
54 ISCA, Vol. 30, No. 1, March 2023

ISCA Copyright© 2023

On Generalization of Residue Class Based Pyramid
Tree P2P Network Architecture

Indranil Roy*
Southeast Missouri State University, Cape Girardeau, MO

Nick Rahimi†,
2 University of Southern Mississippi, Hattiesburg, MS

Ziping Liu*
Southeast Missouri State University, Cape Girardeau, MO

Bidyut Gupta‡

Southern Illinois University; Carbondale, IL

Narayan Debnath§
Eastern International University; VIETNAM

Abstract

In this paper, we have considered a recently reported 2-layer
non-DHT-based structured P2P network. It is an interest-based
system and consists of different clusters such that peers in a
given cluster possess instances of a particular resource type. It
offers efficient data look-up protocols with low latency.
However, the architecture lacks in one very important aspect: it
is assumed that no peer in any cluster can have more than one
resource type and this could be a very hard restriction
practically. Therefore, in the present work, we have addressed
this issue of generalizing the architecture to overcome this
restriction and have come up with effective solutions. We have
modified appropriately our previously reported data look-up
protocols wherever applicable in order to accommodate the idea
of generalization while making sure that look-up latencies of
these modified protocols remain the same.

Key Words: Structured P2P network; residue class, interest-
based; non-DHT; complete and incomplete pyramid trees;
virtual neighbors.

1 Introduction

Peer-to-Peer (P2P) overlay networks are widely used in

distributed systems due to their ability to provide computational
and data resource sharing capability in a scalable, self-
organizing, distributed manner. There are two classes of P2P
networks: unstructured and structured ones. In unstructured
systems [3] peers are organized into arbitrary topology. It takes

* Department of Computer Science.
† School of Computing Sciences & Computer Engineering.
‡ School of Computing.
§ School of Computing and Information Technology.

help of flooding for data look up. Problem arising due to
frequent peer joining and leaving the system, also known as
churn, is handled effectively in unstructured systems. However,
it compromises with the efficiency of data query and lookups
are not guaranteed. On the other hand, structured overlay
networks provide deterministic bounds on data discovery. They
provide scalable network overlays based on a distributed data
structure which actually supports the deterministic behavior for
data lookup. Recent trend in designing structured overlay
architectures is the use of distributed hash tables (DHTs) [18,
20, 27]. Such overlay architectures can offer efficient, flexible,
and robust service [14, 18, 20, 27, 29]. However, maintaining
DHTs is a complex task and needs substantial amount of effort
to handle the problem of churn. So, the major challenge facing
such architectures is how to reduce this amount of effort while
still providing an efficient data query service. In this direction,
there exist several important works, which have considered
designing DHT-based hybrid systems [7, 13, 16, 26, 30]; these
works attempt to include the advantages of both structured and
unstructured architectures. However, these works have their
own pros and cons. Another design approach has attracted
much attention; it is non-DHT based structured approach [4, 9,
17, 21, 24]. It offers advantages of DHT-based systems, while
it attempts to reduce the complexity involved in churn handling.
Authors in [21] have considered one such approach and have
used an already existing architecture, known as Pyramid tree
architecture originally applied to the research area of ‘VLSI
design for testability’ [8, 19]. Our structured architecture is an
interest-based peer-to-peer system [1, 5, 10, 11-12, 17, 21, 24-
25, 28]. In such a system, peers with a common interest are
clustered together. Its main focus is to improve the efficiency
of data lookup protocols in that a query for an instance of a
particular resource type is always directed to the cluster of peers
which possess different instances of this resource type. So,

ISCA, Vol. 30, No. 1, March 2023 55

success or failure to get an answer for the query involves a
search in that cluster only, instead of searching the whole
overlay network as in the case of unstructured networks.

The overlay network considered in this paper is a 2-layer non
DHT based architecture [21]. At layer-1, there exists a tree like
structure, known as pyramid tree. It is not a conventional tree.
A node i in this tree represents the cluster-head of a cluster of
peers which possess instances of a particular resource type Ri

(i.e., peers with a common interest). The cluster-head is the first
among these peers to join the system. Layer 2 consists of the
different clusters corresponding to the cluster-heads. Details of
the architecture appears in the next section.

Related works and our Contribution: Before we state our

present contributions, we briefly state now some of our recent
related contributions. The pyramid tree architecture was
initially used in the area of Testable Fault Tolerant Arrays of
Processors [8, 19]. Later we realized its potential as a probable
network architecture for P2P communication systems especially
for interest-based systems. In [21] authors studied extensively
what the architecture could offer from the viewpoints of data
look-up efficiency and they identified several interesting
architectural properties (stated in the Preliminaries) that finally
led to the design of various simple yet very efficient data look-
up protocols [15, 22-23]. It is a non-DHT-based two-level
structured architecture and experimental results [23] have
shown the superiority of the proposed various data look-up
protocols when compared with the protocols used in some noted
DHT-based structured networks from the viewpoints of search
latency and complexity involved. It offers as well several
advantages when compared with some noted works on interest-
based architectures [1, 5, 10, 11-12, 25, 28]. Authors have
extensively studied the effect of churn on the architecture [23];
besides another important contribution was the design of intra-
capacity constrained broadcast and multicast protocols which
take into consideration the real situation where peers most likely
will be heterogeneous [22].

However, we believe that all these above-mentioned recent
contributions on interest-based architectures still lack in one
very important aspect: in these architectures, the underlying
assumption is that no peer can have more than one resource type
and this could be a very hard restriction practically. Therefore,
in the present work, we have addressed this issue of generalizing
pyramid tree based P2P architecture and have come up with
effective solutions that allow a peer to possess multiple different
resource types.

The organization of the paper is as follows. In Section 2, we
talk briefly about some related preliminaries. Our contributions
in the present paper appear in Sections 3 and 4. In Section 3,
generalization of the architecture has been considered. In
Section 4, effect of the generalization on the existing
communication protocols [15, 22-23] has been considered.
Section 5 draws the conclusion.

2 Preliminaries

In this section, we present some relevant results from our

recent works on the Pyramid tree based P2P architecture [15,
21-23]. for interest-based peer-to-peer system. Residue Class
based on modular arithmetic has been used to realize the overlay
topology.

