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Abstract 

 
A primary challenge to form a geometric pattern for a fleet of 

randomly distributed agents is the determination of their 
locations on the boundary of a formation.  The challenge is 
more acute if the agents need to be uniformly distributed on the 
formation.  This study addresses this challenge for polygon 
formations via a two-phase procedure.  In the first phase, the 
agents form an enclosing  circle to the location of the formation.  
This prevents the agents from location-conflicts on the polygon 
and hence each agent can uniquely ascertain its projection point 
on the formation.  In the second phase, the agents establish their 
projected points and move toward their locations on the 
polygon, while mitigating collisions.  The circle formation is 
also used as a regrouping feature before the agents reconfigure 
themselves into a different polygon formation.  The formation 
control laws developed are verified through simulation for 
circle formation, convex polygons, and some categories of 
concave polygons.  The control laws include the cases for 
rotation, translation (relocation), and scaling of polygons as 
well. 

Key Words:  Consensus, control systems, cyber physical 
systems, formation control, multi-robot systems, peer-to-peer 
networks. 
 

1 Introduction 
 
The research in networked multi-agent systems (MASs) has 

flourished in recent years due to their potential in various 
applications [2, 3, 12, 19, 20].  Some examples are cooperative 
control of unmanned aerial vehicles (UAVs), autonomous 
underwater vehicles (AUVs), and surveillance and 
reconnaissance missions to accomplish a common goal [4, 9, 18, 
22, 24].  A mainstream of research in MASs is on the structure 
(formation) of agents in a distributed manner.  More 
specifically, each agent following a control mechanism 
communicates with its neighbors only.  Therefore, the view of 
the field by each agent is local not global.  Through the local 
interactions, the agents can form a particular geometric pattern 
[16, 23].  

The three common approaches to formation controls are: 
leader-follower, behavioral, and virtual structure.  These 
approaches may also be combined with artificial intelligence 
approaches for improving flexibility and performance.  In the 
leader-follower approach [4, 15], some agents act as leaders and  
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the rest as following the leaders. The leaders’ trajectories (e.g., 
a formation pattern) are transformed by the followers into 
coordinates under local control laws (e.g., keeping a certain 
distance from the leaders).  Although the salient feature of this 
approach is its simplicity, the leader-follower approach suffers 
from having single points of failures.  For example, if a leader 
fails, the formation becomes difficult.  In addition, there is no 
feedback from the followers to the leaders, e.g., a follower is not 
able to inform the leader (s) if it runs into an obstacle. In the 
behavioral approach [10, 24], the agents follow a set of 
predefined control laws to control their behavior in certain 
conditions such as avoiding collision, avoiding obstacles, and 
keeping a certain distance from the neighbors.  An advantage of 
this approach is its flexibility in systems with a substantial 
number of agents.  A disadvantage is the complexity of 
mathematical analysis to create control laws to guarantee 
precise formation.  

In the virtual structure formation [11, 24], the structure is 
treated as a virtual rigid structure, e.g., a circle.  The agents’ 
positions are determined according to reference points on the 
rigid structure.  If the agents can track the reference points, the 
formation can be preserved.  In addition, if the agents can follow 
their own specific reference points, the precise formation of the 
structure can be maintained.  Several studies have focused on 
the same formation since it becomes difficult to reconfigure the 
formation into a different virtual structure, particularly if 
reconfiguration is needed often.  

This study borrows elements from the behavioral and virtual 
structures to form polygons.  The behavioral approach is utilized 
to formulate control laws for traveling and avoiding collisions 
based on local interaction with neighbors.  Virtual structures are 
embedded by points that are formed into polygons.  Agents 
travel to the coordinates of these points.  The agents determine 
the coordinates on the polygons individually and in a distributed 
manner.  

To form a polygon, a two-phase approach is employed. In the 
first phase, the agents are randomly distributed in a field.  Using 
the local control laws, the agents will then form a circle 
circumscribing the location of the polygon structure.  The agents 
will also have the option to uniformly distribute themselves on 
the circle. In the second phase, each agent identifies the 
coordinates of its projected point on the polygon.  Taking 
advantage of linear function properties, an agent’s projected 
point is the intersection of its closest trajectory toward the circle 
center and the polygon. 

The two-phase approach is adopted to make the 
reconfiguration into polygons simpler.  The enclosing circle 
formation provides conflict free projected points.  Besides, the 
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circle formation can be used as the pre-requisite to a number of 
symmetric formations and in general regular polygons, as will 
be seen later in the study.  Noteworthy is that if the agents are 
uniformly distributed on the circle and the circle passes through 
the polygon vertices, the agents, can be uniformly distributed on 
the polygons as well. 

