
30 IJCA, Vol. 30, No.1, March 2023

ISCA Copyright© 2023

Optimal Control Frequencies for Large Number of Virtual
Agents in Augmented Reality Applications

Bradford A. Towle Jr.*
Florida Polytechnic University, Lakeland, FL 33805

Abstract

With the rise of augmented reality (AR) applications, more
devices of different computation capabilities are employing this
technology. Currently, AR applications are limited to a small
number of virtual agents, but in the future, this will change. A
virtual agent is any entity within the program that must
periodically run logic and has some graphical effect. This
journal article explores the optimal control frequencies for
virtual agents across three common AR platforms and compares
the results. This experiment uses a stair-step stress test and
records the framerate at a 10Hz cycle. Special care has been
taken to reduce extenuating factors that may consume CPU
cycles, isolating the only change to the increase in virtual agents.
These tests were run five times for six different frequencies on
the HoloLens 1, HoloLens 2, and the Android Note 8.

Key Words: Augmented reality, AR, framerate, MRTK,
unity3D, HoloLens.

1 Introduction

Augmented Reality (AR) is a promising new technology
making large gains in how people interact with computers and
mobile devices. Augmented reality allows a computer program
to combine computer-generated and real-world content [12].
This combination is usually accomplished by adding to an
image or video taken in the real world from the user’s
perspective. The technology is expanding rapidly with subtle
integration into everyday uses, especially in mobile
applications. Three main reasons for this expansion are
emphasis on reality, mobile device CPU improvement, and
unique visualization capabilities.

The most crucial distinction of AR is that it does not occlude
or replace the user’s environment. Virtual reality (VR) will
enclose the user in a completely virtual environment and capture
all their visual/audio senses. Augmented reality, enhances the
real world, allowing the user easier interaction with people and
their surroundings. This feature is most noted with social
applications as people begin focusing on real-life interactions
and moving away from the computer screen. Another element
fueling the AR enhancement is the increase in mobile comput-
ing capabilities. Smartphones now have enough processing

* 4700 Research Way: ARC 2230. Email: btowle@floridapoly.edu.

power to run AR applications without noticeable delays. This
means every new mobile device can now be used as a platform
for AR. App developers have noticed this trend and begun
incorporating AR elements into their programs, thus creating a
subtle shift toward the widespread incorporation of augmented
reality. The last reason for AR expanding popularity is the
unique capability of integrating real-world items into the
program.

While not all devices are capable of this yet, many AR devices
can scan the surrounding objects, allowing them to affect the
program’s outcome. This scanning capability, coupled with the
vast visualization potential of AR, has made it popular in the
medical field for training, simulation, and a visual reference for
doctors.

Since AR has become popular due to the aforementioned
points, large game engines, including Unity 3D and Unreal,
have championed its development. While this software is well
optimized, the programmers that use them only sometimes
employ maximum efficiency within their code, especially
compared to hand-coding a device driver from scratch. This
phenomenon is especially true for control scripts of virtual
agents. Virtual agents are any virtual entity that must be updated
regularly and have some graphical effect on the application.
This definition can include characters, user panels, or visual
effects.

To date, this has not been a pressing issue, as most AR
applications employ small numbers of virtual agents. However,
as the field of AR expands, the number of virtual agents will
also scale. This increase in virtual agents could be problematic
since larger CPU usage corresponds to lower framerates; lower
framerates correspond to motion and simulator sickness in both
AR and VR. This paper outlines a stair-step test to determine
the optimal frequency for controlling virtual agents across three
different AR platforms. The paper is broken down into the
following sections: related work, platform description, testing
methodology, problems encountered, results, future work, and
conclusion.

2 Related Work

This paper considers virtual agent to mean any projected

visualization in an augmented reality application that must
change, move, or adapt to outside stimuli, thus, requiring a
control script to function. The term virtual agent conjures

IJCA, Vol. 30, No. 1, March 2023 31

mental images of brightly colored cartoon characters running
around. While such virtual agents have been used in AR
applications to assist with user interaction [3, 4, 6, 7, 11], not all
virtual agents are 3D game characters. Many virtual agents will
be informational elements that change and adapt. For example,
a virtual agent may be nothing more than a label or text message
that appears identifying a desired product in the grocery store
[1]. Another example in the realm of health applications is
visualizing different organs during surgery or education [2, 5,
10]. This visualization may need to change, update, or provide
some form of response due to the user’s action requiring some
form of control script. Another important field in AR is bridging
the gap between robotics and humans [8, 9]. These applications
will employ virtual agents to represent robots or robot-human
scenarios and goals. Again, these informational virtual agents
will need a control script to update, move, and adapt to different
input from the user.

