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Abstract 
 

In this paper, we have considered a recently reported 2-layer 
non-DHT-based structured P2P network.  It is an interest-based 
system and consists of different clusters such that peers in a 
given cluster possess instances of a particular resource type.  It 
offers efficient data look-up protocols with low latency.  
However, the architecture lacks in one very important aspect: it 
is assumed that no peer in any cluster can have more than one 
resource type and this could be a very hard restriction 
practically.  Therefore, in the present work, we have addressed 
this issue of generalizing the architecture to overcome this 
restriction and have come up with effective solutions.  We have 
modified appropriately our previously reported data look-up 
protocols wherever applicable in order to accommodate the idea 
of generalization while making sure that look-up latencies of 
these modified protocols remain the same.  

Key Words:  Structured P2P network; residue class, interest-
based; non-DHT; complete and incomplete pyramid trees; 
virtual neighbors. 

 
1 Introduction 

 
Peer-to-Peer (P2P) overlay networks are widely used in 

distributed systems due to their ability to provide computational 
and data resource sharing capability in a scalable, self-
organizing, distributed manner.  There are two classes of P2P 
networks: unstructured and structured ones.  In unstructured 
systems [3] peers are organized into arbitrary topology.  It takes 
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help of flooding for data look up. Problem arising due to 
frequent peer joining and leaving the system, also known as 
churn, is handled effectively in unstructured systems.  However, 
it compromises with the efficiency of data query and lookups 
are not guaranteed.  On the other hand, structured overlay 
networks provide deterministic bounds on data discovery.  They 
provide scalable network overlays based on a distributed data 
structure which actually supports the deterministic behavior for 
data lookup.  Recent trend in designing structured overlay 
architectures is the use of distributed hash tables (DHTs) [18, 
20, 27].  Such overlay architectures can offer efficient, flexible, 
and robust service [14, 18, 20, 27, 29].  However, maintaining 
DHTs is a complex task and needs substantial amount of effort 
to handle the problem of churn.  So, the major challenge facing 
such architectures is how to reduce this amount of effort while 
still providing an efficient data query service.  In this direction, 
there exist several important works, which have considered 
designing DHT-based hybrid systems [7, 13, 16, 26, 30]; these 
works attempt to include the advantages of both structured and 
unstructured architectures.  However, these works have their 
own pros and cons.  Another design approach has attracted 
much attention; it is non-DHT based structured approach [4, 9, 
17, 21, 24].  It offers advantages of DHT-based systems, while 
it attempts to reduce the complexity involved in churn handling.  
Authors in [21] have considered one such approach and have 
used an already existing architecture, known as Pyramid tree 
architecture originally applied to the research area of ‘VLSI 
design for testability’ [8, 19].  Our structured architecture is an 
interest-based peer-to-peer system [1, 5, 10, 11-12, 17, 21, 24-
25, 28].  In such a system, peers with a common interest are 
clustered together.  Its main focus is to improve the efficiency 
of data lookup protocols in that a query for an instance of a 
particular resource type is always directed to the cluster of peers 
which possess different instances of this resource type.  So, 
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success or failure to get an answer for the query involves a 
search in that cluster only, instead of searching the whole 
overlay network as in the case of unstructured networks.  

The overlay network considered in this paper is a 2-layer non 
DHT based architecture [21].  At layer-1, there exists a tree like 
structure, known as pyramid tree.  It is not a conventional tree.  
A node  i  in this tree represents the cluster-head of a cluster of 
peers which possess instances of a particular resource type Ri

(i.e., peers with a common interest).  The cluster-head is the first 
among these peers to join the system.  Layer 2 consists of the 
different clusters corresponding to the cluster-heads.  Details of 
the architecture appears in the next section.  

 
Related works and our Contribution: Before we state our 

present contributions, we briefly state now some of our recent 
related contributions.  The pyramid tree architecture was 
initially used in the area of Testable Fault Tolerant Arrays of 
Processors [8, 19].  Later we realized its potential as a probable 
network architecture for P2P communication systems especially 
for interest-based systems.  In [21] authors studied extensively 
what the architecture could offer from the viewpoints of data 
look-up efficiency and they identified several interesting 
architectural properties (stated in the Preliminaries) that finally 
led to the design of various simple yet very efficient data look-
up protocols [15, 22-23].  It is a non-DHT-based two-level 
structured architecture and experimental results [23] have 
shown the superiority of the proposed various data look-up 
protocols when compared with the protocols used in some noted 
DHT-based structured networks from the viewpoints of search 
latency and complexity involved.  It offers as well several 
advantages when compared with some noted works on interest-
based architectures [1, 5, 10, 11-12, 25, 28].  Authors have 
extensively studied the effect of churn on the architecture [23]; 
besides another important contribution was the design of intra-
capacity constrained broadcast and multicast protocols which 
take into consideration the real situation where peers most likely 
will be heterogeneous [22].  