This study is restricted to two-dimensional space and is the 
continuation of the work done in [23].  The focus in [23] was on 
the first phase, i.e., on circle formation, whereas this study is 
mostly concerned with the second phase.  Section 2 sets the 
network model and provides the background information on 
circle formation based on [23], in addition to some research 
works on polygon formations.  Section 3 introduces some 
perspectives on polygons and the approaches defining the circle 
that circumscribes a polygon.  Section 4 lays out the foundation 
on polygon formations.  It discusses the general approach for 
various convex and concave polygon formations, which can be 
applied to the classic regular polygons such as squares and 
equilateral triangles as well.  Section 5 discusses polygon 
transformations such as rotation, relocation (translation), and 
scale adjustment of polygons while maintaining their formation.  
Section 6 is about the simulation of the results in Sections 4 and 
5.  The section includes some examples of reconfiguration and 
transformation of polygons.  Section 7 concludes the study with 
a summary and some avenues for future studies. 

 
2 Background 

 
The subject of pattern formations and in general formation 

control has been investigated in numerous studies.  A number of 
these studies have been devoted to polygon formations.  Among 
these, [7] proposes an algorithm for a group of homogenous 
robots that gradually form into patterns such as polygons and 
circles.  Through local interactions and differentiating tasks that 
each robot plays, the authors have shown that the robots can start 
making simple patterns such as a line that gradually turns into 
more complex patterns like a circle and then into polygon 
patterns.  Although the authors claim that it is theoretically 
possible to generate more complex patterns, the approach is a 
time-consuming process, e.g., allowing the robots to find each 
other and forming themselves into a line from randomly 
distributed robots.  

The focus of [13] is on pattern formation via machine 
learning, specifically using the Q-learning algorithm.  In this 
process, the agents are rewarded based on their actions.  An 
agent is rewarded with the highest reward once it reaches its 
final target, and it is penalized if it moves away from the target.  
The authors use six agents to form the vertices of a hexagon.  
For polygons with lower sides such as a square or a triangle, 
some agents are removed.  So, the number of agents must 
represent the number of vertex points, and not able to form 
polygons with the number of agents higher than the sides.  The 
study does not allude to any discussion on collision or obstacle 
avoidance. 

The study in [5] proposes a distributed control strategy to 
form regular polygons with a specified scale and with arbitrary 
number of agents.  Polygon formations are achieved using local 

measurements.  These measurements are relative and cyclic in 
the sense that an agent ’s neighbors are agents 1 and +
1.  Under this sensing strategy, each agent moves toward the end 
point of a vector that is perpendicular to the midpoint of the line 
segment that is connecting the agent with its neighbor.  Like 
[13], the agents forming the polygons are stationed only at the 
vertices of the polygons.  So, if there are  agents, the formation 
will be a -sided polygon.  Additionally, the agents are treated 
as point agents, so collision avoidance is not considered.  

In [8], a two-stage process for forming static polygons is 
presented.  The approach is based on the leader-follower 
principle.  In the first stage, the leader agent provides the 
orientation and the distance information for each agent with 
respect to itself (the leader).  In the second stage, the robots are 
moved in circulation motion until they are uniformly 
distributed.  In this stage, the distance between any agent and 
the leader, and the angle formed between any two neighbors 
with respect to the leader are updated repeatedly until the 
formation stabilizes.  Like the previous discussions, the agents’ 
final positions are at the vertices of the polygons.  

Like the work in [5], the authors in [25] assume the sensing 
topology is cyclic, so that each agent has only two neighbors.  
No discussion is made as to how the sensing topology is 
established or can be established.  In their approach, some 
external control input is injected to specific agents (vertex 
agents) in accordance with the desired formation.  Since local 
measurements are used, the agents only need to keep their 
orientations with respect to their nearest neighbors.  

Contrary to these studies, this study does not assume any 
predefined relationship among the agents, does not use any 
leader-follower strategy, does not assign any agents to the 
polygon vertices, and includes collision avoidance.  In addition, 
the work herein specifically discusses regular versus irregular 
polygons, convex versus concave, and provides tangible insight 
into rotation, translation, and scaling of polygons.  An advantage 
of the work is that most of the delay and collision avoidance 
operations take place during the first phase.  Once the circle is 
formed, the delay and collisions in the polygon formation 
including polygon reconfigurations, rotation, translation, and 
scaling are negligible since the agents’ transitions occur with the 
same relative distance from their neighbors.  However, the 
overhead delay in the first phase could increase, e.g., more 
agents translates into more collision avoidance operations.    

 
2.1 Circle Formation 

 
Studies on circle formation make various modeling 

assumptions such as global observation versus limited 
observation and collision free versus collision avoidance.  The 
approach in [23] investigates the circle formation in a more 
formal fashion with realistic assumptions in mind.  These 
assumptions include limited visibility, autonomous behavior, 
and collision avoidance while traveling to the final destinations.  
The only requirement, which is beyond the scope of this study, 
is to assume the agents can compute their positions using a 
coordinate positioning system.  