Definition 1. i

Ri denotes the type of a resource and V is the value of the
resource.

Note that a resource can have many values. For example, let

Ri denote the resource type ‘songs’ and V' denote a particular
singer. i

particular singer V'.

Definition 2. Let S be the set of all peers in a peer-to-peer

system with n distinct resource types (i.e., n distinct common
interests). Then S = {Ci -1, where Ci denotes the
subset consisting of all peers with the same resource type Ri. In
this work, we call this subset Ci as cluster i. Also, for each
cluster Ci, we assume that Ci

h is the first peer among the peers
in Ci to join the system. We call Ci

h as the cluster-head of cluster

Ci.

2.1 Pyramid Tree

The following overlay architecture has been proposed in [21].

 The tree consists of n nodes. The ith node is the ith cluster
head Ci

h. The tree forms the layer-1 and the clusters
corresponding to the cluster-heads form the layer-2 of the
architecture.

 Root of the tree is at level 1.
 Edges of the tree denote the logical link connections

among the n cluster-heads. Note that edges are formed
according to the pyramid tree structure [8].

 A cluster-head Ci
h represents the cluster Ci. Each cluster

Ci is a completely connected network of peers possessing
a common resource type Ri, resulting in the cluster
diameter of 1.

 The tree is a complete one if at each level j, there are j
number of nodes (i.e., j number of cluster-heads). It is an
incomplete one if only at its leaf level, say k, there are less
than k number of nodes.

 Any communication between a peer pi Ci and a peer pj

Cj takes place only via the respective cluster-heads Ci
h and

Cj
h and with the help of tree traversal wherever applicable.

 Joining of a new cluster always takes place at the leaf
level.

 A node that does not reside either on the left branch or on
the right branch of the root node is an internal node.

 Degree of an internal non-leaf node is 4.
 Degree of an internal leaf node is 2.

2.2 Residue Class

Modular arithmetic has been used to define the pyramid tree

56 ISCA, Vol. 30, No. 1, March 2023

architecture of the P2P system.
Consider the set Sn of nonnegative integers less than n, given

as Sn = {0, 1, 2, .… (n – 1)}. This is referred to as the set of
residues, or residue classes (mod n). That is, each integer in Sn

represents a residue class (RC). These residue classes can be
labelled as [0], [1], [2], …, [n – 1], where [r] = {a: a is an integer,

For example, for n = 3, the classes are:

In the P2P architecture, we use the numbers belonging to
different classes as the logical (overlay) addresses of the peers
with a common interest (i.e., peers in the same cluster) and the
number of residue classes is the number of distinct resource
types; for the sake of simplicity, we shall use only the positive
integer values.

Before we present the mechanism of logical address
assignments, we state the following relevant property of residue
class.

Lemma 1. Any two numbers of any class r of Sn are mutually

congruent [15, 21].

2.3 Assignments of Overlay (Logical) Addresses

Assume that in an interest-based P2P system there are n

distinct resource types. Note that n can be set to an extremely
large value a priori to accommodate large number of distinct
resource types. Consider the set of all peers in the system given
as S = {Ci -1. Also, as mentioned earlier, for each
subset Ci (i.e., cluster Ci) peer Ci

h is the first peer with resource
type Ri to join the system and hence, it is the cluster-head of
cluster Ci.

The assignment of overlay addresses to the peers in the
clusters and the resources happens as follows:

1) The first cluster-head to join the system is assigned with

the logical (overlay) address 0 and is denoted as C0
h. It

is also the root of the tree formed by newly arriving
cluster-heads (see the example in Figure 1).

2) The (i+1)th newly arriving cluster-head possessing the
resource type Ri is denoted as Ci

h and is assigned with the
minimum nonnegative number (i) of residue class i (mod
n) of the residue system Sn as its overlay address.

3) In this architecture, cluster-head Ci
h is assumed to join

the system before the cluster-head Ci+1
h.

4) All peers having the same resource type Ri (i.e., 'common
interest' defined by Ri) will form the cluster Ci. Each new
peer joining cluster Ci is given the cluster membership
address (i + j.n), for i = 0, 1, 2, …

5) Resource type Ri possessed by peers in Ci is assigned the
code i which is also the logical address of the cluster-head
Ci

h of cluster Ci.

Definition 3. Two peers of a cluster Cr are logically linked
together if their assigned logical addresses are mutually
congruent.

Lemma 2. Each cluster Cr forms a complete graph [15].
Observation 1. Any intra-cluster data look up

communication needs only one overlay hop.
Observation 2. Search latency for inter-cluster data lookup

algorithm is bounded by the diameter of the tree.

Scalability: It may be noted that number of distinct resource

types is very small compared to the number of peers in any
overlay network [15]. To avoid the possibility of redesigning
the architecture as new clusters are formed, a very large value
of n can be selected at the design phase to accommodate a very
large number of possible resource types (if needed in the future).
It means that if at the beginning number of resource types
present is small, only the first few of the residue classes will be
used initially for addressing; and as new clusters are formed in
future with new resource types in the system, more residue
classes in sequence will be available for their addressing. For
example, say initially n is set at 1000; so, there are 1000 possible
residue classes, starting from [0], [1], [2], [4],[5], …., [999]. If
initially there are only three clusters of peers present with three
distinct resource types, the residue classes [0], [1], [2] will be
used for addressing the peers in the three respective clusters. If
later two new clusters are formed with two new resource types,
the residue classes [3] and [4] will be used for addressing the
peers in the two new clusters in sequence of their joining the
system. Moreover, as we see, there is no limit on the size of any
cluster because any residue class can be used to address
logically up to an infinite number of peers with a common
interest. Therefore, the proposed architecture does not have any
negative issue with scalability.

2.4 Virtual Neighbors [23]

An example of a complete pyramid tree of 5 levels is shown

in Figure 1. It means that it has 15 nodes/clusters (clusters 0 to
14, corresponding to 15 distinct resource types owned by the 15
distinct clusters). It also means that residue class with mod 15
has been used to build the tree. The nodes’ respective logical
addresses are from 0 to 14 based on their sequence of joining
the P2P system.

