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Abstract
 

With the rise of augmented reality (AR) applications, more 
devices of different computation capabilities are employing this 
technology.  Currently, AR applications are limited to a small 
number of virtual agents, but in the future, this will change.  A 
virtual agent is any entity within the program that must 
periodically run logic and has some graphical effect.  This 
journal article explores the optimal control frequencies for 
virtual agents across three common AR platforms and compares 
the results.  This experiment uses a stair-step stress test and 
records the framerate at a 10Hz cycle.  Special care has been 
taken to reduce extenuating factors that may consume CPU 
cycles, isolating the only change to the increase in virtual agents.  
These tests were run five times for six different frequencies on 
the HoloLens 1, HoloLens 2, and the Android Note 8.  

Key Words:  Augmented reality, AR, framerate, MRTK, 
unity3D, HoloLens. 
 

1 Introduction 
 

Augmented Reality (AR) is a promising new technology 
making large gains in how people interact with computers and 
mobile devices.  Augmented reality allows a computer program 
to combine computer-generated and real-world content [12].  
This combination is usually accomplished by adding to an 
image or video taken in the real world from the user’s 
perspective.  The technology is expanding rapidly with subtle 
integration into everyday uses, especially in mobile 
applications.  Three main reasons for this expansion are 
emphasis on reality, mobile device CPU improvement, and 
unique visualization capabilities.   

The most crucial distinction of AR is that it does not occlude 
or replace the user’s environment.  Virtual reality (VR) will 
enclose the user in a completely virtual environment and capture 
all their visual/audio senses.  Augmented reality, enhances the 
real world, allowing the user easier interaction with people and 
their surroundings.  This feature is most noted with social 
applications as people begin focusing on real-life interactions 
and moving away from the computer screen.  Another element 
fueling the AR enhancement is the increase in mobile comput-
ing capabilities.  Smartphones now have enough processing 
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power to run AR applications without noticeable delays.  This 
means every new mobile device can now be used as a platform 
for AR.  App developers have noticed this trend and begun 
incorporating AR elements into their programs, thus creating a 
subtle shift toward the widespread incorporation of augmented 
reality.  The last reason for AR expanding popularity is the 
unique capability of integrating real-world items into the 
program.   

While not all devices are capable of this yet, many AR devices 
can scan the surrounding objects, allowing them to affect the 
program’s outcome.  This scanning capability, coupled with the 
vast visualization potential of AR, has made it popular in the 
medical field for training, simulation, and a visual reference for 
doctors. 

Since AR has become popular due to the aforementioned 
points, large game engines, including Unity 3D and Unreal, 
have championed its development.  While this software is well 
optimized, the programmers that use them only sometimes 
employ maximum efficiency within their code, especially 
compared to hand-coding a device driver from scratch.  This 
phenomenon is especially true for control scripts of virtual 
agents.  Virtual agents are any virtual entity that must be updated 
regularly and have some graphical effect on the application.  
This definition can include characters, user panels, or visual 
effects. 

To date, this has not been a pressing issue, as most AR 
applications employ small numbers of virtual agents.  However, 
as the field of AR expands, the number of virtual agents will 
also scale.  This increase in virtual agents could be problematic 
since larger CPU usage corresponds to lower framerates; lower 
framerates correspond to motion and simulator sickness in both 
AR and VR.  This paper outlines a stair-step test to determine 
the optimal frequency for controlling virtual agents across three 
different AR platforms.  The paper is broken down into the 
following sections: related work, platform description, testing 
methodology, problems encountered, results, future work, and 
conclusion. 

 
2 Related Work 

 
This paper considers virtual agent to mean any projected 

visualization in an augmented reality application that must 
change, move, or adapt to outside stimuli, thus, requiring a 
control script to function.  The term virtual agent conjures 
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mental images of brightly colored cartoon characters running 
around.  While such virtual agents have been used in AR 
applications to assist with user interaction [3, 4, 6, 7, 11], not all 
virtual agents are 3D game characters.  Many virtual agents will 
be informational elements that change and adapt.  For example, 
a virtual agent may be nothing more than a label or text message 
that appears identifying a desired product in the grocery store 
[1].  Another example in the realm of health applications is 
visualizing different organs during surgery or education [2, 5, 
10].  This visualization may need to change, update, or provide 
some form of response due to the user’s action requiring some 
form of control script.  Another important field in AR is bridging 
the gap between robotics and humans [8, 9].  These applications 
will employ virtual agents to represent robots or robot-human 
scenarios and goals.  Again, these informational virtual agents 
will need a control script to update, move, and adapt to different 
input from the user. 

