
IJCA, Vol. 30, No. 2, June 2023 161

ISCA Copyright© 2023

Towards Automated Goal Model Generation
from UML Use Case and Swimlane Diagrams

Ahlem Yousef*, Said Ghoul*, and Mohammad Tayae*
Philadelphia University, Amman, Jordan

Abstract

The Goal Model of software is one of the important concepts

in the goal-based requirements engineering. It helps in
specifying the software goals and the relationships between
them. Several research works were conducted to generate Goal
Model of software from its requirements documents. However,
the generated Goal Models merge behavior and soft goals into a
single model unit. This merging leads to tangled and complex
generated Goal Models. Therefore, the maintenance of these
models is hard and costly. The work presented in this paper
proposes an approach splitting the generated Goal Model into
three separated concerns (aspects) models (behavior, soft, and
constraints) that facilitate its evolution and maintenance. The
proposed approach is semi-automated, taking UML use case and
Swimlane diagrams as inputs and generating a separated aspects
model GM as output. The separation of Goal Model aspects led
to adding new required information in input requirements
specification documents. The feasibility of the proposed
approach was validated on a concrete business case
(Philadelphia University Quality Assurance Agenda). Its
implementation was demonstrated through processes
programming with algorithms and UML. Its contribution was
demonstrated through its comparison with similar works.
According to the observed results, this approach could be
valuable in any goal-oriented requirements engineering
application.

Key Words: Goal model (GM), behavior goal, soft goal,
unified modeling language (UML), UML use case diagram,
UML swim lane diagram, goal model generation, goal model
maintenance, separation of concerns, aspects programming.

1 Introduction

Software requirements analysis is an approach that allows a
better understanding of the requirements collected from
stakeholders [3, 17, 19] as it is stated in requirements
engineering [12, 20, 22]. These requirements are often complex
and extensive [10].

One of the most important concepts in the software require-
ments analysis and specification is the Goal Model (GM)

* Research Laboratory on Bioinspired Software Engineering.
Email: Ahloom13@gmail.com, shgoul@philadelphia.edu.jo,
mtaye@philadelphia.edu.jo

[1, 4, 9, 11]. IT helps in the definition of a collection of software
goals as well as their relationships. It is one of the most
important topics in software requirements and specifications
analysis [5].

The approaches to generating the GMs differ. Some of them
adopted the question method [14] and some others used parsing
tree [21]. They also used different forms of requirements
documents (textual documents and UML diagrams). The
generated goal is modeled with the basic notations of GMs. All
the current approaches generate a one piece tangled model
merging soft and behavior goals [7, 8, 13, 14, 15, 18, 21, 24].
This tangling leads to problems in maintenance (bad quality and
high cost) [6, 8].

As a solution to the problem raised up by the one-piece
tangled GM, generated by the current approaches, this paper
proposes a semi-automated approach that generates a GM from
the requirements specification documents: UML use case and
Swimlane diagrams. The generated GM separates clearly the
aspects [16, 20] of behavior goals, soft goals, and the
relationships between them. So, the obtained GM is composed
of separated behavior GM, soft GM, and constraints that specify
the relationships between the two separated models. This
separation of aspects required the addition of some basic
information in the input UML use case and Swimlane.

2 Background

2.1 Goal

GMs are elements of requirements engineering that may also
be used more widely in business analysis. Related elements
include stakeholder analysis, context analysis, and scenarios [2]
among other business and technical areas. Actors’ goals are
visualized within the boundaries of the actor’s goals, tasks are
linked through links, and many dependencies such as quality
and resources can be represented [7]. GMs are based on the
following concepts and relationships between them: goal, task,
role, quality, resource, actor, and actor boundary. Some of these
concepts concern soft goals (such as: task, actor, actor boundary,
resource, quality, ...). Others concern behavior goals (such as:
goal).

A goal is the result toward which effort is directed to achieve
this very result or objective. Goals are most commonly
expressed as imperative sentences beginning with a verb (as in
the examples below). For example: “Ensure that only the

162 IJCA, Vol. 30, No. 2, June 2023

account owner can edit his account details”, “Allow admin to
manage all accounts’ privileges”.

2.2 Types of Goal

Goals are usually classified in different categories related to

their function, behavior, kind, or temporal characteristics:

- Functional / Non-functional: Functional goals express

services that a system has to deliver. All other goals are
non-functional including goals related to the “-ilities”
(suitability, reliability, usability, interoperability,
verifiability, ...).

- Behavioral / Developmental-quality: Behavioral goals
express what a system’s behavior is to be. These goals are
satisfied (or not) by what the system does when it runs.
Developmental quality goals express the process by which
a system is produced and evolved. These goals are
satisfied (or not) by the actions of the people responsible
for producing a system.

- Hard / soft: Some goals are either satisfied or not
satisfied, there is no in-between. Other goals cannot be
completely satisfied, but only satisfied to a degree; these
are called soft goals. A soft goal is satisfied if it is
achieved to a degree that is acceptable, with the
understanding that this may cover a wide range of relative
achievement, and that complete achievement is not
possible. If a soft goal is not satisfied, then it is denied.

