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Abstract 
 

For multicore systems, space-sharing (space-multiplexing) 
is a promising core allocation strategy as the number of cores 
grows into the hundreds and thousands because it can achieve 
scalability and good system performance.  In space-
multiplexing, an application is allocated its own set of cores 
for the duration of its execution.  In this paper, we propose a 
new efficient maximal free submesh detection scheme for 
two-dimensional mesh-connected manycore systems.  Free 
submeshes that are not contained in other free submeshes are 
detected and placed in a free-list for direct support of space-
multiplexing.  An advantage of the proposed scheme is that 
its time complexity is quadratic in the number of free 
submeshes, whereas the time complexity of the previous such 
scheme is cubic in this number.  In addition to complexity 
analysis, detailed simulations are carried out to evaluate the 
proposed scheme.  In the simulations, we consider several 
approaches to selecting allocation submeshes from the free-
list.  The approaches range from a promising first-fit variant 
to a scheme that aims to keep large free submeshes for future 
allocation requests.  The results show that the proposed 
scheme is substantially more time-efficient than the previous 
cubic recognition-complete maximal free submesh scheme.  
It achieved up to seventy percent reduction in the average 
combined allocation and de-allocation times in these 
simulations. 

Key Words:  Manycore systems, mesh interconnection 
network, space-sharing (space-multiplexing), maximal free 
submesh, contiguous submesh allocation. 
 

1 Introduction 
 
Over the past two decades, there has been, mainly because 

of the power wall, a shift from increasing the clock frequency 
of single-thread microprocessors to multicore processors, 
where several cores or processing units are built on a single 
chip.  As per Moore’s law, it has also been possible to 
incorporate many cores and build manycore processors, 
which are multicore systems with many relatively simple 
cores that can support high explicit parallelism.  

For communication among the cores in manycore systems, 
a Network-on-Chip (NoC) architecture is used.  This is to 
avoid the bottleneck problem that the bus interconnection 
architecture suffers from when the number of cores becomes 
large.  The mesh is a popular NoC interconnection topology,  
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in both its two-dimensional (2D) and three-dimensional (3D) 
forms [16, 17, 24].  An example is the 2D 8×10 mesh network 
of an 80-core Intel manycore research chip, where each core 
or Processing Element (PE) is associated with a 5-port router 
for communication [23].  Four ports are used for 
communicating with the four neighbors of internal cores.  
Cores on mesh corners and on its edges have fewer neighbors.  
The fifth port is for NoC-PE communication.  Another 
example is the TRIPS OCN that has a 4x10 wormhole-routed 
2D mesh interconnection network [11].  A recent 1024-node 
manycore system has the mesh topology, and comprises 32 
clusters, where a cluster is a 4×8 mesh.  To decrease the 
system’s diameter, each cluster has in its middle a Radio Hub 
(RH) that communicates with the four 2D routers of the 
middle cluster node.  Communication among clusters takes 
place via the RHs.  Within clusters, communication uses the 
mesh interconnection network [13].  In [17], a NOC that 
combines ring and 2D mesh interconnections and adapts to 
application requirements is proposed for improved scalability 
and energy efficiency up to 1024 processing elements. 

Several studies indicate that space-multiplexing (space-
sharing) is a promising core allocation strategy for manycore 
systems, as it can achieve scalability and good performance 
for large core numbers [22, 25].  By allocating resources 
spatially, traditional time multiplexing scheduling is 
transformed into a layout and partitioning problem, where 
jobs or applications, including possibly the OS, run on their 
own sets of cores.  In space-sharing, a job can be executed on 
a submesh of the manycore system, which can reduce 
communication distances, interference among jobs, message 
delays, energy consumption and chip temperatures.  
Supporting this, previous studies have shown that mapping 
the communicating tasks of a parallel job to neighboring 
cores, in particular the cores of a single submesh, can reduce 
communication delays and power consumption, and improve 
throughput and job execution times [5, 8, 18]. 

Based on this, we assume that allocation is contiguous, 
where a job requests and is allocated a single submesh of a 
width and a height that the job specifies.   By running on a 
single submesh, the job can achieve reduced distances among 
the cores it is allocated. Also, a space-sharing allocation 
policy is required to achieve high system utilization.  It must 
be capable of detecting all free core submeshes and should 
aim to maximize the number of allocated cores (i.e., 
minimize core fragmentation) [9, 15, 26].  In addition, it must 
be time-efficient, especially as the system size (i.e., number 
of cores) of the manycore system grows.  Migratory space-
sharing policies that carry out defragmentation of scattered 
submeshes that result when jobs exit the system have been 
considered.  An issue in these policies is when to carry out 

mailto:ismael@aabu.edu.jo
mailto:bani@aabu.edu.jo


258 IJCA, Vol. 29, No. 4, Dec 2022 

defragmentation and the associated job migrations, the cost 
of migration, and application size constraints imposed by 
some of these policies to simplify defragmentation [19, 20].  
Such constraints can result in internal fragmentation. 

