
IJCA, Vol. 30, No. 2, June 2023 151

ISCA Copyright© 2023

Toward Automated Feature Model Generation from
UML Use Case and Class Diagrams

Tasneem Yousef* and Said Ghoul*
Philadelphia University, Amman, Jordan

Abstract

The Feature Model is one of the most important concepts in

the Software Product Line development process, as it helps to
represent commonalities and variabilities between software
products. Several research works are currently conducted to
generate feature model of a software product line from its
requirements document. However, the generated feature models
do not include data and actor aspects which are essential parts
of any software product line. The work presented in this paper
proposes an approach handling this insufficiency. This
approach defines a methodology toward automated feature
model generation from requirement documents limited to
Unified Modelling Language use case and class diagrams. The
use case is specified with a use case description template
enhanced with information required for feature model. The class
diagram is specified in a textual form obtained by translating the
diagram into java programming language. The target generated
feature model is enhanced by the introduction of data and actor
concepts. An evaluating real case study (quality assurance at
Philadelphia University), was used to evaluate the feasibility of
the proposed approach and obtained results show its practical
benefits.

Key Words: Feature model (FM), software production line
(SPL), unified modelling language (UML) use case, UML class
diagram, feature model generation approach.

1 Introduction

Building software from scratch is complex and expensive, and

there is a high probability of mistakes. But, the concept of SPL
helps to analyse a set of software that share some parts and are
designed for a specific domain [7]. This approach allowed reuse
of commonalities and variabilities that resulted. There is a core
asset that represents the commonalities and variabilities,
including the variability model such as the FM [1, 4-5]. It
helped to represent the variable and common characteristics of
software, to make decisions, and to avoid mistakes [2]. A FM
is one of the most efficient ways to represent and manage the
variance obtained from products during the SPL process. It is a
visual representation of features in a hierarchy, called a feature
tree, at the top of what are the main features and at the bottom

*Research Laboratory on Bioinspired Software Engineering. Email:
tasneem.fy18@gmail.com, shgoul@philadelphia.edu.jo.

are the features that branch off from the main features and the
relationships between them [3].

Researchers have introduced many approaches for generating
FMs. These approaches define input requirements document,
generation processes, and output generated FM. Researchers
have used many forms of input documents. Some of them used
features set & UML-class diagram as input as in
ModelVars2SPL approach [2]. Others used Hasse diagram as
inputs in Equivalence Class Feature Diagram approach [3]. The
feature models obtained through these approaches may not
contain all the relationships and features covering all the parts
of an SPL process [2, 3, 4, 6, 10, 13]. In fact, the researchers
have developed automated generation methodologies, but the
FM generated through these methodologies does not include all
the features and relationships [2], particularly data and actor
features which are important in any SPL.

To solve this insufficiency in the FM generated by current
methodologies, this paper proposes an approach toward
automated FM generation from the requirements specification
documents: A UML [9 use case description (by semi-formal
language) and a UML class diagram translated into Java
language. The final FM contains traditional features, additional
features (actor and data), relationships between them, and
constraints.

An evaluating real case study (quality assurance at
Philadelphia University), was used to evaluate the feasibility of
the proposed approach, and obtained results showed its practical
benefits.

2 Background

2.1 Feature Models

FMs are language, used for system visual description, which

serves to determine the scope of the product line by the features
of its products. It represents the features that the product may
or may not have, by defining the features, relationships, and
constraints between them. A FM is hierarchy called feature tree
that contains the main features at the top of the tree and the
features extending from them. Features can be mandatory or
optional. They are linked together with relationships [3]: OR
relation (the main feature consists of one or more features
extended from it), XOR relation (the main feature consists of
only one of the features extended from it), Exclude relation (The
two features that found this relationship between them, cannot

152 IJCA, Vol. 30, No. 2, June 2023

be in the same product), Imply relation (the selected feature
requires another feature, to be configured properly). Some
researchers have represented some relationships (as exclude and
imply) outside the feature model. It was represented by textual
relationships called constraints, to reduce the complexity of
getting a network of relationships, difficult to understand and
maintain in FM [11].

2.2 Software Requirements Document

Software requirements document includes its elicited
functional and non-functional requirements, their evaluation,
formalization, and quality [12]. The elicitation allows gathering
all requirements. The evaluation allows selecting the alternative
requirements according to suitable criteria (priority, feasibility,
security, quality, cost, etc.). The formalization allows
specifying selected requirement using formal languages
(Algebraic, Z, SDL, Petri-nets, etc.) in order to facilitate their
automated translation into design and code. The quality allows
evaluation of the obtained software requirement according to
some quality norms and indicators [4].