Each link that connects directly two nodes on a branch of the
tree is termed as a segment. In Figure 1, a bracketed integer on
a segment denotes the difference of the logical addresses of the
two nodes on the segment. It is termed as increment and is
denoted as Inc. This increment can be used to get the logical
address of a node from its immediate predecessor node along a
branch. For example, let X and Y be two such nodes connected
via a segment with increment Inc, such that node X is the
immediate predecessor of node Y along a branch of a tree which
is created using residue class with mod n. Then, logical address
of Y = (logical address of X + Inc) mod n.

Thus, in the example of Figure 1, Logical address of the
leftmost leaf node = (logical address of its immediate
predecessor along the left branch of the root + Inc) mod 15 = (6

ISCA, Vol. 30, No. 1, March 2023 57

+ 4) mod 15 = 10.

Figure 1: A complete pyramid tree with root 0

Also, note that a left branch originating at node 2 on the right
branch of the root node is . Similarly, we can
identify all other left branches originating at the respective
nodes on the right branch of the root node. In a similar way, we
can identify as well all right branches originating at the
respective nodes on the left branch of the root node as well.

Remark 1. The sequence of increments on the segments
along the left branch of the root, appears to form an AP series
with 1st term as 1 and common difference as 1.

Remark 2. The sequence of increments on the segments
along the right branch of the root, appears to form an AP series
with 1st term as 2 and common difference as 1.

Remark 3. Along the 1st left branch originating at node 2, the
sequence of increments appears to form an AP series with 1st

term as 2 and common difference as 1. Note that the 1st term is

Remark 4. Along the 2nd left branch originating at node 5,
the sequence of increments is an AP series with 1st term as 3 and
common difference as 1. Note that the 1st term is the increment

Authors [21] have presented some important structural
properties of the pyramid tree P2P system. According to the
authors, no existing structured P2P system, either DHT or non-
DHT based, possesses these properties. These are stated below.

Let SY be the set of logical links that connect a node Y to its
neighbors in a complete pyramid tree TR with root R. Assume
that the tree has n nodes (i.e., n cluster heads / n clusters). Let
another tree T'R be created with the same n nodes but with a
different root R'. Let S'Y be the set of logical links connecting
Y to its neighbors in the tree T'R.

Property 1. SY Y

Property 2. Diameter of TR = Diameter of T'R
Property 3. Number of levels of TR = Number of levels of

T'R
Property 4. Complexity of broadcasting in TR with root R as

the source of broadcast is the same for T'R with root R'
Property 5. Both TR and T'

R are complete pyramid trees.

An example: Consider the complete pyramid tree of 5 levels
as shown in Figure 2. Note that the root of this tree is node 13,
whereas root of the tree of Figure 1 is 0.

Figure 2: A complete pyramid tree with root 13

It is seen that S'4 = {1,8,9} and S4 = {1,2,7,8}. Therefore,
Property 1 holds.

Diameters of both trees are the same; it is 8 in terms of number
of overlay hops. Besides, both trees use the same 15 nodes and
have the same total number of levels. Complexity of
broadcasting from either root 0 in the tree of Figure 1 or from
root 13 in the tree of Figure 2 is bounded by the number of levels
of each of the trees (here it is 4 in each). Finally, both trees are
complete pyramid trees. Thus, all properties as mentioned
above hold.

Remark 5. Set of the neighbors of a given node Z may vary
as the root of the tree varies. Hence, it is termed ‘virtual’.
However, time complexity of broadcasting remains same, i.e., it
is O(d) where d denotes the number of levels of the tree.

3 Generalization of the Architecture

As mentioned earlier, in the architecture, it is assumed that no
peer can have more than one resource type and this could be a
very hard restriction practically. To overcome this restriction,
we have come up with the concept of Generalization i.e., the
architecture is generalized in such a way that a peer can have
multiple resource types. Generalization of the Architecture
needs to deal with two possible scenarios. Below we consider
the two possible scenarios and state how to incorporate some
necessary changes in the architecture in order to handle the two
scenarios. Throughout our presentations, we shall
interchangeably use the words ‘node’ and ‘cluster-head’. So, a
node on the tree is actually a cluster-head. These are all peers
though. However, we strictly use the word ‘peer’ to represent
members of a cluster only to avoid any possible confusion. In
addition, we assume that ‘resource with type k’ and ‘resource
with code k’ mean the same resource.

3.1 Peer with Multiple Existing Resource Types

Scenario 1: Let us consider a situation that in some cluster

58 ISCA, Vol. 30, No. 1, March 2023

Ci, its cluster-head Ci
h or a peer p in Ci wants data insertion of

another existing resource type, say Rk in the network. Here data-
insertion by a peer means the peer in question declares the
possession of instances of another resource type that already
exists in the system.

As mentioned earlier, peers in cluster Ck possess instances of
the resource type Rk. Also, peer p in Ci already possesses some
instances of the resource type Ri.

Solution: The solution for this scenario is as follows. The
cluster-head Ci

h or peer p will now become a member of cluster
Ck as well. So, it is understood that the IP address of Ci

h /p will
be known to members of both the clusters Ci and Ck. It means
that, in the overlay network, Ci

h /p will appear logically in both
the clusters Ci and Ck, and will have direct logical connections
to all member peers of clusters Ci and Ck. Therefore, it should
be clear that our already reported intra- and inter-cluster data-
lookup protocols [28] do not need any modification in this
scenario. The same is true for broadcasting involving the
cluster-heads in the tree. In addition, we have observed that the
capacity-constrained broadcast and multicast protocols inside a
cluster [20] in the tree need not be modified as well.

However, we observe that the existing inter-cluster data look-
up protocol as well as the broadcast protocol involving all
cluster-heads in the tree [15] will need some appropriate
modifications to handle the second scenario. We shall present
these in detail in the following sections. Before that we present
the following solution to tackle the second scenario.

3.2 Existing Peers Declaring New Resource Types

Scenario 2: Consider a P2P interest-based pyramid tree

system which has currently r distinct resource types, viz., R0, R1,
R2, … Rr-1. Assume that the respective resource codes are 0, 1,
2, …, (r-1). Without any loss of generality, let us assume a
scenario where cluster-head Ci

h / a peer p in a cluster Ci wants a
data insertion of a new resource type Rr currently not present in
the network.