Currently many of the augmented reality applications only
focus on one or two virtual agents at once. Therefore,
processing power for their control scripts is not a large concern;
however, as the field grows expanding the scale of these
applications, it is foreseeable that an AR application may have
hundreds of virtual agents running simultaneously. Due to this
expectation, the experiment described in the next section seeks
to determine the best frequency to control virtual agents.

3 Platforms

Three different platforms were chosen for the stair-step agent

test:

 The Android Smart Phone
 HoloLens 1
 HoloLens 2

3.1 Android Mobile Device

Mobile devices and smartphones have become ubiquitous

within society. The devices can now run augmented reality
applications, and game engines can build applications for these
platforms. This capability means that the general public now
owns a device capable of AR; therefore, its performance with a
large number of virtual agents should be tested. The Android
phone tested was the Samsung Galaxy Note 8. This was
purposefully done to represent a newer phone, but not the
newest one on the market. Any performance issues observed
with this phone would indicate a potential systemic problem for
AR applications on modern phones.

3.2 HoloLens 1 – (PC Architecture)

The HoloLens 1 was one of the first head-mounted-display

(HMD) AR platforms. It was also one of the first to have spatial
awareness. A powerful feature where the device can map the
physical environment and use that to occlude virtual objects.
This device uses a typical x86 PC architecture and provides the
next generation of AR functionality, such as gesture

recognition, spatial awareness/mapping, and accurate
localization for user position. The device is fully supported by
Unity 3D game engine and is a solid baseline to compare against
newer HMDs.

3.3 HoloLens 2 – (ARM Architecture)

Arguably one of the most advanced HMDs available and has

a generational improvement in capability compared to the
HoloLens 1. It is one of the best technologies available for AR
applications and uses the ARM architecture instead of the
standard x86 PC architecture. Any problems observed with the
Hololens 2 would indicate that current hardware is not capable
of running a large number of virtual agents in an AR setting.

4 Testing Methodology

4.1 The Experiment

The experiment outlined in this paper was run on all three
platforms. The program used in this experiment was written
with Unity 2020.3 and used the Mixed Reality Tool Kit (MRTK
2.0). This program would create a new virtual agent at a
frequency of 2 Hz for five seconds and then wait for five
seconds to determine if the system was stable. The above
sequence of spawning and waiting would repeat until there were
100 agents, during which the frame rate was recorded to a file
at the frequency of 10 Hz. The frame rate was calculated using
the unscaled delta time property to provide the most accurate
values possible (Equation 1).

UnscaledDeltTime is an independent interval in seconds from
the last frame to the current [13].

=
1

Equation 1: Equation used to calculate framerate

The program recorded the framerate every tenth of a second
and kept the file writer open to minimize computational
overhead. The program would only append information, never
delete, or search through the file. This limitation with the file
handler was explicitly done to minimize its computational load
on the hardware.

The virtual agents were programmed by employing best
practices with Unity 3D; however, no other optimization was
done. This programming style imitated a typical game
programmer and not necessarily a researcher in computer
science. The reason for imitation is to ensure the test script
represents a typical program written for this platform.

When a virtual agent was created, it was given a team: red or
blue. The agent invoked a control function called handle update,
which provided the control algorithm.

Each agent ran the same function to control themselves.
However, the frequency this function invoked varied throughout
the experiment, and the resulting framerates were compared.
Five individual tests were administered for each following

32 IJCA, Vol. 30, No.1, March 2023

frequency:

 Update (once per frame)
 Fixed Update (20 Hz)
 20 Hz coroutine
 10 Hz coroutine
 5 Hz coroutine
 2 Hz coroutine

The control function performed the following tasks:

1. Control the nav-mesh agent.
2. Fire projectiles at the enemy team.
3. Orient and update the score panel.

The test had a large arena where there were sixteen pre-

determined points the virtual agents could move. If the virtual
agents were within 6 centimeters of the goal, it would then
randomly choose a new goal and start navigating toward it.

The nav-mesh system in Unity was used as it is a common
and popular tool amongst developers. This nav-mesh path-
finding system is well optimized and would likely be chosen
over building a path-finding algorithm from scratch. Please
note, even though the logic was updated at different frequencies,
the agents still moved continuously due to the nav-mesh.