3 An Application Case

The Quality Assurance (QA) agenda system at Philadelphia
University is used as an application case to illustrate and
evaluate the feasibility of the concepts presented in this paper.
This system manages 16 academic weeks, but in this study the
focus is on the seventh and twelfth weeks because they are the
most important and significant. The QA agenda requirements
are used as inputs to the proposed approach. These inputs are
specified with two UML models: use case (Figure 1a) Using
these inputs, an enhanced FM [14] is generated (Figure 2).
Traditional aspect of that FM includes four main features
student answers, student marks, control, and store checklist. All
of them are mandatory features in the system. It also contains
description and Class diagram (Figure 1b) translated into java.
an AND relationship that extends from some of the main

features, and a group of sub-features such as the “student
answers” feature, that extends from it (discuss the exam with
student, store a soft copy of the exam sheets, store marking
schema). The new specification of that FM includes data and
actor features, as well as inherent constraints.

4 Feature Model Generation Approach

4.1 Enhanced FM with Additional Features (Data and
Actor)

As consequence to current relevant research works analysis
[14], some enhancements to traditional FM are proposed (Figure
3). They are related to actors, data, and constraints over them.

4.2 Generation Process

The generation approach (Figure 4), is composed of three
main components: the inputs that are UML models, the
generation process, which goes through a set of steps for
extracting the target FM model from requirements, and finally
ends with the output, which is the generated FM.

4.3 The Req-To-FM Process

The Req-to-FM process (Figures 5a and 5b) is built on the
basis of extraction from UML models (use case description and
class diagram translated in java) of the target FM. It starts with
two parallel processes building partial FMs through two phase
extraction and building:

- UC-to-FM: It extracts traditional features, actors,
constraints, and inherent relationships from use case
description and builds up a UC-FM.

- CD-to-FML: It extracts data features, inherent
relationships, and constraints from class diagram in java
form and builds up a CD-FM

Figure 1a: QA agenda UML Use Case Diagram. This figure depicts the following:
- QA agenda actors with their relationships: QA officer, lecturer, head of department, database, and network.
- Three use cases classes: Students answers, students’ marks, control and store a checklist of completed tasks

IJCA, Vol. 30, No. 2, June 2023 153

The process Merge-FMs ends Req-to-FM by merging the UC-
FM with the CD-FM and producing the final target FM.

4.4 The UC-To-FM- Processes

This process extracts information from a UML use case
description (in a logic language) and build up a UC- (FM. The
extraction is carried out through four parallel processes:
Features Extraction, Relation and/or/xor) Extraction, Actor
Boundary Extraction, and Constraint Extraction (Figures 6a and
6b).

4.5 The CD-To-FM- Processes

This process extracts information from a UML class diagram
(converted into Java language) and build up a CD-FM. The
extraction is carried out through three parallel processes: Data
Features Extraction, Relation and/or/xor) Extraction, and
Constraints Extraction (Figures 7a and 7b).

5 Case Study

This section presents the feasibility study for the illustrative
example (discussed in Sections 3) by the application of the UC-
to-FM and CD-to-FM on a concrete business domain, which is
the QA assurance agenda at Philadelphia University.

The Figure 8a shows partial application of the process UC-to-
FM extraction phase. The outputs are the traditional part of the
FM: a set of main features (student answers, student marks,

control, store checklist for the completion of tasks a week), all
of them are mandatory, and a set of sub-features (discuss the
exam with student, store a soft copy of the exam sheets, …), and
a set of relationships over them represented by the AND
relationship.

The Figure 8b shows partial application of the process CD-to-
FM extraction phase. The outputs are: a set of features that are
divided into data and actor, and all the main features are
mandatory, and a set of relations between them represented by
the relationships (and, or, is-a).

After completing the components extraction step, the process
moves to the rest of the process steps (depicted in Figures 5a
and 5b). It ends with the FM depicted in Figure 2.

6 Comparison with Similar Works and Evaluation

Based on the current research in the field of FM generation,
the following criteria are selected to evaluate the proposed
approach and compare it with modern relevant studies.

(1) Improving the FM concepts to cover major aspects of
SPL (data, actors, …).

(2) Using UML like -Diagrams (UC, CD, ...) as inputs to the
generation approach.

(3) Formal definition of the FM generation approach.
(4) Completely automated generation approach.