Solution: Solution lies in an appropriate modification of the
table of information (TOI) maintained by each cluster-head. We
know that in TOI, corresponding to each cluster-head there is an
entry (tuple). For example, the tuple for some cluster-head Ci

h

appears as <resource code (logical address) owned by peers in
Ci

h, IP address of the cluster-head Ci
h >; note that in the

architecture resource code and the logical address of a cluster-
head are the same. That is, one denotes the other. It facilitates
packet propagation in the tree. In short, we write the tuple as <
Res. Code, IP (Ci

h . As new clusters are formed owing to peers
joining with new resource types, the TOI grows dynamically and
the newest joining cluster-head is assigned with the next largest
logical address not yet used and hence its resource code also
becomes the largest among all such existing codes. Therefore,
this table remains sorted with respect to logical addresses of
cluster-heads (i.e., with respect to the resource codes of the
resources they possess).

Coming back to the second scenario, a new entry is made in
the TOI corresponding to the new resource type Rr with resource

code r. So currently this code r is the largest one present in the
table. Based on if it is the cluster-head Ci

h / or a peer in cluster
Ci that wants a data insertion of a new resource type Rr, in the
newly entered tuple, the corresponding cluster-head will be
either Ci

h or the peer p. That is, if it is Ci
h, it will now represent

two different clusters corresponding to two different resource
types i and r. So, it will have two different logical addresses i
and r as well. Therefore, later any peer wishing to join with
resource type r will join the cluster with logical address r.
Effectively, Ci

h now will maintain two different clusters Ci and
Cr, i.e., one with peers for resource code i and the other with
peers with resource code r. It is clear that cluster-head in the
second case with resource type r is now Cr

h which is actually
Ci

h. In case it is the peer p in cluster Ci, peer p will maintain a
cluster of peers with resource type r; thus, p will appear as a peer
in Cluster Ci and will also appear as a cluster-head Cr

h with
logical address r. Therefore, we have modified the TOI to
include the relevant information of the new entry. Below we
give an example to clear the idea further.

Observation 3. Generalization of the architecture may

require some nodes of the tree represent multiple cluster-
heads with the same IP address, but with different distinct
resource types.

Example 1: Without any loss of generality let us consider
a 3-level complete pyramid tree. Thus, the tree has six distinct
resource types with respective resource codes as 0, 1, 2, 3, 4,
5. According to the structure of the tree node 0 is at level 1,
nodes 1 and 2 at level 2, and nodes 3,4, and 5 are at level 3.
Next, assume that cluster-head C1

h declares that it has just
possessed some instances of another new resource type with
6 as its code. Now, the tree becomes a 4-level incomplete tree
with seven nodes (i.e., seven cluster-heads) with node 6 at
level 4. Therefore, as explained above, TOI needs to be
modified. Before and after the above declaration TOI appears
as shown below in Figures 3a and 3b. We denote IP address
of a node X as IP(X). ‘Res. Code’ is actually ‘Resource
Code’.

Note that in Figure 3b cluster-head C1

h has appeared twice:
once it represents a cluster-head with logical address 1 and next
with logical address 6, appearing as C6

h. That is, C1
h now

represents virtually two different clusters of peers C1 and C6,
one with instances of resource type with code 1 and the other
one with code 6. In effect, the 2nd appearance of C1

h as C6
h

makes the tree incomplete with 7 nodes.
Note that if instead of the cluster-head C1

h some peer, say p*
in cluster Ci declares that it has just possessed another new
resource type with 6 as its code, the entry for resource code 6
will become <6, IP(p*)> in Figure 3b. Hence, the new cluster-
head p*(i.e., C6

h) forms a cluster with peers willing to join with
instances of resource type 6.

It may be noted that any inter-cluster query for some instance
of the resource type 6 will be directed at either C1

h or p*
depending on the tuple corresponding to resource code 6 (Figure
3b).

ISCA, Vol. 30, No. 1, March 2023 59

Res. Code IP address Res. Code IP address

0 IP(C0
h) 0 IP(C0

h)

1 IP(C1
h) 1 IP(C1

h)

2 IP(C2
h) 2 IP(C2

h)

3 IP(C3
h) 3 IP(C3

h)

4 IP(C4
h) 4 IP(C4

h)

5 IP(C5
h) 5 IP(C5

h)

6 IP(C6
h)

Figure 3a: TOI before declaration Figure 3b: TOI after declaration: IP(C1
h) = IP(C6

h)

4 Modification of Existing Inter-Cluster Data Look-Up and
Broadcast Protocols

As pointed out earlier the existing inter-cluster data look-up

and broadcast protocols (involving all cluster-heads in the tree)
will need some appropriate modifications to handle only the
second scenario. In this section we deal with this. We again
emphasize that none of the two scenarios have any effect on the
existing capacity-constrained broadcast and multicast protocols
inside a cluster [22] i.e., as long as the communication is inside
a cluster only, no related existing protocols need be modified.

4.1 Modified Inter-Cluster Data Look-Up Protocol

In the generalized protocol stated below, codes from line 2 to

line 3 are added to handle the second scenario. This section of
the total code deals with the situation when a peer represents
multiple cluster-heads with each cluster having distinct resource
types. In the architecture, any communication between a peer
pi Ci and a peer pm Cm takes place only via the respective
cluster-heads Ci

h and Cm
h. Without any loss of generality let a

peer pi* (Ci m Note that peer pi* knows
that Rm Ci, because resource code used in cluster Ci is i. The
protocol appears in Figure 4 below.

Protocol Generalized Inter-Data-Lookup

1. pi j -
head Ci

h

2. if IP(Ci
h) = IP(Cm

h) / Ci
h checks in its TOI; same

peer acts as cluster-heads for clusters Ci and Cm

 if Cm
h m

 Cm
h m i*

 else
 Cm

h m m
/ one hop communication

 if pm (Cm m
 pm m i*
 else
3. Cm

h unicasts ‘search fails’ to pi*
4. else

 Ci
h determines the cluster-head Cm

h 's IP address

from its TOI using Cm
h 's resource code

 / logical
address of Cm

h
m = m

 Ci
h unicasts the request to Cm

h
 if Cm

h
m

 Cm
h m i*

 else
 Cm

h m m

/ one hop communication
 if pm (Cm m
 pm m i*
 else
 Cm

h unicasts ‘search fails’ to pi*

Figure 4: Modified generalized inter-cluster data-lookup
protocol

As in Observation 2 earlier, search latency for modified inter-

cluster data look-up approach remains bounded by the diameter
of the tree and is independent of the total number of peers
present in the system.