In [23], the multi-agent system is a dynamic network in which 
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the changes in the topology are caused by the mobility of the 
agents noted as { , , … , }, where is the virtual agent 
representing the center of the circle and is the number of real 
agents. Two agents and are neighbors if they are within 
the sensing range of each other. The distance between the two 
agents is denoted as . Any pair of agents keep a minimum 
distance from each other to avoid collisions, which is called the 
collision distance ( ). 

A two-dimensional coordinate system is used, in which the 
location of an agent is ( , ) and its mobility at any time 

is shown by its coordinates as ( ) and ( ). For 
simplicity, when there is no confusion, the time is dropped but 
assumed, e.g., as and . 

The location of the circle center, as ( , ), needs to be 
agreed upon by an appropriate consensus protocol among 
agents. The circle center ( , ) might also be shown as
( , ). Once agreed on a circle center, no message 
communication to form the circle takes place. An agent 
continuously travels toward the circle boundary on the shortest 
path if it is not in the collision path with any of its neighbors. 
The agent moves toward the circle by changing its coordinates 
according to the following:

( + ) = ( ) + ( ) cos( ( )) (1)

( + ) = ( ) + ( ) sin( ( )) (2)

where is a small-time value, is a small positive value, is 
the circle radius, and is the angle formed at the circle 
center ( , ) with respect to agent . In other words, the 
angle has the vertex at ( , ) with the end-legs of the 
angle at the coordinates ( + , ) and ( , ). If an agent 

is in collision with some neighbors as it moves toward the 
circle, it repels from those agents by changing its coordinates 
according to the following:

( + ) = ( ) ( ) (3)

( + ) = ( ) ( ) (4)

where is the sum of ( )/ with respect to each 

agent that is in collision course with. The is defined 
similarly.

Once the agents are on the circle, they move counterclockwise 
on the circle keeping a distance called segment distance ( ) 
from each other. The is the size of the circle perimeter 
divided by the number of agents. Thus, the agents will be 
uniformly distributed on the circle. The can also be 
manually set if one wishes to change the scale of the circle. An 
agent moves counterclockwise on the circle according to the 
following:

( + ) = ( ) + cos ( ) + (5)

( + ) = ( ) + sin ( ) + (6)

Since the circle center does not change with time, ( ) and 
( ) can be replaced with and , respectively. The is a 

small percentage of , where = 360°. 
Because of the importance of (5) and (6) in the movement and 

rotation of agents discussed later, Figure 1 shows the process of 
obtaining (5) and (6) for better insight. The figure shows the 
situation where at time with its coordinates at 
( ( ), ( )) would like to move to a new location 
( ( + ), ( + )) on the circle at time ( + ) and 
make a change in its angle by (angular speed). At time , 
the agent has the angle of with respect to 0°. From the 
figure, since cos ( ) + is the -coordinate 
offset of the agent at time ( + ), adding the -coordinate of 
the circle center results in the equation (5). Similarly, 

sin ( ) + is the -coordinate offset from the 
-coordinate of the circle center, and so adding the offset to the 

circle center -coordinate yields (6). It is important to realize 
that smaller values of provides for smoother transitions. 
Similarly, the transitions become smoother as is reduced, as 
opposed to discrete changes. 

Figure 1: Travel of an agent on the circle

For further detail on circle formation, the reader is referred to 
[23].

3 Preliminary Perspectives on Polygons

A polygon has a number of line segments that are connected 
to form a closed region. Polygons can be regular or irregular.
In a regular polygon , every internal angle is of the same degree 
and every side is of the same length. Otherwise, the polygon is 
irregular. On the other hand, a polygon can be concave or 
convex. A concave polygon has at least one vertex pointed 
inward. In other words, it has an internal angle with a degree 
larger than 180°. Otherwise, the polygon is convex. 
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A concave polygon can never be regular because the interior 
angles are of different measures. Another property of a concave 
polygon is that a line passing through the polygon can touch the 
polygon more than twice. In contrast, a line can cross a convex 
polygon at most twice. Figure 2 shows an example of a five-
sided (pentagon) polygon. Figure 2a and 2b are convex
polygons, whereas Figure 2c is a concave polygon because one 
of its internal degrees is greater than 180°.

                                

a) Convex regular        b) Convex irregular         c) Concave

Figure 2: Examples of polygon structures

3.1 Circle Enclosed Polygons

Since this study employs a two-stage approach to polygon 
formations, it is necessary to discuss the notion of a circle 
enclosing a polygon. The circle enclosing a polygon can be the 
Smallest Enclosing Circle (SEC) that covers the entire polygon
in the field [17, 21]. A polygon is inscribed in the SEC if all the 
vertices of the polygon are on the circle. It can also be said that 
the SEC circumscribes a polygon if the circle passes through the 
vertices of the polygon. 