Currently many of the augmented reality applications only 
focus on one or two virtual agents at once.  Therefore, 
processing power for their control scripts is not a large concern; 
however, as the field grows expanding the scale of these 
applications, it is foreseeable that an AR application may have 
hundreds of virtual agents running simultaneously.  Due to this 
expectation, the experiment described in the next section seeks 
to determine the best frequency to control virtual agents. 

 
3 Platforms 

 
Three different platforms were chosen for the stair-step agent 

test: 
 
 The Android Smart Phone 
 HoloLens 1 
 HoloLens 2 

 
3.1 Android Mobile Device  

 
Mobile devices and smartphones have become ubiquitous 

within society.  The devices can now run augmented reality 
applications, and game engines can build applications for these 
platforms.  This capability means that the general public now 
owns a device capable of AR; therefore, its performance with a 
large number of virtual agents should be tested.  The Android 
phone tested was the Samsung Galaxy Note 8.  This was 
purposefully done to represent a newer phone, but not the 
newest one on the market.  Any performance issues observed 
with this phone would indicate a potential systemic problem for 
AR applications on modern phones. 

 
3.2 HoloLens 1 – (PC Architecture) 

 
The HoloLens 1 was one of the first head-mounted-display 

(HMD) AR platforms.  It was also one of the first to have spatial 
awareness.  A powerful feature where the device can map the 
physical environment and use that to occlude virtual objects.  
This device uses a typical x86 PC architecture and provides the 
next generation of AR functionality, such as gesture 

recognition, spatial awareness/mapping, and accurate 
localization for user position.  The device is fully supported by 
Unity 3D game engine and is a solid baseline to compare against 
newer HMDs. 

 
3.3 HoloLens 2 – (ARM Architecture) 

 
Arguably one of the most advanced HMDs available and has 

a generational improvement in capability compared to the 
HoloLens 1.  It is one of the best technologies available for AR 
applications and uses the ARM architecture instead of the 
standard x86 PC architecture.  Any problems observed with the 
Hololens 2 would indicate that current hardware is not capable 
of running a large number of virtual agents in an AR setting. 

 
4 Testing Methodology 

 
4.1 The Experiment 
 

The experiment outlined in this paper was run on all three 
platforms.  The program used in this experiment was written 
with Unity 2020.3 and used the Mixed Reality Tool Kit (MRTK 
2.0).  This program would create a new virtual agent at a 
frequency of 2 Hz for five seconds and then wait for five 
seconds to determine if the system was stable.  The above 
sequence of spawning and waiting would repeat until there were 
100 agents, during which the frame rate was recorded to a file 
at the frequency of 10 Hz.  The frame rate was calculated using 
the unscaled delta time property to provide the most accurate 
values possible (Equation 1). 

UnscaledDeltTime is an independent interval in seconds from 
the last frame to the current [13].  

=
1

 

Equation 1:  Equation used to calculate framerate 

The program recorded the framerate every tenth of a second 
and kept the file writer open to minimize computational 
overhead.  The program would only append information, never 
delete, or search through the file.  This limitation with the file 
handler was explicitly done to minimize its computational load 
on the hardware.  

The virtual agents were programmed by employing best 
practices with Unity 3D; however, no other optimization was 
done.  This programming style imitated a typical game 
programmer and not necessarily a researcher in computer 
science.  The reason for imitation is to ensure the test script 
represents a typical program written for this platform. 

When a virtual agent was created, it was given a team: red or 
blue.  The agent invoked a control function called handle update, 
which provided the control algorithm.  