4.2 Modified Broadcast Protocol

In the context of broadcasting, it may be noted that, in general,

inter-cluster broadcast involves always intra-cluster broadcast
as well, with the exception when a cluster-head wants to update
some control information (ex. broadcasting of updated TOI by
the root of tree) maintained only by different cluster-heads in
the system. Therefore, we focus specifically on broadcasting by
a cluster-head Ci

h of a cluster Ci on the tree to all other cluster-
heads.

An interesting observation is that if the root is node 0 (logical
address), even an incomplete tree always remains a connected
one; on the other hand, for any other cluster-head as root, an
incomplete tree may not remain connected. To explain the idea
briefly and clearly, consider the complete tree of Figure 1. Its
root is node 0. If root changes to some other node, say node 13,
the tree still remains a complete one as is shown in Figure 2. This
property of the architecture arising from 'virtual neighbors' has
been discussed in detail earlier. Now assume that the tree in
Figure 1 does not have node 14, i.e., cluster 14 is yet to be

60 ISCA, Vol. 30, No. 1, March 2023

formed. So the tree is incomplete, yet it is connected. In this
situation, if node 0 broadcasts some packets, all other nodes will
receive copies. Now assume that node 13 is the broadcaster and
node 13 is assumed to be the root. It is seen that its immediate
neighbor on its left branch should be node 14 (Remark 1);
however node 14 does not exist in the tree as assumed above.
So propagation of any broadcast packet along the left branch
cannot take place based on the Broadcast-Complete protocol
[15]. Therefore, broadcast fails. However, if node 13 unicasts
its packets first to node 0 (root) which will then act as the pseudo
broadcaster on behalf of node 13, all nodes get copies because
the tree remains connected with node 0 as its root. This is
actually the idea used in the Broadcast-Incomplete protocol
[15]. This has led us to consider modifying only the existing
Broadcast-Incomplete protocol to appropriately handle the
second scenario.

An informal sketch of the modified incomplete broadcast

protocol

Step 1: A broadcast source node X will unicast its packets to
the root node 0.

Step 2: Root 0 sends packets to its neighbors on left and right
branches.

Step 3: Each receiving node on the left branch sends packets
to its neighbor on this branch till a receiving node is a leaf node.

Step 4a: The ith receiving node on the right branch sends
packets to its neighbor on the ith left branch originating at the ith

node until the ith receiving node is a leaf node.
Step 4b: The ith receiving node sends packets to its neighbor,

the (i+1)th node on the right branch until the ith receiving node is
a leaf node.

Step 4c: Propagation along the ith left branch continues as in
Step 3.

In the above informal sketch, a broadcast source node X will

unicast its packets to the root node 0, which in turn, will execute
a modified version of the broadcast-incomplete protocol. That
is, node 0 will act as the pseudo broadcast source (like in CBT
multicast [2] the core is the pseudo multicast source). Hence,
the tree will remain connected with node 0 as its root even if the
original tree is an incomplete one. This justifies our
consideration to modify only the existing broadcast-incomplete
protocol.

Since node X is a part of the tree, eventually it will participate
in the broadcast by node 0 and will receive a copy of the packet
which it already unicasted to node 0. Note that node X may
need to forward the received packet further depending on its
location on the tree. Therefore, this approach will generate only
one duplicate packet per broadcast packet irrespective of the
size of the tree. The formal presentation of the protocol appears
in Figure 4.

It may be noted that instead of using the left branches
originating at nodes on the right branch (as in step 4 above), the
protocol can use the right branch of the root and all right
branches emanating from the nodes on the left branch of the
root. In this way, it will also generate only one duplicate packet

per packet broadcast as well. We use the following data
structures and notations.

The structure of broadcast packet, BP appears as: < # hops
(Nh), increment (Inc), flag (L/R), Information (Info) >

Interpretation of the different entries in the broadcast packet
P is stated below.

hops (Nh): is initialized by the broadcast source X with

(d-1); each receiving node on the tree along a
propagation path will decrement Nh by 1,
before forwarding the received packet to the
next node along the path.

Increment (Inc): is used to determine the logical address of the
next node for packet forwarding.

Flag (L/R): it is either L or R. Flag L denotes that a
received packet needs to be propagated along
a left branch until the leaf level is reached.
Similarly, flag R denotes packet propagation
along a right branch. For ease of
understanding the protocols we name the
broadcast packet BP as BPL if flag is L;
otherwise we name it BPR.

Info: denotes the actual information to broadcast.
Address (X): logical address of node X
IP address of X: IP(X)

In this context, it may be mentioned that if cluster-head C0

h (i.e.
node 0) along with its all member peers in C0 have left the
network, the cluster-head with current logical address as 1
assumes the role of the root of the tree and its logical address
becomes 0 and at the same time any other cluster-head with
logical address H will have its newly assigned logical address
as (H-1); the table of information (TOI) will be updated
accordingly, which will reflect a new, possibly incomplete, yet
connected, tree with its root as node 0 (formerly node 1).
However, it is all about ‘churn handling’ which has already been
reported in detail in [23]. Therefore, in the following algorithm
by ‘node 0’ it means the current root.

We have modified the existing broadcast-incomplete protocol
[15] to incorporate the solution for scenario 2 as discussed in the
previous section. The modified portion appears on lines 12 to
14 (Figure 5) and it resolves the issue raised in scenario 2. This
small piece of code is crucial in the modified protocol. Below,
we have explained its importance considering again Example 1.

Initially peers in cluster C1 have instances of resource type
with code 1. Assume that later cluster-head C1

h declares that it
has just possessed another new resource type with 6 as its code.
Therefore, now cluster-head C1

h represents virtually two
clusters, one consisting of peers possessing resource type with
code 1 and the other with code 2 (refer to Figure 3b). Now
without any loss of generality we shall consider the following
three possible cases.