However, we believe that all these above-mentioned recent 
contributions on interest-based architectures still lack in one 
very important aspect:  in these architectures, the underlying 
assumption is that no peer can have more than one resource type 
and this could be a very hard restriction practically.  Therefore, 
in the present work, we have addressed this issue of generalizing 
pyramid tree based P2P architecture and have come up with 
effective solutions that allow a peer to possess multiple different 
resource types.  

The organization of the paper is as follows.  In Section 2, we 
talk briefly about some related preliminaries.  Our contributions 
in the present paper appear in Sections 3 and 4.  In Section 3, 
generalization of the architecture has been considered.  In 
Section 4, effect of the generalization on the existing 
communication protocols [15, 22-23] has been considered. 
Section 5 draws the conclusion. 

 
2 Preliminaries 

 
In this section, we present some relevant results from our 

recent works on the Pyramid tree based P2P architecture [15, 
21-23]. for interest-based peer-to-peer system.  Residue Class 
based on modular arithmetic has been used to realize the overlay 
topology. 

 
Definition 1.  i

Ri denotes the type of a resource and V is the value of the 
resource.  

 
Note that a resource can have many values.  For example, let 

Ri denote the resource type ‘songs’ and V' denote a particular 
singer.  i

particular singer V'.  
 
Definition 2.  Let S be the set of all peers in a peer-to-peer 

system with n distinct resource types (i.e., n distinct common 
interests).  Then S = {Ci -1, where Ci denotes the 
subset consisting of all peers with the same resource type Ri. In 
this work, we call this subset Ci as cluster i.  Also, for each 
cluster Ci, we assume that Ci

h is the first peer among the peers 
in Ci to join the system.  We call Ci

h as the cluster-head of cluster 

Ci.   

2.1 Pyramid Tree  

The following overlay architecture has been proposed in [21]. 

 The tree consists of n nodes.  The ith node is the ith cluster 
head Ci

h.  The tree forms the layer-1 and the clusters 
corresponding to the cluster-heads form the layer-2 of the 
architecture.  

 Root of the tree is at level 1.  
 Edges of the tree denote the logical link connections 

among the n cluster-heads.  Note that edges are formed 
according to the pyramid tree structure [8]. 

 A cluster-head Ci
h represents the cluster Ci.  Each cluster 

Ci is a completely connected network of peers possessing 
a common resource type Ri, resulting in the cluster 
diameter of 1. 

 The tree is a complete one if at each level j, there are j 
number of nodes (i.e., j number of cluster-heads).  It is an 
incomplete one if only at its leaf level, say k, there are less 
than k number of nodes. 

 Any communication between a peer pi Ci and a peer pj

Cj takes place only via the respective cluster-heads Ci
h and 

Cj
h and with the help of tree traversal wherever applicable. 

 Joining of a new cluster always takes place at the leaf 
level. 

 A node that does not reside either on the left branch or on 
the right branch of the root node is an internal node. 

 Degree of an internal non-leaf node is 4. 
 Degree of an internal leaf node is 2. 

2.2 Residue Class 

Modular arithmetic has been used to define the pyramid tree 
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architecture of the P2P system.  
Consider the set Sn of nonnegative integers less than n, given 

as Sn = {0, 1, 2, .…  (n – 1)}. This is referred to as the set of 
residues, or residue classes (mod n).  That is, each integer in Sn

represents a residue class (RC).  These residue classes can be 
labelled as [0], [1], [2], …, [n – 1], where [r] = {a: a is an integer, 

 
For example, for n = 3, the classes are: 
 

 

 

 

In the P2P architecture, we use the numbers belonging to 
different classes as the logical (overlay) addresses of the peers 
with a common interest (i.e., peers in the same cluster) and the 
number of residue classes is the number of distinct resource 
types; for the sake of simplicity, we shall use only the positive 
integer values.  

Before we present the mechanism of logical address 
assignments, we state the following relevant property of residue 
class. 

 
Lemma 1.  Any two numbers of any class r of Sn are mutually 

congruent [15, 21]. 
 

2.3 Assignments of Overlay (Logical) Addresses  
 
Assume that in an interest-based P2P system there are n 

distinct resource types.  Note that n can be set to an extremely 
large value a priori to accommodate large number of distinct 
resource types.  Consider the set of all peers in the system given 
as S = {Ci -1.  Also, as mentioned earlier, for each 
subset Ci (i.e., cluster Ci) peer Ci

h is the first peer with resource 
type Ri to join the system and hence, it is the cluster-head of 
cluster Ci.  

The assignment of overlay addresses to the peers in the 
clusters and the resources happens as follows: 

 
1) The first cluster-head to join the system is assigned with 

the logical (overlay) address 0 and is denoted as C0
h.  It 

is also the root of the tree formed by newly arriving 
cluster-heads (see the example in Figure 1). 

2) The (i+1)th newly arriving cluster-head possessing the 
resource type Ri is denoted as Ci

h and is assigned with the 
minimum nonnegative number (i) of residue class i (mod 
n) of the residue system Sn as its overlay address. 

