-M. Chiu and S.-K. Chen, “An Efficient Submesh
Allocation Scheme for Two-Dimensional Meshes
with Little Overhead,” IEEE Trans. on Parallel and
Distributed Systems, 10(5):471-486, 1999.

[7] P.-J. Chuang and N.-F. Tzeng, “Allocating Precise
Submeshes in Mesh Connected Systems,” IEEE
Trans. on Parallel and Distributed Systems, 5(2):211-
217, 1994.

[8] N. Dahir, A. Karkar, M. Palesi, T. Mak, and A.
Yakovlev, “Power Density Aware Application
Mapping in Mesh-Based Network-on-Chip
Architecture: An Evolutionary Multi-Objective
Approach,” Integration, 81:342-353, November 2021.

[9] D. Das Sharma and D. K. Pradhan, “Submesh
Allocation in Mesh Multicomputers using Busy-List:
A Best-Fit Approach with Complete Recognition
Capability,” J. of Parallel and Distributed Computing,
36:106-118, 1996.

[10] J. Ding and L.-N. Bhuyan, “An Adaptive Submesh
Allocation Strategy for Two-Dimensional Mesh
Connected Systems,” Proc. Int’l Conf. Parallel
Processing II, pp. 193-200,1993.

[11] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P.
Shivakumar, S. W. Keckler, and D. Burger, “On-Chip
Interconnection Networks of the TRIPS Chip,” IEEE
Micro, 27(5):41-50, November 2007.

[12] G. Kim and H. Yoon, “On Submesh Allocation for
Mesh Multicomputers: A Best-Fit Allocation and a
Virtual Submesh Allocation for Faulty Meshes,”
IEEE Trans. on Parallel and Distributed Systems,
9(2):175-185, 1998.

[13] H. Lahdhiri, J. Lorandel, S. Monteleone, E. Bourdel,
and M. Palesi, “Framework for Design Exploration
and Performance Analysis of RF-NoC Manycore
Architecture,” Journal of Low Power Electronics and
Applications, 10(4):37, MDPI 2020.

[14] T. Liu, W.-K. Huang, F. Lombardi and L. N. Bhuyan,
“A Submesh Allocation Scheme for Mesh-Connected
Multiprocessor Systems,” Proc. Int’l Conf. Parallel
Processing II, pp. 159-163,1995.

[15] V. Lo, K. J. Windisch, W. Liu, and B. Nitzberg,
“Noncontiguous Processor Allocation Algorithms for
Mesh-Connected Mutlicomputers,” IEEE Trans.

http://www.philadelphia.edu.jo/aiccsa2007/
https://dblp.org/pid/87/27.html
https://dblp.org/pid/02/3730.html
https://dblp.org/pid/02/3730.html
https://dblp.org/db/journals/paapp/paapp25.html#AbabnehBO10
https://dblp.org/db/journals/paapp/paapp25.html#AbabnehBO10

268 IJCA, Vol. 29, No. 4, Dec 2022

on Parallel and Distributed Systems, 8(7):712-725,
1997.

[16] H. Matsutani, M. Koibuchi, and H. Amano, “Tightly-
Coupled Multi-Layer Topologies for 3-D NoCs,” 2007
International Conference on Parallel Processing,
ICPP [4343882], Proceedings of the International
Conference on Parallel Processing, pp. 75-85,
https://doi.org/10.1109/ICPP.2007.79, 2007

[17] S. Mazumdar and A. Scionti, “Ring-Mesh: A Scalable
and High-Performance Approach for Manycore
Accelerators,” The Journal of Supercomputing,
76:6720-6752, 2020.