Initially, the nav-mesh agent would be the only logic the
virtual agents performed. However, it is unlikely that a typical
application would only have navigation for a virtual agent being
the only overhead. Therefore, logic was added to determine if
there was a virtual agent on the opposite team within 50
centimeters in front of it. If there were, the agent would then
fire a projectile in the same direction it was facing. If the
projectile struck the other virtual agent, then the score of the first
would increase by one. These projectiles also had a timer on
them so that they would be destroyed after one second. The rate
of fire was controlled by an additional co-routine that would
wait for .3 seconds before allowing the virtual agent to fire
again.

Each virtual agent had a small canvas above itself in world
space. This canvas displayed the current score for each virtual
agent and was used to simulate a visualization load that may be
required for an AR application. The control function would
rotate the canvas to make the visualizations more user-friendly
to ensure it was facing the camera regardless of what direction
the virtual agent was moving. Typically, this would be done in
the update function, but it was added to the control function to
keep all tests consistent.

4.2 Testing Procedures and Data Cleanup

The testing procedure took five individual tests of the

frequencies mentioned above. The user would start each test
and disable the default profiler, to keep things consistent, then
move outside the arena and sit down. The user’s action would
be constrained to look around the arena as the different virtual
elements were spawned and performed their control logic. This
reduction in physical movement is essential as fast or erratic

movements by the user will cause the system to do extra
computation to keep the virtual environment aligned with the
real environment. This experiment did not intend to put the AR
application under stress from user movement. After the number
of agents reached 100, the test was stopped, and the framerate
was collected in a comma-delimited file. The raw data was very
noisy, as shown in Figure 1.

Five tests were run for each frequency and then averaged
together to reduce the noise. The results were still noisy;
therefore, a moving average with a sliding window of size ten
was used to improve the results further (Equation 2).

=
,

5

 = {10 … }.

 =
10

Equation 2: Calculation for Moving Average

The improvement can be seen by comparing the above graph

with Figure 2. Notice the noise is significantly reduced.

5 Problems Encountered

The most significant problem encountered was getting the

program to deploy to the HoloLens 2 correctly. Much time was
spent configuring the project and libraries to ensure the program
ran successfully on the HoloLens 2. The resolution to this
problem was using the older Windows Mixed Reality plugin
instead of, the newer recommended OpenXR plugin. More time
is needed to determine why the newer plugin did not work
correctly. Once the configuration issues had been resolved, no
real problems were encountered. Due to the cross-platform
capabilities of Unity and MRTK, deploying on a HoloLens 1
and Android were almost seamless.

6 Results

The six frequencies were tested over Android, HoloLens 1,

and HoloLens 2. Each platform mapped the average framerate
per number of agents onto a graph to compare the best results.
From that information, two additional tables were created. One
of the tables was the device’s highest number of agents at that
specific frequency while remaining above 50 fps. The other
table provided the last framerate recorded in the tests.

6.1 Android

The Android platform took a different philosophy than the
HoloLens 1 or 2. The performance philosophy for Android was
consistency. All frequencies hovered around 30 fps regardless
of the number of agents. This artificial throttling of the
framerate meant that up to 100 agents, the control frequency had
almost no measurable impact on the device’s performance. The

IJCA, Vol. 30, No. 1, March 2023 33

Figure 1: Raw data from 10 Hz virtual agent update experiment

Figure 2: Averaged data for updating a virtual agent at 10 Hz

0

10

20

30

40

50

60

70

80

90

100

Sample Number

Raw Data for Updating Virtual Agents at 10 Hz

Number of Virtual Agents 10 Hz

0

10

20

30

40

50

60

70

80

90

100

Sample Number

Averaged Data for Updating a Virtual Agent at 10 Hz

Average for 10 Hz Run Number of Virtual Agents

34 IJCA, Vol. 30, No.1, March 2023

frame rate is being throttled specifically to 30 fps as the
performance was the same for ten agents and 98 agents. This
fact reveals two critical design considerations when building for
Android. First, the platform can handle a higher number of
agents before suffering from frame loss. Secondly, a developer
should remember they are never going to achieve higher than 30
fps with the platform (Figure 3).