3) In this architecture, cluster-head Ci
h is assumed to join 

the system before the cluster-head Ci+1
h. 

4) All peers having the same resource type Ri (i.e., 'common 
interest' defined by Ri) will form the cluster Ci.  Each new 
peer joining cluster Ci is given the cluster membership 
address (i + j.n), for i = 0, 1, 2, … 

5) Resource type Ri possessed by peers in Ci is assigned the 
code i which is also the logical address of the cluster-head 
Ci

h of cluster Ci. 

Definition 3.  Two peers of a cluster Cr are logically linked 
together if their assigned logical addresses are mutually 
congruent.  

Lemma 2.  Each cluster Cr forms a complete graph [15]. 
Observation 1.  Any intra-cluster data look up 

communication needs only one overlay hop. 
Observation 2.  Search latency for inter-cluster data lookup 

algorithm is bounded by the diameter of the tree. 
 
Scalability:  It may be noted that number of distinct resource 

types is very small compared to the number of peers in any 
overlay network [15].  To avoid the possibility of redesigning 
the architecture as new clusters are formed, a very large value 
of n can be selected at the design phase to accommodate a very 
large number of possible resource types (if needed in the future).  
It means that if at the beginning number of resource types 
present is small, only the first few of the residue classes will be 
used initially for addressing; and as new clusters are formed in 
future with new resource types in the system, more residue 
classes in sequence will be available for their addressing.  For 
example, say initially n is set at 1000; so, there are 1000 possible 
residue classes, starting from [0], [1], [2], [4],[ 5], …., [999].  If 
initially there are only three clusters of peers present with three 
distinct resource types, the residue classes [0], [1], [2] will be 
used for addressing the peers in the three respective clusters.  If 
later two new clusters are formed with two new resource types, 
the residue classes [3] and [4] will be used for addressing the 
peers in the two new clusters in sequence of their joining the 
system.  Moreover, as we see, there is no limit on the size of any 
cluster because any residue class can be used to address 
logically up to an infinite number of peers with a common 
interest.  Therefore, the proposed architecture does not have any 
negative issue with scalability.  

2.4 Virtual Neighbors [23] 
 
An example of a complete pyramid tree of 5 levels is shown 

in Figure 1.  It means that it has 15 nodes/clusters (clusters 0 to 
14, corresponding to 15 distinct resource types owned by the 15 
distinct clusters).  It also means that residue class with mod 15 
has been used to build the tree. The nodes’ respective logical 
addresses are from 0 to 14 based on their sequence of joining 
the P2P system. 

Each link that connects directly two nodes on a branch of the 
tree is termed as a segment.  In Figure 1, a bracketed integer on 
a segment denotes the difference of the logical addresses of the 
two nodes on the segment.  It is termed as increment and is 
denoted as Inc.  This increment can be used to get the logical 
address of a node from its immediate predecessor node along a 
branch.  For example, let X and Y be two such nodes connected 
via a segment with increment Inc, such that node X is the 
immediate predecessor of node Y along a branch of a tree which 
is created using residue class with mod n.  Then, logical address 
of Y = (logical address of X + Inc) mod n.  

Thus, in the example of Figure 1, Logical address of the 
leftmost leaf node = (logical address of its immediate 
predecessor along the left branch of the root + Inc) mod 15 = (6 
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+ 4) mod 15 = 10.

Figure 1: A complete pyramid tree with root 0

Also, note that a left branch originating at node 2 on the right 
branch of the root node is . Similarly, we can 
identify all other left branches originating at the respective 
nodes on the right branch of the root node. In a similar way, we 
can identify as well all right branches originating at the 
respective nodes on the left branch of the root node as well.

Remark 1. The sequence of increments on the segments 
along the left branch of the root, appears to form an AP series 
with 1st term as 1 and common difference as 1.

Remark 2. The sequence of increments on the segments 
along the right branch of the root, appears to form an AP series 
with 1st term as 2 and common difference as 1.

Remark 3. Along the 1st left branch originating at node 2, the 
sequence of increments appears to form an AP series with 1st

term as 2 and common difference as 1. Note that the 1st term is 

Remark 4.  Along the 2nd left branch originating at node 5, 
the sequence of increments is an AP series with 1st term as 3 and 
common difference as 1. Note that the 1st term is the increment 

Authors [21] have presented some important structural 
properties of the pyramid tree P2P system. According to the 
authors, no existing structured P2P system, either DHT or non-
DHT based, possesses these properties. These are stated below.

Let SY be the set of logical links that connect a node Y to its 
neighbors in a complete pyramid tree TR with root R. Assume 
that the tree has n nodes (i.e., n cluster heads / n clusters). Let 
another tree T'R be created with the same n nodes but with a 
different root R'. Let S'Y be the set of logical links connecting 
Y to its neighbors in the tree T'R.