An inscribed polygon is called a cyclic polygon. Not all 
polygons are cyclic. All regular polygons can be inscribed and 
are thus cyclic.   Some examples of regular polygons are 
squares, equilateral triangles, and equilateral pentagons. An
irregular polygon can be cyclic as well. For example, all 
rectangles are cyclic. 

For a MAS, if the polygon formation is irregular, obtaining 
the SEC may not be a feasible solution due to its involved 
mathematical algorithm. Even if the SEC can be obtained, the 
polygon may not be cyclic. Besides, obtaining the SEC may not 
be desirable as its circumference size may depend on the number 
of agents and the minimum distance between each pair of agents 
on the circle. In addition, as mentioned, concave polygons 
cannot be inscribed and thus not cyclic. 

Consequently, a feasible approach would be to find a circle 
that may not be the SEC but reasonably covers the entire fleet 
of agents. Figure 3 illustrates how the circle can be obtained.
The figure is a heptagon (7-sided polygon) that cannot be 
inscribed. The reason is that this heptagon is formed by 
replacing one of the regular (cyclic) hexagon sides by two 
outward sides. For the purpose of visualization, the regular 
hexagon is shown inside of the heptagon by thin broken lines.
Therefore, this heptagon is not cyclic.

Since the coordinates of the heptagon needs to be known a-
priori, the maximum and minimum  - and -coordinates are 
used to form a rectangle. In the figure, the maximum - and -
coordinates are and , respectively. Similarly, the minimum 

- and -coordinates are and , respectively. Using these

Figure 3: Example for finding a circle that covers a non-regular 
polygon

figure, the rectangle is shown as a thick dashed box. Its vertices 
are marked with stars along with their coordinates in bold. 
Generalizing this approach and using the subscripts of and 

in representing the maximum and minimum - and -
coordinates, the vertices of the rectangle, starting from the lower 
left and moving counterclockwise, become: ( , ), 
( , ), ( , ), and ( , ).

As the figure shows, since any rectangle is cyclic, a circle 
circumscribing the rectangle can be formed. Obviously, the 
circle covers all the agents as well. In addition, the rectangle 
can determine the coordinates of the circle center and the radius 
of the circle. As the example in the figure shows, the location 
of the circle center is halfway between the maximum and 
minimum - and -coordinates, In general,

( , ) = (
+

2
,

+

2
)

Since the rectangle diagonal passes through the circle center, 
the circle radius is half the rectangle diagonal, i.e., 

=
( ) + ( )

2

It should be noted that, although the example in Figure 3
shows a convex polygon, the same approach can be used for 
concave polygons as well for obtaining the enclosed circle. 
Also, as shown in Figure 3, the formation field is assumed to be 
in the positive quadrant of the -plane.

4 Polygon Reconfiguration Phase

This section applies the formation approach discussed in the 
previous section to regular and non-regular polygons including 
concave polygons. 
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4.1 Regular Convex Polygons

To have a firm understanding of the approach, an example 
using a regular pentagon polygon is shown in Figure 4a. Since 
the polygon is regular, it is cyclic and thus can be inscribed by 
the SEC, or the approach described above may be used to obtain 
the circle for covering the polygon.

It is assumed that the agents have already formed a circle. 
Recall that a polygon formation with sides is a two-phase
process. In the first phase, the agents form a circle. The second 
phase is about the reconfiguration in which an agent, let’s say 
with the coordinates ( , ), obtains its reconfigured location 
( ?, ?) on the polygon. Once ( ?, ?) is determined, the agent 
moves to its new reconfigured location by assuming ( ?, ?) is 
the center of a circle with radius set to 0. This allows the agent 
to follow the same procedure for forming a circle, discussed in 
[23], but the agents end up forming a polygon without the need 
to perform any redistribution once they reach their specified 
locations ( ?, ?). 

In the reconfiguration process for regular polygons, it is 
assumed that the agents are aware of an anchor point with 
degree . In Figure 4a below, = 270°, and the location of the 
anchor point is shown as ( , ). Furthermore, 
assume the polygon vertices are defined as , 1 , 
numbered counterclockwise, with the corresponding 
coordinates ( , ). 

The figure shows an agent between and with the 
corresponding coordinates ( , ) and ( , ). For the sake of 
generality, let’s refer to them as and with the 
corresponding coordinates ( , ) and ( , ), where ( +
1) is calculated in modulo . For an agent to attain the 
coordinates of the end vertices and , the agent needs to 
compare its degree on the circle against the degree of each pair 
of adjacent vertices until a match is found that satisfies 

, , or 
, where ( + 1) is done in modulo . The latter 

two cases might happen because of the rotation from 360° back 
to 0°. Once a match is found on and , the agent 
will use the corresponding coordinates.