Several contiguous space-sharing allocation policies were 
proposed for multicomputers with 2D mesh interconnection 
topologies.  Several of these policies do not scale well.  They 
have time complexities that grow with the system size (its 
number of PEs) [7, 10, 26, 27].  However, more efficient 
policies that build lists of free submeshes and/or allocated 
submeshes were proposed.  The allocation decisions they 
make are based on the elements in these lists, and their time 
complexities are functions of list sizes [1, 6, 9, 12, 14].  A 
major advantage of such policies is that list sizes can be much 
smaller than system sizes [1, 3]. 

An advantage of submesh allocation that is based on free 
submeshes is its flexible submesh selection.  When multiple 
large-enough free submeshes exist, they all can readily and 
simply be considered for allocation to the current request, 
which can lead to superior allocation.  A free-list allocation 
policy that can detect all maximal free submeshes in a 2D 
mesh system has been proposed [12].  However, the submesh 
detection algorithm it uses is not efficient.  It has time 
complexity that is cubic in the number of free submeshes.  A 
free submesh is maximal if it is not contained in another free 
submesh.  More efficient algorithms for building the free-list 
have been proposed [1, 14].  However, they are not 
recognition-complete. They fail to detect some available 
submeshes, which can result in unsuccessful allocation to the 
current allocation request although there is in fact at least one 
large-enough free submesh for satisfying this request. 

In this paper, we propose an efficient recognition-complete 
maximal free submesh detection scheme for 2D mesh-
connected manycore systems.  An advantage of this scheme 
over the previous recognition-complete scheme, proposed in 
[12], is that its time complexity is quadratic in the number of 
free submeshes, while the time complexity of the previous 
scheme is cubic in this number.  Using detailed simulations, 
we evaluated and compared these two detection schemes.  In 
these simulations, various previous promising policies for 
deciding where allocation will take place are considered.  

They range from a promising first-fit variant [10] to a policy 
that aims to keep large free submeshes for future allocation 
using a reservation function [12], and a policy that gives 
priority to mesh corner then peripheral allocation [3].  Corner 
and peripheral placements have for goal leaving large free 
submeshes for future allocation.  The simulation results show 
that when allocation and de-allocation times are considered, 
the proposed submesh detection scheme substantially 
outperforms the previous maximal free submesh detection 
scheme.  It has achieved up to seventy percent improvement 
in the measured combination of these times. 

We limit our attention here to 2D meshes; however, this 
work can be adapted for 3D meshes.   This paper is organized 
as six sections. Section 2 below contains a few preliminaries. 
Section 3 has a review of related schemes. The proposed 
detection scheme is defined and analyzed in Section 4.  The 
system model, and simulation parameters and results are in 
Section 5.  Finally, Section 6 contains the research 
conclusions. 

 
2 Preliminaries 

 
The target manycore system, M(W, H), is of width W and 

height H.  A core is denoted by the coordinates (i, j), where 1 
≤  i  ≤  W and  1  ≤  j  ≤  H.  Cores are interconnected by 
bidirectional communication links as shown in Figure 1.  The 
size of the mesh is the number of its cores, N, where N=W*H. 

A w × h submesh is represented by a 4-tuple (i1, j1, i2, j2), 
where (i1, j1) represent its base node, and (i2, j2) its end node.   
We have that w = i2 – i1 + 1 and h = j2 – j1 + 1.  In Figure 1, 
(1, 3, 3, 4) represents the 3 × 2 submesh S1. 

A submesh is said to be free if none of its cores is allocated.  
As indicated previously, a free submesh is said to be maximal 
if it is not contained in another free submesh.  Also, a 
submesh is said to be busy or allocated if all its cores are 
allocated to the same job.  In Figure 1, the maximal free 
submeshes are (1, 1, 1, 4), (1, 3, 5, 4), and (3, 1, 5, 4).  For 
example, (3, 1, 5, 2) is not maximal as it is contained in (3, 
1, 5, 4).  If the cores (2, 1) and (2, 2) in Figure 1 are allocated 
to the same job, then (2, 1, 2, 2) is a busy or allocated 
submesh.  

 

 
Figure 1. M(5, 4) 2D mesh 
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3 Previous Works 
 

Several contiguous allocation policies based on free and/or 
busy submeshes have been proposed for 2D meshes.  They 
differ in how they detect free submeshes, how they select a 
free submesh for allocation, and where the allocated  
submesh is located within the free submesh selected.  A major 
aim of a contiguous allocation policy should include reducing 
external fragmentation.  That is, reducing the number of free 
cores that remain idle although they are sufficient in number 
to satisfy the allocation request of the job that the scheduling 
algorithm has selected for execution.  For instance, a policy 
may fail to detect some of the free submeshes, and it may 
make some poor placement choices that result in a relatively 
large number of small free submeshes, rather than fewer large 
ones.  In what follows, N is the size of the target manycore 
system, and f and b are the numbers of free and busy 
submeshes, respectively.  We also assume that a job’s 
allocation request upon arrival is for an α × β free submesh, 
where the width and height of the submesh requested are α 
and β. 
 