Property 1.    SY Y

Property 2.  Diameter of TR = Diameter of T'R
Property 3. Number of levels of TR = Number of levels of 

T'R
Property 4.  Complexity of broadcasting in TR with root R as 

the source of broadcast is the same for T'R with root R' 
Property 5. Both TR and T'

R are complete pyramid trees.

An example:  Consider the complete pyramid tree of 5 levels 
as shown in Figure 2.  Note that the root of this tree is node 13, 
whereas root of the tree of Figure 1 is 0. 

Figure 2: A complete pyramid tree with root 13

It is seen that S'4 = {1,8,9} and S4 = {1,2,7,8}. Therefore, 
Property 1 holds.

Diameters of both trees are the same; it is 8 in terms of number 
of overlay hops. Besides, both trees use the same 15 nodes and 
have the same total number of levels. Complexity of 
broadcasting from either root 0 in the tree of Figure 1 or from 
root 13 in the tree of Figure 2 is bounded by the number of levels 
of each of the trees (here it is 4 in each). Finally, both trees are 
complete pyramid trees. Thus, all properties as mentioned 
above hold.

Remark 5.  Set of the neighbors of a given node Z may vary 
as the root of the tree varies. Hence, it is termed ‘virtual’. 
However, time complexity of broadcasting remains same, i.e., it 
is O(d) where d denotes the number of levels of the tree. 

3 Generalization of the Architecture

As mentioned earlier, in the architecture, it is assumed that no 
peer can have more than one resource type and this could be a 
very hard restriction practically. To overcome this restriction, 
we have come up with the concept of Generalization i.e., the
architecture is generalized in such a way that a peer can have 
multiple resource types. Generalization of the Architecture 
needs to deal with two possible scenarios. Below we consider 
the two possible scenarios and state how to incorporate some 
necessary changes in the architecture in order to handle the two 
scenarios. Throughout our presentations, we shall 
interchangeably use the words ‘node’ and ‘cluster-head’. So, a 
node on the tree is actually a cluster-head. These are all peers 
though. However, we strictly use the word ‘peer’ to represent 
members of a cluster only to avoid any possible confusion. In 
addition, we assume that ‘resource with type k’ and ‘resource 
with code k’ mean the same resource.

3.1 Peer with Multiple Existing Resource Types

Scenario 1: Let us consider a situation that in some cluster
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Ci, its cluster-head Ci
h or a peer p in Ci wants data insertion of 

another existing resource type, say Rk in the network.  Here data-
insertion by a peer means the peer in question declares the 
possession of instances of another resource type that already 
exists in the system. 

As mentioned earlier, peers in cluster Ck possess instances of 
the resource type Rk. Also, peer p in Ci already possesses some 
instances of the resource type Ri.  

Solution:  The solution for this scenario is as follows.  The 
cluster-head Ci

h or peer p will now become a member of cluster 
Ck as well.  So, it is understood that the IP address of Ci

h /p will 
be known to members of both the clusters Ci and Ck.  It means 
that, in the overlay network, Ci

h /p will appear logically in both 
the clusters Ci and Ck, and will have direct logical connections 
to all member peers of clusters Ci and Ck. Therefore, it should 
be clear that our already reported intra- and inter-cluster data-
lookup protocols [28] do not need any modification in this 
scenario.  The same is true for broadcasting involving the 
cluster-heads in the tree.  In addition, we have observed that the 
capacity-constrained broadcast and multicast protocols inside a 
cluster [20] in the tree need not be modified as well. 

However, we observe that the existing inter-cluster data look-
up protocol as well as the broadcast protocol involving all 
cluster-heads in the tree [15] will need some appropriate 
modifications to handle the second scenario.  We shall present 
these in detail in the following sections.  Before that we present 
the following solution to tackle the second scenario. 

 
3.2 Existing Peers Declaring New Resource Types 

 
Scenario 2:  Consider a P2P interest-based pyramid tree 

system which has currently r distinct resource types, viz., R0, R1, 
R2, … Rr-1.  Assume that the respective resource codes are 0, 1, 
2, …, (r-1). Without any loss of generality, let us assume a 
scenario where cluster-head Ci

h / a peer p in a cluster Ci wants a 
data insertion of a new resource type Rr   currently not present in 
the network.  

Solution: Solution lies in an appropriate modification of the 
table of information (TOI) maintained by each cluster-head.  We 
know that in TOI, corresponding to each cluster-head there is an 
entry (tuple).  For example, the tuple for some cluster-head Ci

h 

appears as <resource code (logical address) owned by peers in 
Ci

h, IP address of the cluster-head Ci
h >; note that in the 

architecture resource code and the logical address of a cluster-
head are the same.  That is, one denotes the other.  It facilitates 
packet propagation in the tree.  In short, we write the tuple as < 
Res. Code, IP (Ci

h .  As new clusters are formed owing to peers 
joining with new resource types, the TOI grows dynamically and 
the newest joining cluster-head is assigned with the next largest 
logical address not yet used and hence its resource code also 
becomes the largest among all such existing codes.  Therefore, 
this table remains sorted with respect to logical addresses of 
cluster-heads (i.e., with respect to the resource codes of the 
resources they possess). 