The following shows how to obtain the corresponding 
coordinates of a vertex with degree :

( , ) = ( + cos( ), + sin ( ))

where is the circle radius. As an example, in Figure 4a, since 
the anchor point is at = 270° and the adjacent vertices are 
360°/ = 360°/5 = 72° degrees apart from each other,  

( , ) = ( + cos( + ( 1) × 360°/ ) ,

+ sin( + ( 1) × 360°/ s))

To show the general approach in obtaining ( ?, ?) shown in 
Figure 4a, let the equation for the line formed between these
two vertices and be: = + . Similarly, let the

a) Using the trajectory to circle center
b) Using the perpendicular trajectory to the polygon

Figure 4: The approach for obtaining the reconfigured point 
( ?, ?)

equation for the line between the circle center and the agent 
be: = + . 

Since ( ?, ?) is at the intersection of both lines and , 
( ?, ?) is a valid point for both lines. Thus, two equations with 
two unknowns are formed that can be solved to obtain ( ?, ?):

= + ? = ? +

= + ? = ? +

This leads to:

? = (7)

? = (8)

Furthermore, the slopes of the lines are: 

= (9)
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= (10)

And the -intercepts of the lines are:

= (11)

= (12)

In (7) and (8),  , , , and are known, as shown in (9) 
– (12). Also,  ( , ), ( , ), and ( , ) are known. 
Consequently, ( ?, ?) in (7) and (8) can be calculated easily. 

An interesting, revised version of the approach for obtaining 
( ?, ?) is for an agent to continuously travel to the polygon on 
the shortest path. This implies that the trajectory would be 
perpendicular to the polygon side . This is shown in Figure 4b. 
The slope of  is:

= (13)

On the other hand, the y-intercept of is , which can be 
obtained as:

= + = (14)

Since the slope of  is the negative inverse of , 

= = (15)

Since the location of the agent is known as ( , ),

= + = + = +
(16)

Thus, 

= + ( + ) (17)
Since ( ?, ?) is at the intersection of both lines and , 

( ?, ?) is valid for both lines. Thus, two equations with two 
unknowns are formed that can be solved to obtain ( ?, ?):

= + ? = ? + (18)

= + ? = ? + (19)

This leads to:

? = (20)

? = + (21)

Since , , , and are all known, ? and ? can be

calculated easily as well. However, two special cases need to 
be checked for when a line segment happens to be horizontal or 
vertical. The line is horizontal if = . In that case, the 
travel path for the agent is vertical, so the -coordinate of the 
agent stays the same. Therefore,

? =

? =

If the line segment is vertical, i.e., = , the -coordinate 
does not change as the agent travels since the travel is 
horizontal. Thus,

? =

? =

The discussion for Figure 4a and its revised version in Figure 
4b are also applicable to cyclic non-regular polygons if the 
angles of the vertices are known to the agents. A notable 
ramification to the revised version is that if the agents are 
uniformly distributed on the circle, they would be distributed
uniformly on the polygon structure as well. 

4.2 Irregular Convex Polygons

The process for forming irregular convex polygons is like that 
of regular polygons. Figure 5 below shows a non-regular 
polygon inscribed in a circle. In this example, the circle 
circumscribing the polygon is the SEC. Compared to Figure 4, 
an agent ( , ) can easily apply the approach discussed in the 
previous subsection to determine its reconfiguration point 
( ?, ?). However, in terms of input to the agents, since the 
polygon is irregular, having the location of the anchor point to 
determine the entire structure of the polygon is no longer 
sufficient. More specifically, since the polygon is not regular, 

Figure 5: Example showing the approach for obtaining the 
reconfigured point ( ?, ?) for irregular polygons
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the locations of the vertices need to be known before the 
reconfiguration can take place. 

The approach for non-regular convex polygons that cannot be 
inscribed is the same, except the circle is not necessarily a SEC 
(see Figure 3). It should be noted that as the fleet of agents 
becomes larger the polygon formations become more 
pronounced. 

The next section discusses the case for some categories of 
concave polygons.

4.3 Concave Polygons

Since concave polygons are not inscribable, a process similar 
to what was described in Section 3 needs to be applied to create 
a reasonable circle that covers the polygon vertices. Consider 
the two concave polygon examples in Figure 6 that have used 
the process in Section 3 for creating the circles around the 
vertices. 