Case 1. Assume that node 2 (i.e., cluster-head C2

h) is the
source of broadcast (appeared as X in the protocol). It starts
unicasting its broadcast packets to the root node 0 which then
broadcasts the packets to all nodes (cluster-heads) following the

ISCA, Vol. 30, No. 1, March 2023 61

Protocol Generalized-Broadcast-Incomplete

Executed by broadcast source X
1. Node X unicasts packets to node 0 for broadcasting

Executed by root node 0 // node 0 acts as the pseudo broadcast source

2. Nh = Nh-1 / node 0 builds a broadcast packet BPL

/ n = number of residue classes = number of

distinct resource types /

propagation along the left branch of node 0

takes place

3. Inc = 1

4. flag = L

5. BPL packet = < Nh, Inc, L, Info >

6. Node 0 forwards the BPL packet to the node with address, [(address

(X) + Inc) mod n]

7. Nh = Nh-1 / node 0 builds a broadcast packet BPR

/ propagation along the right branch of node

0 takes place

8. Inc = 2

9. flag = R

10. BPR packet = < Nh, Inc, R, Info >

11. Node 0 forwards the BPR packet to the node with address,

[(address (X) + Inc) mod n]

Executed by a receiving node Ci
h

12. if Ci
h

if IP(Ci
h

Ci
h keeps a copy

13. else Ci
h does not keep a copy / Ci

h has multiple distinct resource types;

already has copy of every packet since it is the

source X

14. else does not keep a copy

15. if Nh = 1 / it is a leaf level node

16. stops forwarding

17. else

18. if flag = L in the received packet

19. if [(address (Ci
h) + (Inc + 1)) mod max / Nmax is the largest current logical address in

the tree

20. Nh = Nh-1 / build a new BPL packet

/ n = number of residue classes = number of

distinct resource types

/ propagation along the left branch of Ci
h

continues

21. Inc = Inc+1

22. new BPL packet = < Nh, Inc, L, Info >

23. Ci
h forwards the BPL packet to the node

with address, [(address (Ci
h) + Inc) mod n]

24. else

25. stops forwarding / no such address exists; tree is incomplete

62 ISCA, Vol. 30, No. 1, March 2023

26. else i
h are on the right branch of

the broadcast source

27. if [(address (Ci
h) + (Inc)) mod max

28. Inc = Inc in the received BPR packet / build a new BPL packet

29. Nh = Nh-1

30. flag = L

31. new BPL packet = < Nh, Inc, L, Info >

32. Ci
h forwards the new BPL packet to the

node with address, [(address (Ci
h) + Inc) mod n]

/ propagation along the left branch of Ci
h

continues

33. else

34. stops forwarding / no such address exists; tree is incomplete

35. if [(address (Ci
h) + (Inc + 1)) mod max

36. Nh = Nh-1 / build a new BP packet

/ propagation along the right branch of Ci
h

continues

37. Inc = Inc+1

38. flag = R

39. new BPR packet = < Nh, Inc, R, Info

>

40.

 Ci
h forwards to the node with

address,

[(address (Ci
h) + Inc) mod n]

41. else / no such address exists; tree is incomplete

42.

 stops forwarding

Figure 5: Protocol Generalized- Broadcast-Incomplete

protocol. However, it is observed that every node receives
exactly one copy of each packet except node 2, because node 2
will also receive copies of its already unicasted packets from the
root node 0 because of broadcasting. So, it discards the received
copies. This has appeared in the protocol as stated in italics
below.

Case 2. Assume that node 1 is the source, i.e., C1

h = X.
Cluster-head C1

h has appeared twice on the tree once with

logical address 1 and another with logical address 6. So, C1
h

itself being the source of broadcast (as node 1), will discard the
packets when it receives as node 6 from root node 0 because of
broadcasting. This has appeared in the protocol as stated in
italics below.

Case 3. If logical addresses of the broadcast node X and a

receiving node are different, still there is a chance that both
nodes are actually the same one (Case 2 above). However, if

12. if Ci
h

 if IP(Ci
h

 Ci
h keeps a copy

13. else Ci
h does not keep a copy

14. else does not keep a copy

12. if Ci
h

 if IP(Ci
h

 Ci
h keeps a copy

13. else Ci
h does not keep a copy

14. else does not keep a copy

ISCA, Vol. 30, No. 1, March 2023 63

not, their IP addresses will differ and the receiving node will
keep copies of the received packets. This has appeared in the
protocol as stated in italics below.

12. if Ci

h

if IP(Ci
h

 Ci
h keeps a copy

else Ci
h does not keep a copy

 else does not keep a copy

Theorem 1. The protocol generates exactly one extra copy
per packet broadcast.

Proof. Propagation of the broadcast information (Info) takes
place along the left and right branches of the root node; also, it
takes place along all left branches originating at all nodes on the
right branch. Propagation stops when a receiving node is a leaf
node. Therefore, all nodes receive the broadcast information.

Besides, each broadcast packet is received only once by each
node on the tree except the source node X. Since node X is a
part of the tree, eventually it will participate in the broadcast by
node 0 and will receive a copy of the packet which it already
unicasted to node 0. Therefore, there is only one extra packet
generated per packet broadcast.

Complexity: The hop complexity is O(d) and as in Broadcast-

incomplete protocol [15] complexity is dependent only on the
number of the distinct resource types n present in the system,
which in turn determines the value of the number of levels d of
the tree.

Bandwidth Utilization: It offers very high bandwidth
utilization because it generates only one duplicate packet per
broadcast packet and the number of such duplicate packets is
independent on the total number of peers present in the network.

Remark 6. The proposed method to generalize the
architecture is remarkably simple and efficient, and it does not
affect the existing intra-cluster data look-up protocol; it affects
the existing inter-cluster data look-up and the broadcast protocol
is arguably a minimal way (as is observed in the modified portion
of the original pseudo code in case of the broadcast protocol).