3.1 Busy-List with Global Adjacency (BLGA) 
 

This policy [9] uses a list of allocated processors.  It 
attempts to satisfy the allocation request in its α × β or β × α 
orientations using a submesh that has the largest number of 
adjacent busy cores and mesh boundary cores.  The rationale 
is that this can reduce fragmentation.  The time complexity of 
allocation in BLGA is in O(b3), and that of de-allocation is in 
O(1).  In [28], a BLGA improvement that aims to allocate 
adjacent submeshes to requests served close in time is 
proposed.  However, such heuristic assumes that jobs that 
start execution close in time tend to have close exit times. 
 
3.2 Free-List with First-Fit Adjacency (FLFFA) 

 
This scheme [14] builds a free-list that approximates the 

maximal free list (MFL), and a busy-list.  The free-list 
elements are sorted in the non-decreasing order of their 
shorter edge.  The first free submesh that can accommodate 
the current allocation request as (α × β) or (β × α) is the  
 

allocation candidate.  Allocation for both orientations is 
considered in the corners of the candidate submesh, and a 
placement with the maximum number of adjacent busy cores 
and mesh peripheral cores is the allocation submesh.  The 
number of adjacent busy processors is computed using the 
busy-list.  FLFFA was compared to BLGA using simulations, 
where it achieved superior waiting delays.  Also, FLFFA 
outperformed BLGA overall in another simulation study 
[12].  

The allocation and de-allocation operations have O(f2) time 
complexities.  In [1], an O(f) heuristic for approximating 
MFL has been proposed.  In both heuristics, building the free-
list starts with expanding, if possible, the released submesh 
into the current elements of the free-list when a job 
terminates.  This step produces new free submeshes.  Then, 
expansions of the current elements into the new submeshses 
are attempted.  The expanded and new submeshes are used in 
forming the new free-list.  A problem is that this approach is 
not recognition-complete, as can be seen in Example 1 below. 

 
Example 1.  In Figure 2, if the job running on (2, 1, 2, 4) 

terminates, the released submesh cannot be expanded into the 
existing free submeshes ({(1, 1, 1, 2), (3, 1, 5, 2)}), and the 
new free submesh is {(2, 1, 2, 4))}.  Then, (1, 1, 1, 2) is 
expanded into (2, 1, 2, 4) to produce the free submesh (1, 1, 
2, 2).  Likewise, expanding (3, 1, 5, 2) into (2, 1, 2, 4) 
produces (2, 1, 5, 2).  Thus, (1, 1, 5, 2) is not detected, and 
the detected submeshes (1, 1, 2, 2) and (2, 1, 5, 2) are not 
maximal as they are proper submeshes of the undetected 
maximal free submesh (1, 1, 5, 2). 
 
3.3 Reservation Best-Fit (RBF) 
 

This policy [12] builds the MFL and sorts its elements in 
their non-increasing size order.  The submesh size is the 
number of cores it contains.  The policy also builds a busy 
list.  The MFL is scanned for large enough free submeshes.   
In these submeshes, all possible α × β and β × α submesh 
corner placements are considered candidate submeshes.   A 
reservation function is employed for computing leftover free 
submeshes with the aim of preserving large free submeshes 
for later use.  Using simulations, RBF outperformed FLFFA  
 

 
 

Figure 2. An example illustrating incomplete recognition  
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and BLGA in terms of average job waiting delays [12].  The 
time complexity for building MFL upon a job exit is in O(f3), 
and that needed upon an allocation operation is in O(f2). Both 
use submesh subtraction operations, instead of expansions.   
 
3.4 Right Border Line (RBL) 

 
This strategy [6] keeps a busy-list and uses it to determine 

the allocation right border lines.  These lines consist of nodes 
that can serve as bases for the current allocation request.  By 
construction, the lines either have to their left an allocated 
submesh or they are the left boundary of the mesh itself.  A 
policy that re-builds the RBLs and looks for an allocation 
RBL for β × α when none is found for α × β was also 
proposed.  In both cases, the upper end core of the first 
allocation RBL to be found is chosen as base node for the 
allocated submesh.  The allocation time of RBL is in O(b2), 
and that of de-allocation is in O(1).  Using simulations, the 
performance of the orientation-switching RBL policy was 
evaluated and compared to the performance of BLGA and 
several other allocation policies.  The policies considered 
produced almost similar average job waiting delays, with 
BLGA performing slightly better than the others [6]. 
 

4 Proposed Submesh Detection Scheme 
 
In the free submesh detection scheme proposed in this paper, 

the maximal free submeshes are found and form an unordered 
MFL.  Initially, this list contains the entire mesh.  It is then 
reconstructed after each job departure (i.e., submesh release), 
and each allocation.  
 