Coming back to the second scenario, a new entry is made in 
the TOI corresponding to the new resource type Rr with resource  
 

code r.  So currently this code r is the largest one present in the 
table.  Based on if it is the cluster-head Ci

h / or a peer in cluster 
Ci that wants a data insertion of a new resource type Rr, in the 
newly entered tuple, the corresponding cluster-head will be 
either Ci

h or the peer p.  That is, if it is Ci
h, it will now represent 

two different clusters corresponding to two different resource 
types i and r. So, it will have two different logical addresses i 
and r as well.  Therefore, later any peer wishing to join with 
resource type r will join the cluster with logical address r.  
Effectively, Ci

h now will maintain two different clusters Ci and 
Cr, i.e., one with peers for resource code i and the other with 
peers with resource code r.  It is clear that cluster-head in the 
second case with resource type r is now Cr

h which is actually 
Ci

h.  In case it is the peer p in cluster Ci, peer p will maintain a 
cluster of peers with resource type r; thus, p will appear as a peer 
in Cluster Ci and will also appear as a cluster-head Cr

h with 
logical address r.  Therefore, we have modified the TOI to 
include the relevant information of the new entry.  Below we 
give an example to clear the idea further. 

 
Observation 3.  Generalization of the architecture may 

require some nodes of the tree represent multiple cluster-
heads with the same IP address, but with different distinct 
resource types. 

Example 1:  Without any loss of generality let us consider 
a 3-level complete pyramid tree.  Thus, the tree has six distinct 
resource types with respective resource codes as 0, 1, 2, 3, 4, 
5.  According to the structure of the tree node 0 is at level 1, 
nodes 1 and 2 at level 2, and nodes 3,4, and 5 are at level 3.  
Next, assume that cluster-head C1

h declares that it has just 
possessed some instances of another new resource type with 
6 as its code.  Now, the tree becomes a 4-level incomplete tree 
with seven nodes (i.e., seven cluster-heads) with node 6 at 
level 4.  Therefore, as explained above, TOI needs to be 
modified.  Before and after the above declaration TOI appears 
as shown below in Figures 3a and 3b.  We denote IP address 
of a node X as IP(X).  ‘Res. Code’ is actually ‘Resource 
Code’. 

 
Note that in Figure 3b cluster-head C1

h has appeared twice: 
once it represents a cluster-head with logical address 1 and next 
with logical address 6, appearing as C6

h.  That is, C1
h now 

represents virtually two different clusters of peers C1 and C6, 
one with instances of resource type with code 1 and the other 
one with code 6.  In effect, the 2nd appearance of C1

h as C6
h 

makes the tree incomplete with 7 nodes. 
Note that if instead of the cluster-head C1

h some peer, say p* 
in cluster Ci declares that it has just possessed another new 
resource type with 6 as its code, the entry for resource code 6 
will become <6, IP(p*)> in Figure 3b.  Hence, the new cluster-
head p*(i.e., C6

h) forms a cluster with peers willing to join with 
instances of resource type 6. 

It may be noted that any inter-cluster query for some instance 
of the resource type 6 will be directed at either C1

h or p* 
depending on the tuple corresponding to resource code 6 (Figure 
3b). 
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Res. Code IP address Res. Code IP address

0 IP(C0
h) 0 IP(C0

h)

1 IP(C1
h) 1 IP(C1

h) 

2 IP(C2
h) 2 IP(C2

h)

3 IP(C3
h) 3 IP(C3

h) 

4 IP(C4
h) 4 IP(C4

h)

5 IP(C5
h) 5 IP(C5

h) 

6 IP(C6
h)

Figure 3a: TOI before declaration Figure 3b: TOI after declaration: IP(C1
h) = IP(C6

h)

4 Modification of Existing Inter-Cluster Data Look-Up and 
Broadcast Protocols 

 
As pointed out earlier the existing inter-cluster data look-up 

and broadcast protocols (involving all cluster-heads in the tree) 
will need some appropriate modifications to handle only the 
second scenario.  In this section we deal with this.  We again 
emphasize that none of the two scenarios have any effect on the 
existing capacity-constrained broadcast and multicast protocols 
inside a cluster [22] i.e., as long as the communication is inside 
a cluster only, no related existing protocols need be modified. 

 
4.1 Modified Inter-Cluster Data Look-Up Protocol 

 
In the generalized protocol stated below, codes from line 2 to 

line 3 are added to handle the second scenario.  This section of 
the total code deals with the situation when a peer represents 
multiple cluster-heads with each cluster having distinct resource 
types.  In the architecture, any communication between a peer 
pi  Ci and a peer pm  Cm takes place only via the respective 
cluster-heads Ci

h and Cm
h.  Without any loss of generality let a 

peer pi* (  Ci m  Note that peer pi* knows 
that Rm  Ci, because resource code used in cluster Ci is i. The 
protocol appears in Figure 4 below. 