[18] A. Mosayyebzadeh, M. M. Amiraski, and S. Hessabi,
“Thermal and Power Aware Task Mapping on 3D
Network on Chip,” Computers and Electrical
Engineering, 51:157-167, April 2016

[19] J. Ng, X. Wang, A. Singh, and T. Mak,
“Defragmentation for Efficient Runtime Resource
Management in NoC-Based Many-Core Systems,”
IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 24(11):3359-3372, 2016

[20] A. Pathania, V. Venkataramani, M. Shafique, T. Mitra,
and J. Henkel, “Defragmentation of Tasks in Many-
Core Architecture,” ACM Trans. on Architecture and
Code Optimization, 14(1):1-21, 2017

[21] ProcSimity, ProcSimity v4.3 User’s Manual,
University of Oregon, May 17, 1996.

[22] H. Sasaki, T. Tanimoto, K. Inoue, and H. Nakamura,
“Scalability-Based Manycore Partitioning,”
PACT’12, Minneapolis, Minnesota, USA, September
19-23, 2012.

[23] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Lyer, A. Singh, T. Jacob, S.
Jain, S. Venkataraman, Y. Hoskote, and N. Borkar,
“An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS,” 2007 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers, pp. 98-589,
doi: 10.1109/ISSCC.2007.373606, 2007.

[24] D. Wentzlaff, P. Griffin, H. Hoffmann, B. Liewei, B.
Edwards, C. Ramey, M. Mattina, M. Chyi-Chang, J.F.
Brown, and A. Agarwal, “On-Chip Interconnection
Architecture of the Tile Processor,” Micro, IEEE,
27(5):15-31, November 2007

[25] D. Wentzlaff, C. Gruenwald, N. Beckmann, K.
Modzelewski, A. Belay, L. Youseff, J. Miller, and A.
Agrawal, “A Unified Operating System for Clouds
and Manycore: fos,” Computer Science and Artificial
Intelligence Lab, MIT, Tech. Rep. MIT-CSAIL-TR-
2009-059, Nov. 2009

[26] S.-M. Yoo, H. Y. Youn, and B. Shirazi, “An Efficient
Task Allocation Scheme for 2D Mesh Architectures,”
IEEE Trans. on Parallel and Distributed Systems,
8(9):934-942, 1997.

[27] Y. Zhu, “Efficient Processor Allocation Strategies for
Mesh-Connected Parallel Computers,” J. Parallel
and Distributed Computing, 16:328-337, 1992.

[28] X. Zhu and W.-M. Lin, “Allocation-Time-Based
Processor Allocation Scheme for 2D Mesh
Architecture,” J. of Information Science and
Engineering, 16:301-311, 2000.

Ismail Ababneh received a BS
degree in Electromechanical
Engineering from the National
Superior School of Electronics and
Electro-mechanics of Caen, France,
in 1979, the MS degree in Software
Engineering from Boston
University in 1984, and the Ph.D.
degree in Computer Engineering
from Iowa State University in 1995.
From 1984 to 1989, he was a

Software Engineer with Data Acquisition Systems, Boston,
Massachusetts. He is presently a professor in the Department
of Computer Science at Al al-Bayt University in Jordan.
From 2007 to 2010, he was a visiting associate professor in
the Department of Computer Science at Jordan University of
Science and Technology. He is a member of Tau Beta Pi and
Eta Kappa Nu. He held several administative positions at Al
al-Bayt University, including Head of Computer Science
Department, Dean of IT College, Director of Computer
Center, Dean of Research, and Vice President for
Administration and Student Affairs. His current research
interests include processor allocation in multicomputers, and
ad hoc routing algorithms. He has published about 70 papers
in journals, conferences and workshops.

Saad Bani-Mohammad received
the BSc degree in computer science
from Yarmouk University, Jordan in
1994, the MSc degree in computer
science from Al al-Bayt university,
Jordan in 2002, and the PhD degree
in computer science from
University of Glasgow, U.K., in
2008. From 2002 to 2005, he was a
lecturer in the Department of
Computer Science at Al al-Bayt
University in Jordan. Prof. Bani-