Each agent ran the same function to control themselves.  
However, the frequency this function invoked varied throughout 
the experiment, and the resulting framerates were compared.  
Five individual tests were administered for each following 
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frequency:  
 
 Update (once per frame) 
 Fixed Update (20 Hz) 
 20 Hz coroutine 
 10 Hz coroutine 
 5 Hz coroutine 
 2 Hz coroutine 

 
The control function performed the following tasks: 
 
1. Control the nav-mesh agent. 
2. Fire projectiles at the enemy team. 
3. Orient and update the score panel.  
 
The test had a large arena where there were sixteen pre-

determined points the virtual agents could move.  If the virtual 
agents were within 6 centimeters of the goal, it would then 
randomly choose a new goal and start navigating toward it.  

The nav-mesh system in Unity was used as it is a common 
and popular tool amongst developers.  This nav-mesh path-
finding system is well optimized and would likely be chosen 
over building a path-finding algorithm from scratch.  Please 
note, even though the logic was updated at different frequencies, 
the agents still moved continuously due to the nav-mesh. 

Initially, the nav-mesh agent would be the only logic the 
virtual agents performed.  However, it is unlikely that a typical 
application would only have navigation for a virtual agent being 
the only overhead.  Therefore, logic was added to determine if 
there was a virtual agent on the opposite team within 50 
centimeters in front of it.  If there were, the agent would then 
fire a projectile in the same direction it was facing.  If the 
projectile struck the other virtual agent, then the score of the first 
would increase by one.  These projectiles also had a timer on 
them so that they would be destroyed after one second.  The rate 
of fire was controlled by an additional co-routine that would 
wait for .3 seconds before allowing the virtual agent to fire 
again.    

Each virtual agent had a small canvas above itself in world 
space.  This canvas displayed the current score for each virtual 
agent and was used to simulate a visualization load that may be 
required for an AR application.  The control function would 
rotate the canvas to make the visualizations more user-friendly 
to ensure it was facing the camera regardless of what direction 
the virtual agent was moving.  Typically, this would be done in 
the update function, but it was added to the control function to 
keep all tests consistent. 

 
4.2 Testing Procedures and Data Cleanup 

 
The testing procedure took five individual tests of the 

frequencies mentioned above.  The user would start each test 
and disable the default profiler, to keep things consistent, then 
move outside the arena and sit down.  The user’s action would 
be constrained to look around the arena as the different virtual 
elements were spawned and performed their control logic.  This 
reduction in physical movement is essential as fast or erratic 

movements by the user will cause the system to do extra 
computation to keep the virtual environment aligned with the 
real environment.  This experiment did not intend to put the AR 
application under stress from user movement.  After the number 
of agents reached 100, the test was stopped, and the framerate 
was collected in a comma-delimited file.  The raw data was very 
noisy, as shown in Figure 1. 

Five tests were run for each frequency and then averaged 
together to reduce the noise.  The results were still noisy; 
therefore, a moving average with a sliding window of size ten 
was used to improve the results further (Equation 2). 

=
,

5

  = {10 …  }. 

 =  
10

Equation 2:  Calculation for Moving Average 
 
The improvement can be seen by comparing the above graph 

with Figure 2.  Notice the noise is significantly reduced. 
 

5 Problems Encountered 
 
The most significant problem encountered was getting the 

program to deploy to the HoloLens 2 correctly.  Much time was 
spent configuring the project and libraries to ensure the program 
ran successfully on the HoloLens 2.   The resolution to this 
problem was using the older Windows Mixed Reality plugin 
instead of, the newer recommended OpenXR plugin.  More time 
is needed to determine why the newer plugin did not work 
correctly.  Once the configuration issues had been resolved, no 
real problems were encountered.  Due to the cross-platform 
capabilities of Unity and MRTK, deploying on a HoloLens 1 
and Android were almost seamless.    

 
6 Results 

 
The six frequencies were tested over Android, HoloLens 1, 

and HoloLens 2.  Each platform mapped the average framerate 
per number of agents onto a graph to compare the best results.  
From that information, two additional tables were created.  One 
of the tables was the device’s highest number of agents at that 
specific frequency while remaining above 50 fps.  The other 
table provided the last framerate recorded in the tests. 