 
Protocol Generalized Inter-Data-Lookup  

1. pi j -
head Ci

h

2.  if    IP(Ci
h) = IP(Cm

h)                / Ci
h checks in its TOI; same 

peer acts as cluster-heads for clusters Ci and Cm

              if    Cm
h m  

                    Cm
h m i*  

              else  
                    Cm

h m m                     
/ one hop communication  

                     if  pm (  Cm m  
                          pm m i*  
                     else  
3.               Cm

h unicasts ‘search fails’ to pi* 
4. else 

   Ci
h determines the cluster-head Cm

h 's IP address 

from its TOI using Cm
h 's resource code  

                                                                                 / logical 
address of Cm

h
m = m 

               Ci
h unicasts the request to Cm

h  
               if   Cm

h
m  

                    Cm
h m i*  

              else  
                    Cm

h m m

/ one hop communication    
                    if     pm (  Cm m  
                           pm m i*  
                   else  
                      Cm

h unicasts ‘search fails’ to pi* 
 

Figure 4: Modified generalized inter-cluster data-lookup 
protocol 

 
As in Observation 2 earlier, search latency for modified inter-

cluster data look-up approach remains bounded by the diameter 
of the tree and is independent of the total number of peers 
present in the system. 

 
4.2  Modified Broadcast Protocol 

 
In the context of broadcasting, it may be noted that, in general, 

inter-cluster broadcast involves always intra-cluster broadcast 
as well, with the exception when a cluster-head wants to update 
some control information (ex. broadcasting of updated TOI by 
the root of tree) maintained only by different cluster-heads in 
the system.  Therefore, we focus specifically on broadcasting by 
a cluster-head Ci

h of a cluster Ci on the tree to all other cluster-
heads.  

An interesting observation is that if the root is node 0 (logical 
address), even an incomplete tree always remains a connected 
one; on the other hand, for any other cluster-head as root, an 
incomplete tree may not remain connected.  To explain the idea 
briefly and clearly, consider the complete tree of Figure 1.  Its 
root is node 0.  If  root changes to some other node, say node 13, 
the tree still remains a complete one as is shown in Figure 2.  This 
property of the architecture arising from 'virtual neighbors' has 
been discussed in detail earlier.  Now assume that the tree in 
Figure 1 does not have node 14, i.e., cluster 14 is yet to be 
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formed.  So the tree is incomplete, yet it is connected.  In this 
situation, if node 0 broadcasts some packets, all other nodes will 
receive copies.  Now assume that node 13 is the broadcaster and 
node 13 is assumed to be the root.  It is seen that its immediate 
neighbor on its left branch should be node 14 (Remark 1); 
however node 14 does not exist in the tree as assumed above.  
So propagation of any broadcast packet along the left branch 
cannot take place based on the Broadcast-Complete protocol 
[15].  Therefore, broadcast fails.  However, if node 13 unicasts 
its packets first to node 0 (root) which will then act as the pseudo 
broadcaster on behalf of node 13, all nodes get copies because 
the tree remains connected with node 0 as its root.  This is 
actually the idea used in the Broadcast-Incomplete protocol 
[15].  This has led us to consider modifying only the existing 
Broadcast-Incomplete protocol to appropriately handle the 
second scenario.  

 
An informal sketch of the modified incomplete broadcast 

protocol 

Step 1: A broadcast source node X will unicast its packets to 
the root node 0. 

Step 2: Root 0 sends packets to its neighbors on left and right 
branches. 

Step 3: Each receiving node on the left branch sends packets 
to its neighbor on this branch till a receiving node is a leaf node. 

Step 4a: The ith receiving node on the right branch sends 
packets to its neighbor on the ith left branch originating at the ith

node until the ith receiving node is a leaf node. 
Step 4b: The ith receiving node sends packets to its neighbor, 

the (i+1)th node on the right branch until the ith receiving node is 
a leaf node. 

Step 4c: Propagation along the ith left branch continues as in 
Step 3. 

 
In the above informal sketch, a broadcast source node X will 

unicast its packets to the root node 0, which in turn, will execute 
a modified version of the broadcast-incomplete protocol.  That 
is, node 0 will act as the pseudo broadcast source (like in CBT 
multicast [2] the core is the pseudo multicast source).  Hence, 
the tree will remain connected with node 0 as its root even if the 
original tree is an incomplete one.  This justifies our 
consideration to modify only the existing broadcast-incomplete 
protocol. 

Since node X is a part of the tree, eventually it will participate 
in the broadcast by node 0 and will receive a copy of the packet 
which it already unicasted to node 0.  Note that node X may 
need to forward the received packet further depending on its 
location on the tree.  Therefore, this approach will generate only 
one duplicate packet per broadcast packet irrespective of the 
size of the tree.  The formal presentation of the protocol appears 
in Figure 4. 