In Figure 6a, the trajectory between the agent location 
( , ) and the circle center ( , ) intersects the polygon in 
one location. Therefore, the agent is able to determine its 
reconfigured point ( ?, ?) uniquely. However, in Figure 6b, the 
trajectory cuts through the polygon in multiple locations and 
thus it is not clear which intersection point to use as the 
reconfigured point ( ?, ?). The reason is that the degree of the 
polygon vertices in Figure 6b are not in increasing order.  Even 
if the agent is able to randomly decide on one of the intersection 
points, the formation of the polygon would not be deterministic. 
Consequently, the formation of concave polygons in this 
research is limited to cases such as the one in Figure 6a. 
Specifically, the concave polygons considered are limited to 
those with , where 1 and ( + 1) is in 
module .

5 Polygon Transformations

This section illustrates how the agents, once located on the 
polygon, would maintain the polygon structure while rotating in 
place, translating (moving) to a different location, rotating and 
translating simultaneously, or scaling in its final location of 
rotation and translation.

5.1 Polygon Rotation

The algorithm for rotating the polygon structure in place is 
relatively simple since (5) and (6) have shown how to move an
agent from one location to another on the circle boundary.
These equations are modified slightly to account for incremental
rotations.  From Figure 1, the location of at time before 
being relocated is:

( ) = ( ) + cos ( ) (22)

( ) = ( ) + sin ( ) (23)

       

a)

   

b)

Figure 6: Agent trajectory for two examples of a concave
polygon: a) cutting only one side of the polygon, b) 
cutting multiple sides of the polygon

After time, the agent’s new location, as shown in Figure 1, 
is: 

( + ) = ( ) + cos ( ) + (24)

( + ) = ( ) + sin ( ) + (25)

Taking advantage of cosine and sine properties, the cosine 
and sine portions of (24) and (25) can be expanded as:  

Cos ( ) + = cos ( ) cos

sin ( ) sin (26)
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sin ( ) + = cos  ( ) sin  
 

 + sin ( ) cos  (27) 
 

Substituting (26) in (24) yields: 

 
 ( + ) = ( ) + cos  ( ) cos

                                    sin ( ) sin (28)
 

From (22) and (23): 
 

( )  ( ) = cos ( ) ,  

 
( ( )   ( )) =   sin ( )  (29) 

 
Substituting (29) in (28) yields: 
 

( + ) = ( ) +  ( ( )  ( ))cos ( ) 
 

 ( ( )  ( )) ( ) (30) 

 
Using (27) and taking advantage of (29), a similar substitution 

along the -coordinate in (25) results in: 
 

 ( + ) = ( ) +  ( ( )  ( ))sin ( ) 
 
      + ( ( )  ( )) ( ) (31) 

Note that the center of the formation is invariant under the 
rotation transformation equations (30)  and (31).  Additionally, 
the equations can be used to prove the transformation is a rigid-
body transformation.  That is, the agents on the same line of the 
polygon will be on the rotated line with the same relative 
locations and the same distances from each other with all the 
corresponding angles preserved.   

 
5.2 Polygon Translation 

 
Translation is the changes in - and -coordinate of a polygon 

location, which translates to the same changes of location for 
every agent on the polygon.  In other words, translation is a 
displacement of location added to each of the agents’ location.  
As a result, the formation topology is preserved as in the case of 
rotation.  For instance, a translation by ( , ) for an 
agent  currently at location ( , ) results in the agent’s new 
location at ( + , + ).    

Consequently, an agent with the coordinates 
( ( ), ( )) and a desired translation by ( , ), at 
time (  +  ), will have the new coordinates: 

( + ) =  ( ) +  , ( + ) =  ( ) +

  (32) 

Using (32) and the previous equations (30) and (31), the 
polygon formations can be rotated and translated incrementally 
until the desired rotation and translation are achieved.  The order 
of transformation is application dependent.  If translation by 
( , ) is performed first, then the invariant point (the 
modified circle center) in (30) and (31) is adjusted first.  The 
new updated ( , ) will be: 

( + ) ( ) + , ( + ) = ( ) +  
  (33) 

 
5.3 Polygon Scaling 

Scaling is a feature that enhances the flexibility of the polygon 
formation, by expanding or shrinking the area coverage of the 
formation about the center of the formation.  To keep the 
topology of the formation unchanged, uniform scaling can be  

applied to each agent’s location.    
By fixing the center of the formation as the invariant location 

under uniform scaling, the shape of the formation is maintained.  
However, the agents’ distances from the formation center and 
the relative distances among agents need to be adjusted 
appropriately.    

If the agents’ coordinates are measured relative to the origin 
coordinates (0, 0), then uniform scaling is the process of 
multiplying the  coordinates by a scale factor .  Under this 
transformation, ( ( ), ( )) is transformed at time (  +  ) 
to: 

( + ), ( + )  =  ( ), ( )  (34) 

For  between 0 and 1, the formation area is decreased.  For 
 >  1, the formation area is increased.  
In (34), the location (0, 0) is the invariant point under scaling.  