5 Conclusion

Authors, in recent studies, have exploited the architectural

properties of the Pyramid tree P2P network to design different
communication protocols with reasonably low search latency.
However, these recent contributions still lack in one very
important aspect (like other existing interest-based
architectures): in the architecture, it is assumed that no peer can
have more than one resource type and this could be a very hard
restriction practically. In the present work, we have addressed
this issue of generalizing the architecture and have come up with
effective solutions. Effect on the architecture due to
generalization is just reflected in the modified ‘Table of
Information’ which is actually consulted by the various

protocols for data/query propagation. We have shown that
generalization has no effect on the existing intra-cluster data
look-up protocol. Only the existing inter-cluster data look up
and the broadcast protocols need to be modified. The two
modified protocols have the same low bandwidth requirements
and look-up complexities as those of the already existing ones.

As a continuation of our research, we are now working on
designing protocols for secured communication in the
generalized architecture.

References

[1] L. Badis, M. Amad, D. Aîssani, K. Bedjguelal and A.
Benkerrou, “ROUTIL: P2P Routing Protocol Based on
Interest Links,” 2016 International Conference on
Advanced Aspects of Software Engineering (ICAASE),
Constantine, pp. 1-5, 2016, doi: 10.1109/ICAASE.
2016.7843852.

[2] Tony A. Ballardie, “Core Based Tree Multicast Routing
Architecture, Internet Engineering Task Force (IETF),
RFC 2201, September 1997.

[3] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and
S. Shenker, “Making Gnutella-Like P2P Systems
Scalable,” Proc. ACM SIGCOMM, Karlsruhe, Germany,
pp. 407-418, August 25-29, 2003.

[4] Shiping Chen, Baile Shi, Shigang Chen, and Ye Xia,
“ACOM: Any-Source Capacity-Constrained Overlay
Multicast in Non-DHT P2P Networks,” IEEE Tran.
Parallel and Distributed Systems, 18(9)1188-1201, Sep.
2007.

[5] Wen-Tsuen Chen, Chi-Hong Chao and Jeng-Long Chiang,
“An Interested-based Architecture for Peer-to-Peer
Network Systems,” 20th International Conference on
Advanced Information Networking and Applications -
Volume 1 (AINA'06), Vienna, pp. 707-712, 2006, doi:
10.1109/AINA.2006.93.

[6] Jie Cheng and Ryder Donahue, “The Pirate Bay Torrent
Analysis and Visualization,” IJCSET, 3(2):38-42, Feb.
2013.

[7] P. Ganesan, Q.Sun, and H. Garcia-Molina, “Yappers: A
Peer-to-Peer Lookup Service over Arbitrary Topology,”
Proc. IEEE Infocom 2003, San Francisco, USA, pp. 1250-
1260, March 30-April 1 2003.

[8] Bidyut Gupta and Mohammad Mohsin, “Fault-Tolerance
in Pyramid Tree Network Architecture,” J. Computer
Systems Science and Engineering, 10(3):164-172,
July,1995.

[9] Bidyut Gupta, Nick Rahimi, Shahram Rahimi, and Ashraf
Alyanbaawi, “Efficient Data Lookup in Non- DHT Based
Low Diameter Structured P2P Network,” Proc. IEEE 15th
Int. Conf. Industrial Informatics (IEEE INDIN), Emden,
Germany, pp.143-148, July 2017.

[10] M. Hai and Y. Tu, “A P2P E-Commerce Model Based on
Interest Community,” 2010 International Conference on
Management of e-Commerce and e-Government,
Chengdu, pp. 362-365, 2010, doi: 10.1109/ICMeCG.
2010.80.

64 ISCA, Vol. 30, No. 1, March 2023

[11] Mujtaba Khambatti, Kyung Ryu, and Partha Dasgupta,.
“Structuring Peer-to-Peer Networks Using Interest-Based
Communities,” Lecture Notes in Computer Science, 1st
International Workshop, DBISP2P 2003, Berlin,
September 2003.

[12] S. K. A. Khan and L. N. Tokarchuk, “Interest-Based Self
Organization in Group-Structured P2P Networks,” 2009
6th IEEE Consumer Communications and Networking
Conference, Las Vegas, NV, pp. 1-5, 2009, doi:
10.1109/CCNC.2009.4784959.

[13] M. Kleis, E. K. Lua, and X. Zhou, “ Hierarchical Peer-to-
Peer Networks using Lightweight SuperPeer Topologies,”
Proc. IEEE Symp. Computers and Communications, pp.
944-950, 2005.

[14] D. Korzun and A. Gurtov, “Hierarchical Architectures in
Structured Peer-to-Peer Overlay Networks,” Peer-to-Peer
Networking and Applications, Springer, pp. 1-37, March
2013

[15] Koushik Maddali, Indranil Roy, Swathi Kaluvakuri,
Bidyut Gupta, Narayan Debnath, “Design of Broadcast
Protocols for Non DHT-Based Pyramid Tree P2P
Architecture,” IJCA, 28(4)193-203, December 2021.

[16] Z. Peng, Z. Duan, J.Jun Qi, Y. Cao, and E. Lv, “HP2P: A
Hybrid Hierarchical P2P Network,” Proc. Intl. Conf.
Digital Society, pp. 18-24, 2007.

[17] N. Rahimi, K. Sinha, B. Gupta, and S. Rahimi, “LDEPTH:
A Low Diameter Hierarchical P2P Network Architecture,”
Proc. IEEE 14th Int. Conf. on Industrial Informatics (IEEE
INDIN), Poitiers, France, pp. 832-837, July 2016.

[18] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, “A Scalable Content-Addressable Network,
CAN,” ACM, 31(4):161-172, 2001.

[19] Arnold L. Rosenberg, “The Diogenes Approach to
Testable Fault-Tolerant Arrays of Processors,” IEEE
Tran. Computers, c-32(10):902-910, Oct. 1983.

[20] A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for Large Scale
Peer-to-Peer Systems,” Proc. FIP/ACM Intl. Conf.
Distributed Systems Platforms (Middleware), pp. 329-
350, 2001.

[21] Indranil Roy, Bidyut Gupta, Banafsheh Rekabdar, and
Henry Hexmoor, “A Novel Approach Toward Designing
A Non-DHT Based Structured P2P Network
Architecture,” (Proceedings of 32nd Int. Conf. Computer
Applications in Industry and Engineering), EPiC Series in
Computing, 63(2019):121-129, 2019.