4.1 Detection of Maximal Free Submeshes upon De-

allocation 
 

When a job terminates and the submesh it is allocated is 
released, an attempt is made first to expand the released 
submesh into the current elements in MFL using two patterns.  
The first is a horizontal-vertical expansion, and the second is 
a vertical-horizontal expansion.  In horizontal expansion, a 
submesh may expand into a free submesh located to its left  

or right.  In vertical expansion, the expanded into submesh 
may be above or below the expanding submesh.  At most two 
new different submeshes can result from these expansions.  
The first is generated by the horizontal-vertical expansion, 
and the second is generated by the vertical-horizontal 
expansion.  If expansion is not possible, the only new 
submesh is the released submesh itself. In all cases, if an 
expanding submesh covers an expanded into submesh after 
the expansion, the latter is removed from MFL because its 
free cores are covered.  The expansions of the released 
submesh into the elements of MFL are of the complete type, 
as defined below [1]. 

 
Definition 1.  A free submesh (i1, j1, i2, j2) is completely 

expandable right into an adjacent free submesh (i3, j3, i4, j4) 
if i2 ≥ i3 - 1, i2 < i4, i1 < i3, j2 ≤ j4, and j1 ≥ j3.  This 
expansion turns (i1, j1, i2, j2) into (i1, j1, i4, j2). Complete 
expansions down, up, and left are defined similarly.  If j2 = 
j4 and j1 = j3, we have that (i3, j3, i4, j4) ⊂ (i1, j1, i4, j2).  
When (i3, j3, i4, j4) is an element of MFL, it is removed 
because its free cores are in (i1, j1, i4, j2).  Expansions in the 
remaining directions are handled similarly. 
 

Example 2.  In Figure 3, MFL = {(4, 3, 5, 4), (1, 3, 5, 3), 
(3, 1, 3, 3)}. Assume S = (1, 4, 3, 4) is released.  The 
horizontal step of the horizontal-vertical complete expansion 
of S into the elements of MFL produces (1, 4, 5, 4) by the 
complete expansion of S into (4, 3, 5, 4), then (1, 4, 5, 4) 
becomes (1, 3, 5, 4) by its complete expansion into (1, 3, 5, 
3) in the vertical step and (1, 3, 5, 3) is removed. 

 
As a result of the release of a submesh and its expansions, 

it may be possible to expand MFL elements completely or 
partially (see Definition 2 below) into the new submeshes to 
produce larger or additional free submeshes.  This expansion 
is conducted next.  If an edge of a submesh in MFL is 
partially or completely covered by or borders a new 
submesh, the submesh or parts of it are extended to the 
other end of the new submesh.  An element in MFL that is 
covered by one of the new submeshes before or after 
expansion is removed from this list. 

 
 

 
Figure 3:  Submesh release example 
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Example 3. Continuing with Example 2.  The new free 
submesh is (1, 3, 5, 4), and the submeshes that remain in 
MFL are (3, 1, 3, 3) and (4, 3, 5, 4).  The submesh (4, 3, 5, 
4) is covered by (1, 3, 5, 4), therefore it is removed.  The 
submesh (3, 1, 3, 3) is expanded completely into (1, 3, 5, 4), 
producing the maximal free submesh (3, 1, 3, 4). 

 
Definition 2.  The partial expansion of a free submesh into 

a second one is the horizontal and/or vertical expansion of the 
largest subpart(s) of this free submesh into the second one. 

 
Example 4.  If the submesh (5, 4, 6, 5) in Figure 4 is 

released, the part (5, 1, 5, 3) of (4, 1, 5, 3) is expanded 
partially into (5, 4, 6, 5), producing (5, 1, 5, 5).  Also, (5, 6, 
5, 6) is completely expanded into (5, 4, 6, 5) to produce (5, 
4, 5, 6). 

 
It can be noticed that the free submesh (5, 1, 5, 6) in 

Example 4 is not detected by the expansions considered so 
far. Partial and complete expansions across the released 
submesh are needed.  To carry out such expansions, the free 
submeshes must be processed further for possible inter-
expansions.  For example, (5, 1, 5, 5) can be expanded 
completely into (5, 4, 5, 6) to produce the maximal free 
submesh (5, 1, 5, 6).  In this expansion, the expanded into 
submesh is removed because it is covered by the result of 
the expansion.  In all cases, a free submesh is removed 
and does not appear in the final MFL if it is covered by 
any other free submesh. 