It may be noted that instead of using the left branches 
originating at nodes on the right branch (as in step 4 above), the 
protocol can use the right branch of the root and all right 
branches emanating from the nodes on the left branch of the 
root.  In this way, it will also generate only one duplicate packet 

per packet broadcast as well.  We use the following data 
structures and notations.         

The structure of broadcast packet, BP appears as: < # hops 
(Nh), increment (Inc), flag (L/R), Information (Info) > 

Interpretation of the different entries in the broadcast packet 
P is stated below. 

 
# hops (Nh): is initialized by the broadcast source X with 

(d-1); each receiving node on the tree along a 
propagation path will decrement Nh by 1, 
before forwarding the received packet to the 
next node along the path.  

Increment (Inc): is used to determine the logical address of the 
next node for packet forwarding. 

Flag (L/R): it is either L or R. Flag L denotes that a 
received packet needs to be propagated along 
a left branch until the leaf level is reached.  
Similarly, flag R denotes packet propagation 
along a right branch.  For ease of 
understanding the protocols we name the 
broadcast packet BP as BPL if flag is L; 
otherwise we name it BPR. 

Info: denotes the actual information to broadcast.  
Address (X): logical address of node X 
IP address of X: IP(X) 
 
In this context, it may be mentioned that if cluster-head C0

h (i.e. 
node 0) along with its all member peers in C0 have left the 
network, the cluster-head with current logical address as 1 
assumes the role of the root of the tree and its logical address 
becomes 0 and at the same time any other cluster-head with 
logical address H will have its newly assigned logical address 
as (H-1); the table of information (TOI) will be updated 
accordingly, which will reflect a new, possibly incomplete, yet 
connected, tree with its root as node 0 (formerly node 1).  
However, it is all about ‘churn handling’ which has already been 
reported in detail in [23].  Therefore, in the following algorithm 
by ‘node 0’ it means the current root.  

We have modified the existing broadcast-incomplete protocol 
[15] to incorporate the solution for scenario 2 as discussed in the 
previous section.  The modified portion appears on lines 12 to 
14 (Figure 5) and it resolves the issue raised in scenario 2.  This 
small piece of code is crucial in the modified protocol.  Below, 
we have explained its importance considering again Example 1. 

Initially peers in cluster C1 have instances of resource type 
with code 1.  Assume that later cluster-head C1

h declares that it 
has just possessed another new resource type with 6 as its code.  
Therefore, now cluster-head C1

h represents virtually two 
clusters, one consisting of peers possessing resource type with 
code 1 and the other with code 2 (refer to Figure 3b). Now 
without any loss of generality we shall consider the following 
three possible cases. 

 
Case 1. Assume that node 2 (i.e., cluster-head C2

h) is the 
source of broadcast (appeared as X in the protocol).  It starts 
unicasting its broadcast packets to the root node 0 which then 
broadcasts the packets to all nodes (cluster-heads) following the 
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Protocol Generalized-Broadcast-Incomplete

Executed by broadcast source X 
1. Node X unicasts packets to node 0 for broadcasting

Executed by root node 0 // node 0 acts as the pseudo broadcast source  

2. Nh = Nh-1 / node 0 builds a broadcast packet BPL 

/ n = number of residue classes = number of 

distinct resource types                           / 

propagation along the left branch of node 0 

takes place 

3. Inc = 1

4. flag = L

5. BPL packet = < Nh, Inc, L, Info >

6. Node 0 forwards the BPL packet to the node with address, [(address 

(X) + Inc) mod n] 

7. Nh = Nh-1 / node 0 builds a broadcast packet BPR 

/ propagation along the right branch of node 

0 takes place 

8. Inc = 2

9. flag = R

10. BPR packet = < Nh, Inc, R, Info > 

11. Node 0 forwards the BPR packet to the node with address, 

[(address (X) + Inc) mod n] 

Executed by a receiving node Ci
h    

12.  if   Ci
h

if   IP(Ci
h  

Ci
h keeps a copy                                                                                   

 

13. else Ci
h does not keep a copy                                                                                                           / Ci

h has multiple distinct resource types; 

already has copy of  every packet since it is the 

source X   

14. else     does not keep a copy                                                                  

15. if Nh = 1         / it is a leaf level node 

 

16. stops forwarding 

17. else

18. if flag = L in the received packet 

19. if [(address (Ci
h) + (Inc + 1)) mod max  / Nmax is the largest current logical address in 

the tree 

20. Nh = Nh-1 / build a new BPL packet           

/ n = number of residue classes = number of 

distinct resource types 

/ propagation along the left branch of Ci
h

continues 

21. Inc = Inc+1 

22. new BPL packet = < Nh, Inc, L, Info >  

23. Ci
h forwards the BPL packet to the node 

with address, [(address (Ci
h) + Inc) mod n]  