Since the frame rate never exceeded 30 fps, it was impossible
to create the table reflecting the most significant number of
virtual agents before falling below 50 fps. It was possible to
gather the last recorded frame rate for the android. Since these
values reflect a running average over multiple runs, it does
indicate which frequency would be able to maintain 30 fps for
the longest. Fixed update and 20Hz both had 34 fps. This result
was surprising as conventional wisdom with the Unity Game
Engine would suggest fixed updates would have the worst
performance. Once again, this is probably due to the
philosophical design approach to limit everything to 30 fps.
Standard frame update and 2 Hz performed the worst (Figure 4).

6.2 HoloLens 1

The results for the HoloLens 1 revealed some noteworthy
differences between itself and its subsequent version, the
HoloLens 2. The HoloLens 1 held 60 fps until about 40 agents.
Even more interesting is that there was very little noise (Figure
5). The HoloLens 1 held 60 fps as tightly as the Android held
the 30-fps rate. The HoloLens 2 contained much more noise,
and only some of the frequencies held 60 fps for controlling the

first 40 virtual agents (Figure 8). However, after 40 virtual
agents, the HoloLens 1 showed significant performance failure
for all frequencies.

The HoloLens 1 performed the best with 10Hz (Figure 6).
This result was unexpected as 2Hz would intuitively cost less
CPU. As explained later, these phenomena would also extend
to the HoloLens 2. In the following table (Figure 6), the 10 Hz
performed the best, reaching 53 agents before falling below 50
fps. Apart from this anomaly, the results were as expected. The
higher the frequency, the lower the number of virtual agents.
Fixed update performing the worst due to its real-time
constraint.

The table containing the final framerate recorded at each
frequency is shown below (Figure 7). Once again, 10 Hz
outperformed the other frequencies at a smaller margin.

Another note-worthy observation was that Unity's normal
update function outperformed 20 and 2 Hz. Further analysis
determined that this was due to an unintended feedback loop.
As the frames-per-second drop, the number of times an update
is called per second drops, thus reducing the total load.

6.2 HoloLens 2

The results for the HoloLens 2 demonstrated an iterative
improvement from its predecessor. However, there were some
unexpected results. The performance was stronger than the
HoloLens 1 but much noisier. This noise in the performance
was unexpected as the hardware is significantly more powerful.
The only element that could have influenced this was the fact

Figure 3: Averaged Data for All Experiments on Android

0
10
20
30
40
50
60
70
80
90

100

Sample Number

Averaged Data aor All Experiments on Android

Number of Agents Fixed Update Update

20 Hz 10 Hz 5 Hz

2 Hz

IJCA, Vol. 30, No. 1, March 2023 35

Control Frequency (From
Best to Worst Performance)

Last Framerate for
Android

Fixed Update 34
20 Hz 34
10 Hz 33
5 Hz 31
Update 30
2 Hz 30

Figure 4: Last Frame Rate for Android Platform per Control
Frequency

that the HoloLens 2 uses an ARM processor, whereas the
HoloLens 1 used a standard PC architecture processor (Figure
8).

Comparing the highest number of virtual agents while
maintaining 50 FPS, 10 Hz significantly outperformed other
frequencies. This result was an interesting trend where 10 Hz
outperformed 5 and 2 Hz. The performance spread was much
larger than the HoloLens 1. 2 Hz, and the Fixed update could
only maintain 50 virtual agents at 50 fps. From this test, it was
concluded that 10 Hz was optimal for programming control
agents for the HoloLens family (Figure 9).

The last framerate recorded showed all the frequencies in the
same order, except for the normal update, which surpassed 20
Hz. Again, this is most likely due to the feedback loop

associated specifically with the update function (Figure 10).

7 Analysis

To conclude this research, the optimal frequencies were
compared and graphed. The results below reflect both the
throttled philosophy of the Android platform and the increased
performance of the HoloLens 2. It is worth noting that the
HoloLens 1 did maintain 60 frames-per-second longer than the
HoloLens 2. However, its performance decay was quicker than
the HoloLens 2 (Figure 11).

Since the Android platform did not have a higher framerate
than 30 fps, the last virtual count before falling below 50 fps
was compared between the HoloLens 1 and HoloLens 2. Here
both tests show that 10 Hz performed the best. However, the
HoloLens 1 has the smaller frequencies performing better after
this, whereas the HoloLens 2, 2 Hz, is one of the lowest
performing frequencies. This discrepancy in performance
indicates the hardware change between the two devices (Figure
12).

The final analysis compared the final framerate for all
frequencies across all platforms. On the HoloLens 1 and 2, the
10 Hz performed the best. The android fixed update and 20 Hz
tied for the highest framerate. It is interesting to note that
despite the hardware difference, the Android's performance at
the end of the test is comparable with both HoloLens 1 and
HoloLens 2.