To make the center of the formation ( ( ), ( )) as the 
invariant point, (34) should be adjusted to: 

( + ), ( + ) = ( ), ( )  

 
+  ( ) ( ), ( ) ( )  (35) 

     = ( ( ) + (1 ) ( )), ( ( ) + (1 ) ( ))

  (36) 

Equations (35) and (36) are the concatenation of three 
transformations: a translation by ( ( ), ( )), so that the 
scaling transformation by  in (34) can be applied, followed by  
a translation of ( ( ), ( )). 

 
5.4 Incremental Polygon Transformation 

 
The equations for the three primary transformations described 

above can be revised to achieve incremental transformations.  
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This allows the agents to move at a desired rate before settling 
on their final transformation. In addition, the incremental 
transformation can be applied to accomplish a composite 
transformation. That is, the formation structure can go under a 
sequence of rotation, translation, scaling, or any predefined 
order.  

According to the translation properties, an incremental 
translation by ( , ) of duration followed by 
another incremental translation ( , ) of duration 

, and applied to the center of the formation ( ( ), ( )), 
produces a translation with the new center of formation as:  

( ( + + ), ( + + ) = ( ( ) +

+ , , ( ) + + ) (37)

Equation (37) shows that the concatenation of translations is 
additive.  This result, and other similar results, can be proved 
using matrix representations of transformations applied to 
homogeneous coordinate system.  A similar analysis can be 
applied to rotation, to show that a sequence of rotations about 
the same invariant point, results in a rotation by a degree that is 
the sum of the degrees used for the individual rotations.  Unlike 
translation and rotation, composite scaling is not additive [1, 6].  

6 Simulation

This section provides some simulation experiments in 
accordance with the discussion in the previous section.

6.1 Two-Phase Formation

The Python simulations illustrate the two-phase approach of 
circle formation followed by the reconfiguration process for 
cyclic polygons to achieve a triangle formation, a rectangle, and 
then a pentagon. Figure 7 displays four snapshots for achieving 
a circle formation. Figure 7a shows the initial, random 
distribution of the agents. Figure 7b shows the agents moving 
toward the circle while avoiding collisions. In Figure 7c, the 
agents have almost reached the circle. In Figure 7d, the agents
have formed the circle and repositioned themselves into a 
uniformly distributed formation, while avoiding collisions.  

During the entire process of formation, the agents are entirely 
distributed with no assistance from any external entity. The 
only external input received is the number of agents and the 
minimum collision distance for avoiding collision with their 
neighbors. The agents are optionally able to receive input as to 
how large the circle formations should be. It should be 
mentioned that the drawing of the circle in the figure is not

a) Initial distribution

   b) Reaching the circle

c) Circle formation

d) Uniformly distributed

Figure 7: Snapshots of circle formation
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necessary. It is merely drawn as a reference to assist in better 
observation.

Figure 8 shows the snapshots of agents reconfiguring  them-
selves into a triangle immediately following the Figure 7d circle 
formation. In Figure 8a, the agents have determined their 
reconfigured locations ( ?, ?) and about to move toward those 
locations. In Figure 8b, the triangle formation is clearly visible.
Figure 8c illustrates the complete formation of agents into a 
triangle. The agents on the reconfigured formation are still 
uniformly distributed because they were distributed uniformly 
on the circle and move toward the polygon sides 

perpendicularly. If they were not, then their distribution on the 
triangle would not be uniform either. 
Figure 9 shows the continuation of Figure 8c, where the agents 
continuously reconfigure themselves to a rectangle, to a square, 
and finally to a pentagon. 

These simulations followed the process shown in Section 4.
However, the study revealed other alternatives for obtaining 
( ?, ?). Although the calculations are more involved, one
approach that we have developed and simulated with success is 
taking advantage of the triangulation process. More 
specifically, once the coordinates of and are determined,

a) Starting to move

b) Close to completion

c) Triangle formed

Figure 8 : Snapshots of triangle reconfiguration

a) Rectangle

b) Square

c) Octagon

Figure 9: Snapshots of changing reconfiguration
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Heron’s formula [14] is applied to find the distance (see 
Figure 4b). The location ( ?, ?) is then triangulated using the 
three circles centered at the agent, and . 

6.2 Transition of Formation through Transformations

Following the two-phase approach to the polygon formation, 
incremental transformation can be applied in the form of 
translation, rotation, or scaling of the entire formation, while 
preserving the formation structure.  For a better insight and 
before providing some snapshots of a pentagon transformation
in Subsection 6.3, the following illustrates the Excel 
implementation of rotation with translation using the 
incremental procedure described in Subsection 5.4.