24. else  

25. stops forwarding       / no such address exists; tree is incomplete
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26. else               i
h are  on the right branch of 

the broadcast source 

27. if [(address (Ci
h) + (Inc)) mod max    

28. Inc = Inc in the received BPR packet / build a new BPL packet

29. Nh = Nh-1

30. flag = L

31. new BPL packet = < Nh, Inc, L, Info > 

32. Ci
h forwards the new BPL packet to the 

node with address, [(address (Ci
h) + Inc) mod n]  

/ propagation along the left branch of Ci
h

continues 

33. else 

34. stops forwarding    / no such address exists; tree is incomplete

35. if [(address (Ci
h) + (Inc + 1)) mod max    

36. Nh = Nh-1 / build a new BP  packet                           

/ propagation along the right branch of Ci
h

continues 

37. Inc = Inc+1 

38. flag = R 

39. new BPR packet = < Nh, Inc, R, Info 

>   

 

40. 

 

 

                     Ci
h forwards to the node with 

address,  

[(address (Ci
h) + Inc) mod n]   

41. else / no such address exists; tree is incomplete

 

42. 

 

 stops forwarding    

 
Figure 5:  Protocol Generalized- Broadcast-Incomplete 

 
protocol.  However, it is observed that every node receives 
exactly one copy of each packet except node 2, because node 2 
will also receive copies of its already unicasted packets from the 
root node 0 because of broadcasting.  So, it discards the received 
copies. This has appeared in the protocol as stated in italics 
below. 
 

 
Case 2.  Assume that node 1 is the source, i.e., C1

h = X.  
Cluster-head C1

h has appeared twice on the tree once with 

logical address 1 and another with logical address 6.  So, C1
h 

itself being the source of broadcast (as node 1), will discard the 
packets when it receives as node 6 from root node 0 because of 
broadcasting.  This has appeared in the protocol as stated in 
italics below. 

 

 
Case 3.  If logical addresses of the broadcast node X and a 

receiving node are different, still there is a chance that both 
nodes are actually the same one (Case 2 above).  However, if 

12. if Ci
h 

      if   IP(Ci
h  

            Ci
h keeps a copy            

13.       else  Ci
h does not keep a copy                 

14. else does not keep a copy          

12. if   Ci
h  

      if   IP(Ci
h  

            Ci
h keeps a copy           

13.       else Ci
h does not keep a copy            

14. else does not keep a copy    
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not, their IP addresses will differ and the receiving node will 
keep copies of the received packets.  This has appeared in the 
protocol as stated in italics below. 

 
12.        if Ci

h  

if IP(Ci
h

                       Ci
h keeps a copy                     

else Ci
h does not keep a copy  

             else does not keep a copy 

Theorem 1.  The protocol generates exactly one extra copy 
per packet broadcast. 

Proof.  Propagation of the broadcast information (Info) takes 
place along the left and right branches of the root node; also, it 
takes place along all left branches originating at all nodes on the 
right branch.  Propagation stops when a receiving node is a leaf 
node.  Therefore, all nodes receive the broadcast information.  

Besides, each broadcast packet is received only once by each 
node on the tree except the source node X.  Since node X is a 
part of the tree, eventually it will participate in the broadcast by 
node 0 and will receive a copy of the packet which it already 
unicasted to node 0.  Therefore, there is only one extra packet 
generated per packet broadcast.  

 
Complexity:  The hop complexity is O(d) and as in Broadcast-

incomplete protocol [15] complexity is dependent only on the 
number of the distinct resource types n present in the system, 
which in turn determines the value of the number of levels d of 
the tree. 

Bandwidth Utilization:  It offers very high bandwidth 
utilization because it generates only one duplicate packet per 
broadcast packet and the number of such duplicate packets is 
independent on the total number of peers present in the network. 

Remark 6.  The proposed method to generalize the 
architecture is remarkably simple and efficient, and it does not 
affect the existing intra-cluster data look-up protocol; it affects 
the existing inter-cluster data look-up and the broadcast protocol 
is arguably a minimal way (as is observed in the modified portion 
of the original pseudo code in case of the broadcast protocol). 

 
5 Conclusion 

 
Authors, in recent studies, have exploited the architectural 

properties of the Pyramid tree P2P network to design different 
communication protocols with reasonably low search latency.  
However, these recent contributions still lack in one very 
important aspect (like other existing interest-based 
architectures): in the architecture, it is assumed that no peer can 
have more than one resource type and this could be a very hard 
restriction practically.  In the present work, we have addressed 
this issue of generalizing the architecture and have come up with 
effective solutions.  Effect on the architecture due to 
generalization is just reflected in the modified ‘Table of 
Information’ which is actually consulted by the various 

protocols for data/query propagation.  We have shown that 
generalization has no effect on the existing intra-cluster data 
look-up protocol.  Only the existing inter-cluster data look up 
and the broadcast protocols need to be modified.  The two 
modified protocols have the same low bandwidth requirements 
and look-up complexities as those of the already existing ones. 

As a continuation of our research, we are now working on 
designing protocols for secured communication in the 
generalized architecture. 
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