6.1 Android 

The Android platform took a different philosophy than the 
HoloLens 1 or 2.  The performance philosophy for Android was 
consistency.  All frequencies hovered around 30 fps regardless 
of the number of agents.  This artificial throttling of the 
framerate meant that up to 100 agents, the control frequency had 
almost no measurable impact on the device’s performance.  The  
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Figure 1: Raw data from 10 Hz virtual agent update experiment

Figure 2: Averaged data for updating a virtual agent at 10 Hz
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frame rate is being throttled specifically to 30 fps as the 
performance was the same for ten agents and 98 agents.  This 
fact reveals two critical design considerations when building for 
Android.  First, the platform can handle a higher number of 
agents before suffering from frame loss.  Secondly, a developer 
should remember they are never going to achieve higher than 30 
fps with the platform (Figure 3).      

Since the frame rate never exceeded 30 fps, it was impossible 
to create the table reflecting the most significant number of 
virtual agents before falling below 50 fps.  It was possible to 
gather the last recorded frame rate for the android.  Since these 
values reflect a running average over multiple runs, it does 
indicate which frequency would be able to maintain 30 fps for 
the longest.  Fixed update and 20Hz both had 34 fps.  This result 
was surprising as conventional wisdom with the Unity Game 
Engine would suggest fixed updates would have the worst 
performance.  Once again, this is probably due to the 
philosophical design approach to limit everything to 30 fps.  
Standard frame update and 2 Hz performed the worst (Figure 4).

6.2 HoloLens 1

The results for the HoloLens 1 revealed some noteworthy 
differences between itself and its subsequent version, the 
HoloLens 2.  The HoloLens 1 held 60 fps until about 40 agents.  
Even more interesting is that there was very little noise (Figure 
5).  The HoloLens 1 held 60 fps as tightly as the Android held 
the 30-fps rate.  The HoloLens 2 contained much more noise, 
and only some of the frequencies held 60 fps for controlling the 

first 40 virtual agents (Figure 8).  However, after 40 virtual 
agents, the HoloLens 1 showed significant performance failure 
for all frequencies.        

The HoloLens 1 performed the best with 10Hz (Figure 6).  
This result was unexpected as 2Hz would intuitively cost less 
CPU.  As explained later, these phenomena would also extend 
to the HoloLens 2.  In the following table (Figure 6), the 10 Hz 
performed the best, reaching 53 agents before falling below 50 
fps.  Apart from this anomaly, the results were as expected.  The 
higher the frequency, the lower the number of virtual agents.  
Fixed update performing the worst due to its real-time 
constraint.  

The table containing the final framerate recorded at each 
frequency is shown below (Figure 7).  Once again, 10 Hz 
outperformed the other frequencies at a smaller margin.  

Another note-worthy observation was that Unity's normal 
update function outperformed 20 and 2 Hz.  Further analysis 
determined that this was due to an unintended feedback loop.  
As the frames-per-second drop, the number of times an update 
is called per second drops, thus reducing the total load. 

6.2 HoloLens 2

The results for the HoloLens 2 demonstrated an iterative 
improvement from its predecessor.  However, there were some 
unexpected results.  The performance was stronger than the 
HoloLens 1 but much noisier.  This noise in the performance 
was unexpected as the hardware is significantly more powerful.  
The only element that could have influenced this was the fact   

Figure 3: Averaged Data for All Experiments on Android
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Control Frequency (From 
Best to Worst Performance)

Last Framerate for 
Android

Fixed Update 34
20 Hz 34
10 Hz 33
5 Hz 31
Update 30
2 Hz 30

Figure 4: Last Frame Rate for Android Platform per Control 
Frequency

that the HoloLens 2 uses an ARM processor, whereas the 
HoloLens 1 used a standard PC architecture processor (Figure 
8).

Comparing the highest number of virtual agents while 
maintaining 50 FPS, 10 Hz significantly outperformed other 
frequencies.  This result was an interesting trend where 10 Hz 
outperformed 5 and 2 Hz.  The performance spread was much 
larger than the HoloLens 1.  2 Hz, and the Fixed update could 
only maintain 50 virtual agents at 50 fps.  From this test, it was 
concluded that 10 Hz was optimal for programming control 
agents for the HoloLens family (Figure 9).

The last framerate recorded showed all the frequencies in the 
same order, except for the normal update, which surpassed 20 
Hz.  Again, this is most likely due to the feedback loop 

associated specifically with the update function (Figure 10).