Another reason for missing maximal free submeshes by 
the expansions considered so far is the existence of free 
submeshes around a corner of the released submesh or its 
expansions.  A maximal free submesh is missed if the sides 
of corner free submeshes are shorter than the sides they face 
in the released submesh or its expansion.  For example, if 
the submesh (2, 2, 3, 4) is released in Figure 4, then the 
partial expansions of (1, 1, 1, 3) and (1, 1, 2, 1) into this 
submesh will produce (1, 2, 3, 3) and (2, 1, 2, 4).  However, 
(1, 1, 2, 3) is not detected.  To detect this maximal free  
 

submesh, (1, 1, 2, 1) should be expanded into (1, 2, 3, 3).  
Finally, once these additional expansions are carried out the 
detected free submeshes should be processed for coverage.  
In the current example, (1, 1, 2, 3) covers (1, 1, 1, 3), 
therefore the latter submesh is removed.  The complete de-
allocation algorithm is in Figure 5. 

For analyzing this de-allocation algorithm, it can be seen 
that the number of possible complete expansions in Step 2 
is in O(f).  Also, because of the generation of S1 and S2 
the number of free submeshes at the end of Step 2 is at 
most f + 2.  As a result of the partial and complete 
expansions in Steps 3 and 4, the number of known free 
submeshes at the end of these steps is also in O(f).  The 
number of tests needed for coverage detection and 

processing in Step 6 is in O(f2).  After this coverage 
detection, the number of free submeshes detected is in O(f) 
because only a subset of maximal free submeshes has been 
detected so far.  Consequently, the number of operations 

needed in Step 7 is in O(f2). 
Upon completion of Step 7, the maximal free submeshes 

that are generated by the partial and complete expansions 
across the released submesh are detected.  Also, are detected 
the additional maximal free submeshes associated with the 
corner free submeshes.  Intuitively, the number of 
additional maximal free submeshes detected in Step 7 is 
in O(f), and the number of tests needed for coverage 

detection and processing in Step 8 is in O(f2).  It is easy to 
see that Steps 1 and 5 take constant time.  Hence, the 

complexity of this algorithm is in O(f2).  
 

4.2 Detection of Maximal Free Submeshes upon 
Allocation 

 
Upon allocation, a selection scheme that determines the 

submesh where allocation will take place, such as first-fit, 
is employed. Then, where allocation takes place in this 
submesh is determined. This placement could, for example, 

 
 

Figure 4:  Submesh release example 
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Procedure de-allocate(S) /* An allocated submesh S is 
released */ 

Step 1)     num_free_cores += size(S) /* update the 
number of free cores */ 

S1=S; S2=S 
Step 2)     Completely expand S1 horizontally into the 

elements of MFL 
Completely expand S2 vertically into the elements of 

MFL 
Completely expand S1 vertically into the elements of 

MFL 
Completely expand S2 horizontally into the elements 

of MFL 
R = S1 
Step 3)     for each submesh F in MFL { 
if F is outside R and they are not adjacent go to next F 
else if F ⊆ R remove F from MFL 
else if no node in F is adjacent to a node in S go to next 

iteration of this loop else if complete expansion of F into 
R is possible { 

completely expand F into R (down, right, up, or left) 
if R ⊆ F then R = F and remove F from MFL 
} 
else if partial expansion from F into R is possible 
      form resulting fragments and add them at the head 

of a temporary list TL 
       else completely expand R into F (up, right, left, or 

down) if possible 
} 
Step 4)     repeat Step 3) for R = S2 if S2 ≠ S1 
Step 5)     Append TL at the head of MFL to form the 

list FL: FL = TL + MFL 
TL = ∅ 
Step 6)   /* Remove FL elements that are non-maximal: 

*/ 
for each element Si in FL 
for each element Sj that is after Si in FL 
if (Sj ⊆ Si) remove Sj from FL 
else if (Si ⊆ Sj) mark Si for removal before going on to 

the next Si 
Step 7)    /* Carry out expansions across the released 

submesh and around corners */ 
Carry out all additional complete and partial 

expansions among FL elements 
Add the fragments that result from partial expansions 

at the head of TL 
Step 8)     FL = TL+FL; Remove non-maximal FL 

elements; MFL = FL; TL = ∅ 
} /* end of procedure de-allocate */ 

 
Figure 5:  The de-allocation algorithm 

 
be in the lower-left or lower-right corner of the allocation 
submesh.  Then, MFL is rebuilt.  The allocation submesh is 
removed from MFL and the fragments that result from the 
subtraction of the allocated submesh from it are added at the 
head of a temporary list, TL.  Also, the allocated submesh is 
subtracted from overlapping MFL elements, and the results 
are added at the beginning of TL.  Finally, TL is appended at 

the head of MFL.  The list that results is scanned, and a 
submesh in this list is removed if it is covered by another 
element in the list.  Thus, the elements that remain in the list 
are maximal, and they constitute the new MFL.  The 
allocation algorithm is given in Figure 6.  
 