Mohammad served as a Head of Computer Science
Department for 5 years (2008-2013) at Al al-Bayt University,
and a Deputy Dean of the IT College at Al al-Bayt University
for one year (2013-2014), and then he served as a Dean of
Prince Hussein Bin Abdullah College for Information
Technology at Al al-Bayt University for 6 years (2015-2020).
Prof. Bani-Mohammad is presently a President’s Assistant of
Accreditation and Quality Assurance Commission for Higher
Education Institutions (AQACHEI) in Jordan and a Professor
of Computer Science in the Department of Computer Science
at Al al-Bayt University, Jordan. He is a member of IEEE
Computer Society. His research interests include processor
allocation and job scheduling in multicomputers and E-
learning. Prof. Bani-Mohammad has over 40 scientific papers
and projects either presented or published. Most of his
research was supported by Al al-Bayt University, Jordan and
University of Glasgow, U.K. His findings were published
(over 40 publications) in world leading journals and also in
prestigious and top quality international conference
proceedings.

https://doi.org/10.1109/ICPP.2007.79
https://dl.acm.org/toc/itvl/2016/24/11
https://dl.acm.org/toc/itvl/2016/24/11

	Final Dec IJCA Journal Issue
	International Society for Computers
	Guest Editor’s Editorial . 213
	CTChain: Blockchain Platform for Contact Tracing and Mapping Active Infections . . . 215
	Blake Bleem, Vishwanath Varma Indukuri, Reshmi Mitra, and Indranil Roy
	Rania Shaqbou’a, Nedal Tahat, O. Y. Ababneh, and Obaida M. lAl-Hazaimeh
	Armend Salihu, Halil Snopce, Artan Luma, and Jaumin Ajdari
	Delphi Hanggoro, Jauzak Hussaini Windiatmaja, and Riri Fitri Sari

	An Efficient Maximal Free Submesh Detection Scheme for Space-Multiplexing in 2D Mesh-Connected Manycore Computers . 257
	Ismail Ababneh and Saad Bani-Mohammad
	The Combination of Ontology-Driven Conceptual Modeling and Ontology Matching for Building Domain Ontologies: E-Government Case Study . 269
	Shaimaa Haridy, Rasha M. Ismail, Nagwa Badr, and Mohamed :Hashem

	Index . 283

	EditorialBoardforfront inside coverDecember2022
	IJCA-editarial-Dec2022-WF(1)
	1 ISCA__CTChain-1
	2 Shagbou, Tahat, Abbnak, Al-Hazimet IJCA Dec 2022
	3 Salihu IJCA Dec 2022
	4 ISCA_Rev _VI Delphi Hanggoro
	5 Abaneh Bani-Mohammad Dec 2022 IJCTA
	1 Introduction
	2 Preliminaries
	3.1 Busy-List with Global Adjacency (BLGA)
	3.2 Free-List with First-Fit Adjacency (FLFFA)
	3.3 Reservation Best-Fit (RBF)
	3.4 Right Border Line (RBL)

	4 Proposed Submesh Detection Scheme
	4.1 Detection of Maximal Free Submeshes upon De-allocation
	4.2 Detection of Maximal Free Submeshes upon Allocation

	5 Simulation Results
	6 Conclusions

	6 Haridy Ismail Badr Hashem
	Key Words: Artificial intelligence, digital government (e-government), ontology-driven conceptual modeling, ontology engineering, ontology enrichment, ontology matching, OntoUML, semantic web.
	1 Introduction
	2 Related work
	2.1 Ontology-Driven Conceptual Modeling
	A. 2.2 Ontology Matching
	2.3 E-Government

	3 Proposed Architecture
	3.1 Requirement Specification Module
	3.2 Ontology Development Module
	3.2.1 Specification
	3.2.2 Conceptualization. A model of the relevant domain knowledge is built in this step. This model can take any shape that domain experts accept and understand [15]. The proposed conceptual model is implemented using OLED [19], which is a model-ba...
	3.2.3 Formalization. The aim of this activity is to output a model in an implementation language. Therefore, the preceding activity’s well-founded conceptual model is transformed into a formal model using OLED code generation feature. As a result, ...
	Individuals are defined to classes such as Ministry, Company, Authority, Office, Organization, Governorate and Request.
	3.2.5 Maintenance. This activity involves making any necessary updates or corrections to the ontology.