[22] Indranil Roy, Swathi Kaluvakuri, Koushik Maddali,
Abdullah Aydeger, Bidyut Gupta, and Narayan Debnath,
“Capacity Constrained Broadcast and Multicast Protocols
for Clusters in Pyramid Tree-Based Structured P2P
Network,” IJCA, 28(3):122-131, Sep. 2021.

[23] Indranil Roy, Swathi Kaluvakuri, Koushik Maddali,
Ziping Liu, and Bidyut Gupta, “Efficient Communication
Protocols for Non DHT-Based Pyramid Tree P2P
Architecture,” WSEAS Transactions on Computers,
20:108-125, July 2021 (Invited paper).

[24] Indranil Roy, Koushik Maddali, Swathi Kaluvakuri,
Banafsheh Rekabdar, Ziping Liu, Bidyut Gupta, and
Narayan Debnath, “Efficient Any Source Overlay
Multicast In CRT- -
Constrained Approach,” Proc. IEEE 17th Int. Conf.
Industrial Informatics (IEEE INDIN), Helsinki, Finland,
pp. 1351-1357, July 2019.

[25] H. Shen, G. Liu, and L. Ward, “A Proximity-Aware
Interest-Clustered P2P File Sharing System,” IEEE
Transactions on Parallel and Distributed Systems,
26(6):1509-1523, 1 June 2015, doi: 10.1109/TPDS.2014.
2327033.

[26] K. Shuang, P Zhang, and S. Su, “Comb: A Resilient and
Efficient Two-Hop Lookup Service for Distributed
Communication System,” Security and Communication
Networks, 8(10):1890-1903, 2015.

[27] Stocia, R. Morris, D. Liben-Nowell, D. R. Karger, M.
Kaashoek, F. Dabek, and H. Balakrishnan, “Chord: A
Scalable Peer-to-Peer Lookup Protocol for Internet
Applications,” IEEE/ACM Tran. Networking, 11(1):17-
32, Feb. 2003.

[28] Z. Tu, W. Jiang and J. Jia, “Hierarchical Hybrid DVE-P2P
Networking Based on Interests Clustering,” 2017
International Conference on Virtual Reality and
Visualization (ICVRV), Zhengzhou, China, pp. 378-381,
2017, doi: 10.1109/ICVRV.2017.00087.

[29] M. Xu, S. Zhou, and J. Guan, “A New and Effective
Hierarchical Overlay Structure for Peer-to-Peer
Networks,” Computer Communications, 34:862-874,
2011.

[30] M. Yang and Y. Yang, “An Eff icient Hybrid Peer-to-Peer
System for Distributed Data Sharing,” IEEE Trans.
Computers, 59(9):1158-1171, Sep. 2010.

Indranil Roy is an Assistant Professor in the
Department of Computer Science at the
Southeast Missouri State University. He
received his MS and Ph.D. degrees in
Computer Science from Southern Illinois
University, Carbondale in 2018 and 2022,
respectively. His current research interest
includes the design of architecture and
communication protocols for structured peer-

to-peer overlay networks, security in overlay networks, and
Blockchain.

Nick Rahimi (photo not available) is the Director of Cyber
Innovation Lab and an Assistant Professor at the School of
Computing Sciences & Computer Engineering of the University
of Southern Mississippi (USM). Dr. Rahimi obtained two

ISCA, Vol. 30, No. 1, March 2023 65

Bachelor of Science degrees in Computer Software Engineering
and Information Systems Technologies with a concentration in
Cybersecurity and received his Master and Ph.D. degrees in
Computer Science from Southern Illinois University (SIU). His
research interest lies in the area of cybersecurity, blockchain,
cryptography, internet anti-censorship, machine learning in
cybersecurity, distributed systems, and decentralized networks.
Prior to joining USM, Dr. Rahimi was a tenure track Assistant
Professor at SIU for 2 years and Southeast Missouri State
University (SEMO) for one year respectively. Moreover, he has
over eight years of experience in industry as a software engineer
and team leader.

Ziping Liu received her PhD in
Engineering Science from Southern
Illinois University at Carbondale in 1999
and began her computing career at
Motorola, where she developed software
for mobile phones. Currently, she is a
Professor of Computer Science at
Southeast Missouri State University,
where she has been teaching since 2001.
Her research interests encompass a wide
range of topics, including machine
learning, cloud computing, secured

software design, wireless ad hoc networks and sensor networks,
distributed computing and game development.

Bidyut Gupta (photo not available) is currently a Professor of
Computer Science at the School of Computing, Southern Illinois
University at Carbondale. His research interests include fault
tolerant distributed computing, design of P2P network
architectures with low latency communication protocols, fog
computing and its applications, and high latency networks. He
is a Senior member of IEEE and ISCA.

Narayan C. Debnath (photo not available) is currently the
Founding Dean of the School of Computing and Information
Technology at Eastern International University, Vietnam. He is
also serving as the Head of the Department of Software
Engineering at Eastern International University, Vietnam.
Formerly, Dr. Debnath served as a Full Professor of Computer
Science at Winona State University, Minnesota, USA for 28
years, and the elected Chairperson of the Computer Science
Department at Winona State University for 7 years. Dr.
Debnath has been the Director of the International Society for
Computers and their Applications (ISCA), USA since 2014.

Professor Debnath made significant contributions in teaching,
research, and services across the academic and professional
communities. He has made original research contributions in
software engineering, artificial intelligence and applications,
and information science, technology and engineering. He is an
author or co-author of over 500 research paper publications in
numerous refereed journals and conference proceedings in
Computer Science, Information Science, Information
Technology, System Sciences, Mathematics, and Electrical
Engineering. He is also an author of over 15 books published
by well-known international publishers including Elsevier,
CRC, Wiley, Bentham Science, River Publishing, and Springer.

Dr. Debnath has made numerous teaching, research and
invited keynote presentations at various international
conferences, industries, and teaching and research institutions in
Africa, Asia, Australia, Europe, North America, and South
America. He has been a visiting professor at universities in
Argentina, China, India, Sudan, and Taiwan. He has been
maintaining an active research and professional collaborations
with many universities, faculty, scholars, professionals and
practitioners across the globe. Dr. Debnath is an active member
of the IEEE, IEEE Computer Society, and a Senior Member of
the International Society for Computers and their Applications
(ISCA), USA.