/* Current job requests the allocation of an α × β 
submesh */ 

Procedure allocate (α, β){ 
Step 1)  if num_free_cor < αβ return Failure 
Step 2)  Select an allocation submesh S from MFL, and 

position the allocated submesh A 
within S 

if no S is found return Failure 
Step 3) Remove S from MFL 
Step 4)  Subtract A from S 
Step 5)  Add fragments that result from the subtraction 

at the head of a temporary list TL 
Step 6)  for each submesh Si in MFL 
if Si overlaps with A{ 
Remove Si from MFL 
Subtract the overlapping part A ∩ Si from Si 
Add the resulting fragments at the head of TL 
} 
Step 7)  Append TL at the head of MFL producing a 

list FL 
Step 8)  Remove FL elements that are non-maximal 
Step 9)  num_free_cores = num_free_cores - αβ; MFL 

= FL; return Success 
} /* end of procedure allocate */ 

 
Figure 6:  Allocation algorithm 

 
The subtraction operation used in the allocation algorithm 

is one that produces maximal difference submeshes.  For 
example, subtracting (1, 1, 2, 2) from (1, 1, 5, 4) in Figure 7 
yields the fragments (3, 1, 5, 4) and (1, 3, 5, 4).  The 
subtraction of (3, 2, 4, 3) from (1, 1, 5, 4) produces the four 
difference submeshes (1, 1, 5, 1), (1, 1, 2, 4), (1, 4, 5, 4), and 
(5, 1, 5, 4), as another example. 

 
Example 5.  This example illustrates how allocation 

works.  Assume a free system, and a request for a 2 × 2 
submesh arrives.  Initially, MFL consists of the whole mesh 
(1, 1, 5, 4).  If the request is allocated (1, 1, 2, 2), then (1, 1, 
5, 4) is removed from MFL, and the subtraction of (1, 1, 2, 
2) from (1, 1, 5, 4) yields the fragments (3, 1, 5, 4) and (1, 
3, 5, 4), which are added at the head of TL.  Then, TL is 
appended at the head of MFL to produce FL = {(3, 1, 5, 4), 
(1, 3, 5, 4)}.  This is the final MFL because all its elements 
are maximal.  If a 4 × 2 allocation request arrives, the 
allocation selection algorithm may choose the allocation 
submesh S = (1, 3, 5, 4) and allocate A = (1, 3, 4, 4).  In this 
case, (1, 3, 5, 4) is removed from MFL, and the subtraction 
of A from S produces the fragment (5, 3, 5, 4), which is added 
to a new TL.  Then A is  subtracted from (3, 1, 5, 4), yielding 
the fragments (3, 1, 5, 2) and (5, 1, 5, 4), which are added 
to TL.  The submesh (3, 1, 5, 4) is removed from MFL.  
Finally, (5, 3, 5, 4) is removed because it is covered by (5, 
1, 5, 4).  The final MFL is {(3, 1, 5, 2), (5, 1, 5, 4)}. 
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Figure 7:  Subtraction and allocation example  

 
 

Analyzing the allocation algorithm, we assume that a 

scheme that can select an allocation submesh in O(f2) time 
is used.  The first-fit is an example of such schemes as it 
requires O(f) steps for this selection.  The number of 
fragments that results from subtracting the allocated 
submesh from the free submeshes in Step 6 is in O(f); their 
number is at most 4f as the subtraction operation of a 2D 
submesh from another 2D submesh results in at most four 
submeshes.  Therefore, the number of operations in Step 8 

and the complexity of the algorithm are in O(f2). 
 

4.3 Selection of Allocated Submeshes   
 
A comparison of several policies for selecting where 
allocation takes place when the maximal free submesh 
detection scheme proposed in [12] is used can be found in an 
earlier work [2].  For the comparison of the maximal free 
submesh detection scheme that we propose to that 
proposed in [12], the following promising schemes for 
determining where allocation takes are considered: 

 
4.3.1 Switching First-Fit (SFF).  The first MFL element 

that is large enough for the current α × β request is the 
allocation submesh, and the α × β submesh in its lower-left 
corner is allocated for the request.  If this fails, first-fit 
allocation is re-attempted for the β × α orientation.  
Switching request sides was first proposed in [10], and it 
has been used in many studies [1, 3, 6, 9, 14, 26].  

 
4.3.2 Maximum Mesh Peripheral Length (MMPL).  This 

policy gives priority to allocating mesh corner submeshes 
because they have the most peripheral cores. In scanning MFL, 
if there is a corner submesh that is large enough for α × β or 
β × α request shapes, the requesting job is placed in this 
mesh corner in the right orientation and scanning is 
terminated. Any corner placement will have the most 
peripheral cores. If a large enough submesh in MFL has a side 
aligned with a mesh edge, the peripheral lengths associated 
with possible α × β and β × α placements are computed.  
When there is no corner allocation, the first placement with 

the most peripheral cores is assigned to the request.  If no 
corner or peripheral placement is possible, the request is 
placed at the base of the first large-enough internal submesh 
in MFL [3].  A generalization of the orientation switching 
transformation that permits all viable request shapes has also 
been proposed; when combined with giving preference to 
allocating peripheral submeshes it resulted in significant 
system performance improvements [4]. 