7 Analysis

To conclude this research, the optimal frequencies were 
compared and graphed.  The results below reflect both the 
throttled philosophy of the Android platform and the increased 
performance of the HoloLens 2.  It is worth noting that the 
HoloLens 1 did maintain 60 frames-per-second longer than the 
HoloLens 2.  However, its performance decay was quicker than 
the HoloLens 2 (Figure 11).

Since the Android platform did not have a higher framerate 
than 30 fps, the last virtual count before falling below 50 fps 
was compared between the HoloLens 1 and HoloLens 2.  Here 
both tests show that 10 Hz performed the best.  However, the 
HoloLens 1 has the smaller frequencies performing better after 
this, whereas the HoloLens 2, 2 Hz, is one of the lowest 
performing frequencies.  This discrepancy in performance 
indicates the hardware change between the two devices (Figure 
12).

The final analysis compared the final framerate for all 
frequencies across all platforms.  On the HoloLens 1 and 2, the 
10 Hz performed the best.  The android fixed update and 20 Hz 
tied for the highest framerate.  It is interesting to note that 
despite the hardware difference, the Android's performance at 
the end of the test is comparable with both HoloLens 1 and 
HoloLens 2.     

‘ 

Figure 5: Averaged data for all experiments on the HoloLens 1
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Frequency (From Best to 
Worst Performance)

Highest Number of 
Virtual Agents before 
Dropping Below 50 fps. 
(HoloLens 1)

10 Hz 53 
2 Hz 51 
5 Hz 49
20 Hz 49
Update 49
Fixed Updated 43

Figure 6: Highest number of virtual agents before falling below 
50 fps

Frequency (From Best to 
Worst Performance)

Last Framerate for the 
HoloLens 1

10 Hz 38
5 Hz 36
Update 34
20 Hz 33
2 Hz 30
Fixed Update 26

Figure 7: Last frame rate for HoloLens 1 per control frequency

Figure 8: Averaged data for all experiments on the HoloLens 2

Frequency (From Best to 
Worst Performance)

Highest Number of 
Virtual Agents before 
Dropping Below 50 FPS.
(HoloLens 2)

10 Hz 71
5 Hz 66
20 Hz 58
Update 54
2 Hz 50
Fixed Update 50

Figure 9: Highest number of virtual agents before falling below 
50 fps (HoloLens 2)
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Figure 10: Last frame rate for HoloLens 1 per control frequency 
(HoloLens 2)
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Figure 11: Comparing the optimal frequencies for all three platforms

Comparison of Highest Virtual Agent Count Before Dropping Below 50 fps

Frequency HoloLens 1 HoloLens 2

2 Hz 51 50

5 Hz 49 66

10 Hz 53 71

20 Hz 49 58

Update 49 54

Fixed Update 43 50

Figure 12: Highest number of agents before dropping below 50Hz

Comparison of the Platforms and the Final Framerate per Each Frequency
Frequency HoloLens 2 HoloLens 1 Android
2 Hz 30 31 30
5 Hz 36 31 31
10 Hz 38 34 33
20 Hz 33 28 34
Update 34 29 30
Fixed Update 26 22 34

Figure 13: Comparison of the platforms and the final framerate per each frequency
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8 Future Work 
 
This research created a foundation for the computational 

power expected from common AR devices.  Several projects 
will benefit from this research and the knowledge of the optimal 
control frequencies.  One research area is localizing multiple 
users and virtual objects without object tracking.  The AR 
device must map the environment and combine maps from other 
devices to create a shared coordinate system.  The 
computational requirement for this is immense.  Another project 
that could benefit from this research is dynamically loading 
content into an AR environment.  This capability would also 
require computational power and bandwidth to import, load, and 
visualize new objects that were not natively part of the 
application.   

 
9 Conclusion 

 
In conclusion, this paper presented computation stair-step 

tests to determine the optimal control frequency for three 
platforms:  HoloLens 1, HoloLens 2, and an Android Phone.  
Surprisingly the lowest frequency did not perform the best.  10 
Hz performed the best for HoloLens 1 and 2, while 20 Hz or 
Fixed Update performed the best on the Android.  This paper 
also discovered a philosophical difference between the 
platforms.  The HoloLens family would give the highest 
framerate possible, while the Android system kept a consistent 
30 frames per second regardless of the computational load.  
These results will be helpful when designing AR applications in 
the future when considering platform constraints. 
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