Suppose it is desired to translate a circle formation from 
( ( ), ( )) to the new location centered at ( ( ), ( ), for 
some time > , and rotated by degrees. For this to 
happen, the formation is incrementally rotated by a small degree

followed by a small translation displacement 
( , ). Suppose these steps are repeated times to 
reach the desired transformation. Accordingly, each 
incremental transition uses:

= , =
( )

, =
( )

,

= (38)

In (38), = (See Figure 1). In addition, the number 
of steps does not have to be the same for rotation, translation, 
and time. For example, if the number of steps for rotation and 
translation are and , respectively, where > , the rotation 
will continue without any translation for the remaining ( )
steps. The following shows the steps in carrying out the task:

For = 1 to do {

     // Apply incremental rotation
     For each do {
          ( + ) = ( ( ) ( ))cos ( )

( ( ) ( )) ( ) + ( ) // See (30)

          ( + ) = ( ( ) ( )) ( ) + ( ( )

( )) ( ) // See (31)
     }

     // Apply incremental translation by updating the 
coordinates

     For each do {
          ( ( ), ( ( )) = ( ( + ), ( + ))

     }
     ( ( ), ( ) = ( ( ) + , ( ) + )

}

In the code above, it is important to update the center of the 
formation so as to maintain the correct rotation about the 
updated center of formation.

Figure 10 below shows the results of the above code 
execution. In the simulation, four agents are distributed around 
a circle of radius 3 centered at (4, 6). The formation was rotated 
by 30° and translated by (5, 3), with = 30. The circles on the 
graph are not part of the simulation. They are drawn to enhance 
visualization. 

1

3

5

7

9

11

13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Figure 10: Rotation and translation of four agents

6.3 Pentagon Transformation

Having a better understanding of the discussion in the 
previous subsection, the following illustrates the formation of a 
pentagon followed by its transformation of rotation and 
translation as described in Section 5.

Figure 11a shows the initial distribution of some agents in a 
field. Figure 11b shows that the agents have formed a circle in 
phase 1 and attempting to distribute themselves on the circle 
boundary uniformly. In Figure 11c, the agents have formed a 
pentagon in phase 2. For better visualization in the follow up 
figures, the bottom agent is shown thicker. Figure 11d displays 
the fact that the pentagon has rotated to the left and moved to a 
different place while maintaining its shape. In Figure 11e, the
pentagon has made about half a turn compared to Figure 11c. In 
Figure 11f, the pentagon has made a full turn, while moving to 
a different location. Once reaching its position in Figure 11f, 
the pentagon keeps rotating in place, but its rotation is not shown 
in this figure. 
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a) Initial distribution of agents

 

b) Agents attempting to distribute uniformly 

 

c) Agents forming the pentagon 

 
d) The pentagon rotating while translating

e) The pentagon almost at half turn while translating 
 
 

f) The pentagon making a full turn while translating 
 

Figure 11: Transformation of a pentagon through rotation and translation 
 
 

7 Conclusion 
 
A major challenge in the design of multi-agent formations is 

the identification of the agents’ positions on the formation 
structure.  The proposed research offers a two-phase approach 
to polygon formations, which borrows elements from the 

behavioral and virtual structures principles.  The approach has 
played a fundamental role in improving performance and 
mitigating the impractical assumptions.  It enables the agents to 
identify their positions on a polygon uniquely, autonomously, 
and avoid collisions during the reconfiguration phase.  In the 
first phase, the agents form an enclosing circle over the 
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formation structure.  For better and more concise polygon 
formations, the agents have the option of uniformly distribute 
themselves on the circle.  During the second phase, the agents 
reconfigure themselves into the desired polygon formation.  In 

addition to polygon formations, the two-phase approach 
simplified the design for rotation, translation, and scaling of 
polygons.  

The approach identified the types of polygons that can be 
formed.  Specifically, the proposed approach handles convex 
and concave polygons under certation constraints.  For example, 
concave polygons can be formed if the degrees of the vertices 
are in ascending order.  As the number of agents increases, the 
structure of polygon formations become more pronounced, 
especially for concave polygons.  In contrast to some studies, 
the number of agents deployed does not depend on that of 
polygon vertices.  Furthermore, no distinction is made between 
agents for conducting special tasks or allocating special agents 
to form the polygon vertices.  

Several future studies are anticipated. One is to remedy or 
reduce the current restrictions to include a wider range of 
concave polygons.  Also, early results indicate that the current 
approach can be adjusted to better distribute the agents on non-
cyclic polygons.  Another avenue of research is to modify the 
control laws to handle faults, e.g., if an agent does not adhere to 
the consensus protocol or to the collision avoidance operations.  
In addition, the current research is testing the proposed approach 
in Robotic Operating System (ROS) as the stepping-stone to 
prototyping the control laws. 
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