 
4.3.3 Reservation Best-Fit (RBF).  In this scheme, 

proposed in [12], switching the orientation of requests is 
also allowed, and the goal of the allocation submesh 
selection scheme is to leave large free submeshes for future 
allocation, as was discussed earlier.  Also, because our 
simulations have shown that the system performance of RBF 
depends on the order of MFL elements, we have ordered 
them as in [12] in the proposed MFL detection scheme when 
it was used with RBF so as to have the same performance as 
the original proposal. 

 
5 Simulation Results  

 
Simulation was employed for evaluating and comparing 

the maximal free submesh detection schemes when they 
were used with the three allocation submesh selection 
schemes considered.  To this end, we implemented the 
detection and selection schemes in the ProcSimity simulator 
that we have been adding our proposed scheduling and 
allocation algorithms to for the last two decades.  The 
original ProcSimity is a C-language tool that was developed 
initially at the University of Oregon for research in 
processor allocation and job scheduling for distributed 
memory multicomputers [21]. 

As in many previous related works, the 2D mesh system 
has equal sides of length L [1, 3, 6, 9, 12, 14, 26]. Job 
interarrival times follow an exponential distribution, and the 
scheduling algorithm assumed is first-come-first-served.  Job 
execution times follow an exponential distribution with a 
mean of one time-unit.  The side-lengths of allocation 
requests are generated using two distributions: the uniform 
over the interval [1, L], and a uniform-decreasing distribution 

3,3 1,3 2,3 

2,2 1,2 3,2 

1,1 

4,2 

4,3 

2,1 3,1 4,1 

 Allocated: 

Free:  

4,4 3,4 2,4 

5,1 

1,4 

5,2 

5,3 

5,4 



264 IJCA, Vol. 29, No. 4, Dec 2022 

that uses four probabilities pr1, pr2, pr3 and pr4, and four side 
lengths sl1, sl2, sl3, and sl4.  These probabilities are for the 
α and β of a request to fall within [1, sl1], [sl1+1, sl2], 
[sl2+1, sl3] and [sl3+1, s l4].  The side lengths within a 
range are distributed uniformly.  In this paper, we use pr1 = 
0.4, pr2 = pr3 = pr4 = 0.2, sl1 = L/8, sl2 = L/4, sl3 = L/2, 
and sl4 = L.  The distributions adopted here were used in 
several previous research works [1, 3, 6, 9, 14, 15].  
Independent simulation runs are repeated so as to have a 
95% confidence level that relative errors do not exceed 5% 
of the means.  In each simulation run, 1000 jobs are 
executed. 

The system performance parameter measured in this study 
is the average turnaround time for all jobs, where a job’s 
turnaround time is the time the job spends in the system.  
The efficiency of the detection schemes is evaluated using 
the time taken allocating and de-allocating.  This second 
performance parameter is the main parameter because the 
two detection schemes are expected to produce similar 
system performance since they are both based on detecting 
the set of maximal free submeshes and are recognition-
complete.  In what follows, we denote the policies as 
<D>(<S>), where D is the detection scheme and S is the 
allocation submesh selection scheme.  The proposed MFL 

detection scheme is denoted as PMFL, and that proposed by 
Kim and Yoon in [12] is denoted as KYMFL. 

We first compare the system performance of the schemes 
for the workload models assumed.  In Figure 8, the 
average turnaround times are plotted against average job 
arrival rates for the detection and allocation schemes and 
the uniform-decreasing size distribution in a 32 × 32 
system.  It can be seen in this figure that PMFL and 
KYMFL have, as expected, similar system performance.  
The results for the uniform distribution lead also to a similar 
conclusion, however they are not shown to conserve space.  
Also, simulations for other system sizes that grow to 
thousands of cores (16 × 16, 64 × 64, 128 × 128 and 256 
× 256) do not modify this system performance conclusion for 
PMFL and KYMFL.  The detection schemes PMFL and 
KYMFL have similar system performance because they 
both detect the unique set of maximal free submeshes.  Also, 
MMPL and RBF have similar performance, and they 
outperform SFF substantially.  Note that MMPL is a simpler 
scheme when compared with RBF.  

To compare the policies in terms of allocation and de-
allocation times, we measured the average actual times 
taken by the combination of these operations for five hundred 
runs of the simulator.  In Figures 9 and 10, we show the. 
combined measured times against the job arrival rates under   

 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8: Average job turnaround times in a 32 × 32 system for the uniform-decreasing size distribution 
 

 
 

 
 
 
 
 
 
 
 

 
 

 
 
 

Figure 9: Measured combined times in a 32 × 32 system for the uniform-decreasing size distribution 



IJCA, Vol. 29, No. 4, Dec 2022 265 

 
 
 
 
 
 
 

 
 

 
 
 

 
 
 
 

Figure 10: Measured combined times in a 32 × 32 system for the uniform size distribution 
 

the size distributions considered in a 32 × 32 system.  In these 
figures PMFL outperforms KYMFL substantially.  
Moreover, the advantage of PMFL is superior when the 
size distribution is uniform-decreasing.  The reduction in 
the combined times for PMFL reaches 70% in Figure 9, 
and30% in Figure 10.  Under the uniform-decreasing 
distribution, the average job size is smaller than under the 
uniform distribution, leading to a larger number of allocated 
(and free submeshes).  This results in superior advantage for 
PMFL. 