- Achieve / Maintain / Avoid/ Optimize: An achieve goal
refers to a property that is not initially true, but that
becomes true, i.e., in terms of temporal logic:
CurrentCondition => eventually TargetCondition

A maintain goal refers to a property that starts out true and

stays that way, i.e., in terms of temporal logic:
CurrentCondition => TargetCondition

CurrentCondition => always TargetCondition unless

NewSituation

An avoid goal refers to a property that is not initially false,

but that becomes false, i.e., In terms of temporal logic:
CurrentCondition => not TargetCondition

An optimize goal refers to a soft property that is to be
satisfied.

2.3 Goal Relationships

Goals are related to each other by contribution relationships

(partial or complete). Achieving one goal may contribute to
achieving another. If the contributing goal is simpler or smaller
in scope than the one to which it contributes, the contributing
goal is called a sub-goal of the other. The contribution of the
sub-goal may be positive or negative (conflict of goals). In the
event of a conflict (negative contribution), the achievement of
the sub-goal interferes with the achievement of its super-goal.

Most popular sub-goal refinements are said to be AND-
refinement: if the satisfaction of all of the AND sub-goals is
sufficient to ensure the satisfaction of their super-goal. OR-
refinement: if satisfaction of any one of the OR sub-goals is
sufficient to ensure satisfaction of their super-goal.

3 An Application Case

For managing the Quality Assurance (QA) in its academic

programs, Philadelphia University uses a QA agenda, planning
its QA management through 16 weeks. The running example
used in this study for validating the feasibility of its proposed
process is limited to the 7th and 12th weeks because they are the
most significant ones. The requirements of the QA agenda are
the inputs to the proposed Goal Model generating process: Req-
to-GM process.

They are specified using UML use case (Figure 1a) and
Swimlane (Figure 1b) diagrams. Using these inputs, an
enhanced GM is built up splitting it into behavior goals with
their relationships, (2) soft goals with their inherent
relationships, and (3) constraints defining relationship between
behavior goals and soft goals. This splitting is directed by the
syntax shown in Figure 2. The final generated GM is depicted
in Figure 3.

4 Target Goal Model

4.1 Enhanced GM by Splitting it into Behavior Goals, Soft

Goals, and Constraints

As conclusion to current relevant research works analysis
[23], some enhancements to traditional GM are proposed
(Figure 2). They are related to GM maintenance levering by
splitting it into its three separated aspects: behavior and soft
goals and constraints between them. The target GM in Figure 3
is obtained by enhancing GM notations as it is shown in Figure
2.

4.2 GMs Generation Approach – Definitions

The proposed generation approach (Figure 4), is composed of
three main components: the inputs that are UML models (Use
case description, swimlane diagram), the generation process,
which goes through a set of steps for extracting the target GM
from requirements, and finally ends with the output, which is
the generated GM.

4.3 The Req-To-GM - Process

The Req-to-GM process (Figures 5a, and 5b) takes as inputs

requirements specification models (UML use case description
and Swimlane Diagram) and generates GM. It is divided into
two parallel processes:

o UC-to-GM (Extraction of behavior, soft, and constraints

GMs from use case description)
o SL-to-GM (Extraction of soft GM from Swimlane

IJCA, Vol. 30, No. 2, June 2023 163

diagram image).

Each process might do extraction of information, aggregating
them into intermediate GMs, and eventually merging the
intermediate GMs. In the extraction step, goals (soft, behavior),
relationships, quality attributes, and constraints are extracted
from the inputs. In the aggregation step, all the outputs from the
first phase are aggregated and the behavior, soft, and constraints
GMs are built.

Finally, in the merging step, the obtained GMs from the UC-
to-GM and SL-to-GM processes are merged into a final output
target GM.

4.3.1 Extraction from Use Case Specification. UC-to-GM.
This process is performed by 6 parallel processes s it is specified
in Figure 5c. The process of extracting from the use case
document is composed of six parallel sub-processes, which are
specified as follows:

Figure 1b: QA agenda system swimlane diagram

Figure 1a: QA agenda system use case model

164 IJCA, Vol. 30, No. 2, June 2023

Actor-Extracting: This process extracts actors by reading
primary and secondary actor from the use case description
(Figure 5d. The actor is represented in the soft goal part.

Actor Boundary Extracting reading the primary and
secondary actor helps identify all parts associated with it in the
use case description (Figure 5e). The extracted information is
represented in the soft part of the goal model.

Goal Extracting: This process extracts goals behavior from
reading the use case name in use case description (Figure 5f).
These goals are represented in the behavioral part of the model.

Task Extracting: this process reads the use case description
and the task component is obtained, and represented in the soft
part of the model (Figure 5g).

Relation (AND / IS-A) Extracting: The use case model
contains finite relationships (AND relation / IS-A), specified in
the Note attribute that are extracted to represent the
relationships between goals and between tasks and also between
the actors (Figure 5h).