‘

Figure 5: Averaged data for all experiments on the HoloLens 1

0

10

20

30

40

50

60

70

80

90

100

Sample Number

Averaged Data for All Experiments on the HoloLens 1

Number of Agents Fixed Update Update

20 Hz 10 Hz 5 Hz

2 Hz

36 IJCA, Vol. 30, No.1, March 2023

Frequency (From Best to
Worst Performance)

Highest Number of
Virtual Agents before
Dropping Below 50 fps.
(HoloLens 1)

10 Hz 53
2 Hz 51
5 Hz 49
20 Hz 49
Update 49
Fixed Updated 43

Figure 6: Highest number of virtual agents before falling below
50 fps

Frequency (From Best to
Worst Performance)

Last Framerate for the
HoloLens 1

10 Hz 38
5 Hz 36
Update 34
20 Hz 33
2 Hz 30
Fixed Update 26

Figure 7: Last frame rate for HoloLens 1 per control frequency

Figure 8: Averaged data for all experiments on the HoloLens 2

Frequency (From Best to
Worst Performance)

Highest Number of
Virtual Agents before
Dropping Below 50 FPS.
(HoloLens 2)

10 Hz 71
5 Hz 66
20 Hz 58
Update 54
2 Hz 50
Fixed Update 50

Figure 9: Highest number of virtual agents before falling below
50 fps (HoloLens 2)

Frequency (From Best to
Worst Performance)

Last Framerate for the
HoloLens 2

10 Hz 38
5 Hz 36

Update 34
20 Hz 33
2 Hz 30
Fixed Update 26

Figure 10: Last frame rate for HoloLens 1 per control frequency
(HoloLens 2)

0

10

20

30

40

50

60

70

80

90

100

Sample Number

Averaged Data for All Experiments on the HoloLens 2

Number of Virtual Agents Update() FixedUpdate()

20Hz 10Hz 2Hz

5 Hz

IJCA, Vol. 30, No. 1, March 2023 37

Figure 11: Comparing the optimal frequencies for all three platforms

Comparison of Highest Virtual Agent Count Before Dropping Below 50 fps

Frequency HoloLens 1 HoloLens 2

2 Hz 51 50

5 Hz 49 66

10 Hz 53 71

20 Hz 49 58

Update 49 54

Fixed Update 43 50

Figure 12: Highest number of agents before dropping below 50Hz

Comparison of the Platforms and the Final Framerate per Each Frequency
Frequency HoloLens 2 HoloLens 1 Android
2 Hz 30 31 30
5 Hz 36 31 31
10 Hz 38 34 33
20 Hz 33 28 34
Update 34 29 30
Fixed Update 26 22 34

Figure 13: Comparison of the platforms and the final framerate per each frequency

0

10

20

30

40

50

60

70

80

90

100

Sample Number

Cross-platform Performance Comparison with Optimal
Control Frequencies

Number of Agents HoloLens 2 (10 Hz)

HoloLens 1 (10 Hz) Android (Fixed Update)

38 IJCA, Vol. 30, No.1, March 2023

8 Future Work

This research created a foundation for the computational

power expected from common AR devices. Several projects
will benefit from this research and the knowledge of the optimal
control frequencies. One research area is localizing multiple
users and virtual objects without object tracking. The AR
device must map the environment and combine maps from other
devices to create a shared coordinate system. The
computational requirement for this is immense. Another project
that could benefit from this research is dynamically loading
content into an AR environment. This capability would also
require computational power and bandwidth to import, load, and
visualize new objects that were not natively part of the
application.

9 Conclusion

In conclusion, this paper presented computation stair-step

tests to determine the optimal control frequency for three
platforms: HoloLens 1, HoloLens 2, and an Android Phone.
Surprisingly the lowest frequency did not perform the best. 10
Hz performed the best for HoloLens 1 and 2, while 20 Hz or
Fixed Update performed the best on the Android. This paper
also discovered a philosophical difference between the
platforms. The HoloLens family would give the highest
framerate possible, while the Android system kept a consistent
30 frames per second regardless of the computational load.
These results will be helpful when designing AR applications in
the future when considering platform constraints.

References

[1] J. Ahn, J. Williamson, M. Gartrell, R. Han, Q. Lv, and S.