The average number of maximal free submeshes was 
computed for the simulations.  This number increases with 
the system load and depends on the allocation scheme.  As 
expected, it is comparatively small and varied from 1.16 to 
3.22 for the uniform distribution.  For the uniform-decreasing 
distribution, it varied from 1.5 to 9.85. 

To illustrate the efficiency advantage of PMFL more 
clearly, we plot, in Figures 11 and 12, the relative measured 
times for PMFL with respect to KYMFL.  In these figures, 
we have R(S) =T(PMFL(S))/T(KYMFL(S)), where 
T(PMFL(S)) is the measured simulation allocation and de-
allocation time for PMFL when the selection algorithm is S, 
and T(KYMFL(S)) is this time for KYMFL and the same  
 

selection algorithm.  Figure 11 shows that the efficiency 
advantage of PMFL over KYMFL is substantial under most 
loads.  It increases with the load because the number of free 
submeshes, f, also increase with the load.  The reduction in 
the combined times reaches about 50% for RBF, and it 
reaches about 70% for SFF and MMPL. 

In Figure 12, the performance advantage of PMFL for 
medium to heavy loads is less substantial because f is smaller 
when the size distribution is uniform.  The reduction in the 
combined times reaches about 10% for RBF, and it reaches 
about 30% for SFF and MMPL under heavy loads. 

In summary, PMFL and KYMFL have similar system 
performance as they have identical submesh recognition 
capability, however PMFL can be much more time efficient 
than KYMFL, especially when the number of free submeshes 
is large.  The numbers of allocated and free submeshes are 
larger when the core allocation requirements of jobs are 
small. 

In Figure 13, we show the combined allocation and de-
allocation times of the detection and selection policies for 
various side lengths under the system load of 4.5 jobs/time 
unit and the uniform-decreasing side-length distribution.  
Figure 14 is for a load of 1.8 jobs/time unit and the uniform  

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 11:  Ratio of the measured times for the allocation submesh selection policies and the uniform-

decreasing size distribution in a 32 × 32 system 
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Figure 12:  Ratio of the measured times for the allocation submesh selection policies and the uniform size 
distribution in a 32 × 32 system 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13:  Measured combined times for doubled side lengths under the uniform-decreasing size distribution 
and a system load of 4.5 jobs/time unit 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 14:  Measured combined times for doubled side lengths under the uniform size distribution and a 
system load of 1.8 jobs/time unit 
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performance advantage of PMFL can remain substantial as 
the size of the computer system grows to tens of thousands 
of cores. 

 
6 Conclusions 

 
In this paper, we have proposed an efficient maximal free 

submesh detection scheme for space-sharing allocation in 
manycore systems with 2D NoCs.  Several studies indicate 
that space-sharing is a promising core allocation strategy in 
manycore systems, as it can achieve scalability and good 
performance for large core numbers [22, 25].  Parallel jobs or 
applications, including the OS, run on their own sets of cores, 
which can reduce interference among jobs, message delays, 
energy consumption and chip temperatures.  Studies have 
shown that mapping the communicating tasks of a parallel 
job to neighboring cores, in particular those forming a 
submesh, can reduce communication delays and power 
consumption, and improve throughput and job execution 
times [5, 8, 18].  In this research, maximal free submeshes 
that are not contained in other free submeshes are detected 
and placed in a free-list. An advantage of this scheme over 
that proposed previously is that its time complexity is 
quadratic in f, whereas that of the previous scheme is cubic 
in this number.  In addition to this theoretical comparison, 
the two recognition-complete detection schemes were 
evaluated and compared using detailed simulations when 
three promising allocation submesh selection schemes were 
used in combination with these detection schemes.  The 
results show that the detection schemes have similar free 
submesh recognition-capability and average turnaround 
times, however the proposed scheme is overall substantially 
more efficient than the previous scheme in terms of the 
combined allocation and de-allocation times.  Also, the 
simulated time performance advantage increases with the 
number of free submeshses, which is compatible with the 
time complexity advantage.  It is to be noted that detecting 
maximal free submeshes is suitable for achieving simple, 
flexible, and efficient selection of allocation submeshes as 
the largest free submeshes are readily available in a list.  The 
results also show that the simple scheme MMPL achieves 
good system performance.  It outperforms SFF and achieves 
similar performance to the more complicated RBF scheme.  
As extensions to this work, more general defragmentation 
algorithms that make use of the efficient MFL detection 
mechanisms proposed in this work could be investigated. 
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