In the study [2], the authors used a method to generate FMs
called ModelVars 2SPL, it generates FMs from UML models

Figure 1b: QA agenda UML Use Case Diagram. This figure depicts the following:
- Actor Classes: QA officer, lecturer, head of department, database, and network.
- Data Classes: Exam sheet, answer sheet, marking scheme, marking scheme discussion, and student marks report

154 IJCA, Vol. 30, No. 2, June 2023

Figure 3: Generated FM uses traditional and additional notations. Additional notations specify actors, data, and constraints over
them [14]. These constraints concern relationship between (function, data), (function, actor), (data, data), and (actor,
data)

Figure 2: Generated FM from use case (Figure 1a) and class diagram (Figure 1b) for QA agenda at Philadelphia
University. This FM was enhanced with additional features (data and actor), their relationships, and their
inherent constraints

CConstraints:

IJCA, Vol. 30, No. 2, June 2023 155

Figure 4: FM generation approach: The Req-to-FM process generates FM from UML Use and Class diagrams.

3.0 Merging UC-
FM with CD-FM

UML-Class
Diagram
with Java
Language

USE Case
Description
in Logic
Language

1.1 Extraction of the
UC-FM components

1.2 Construction of
the UC-FM

UC-FM

Traditional features
AND/OR/XOR relations
Actors Boundary
Constraints

UC-to-FM process Merge-FMs process

2.1 Extraction of
the CD-FM

2.2 Construction
of the CD-FM

CD-FM

FINAL FM

Extraction Phase Construction Phase Merging Phase

Additional features
AND/OR/XOR/IS-A relation
Constraints

CD-to-FM process

Figure 5a: The Req-to-FM process using UML notations

Req-to-FM
Feature model

Process Output

Requirements
documents

Inputs

- UML Use case description
template

- Class diagram translated
into Java code

Process Req-to-FM ()
{ parallel
 {UC-to-FM () // Building UC-FM

 CD-to-FM() // Building CD-FM
 }

 Marge-FMs () //Merging UC-FM with
CD-FM

}

Generated FM =

 UC-FM

 CD-FM

156 IJCA, Vol. 30, No. 2, June 2023

Include UC-to-FM (in UML Ucd, out FM Fm CD-to-FM (in Java Cdjava, out FM
Fmcd);

Process Req-to-FM (in UML UC-Description, CD-Java; out FM TargFM)
Begin

Parallel:
 {
 UC-to-FM (UC-Description, UC-FM);
 CD-to-FM (CD-Java, CD-FM);
 }
 TargFM Merge-FMs (UC-FM, CD-FM)
End Req-to-FM

Include Features-Extraction (in UC UC-Description, out Feature Traditional-Features)
Relation-and/or/xor-Extraction (in UC UC-Description, out Relation Relations) Actor-
Boundary-Extraction (in UC UC-Description, out Actor Actor-Boundary) Constraints-
Extraction (in UC UC-Description, out Constraint Constraints)

Process UC-to-FM (in UML UC-Description, out FM UC-FM);
 Feature Traditional-Feature; Relation Relations, Actor Actor-Boundary;
 Constraint Constraints
Begin
 Parallel:
 {
 Features-Extraction (UC-Description, Traditional-Features)
 Relation-and/or/xor-Extraction (UC-Description, Relations)
 Actor-Boundary-Extraction (UC-Description, Actor-Boundary)
 Constraints-Extraction (UC-Description, Constraints)
 }
UC-FM Construct-FM (Traditional-Feature; Relations, Actor-Boundary, Constraints)
End UC-to-FM

Figure 6b: The UC-to-FM process using algorithmic notations

Figure 5b: The Req-to-FM process using algorithmic notations

Figure 6a: The UC-to-FM process using UML notations

Constraints

Actor
Boundary

And/or/xor
relation

Traditional
features

ACTORS

USE CASE NAME /
PRECONDITIONS

3. Actor Boundary
Extraction

1. Features Extraction

.2 Relation (and/or/xor)
Extraction

4. Constraint (Textual
relationships) Extraction

UC Description
with Logic
Language

RELATION
MANAGEMENT

RELATION
MANAGEMENT

5. Construction of
UC-FM

UC=FM

IJCA, Vol. 30, No. 2, June 2023 157

and a set of enumerated features. New features may be
discovered during the generation of the FM, and features that
may encounter a problem during the generation process might
be identified. But this technique does not detect all feature
groups. Sometimes not disclosing all features can cause
problems during the development stage. The aim of generating
feature models is to identify all possible features for developing
a product.