Mishra, “Supporting Healthy Grocery Shopping via Mobile
Augmented Reality,” ACM Trans Multimedia Comput.
Commun. Appl., 12:16:1-16:24, 2015, doi:
10.1145/2808207.

[2] B. Garrett, J. Anthony, and C. Jackson, “Using Mobile
Augmented Reality to Enhance Health Professional
Practice Education,” Current Issues in Emerging eLearning
4, 2018.

[3] A. Hartholt, S. Mozgai, E. Fast, M. Liewer, A. Reilly, W.
Whitcup, and A. S. Rizzo, “Virtual Humans in Augmented
Reality: A First Step Towards Real-World Embedded
Virtual Roleplayers,” Proceedings of the 7th International
Conference on Human-Agent Interaction, pp. 205-207,
2019.

[4] K. Kim, L. Boelling, S. Haesler, J. Bailenson, G. Bruder,
and G. F. Welch, “Does a Digital Assistant Need a Body?
The Influence of Visual Embodiment and Social Behavior
on the Perception of Intelligent Virtual Agents in AR,”
2018 IEEE International Symposium on Mixed and
Augmented Reality (ISMAR), IEEE, pp. 105-114, 2018.

[5] C. Moro, Z. Štromberga, A. Raikos, and A. Stirling, “The
Effectiveness of Virtual and Augmented Reality in Health
Sciences and Medical Anatomy,” Anatomical Sciences

Education 10:549-559, 2017, doi: 10.1002/ase.1696.
[6] M. Obaid, I. Damian, F. Kistler, B. Endrass, J. Wagner, and

E. André, “Cultural Behaviors of Virtual Agents in an
Augmented Reality Environment,” International
Conference on Intelligent Virtual Agents, Springer, pp
412–418, 2012.

[7] M. Obaid, R. Niewiadomski, and C. Pelachaud,
“Perception of Spatial Relations and of Coexistence with
Virtual Agents,” International Workshop on Intelligent
Virtual Agents. Springer, pp 363-369, 2011.

[8] P. Parashar, L. M. Sanneman, J. A. Shah, and H. I.
Christensen, “A Taxonomy for Characterizing Modes of
Interactions in Goal-driven, Human-Robot Teams,” 2019
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2213-2220, 2019.

[9] S. Saeedi, B. Bodin, H. Wagstaff, A. Nisbet, L. Nardi, J.
Mawer, N. Melot, O. Palomar, E. Vespa, T. Spink, C.
Gorgovan, A. Webb, J. Clarkson, E. Tomusk, T.
Debrunner, K. Kaszyk, P. Gonzalez-De-Aledo, A.
Rodchenko, G. Riley, C. Kotselidis, B. Franke, M. F. P.
O’Boyle, A. J. Davison, P. H. J. Kelly, M. Luján, and S.
Furber, “Navigating the Landscape for Real-Time
Localization and Mapping for Robotics and Virtual and
Augmented Reality,” Proceedings of the IEEE 106:2020-
2039, 2018, doi: 10.1109/JPROC.2018.2856739.

[10] I. C. S. da Silva, G. Klein, and D. M. Brandão, “Segmented
and Detailed Visualization of Anatomical Structures based
on Augmented Reality for Health Education and
Knowledge Discovery,” Adv. Sci. Technol. Eng. Syst J,
2:469-478, 2017, doi: 10.25046/aj020360.

[11] I. Wang, J. Smith, and J. Ruiz, “Exploring Virtual Agents
for Augmented Reality,” Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems,
ACM, Glasgow Scotland Uk, pp. 1-12, 2019.

[12] Augmented Reality - Wikipedia, https://en.wikipedia.
org/wiki/Augmented_reality, Accessed 19 Nov 2022.

[13] Unity - Scripting API: Time.unscaledDeltaTime,
https://docs.unity3d.com/ScriptReference/Time-
unscaledDeltaTime.html, Accessed 5 Apr 2022.

Bradford A. Towle, Jr. is an Assistant
Professor at Florida Polytechnic
University. He has designed and
coordinated the Game Design and
Development concentration within the
Computer Science Department since
2016. His primary research topics
include augmented reality applications,
autonomous robotic control
architectures, and human-computer

interaction. Dr. Towle researches individually and with
undergraduates, hoping to foster future generations of
researchers within Computer Science. He has successfully
advised three graduate students helping them achieve a Master’s
degree in Computer Science. He is actively working to build an
international reputation for his augmented reality research and
has formed a student research group at Florida Polytechnic.