	3.3 Ontology Enrichment Module
	3.3.1 Ontology Matching. This activity identifies correspondences between proposed ontology’s entities and those in already existing domain ontologies. This can be accomplished by using one of the available matchers. AML [32] is one of the most eff...
	3.3.2 Ontology Selection. Based on the mappings produced by the previous activity, the most pertinent domain ontology is selected. one with the greatest number of mappings to the proposed ontology (EGYGOV). It is O18 as shown in Table 3.
	3.3.3 Classes and Relations Extraction. The aim of this activity is to extract the list of classes and relations that will be injected later in the proposed ontology. To do this, there are two key steps: first, find the classes that exist in the mapp...
	3.3.4 Ontology Enrichment. This activity is the last step in the enriching process in which classes and relationships are inserted into the proposed ontology. To eliminate duplications or inappropriate insertions, the extracted list must first under...

	3.4 Ontology Quality Assessment Module.
	In this module, the proposed ontology is evaluated. This assessment process is applied twice, once following the development module and once following the enrichment module. The ontology’s quality can be assessed in multiple ways. In this case stud...
	Table 2: AML matcher results – lexicon and relationship map

	4 Experimental Results
	4.1 Overall Metrics
	4.2 Accuracy
	4.3 Understandability
	4.4 Cohesion
	4.5 Conciseness

	5 Conclusion And Future Work
	References

	Index templet for Dec
	B
	K-L
	P-Q
	T-V
	Access patterns
	Amazon web services
	Analytics
	Approximate query processing
	Artificial intelligence
	Aura
	AWS
	Blockchain
	Bootstrap sampling
	Casual regularity
	Chaining
	Chaotic maps
	Chinese
	Client-server
	Clique
	Cloud management
	IJCA v29 no3 Sept 2022 181-189
	Commutativity
	Constructive deep learning
	Contact tracing
	Contiguous submesh allocation
	Controller
	Crypto-system
	CT scan
	Data

	IJCA v29 no1 March 2022 27-37
	Data mining
	Diagnosis systems

	Digital signature
	Digital simulation
	Document processing
	Dodgson’s method
	Edge

	End user development
	Entropy analysis

	Error estimation
	ETL (extract, transform, load)
	Execution time
	Feedback
	Gradient boosting regressor
	Gesture recognition
	Hash chaining
	Human-robot interaction
	IJCA v29 no2 June 2022 97-110
	I-J

	Image classification
	IJCA v29 no3 Sept 2022 181-189
	Industrial control systems security
	Infection containment
	IJCA v29 no4 Dec 2022 215-228
	INUS condition

	Interaction interface
	iOS framework
	Japanese

	kanji
	Knowledge representation
	Linear time-varying (LTV)
	Lock-chain
	Logical model
	Low power electronics
	Machine learning
	Manycore systems
	Maximal free submesh
	Mesh interconnection network
	Monetization
	Multimodal inputs
	Natural language processing
	Network design

	Non-parametric method
	Ontology-driven conceptual modeling
	Ontology engineering
	IJCA v29 no4 Dec 2022 269-282
	Ontology enrichment
	Ontology matching
	OntoUML
	OOPS!
	Observer
	PaaS
	Platooning
	Pivotal condensation
	Programming bugs
	Proof-of-authority
	Quadratic residue problem
	Ranking
	Rectangular determinants
	Robotics
	S

	SaaS
	Security
	Space-sharing (space-multiplexing)
	Semantic
	Semantic web
	Surveillance
	Symbol
	Systemd-nspawn
	Tamper evident
	Time complexity
	Tracking
	Veteran services
	Virtual reality
	Web application
	Wireless sensor network

	Journal Submission Instructions2022
	Journal Submission

	IJCA Jrnl back outside cover Dec 2022