In another study [3], the work was done to improve relations
from what was used as input. Hasse was a diagram used to
describe the concept of lattice associated with the formal
context. The equivalence class feature diagram technique was
used to generate FMs. But this technique does not detect all
feature groups.

In [4] the authors proposed a manual generation of FMs. This
process was divided into several stages, including identifying
features, groups of features, commonality, variability, and
ending with the generation of a FM. The researchers also
specified the type of input, which was in the form of an activity

diagram. This method is manual and it was recommended to be
automated.

The researchers, in [11], have written the CVL language,
which is used to represent a FM. It contains an Imply
relationship in two forms. The first one repeating the feature
and linking it to the feature that brings them together. The
second one represents it as constraint to avoid complexity and
the occurrence of a network that makes it difficult for the reader
to understand the model.

The comparison between what this study proposes and the
recent works mentioned above will be summarized as it follows :

(1) Improving the FM concepts to cover major aspects of
SPL (data, actors, ...)

All the previous works relied on generating the traditional
aspect of the feature model only. In this paper, core feature
model concepts are developed and enhanced to support more
SPL aspects. In fact, data and actor features were added with

Include Data-Features-Extraction (Java CD-Java, feature Additional-features)
 Relation-and/or/xor /is-a-Extraction (Java CD-Java, relation Additional-relationships)
 Constraints-Extraction (Java CD-Java, Constraint Additional-constraints)
Process CD-to-FM (in Java CD, out FM CD-FM);
 Feature Additional-Features; Relation Additional-relationships, Constraint Additional-constraints
Begin
 Parallel:
 {
 Data-Features-Extraction (CD-Java, Additional-features);
 Relation-and/or/xor /is-a-Extraction (CD-Java, Additional-relationships);
 Constraints-Extraction (CD-Java, Additional-constraints);
 }
 CD-FM Construct-FM (Additional-features, Additional-relationships, Additional-constraints);
End CD-to-FM

UML-Class
Diagram in
Java Language

Additional
features

CD-FM
And/or/xor / is-a
relation

3. Constraints (Textual
relationships) Extraction

1. Data Features
Extraction

2. Relation (and/or/xor
/is-a) Extraction

Classes

Relation between
classes

Attribute &
Relation Between
Classes

4. Construction
of CD-FM

Constraints

Figure 7a: The CD-to-FM process using UML notations

Figure 7b: The CD-to-FM process using algorithmic notations

158 IJCA, Vol. 30, No. 2, June 2023

Figure 8a: An Output of UC-to-FM extraction phase, applied on QA agenda at Philadelphia University

Figure 8b: An output of CD-to-FM extraction phase, applied on QA agenda at Philadelphia University

IJCA, Vol. 30, No. 2, June 2023 159

their inherent relationships.

(2) Using UML like -Diagrams (UC, CD, ...) as inputs to the

generation approach

Not all of the above works used UML like diagrams to represent
the requirements. In this paper, a use case description with a
logic-based language was used along with class diagram
translated into Java Language. The use of these diagrams
reduces ambiguity and lack in requirements; as clear and
understandable requirements help in the correct generation of
the feature model.

(3) Formal definition of the FM generation approach

All the above works used several methods to present their

work, but rare are the works that formalized their approach. In
this paper, the generation approach was formalized at all levels:
inputs using UML, the process using UML and algorithmic
notations, and the output with an enhanced FM formalism.

(4) Completely automated generation approach

A few of the previous works above provided automatic

generation for the traditional aspect of feature models, and the
rest of the workers provided manual feature generation with an
approach to generating. This paper presented a semi-automated
approach (without a completely operational tool) for FM
generation that starts from the input and ends with the target FM.
The inputs and the output were formally defined using
appropriated languages and tools, whereas the algorithms of the
generation process were specified.

7 Conclusion

According to the previously presented study on FM

generation to represent the commonalities and variabilities from
SPL, it was stated that the current methods only generate
traditional feature models and do not represent the whole
aspects of a system. The feature model generation methods do
not deal with the data and actor aspects, they only dealt with the
functional aspect of a system. In this work, it is proposed that
the inputs be represented by UML models. An approach has
been developed consisting of two parallel processes, the first
process consists of extraction of a UC-FM from use case
description, and the second process consists of extraction of CD-
FM from class diagrams. The approach ends with merging UC-
FM with CD-FM in a target FM. The proposed approach
feasibility was validated on a real business domain that is the
quality assurance in higher education limited to Philadelphia
University Quality Assurance Agenda system. A comparative
evaluation with the closest recent works, based on some
significant and usual criteria, was conducted. It worked out to
clarify the value of the proposed approach regarding some
relevant works. As future work, the approach could be fully
automated by providing an automated supporting tool. Other
input models could be investigated in order to identify the most

suitable for the generation process in terms of cost and quality.
The limit of the generated FM could be enlarged by rely
identifying the needed and optimal information to include.

References

[1] P. Arcaini, A. Gargantini, and M. Radavelli, “Achieving

Change Requirements of Feature Models by an
Evolutionary Approach,” J. Syst. Softw., 150: 64-76,
2019.

[2] W. K. G. Assunção, S. R. Vergilio, and R. E. Lopez-
Herrejon, “Automatic Extraction of Product Line
Architecture and Feature Models from UML Class
Diagram Variants,” Information and Software
Technology, 117:1-19, 2020.

[3] J. Carbonnel, M. Huchard, and C. Nebut, “Modelling
Equivalence Classes of Feature Models with Concept
Lattices to Assist their Extraction from Product
Descriptions,” J. Syst. Softw., 152:1-23, 2019.

[4] O. Komarudin, D. Adianto, and A. Azurat, “Modeling
Requirements of Multiple Single Products to Feature
Model,” Procedia Comput. Sci., 161:107-114, 2019.

[5] L. Li, Y. Zheng, M. Yang, J. Leng, Z. Cheng, Y. Xiem, P.
Jiang, and Y. Ma, “A Survey of Feature Modeling
Methods: Historical Evolution and New Development,”
Robot. Comput. Integr. Manuf., 61(101851):1-16,
September 2020.

[6] Z. Liu, N. Japkowicz, R. Wang, Y. Cai, D. Tang, and X.
Cai, “A Statistical Pattern based Feature Extraction
Method on System Call Traces for Anomaly Detection,”
Inf. Softw. Technol., 126:1-13, 2020.

[7] M. Marques, J. Simmonds, P. O. Rossel, and M. C.
Bastarrica, “Software Product Line Evolution: A
Systematic Literature Review,” Inf. Softw. Technol.,
105:190-208, January 2019.

[8] L. Montgomery, D. Fucci, A. Bouraffa, L. Scholz, and W.
Maalej, “Empirical Research on Requirements Quality: A
Systematic Mapping Study,” Requirements Engineering,
27(2):183-209, 2022.

[9] OMG, Unified Modeling Language 2.5.1, 2017
[10] D. Pantazis, P. Goodall, P. P. Conway, and A. A. West.

“An Automated Feature Extraction Method with
Application to Empirical Model Development from
Machining Power Data,” Mech. Syst. Signal Process.,
124:21-35, 2019.

[11] I. Reinhartz-Berger, K. Figl, and Ø. Haugen,
“Investigating Styles in Variability Modeling:
Hierarchical vs. Constrained Styles,” I nf. Softw. Technol.,
87:81-102, 2017, doi: 10.1016/j.infsof.2017.01.012.

[12] M. K. Sabariah, P. I. Santosa, and R. A. Ferdiana,
“Proposed User Requirements Document for Children’s
Learning Application,”, International Journal of
Advanced Computer Science and Applications, 11(9):317-
324. 2020.

[13] A. G. Salguero and M. Espinilla, “Ontology-based Feature
Generation to Improve Accuracy of Activity Recognition
in Smart Environments,” Comput. Electr. Eng., 68:1-13,

160 IJCA, Vol. 30, No. 2, June 2023

March 2018.
[14] T. Yousef, E. Nafar, S. Ghoul, L. Quraan. “Automatically

Generated Feature Model from Requirements: Toward an
Enhanced Formalism,” The 13th International Conference
on Information and Communication Systems
(ICICS2022), IEEE Xplorer, 2022

Ahlem Yousef holds a MSc in
Software Engineering from
Philadelphia University, Amman,
Jordan.

She is a member of the research
team in the Research Laboratory on
Bio-inspired Software Engineering.
Her research interest includes:
Requirements specification,

automated specifications generation, and requirements
traceability.

Said Ghoul holds a PhD in Software
Engineering and a Doctorate in
Science in Software Processes.

He is Full Professor of Software
Engineering at Philadelphia
University, Jordan and Chair of the
Research Laboratory on Bio-inspired
Software Engineering.

His research interest includes: Bio-
inspired Design and Modeling,
Variability aspects, and Self-adaptive

systems.