OR Relation /Goal Type /Quality Extraction: This process
extracts OR Relation /Goal Type /Quality from note
(constraints) notations (Figure 5i).

Constraints Extraction: This process extracts Constraints
from note (constraints) notations (Figure 5j).

Extraction from swim: lane: This extraction is carried out
through SL-to-GM process which is performed by single

process:
Data Extraction (Figure 5k): This task extracts data from the

Swimlane as soft goals.

5 Case Study

The feasibility evaluation of the proposed approach was
validated by application of the processes Req-to-GM on QA
agenda system (paragraph 3). The Figure 6a shows the outputs
from the extraction process in UC-to-GM process: actors,
actor’s boundaries, goals, goals type, relationships between
goals, tasks, quality, and constraints. The Figure 6b depicts the
soft GM, generated by SL-to-GM process which extracts the
data artifacts from the swim lane. The final GM which is the
outputs of the Req-to-GM process is depicted in Figure 3.

6 Comparison with Similar Works and Evaluation

This section presents a comparison of the proposed approach
with some similar works according to the generating process, its
inputs and its outputs.

In the work [24], the input is a natural language document
which makes it complicated to process as there may be some
informal writing leading to lingual mistakes. It requires a
further processing to guess the relation between nouns and verbs

Constraints

 <list-of- constraints> -- relations between behavior and soft goals

(c) Constraint’s notations, defined in a pseudocode language

Figure 2: The enhanced target GM notations

(b) Soft goals notations(a) Behavior goals notations

IJCA, Vol. 30, No. 2, June 2023 165

(a) Extracted soft GM for QA agenda case

1.
exam

2.

3.

(b) Extracted behavior GM for QA agenda case

Figure 3: Final generated GM for the case study: QA agenda

(c) Extracted constraints GM for QA agenda case

166 IJCA, Vol. 30, No. 2, June 2023

Figure 5a: The Req-to-GM process using UML notations

Req-to GM Goal Model

Process Output

Requirements
documents

Inputs

Figure 4: GM generation approach: The Req-to-GM process generates GM from UML use and
swim lane diagrams

- UML Use case
 as description template

- Swim lane diagram
 as image

Process Req-to-GM ()
{ parallel

{UC-to-GM () // - Behavior GM
- Soft GM
- Constraints GM
From UC (1)

 SL-to-GM() // - Behavior GM

- Soft GM
- Constraints GM
From SL (2)

 }

 Marge-GMs () // Merged :
 - Behavior GMs (1 U 2)

- Soft GMs (1 U 2)
- Constraints GM (1 U 2)
From UC & SL (3)

}

Semi-automated
Generated GM =

{Behavior GM (3)}
 U
{Soft GM (3)}
 U
{Constraints GM (3)}

 Data
 Swim lane

Merging PhaseAggregation PhaseExtraction Phase

UC- GM

Constraints

Relations

Tasks

Goal

Actor boundary

Actors

 Use case

5.0 AND/ ISA
Extracting

1.0 Actor
Extracting

2.0 Actor
Boundary

4.0 Task
Extracting

3.0 Goal
Extracting

6.0 Constraint
goal type/OR/
quality
Extracting

7.0 Aggregation 8.0 Merging

1.0 Data Extracting

UC-to-GM process

UC-to-GM process

IJCA, Vol. 30, No. 2, June 2023 167

Figure 5c: The UC-to-Gm process specification using algorithmic notations

Include goal, framework, actor, task, relation, constraint //ADT
Actor-Extracting() ,Actor-Boundary-Extracting(); Goal-Extracting(), Task-Extracting(), Relation-

and/isa-Extraction(), Constraints-Extraction(); //functions
Process UC-to-GM (in framework UC-Description, out goal-model Goal-Model-Elemts)
 actor Actors, Actor-Boundary; goal Goals; task Tasks; relation Relations; constraint Constraints;
Begin
 Parallel
 {
 Actor-Extracting (UC-Description, Actors)
 Actor-Boundary-Extracting (UC-Description, Actor-Boundary)
 Goal-Extracting (UC-Description, Goals)
 Task-Extracting (UC-Description, Tasks)
 Relation-and/isa-Extraction (UC-Description, Relations)
 Constraints-Extraction (UC-Description, Constraints)
 }
 Goal-Model-Elemts {Actors, Actor-Boundary, Goals, Tasks, Relations, Constraints)
End UC-to-GM

Include goal-model, framework, image //ADT
UC-to-GM (), Aggregation (), SL-to=GM (), _U_;// functions

Process Req-to-GM (in framework UC-Description, in image SL-image, out goal-model GM)
 goal-model Goal-Model-Elemts, Behavior-GM, Constraints-GM; GMUC, GMSL;
Begin

Parallel
 {

(//UC-to-GM process
UC-to-GM (UC-Description, Goal-Model-Elemts)
GMUC Aggregation (Goal-Model-Elemts, Behavior-GM) U

 Aggregation (Goal-Model-Elemts, Soft-GM) U
 Aggregation (Goal-Model-Elemts, Constraints-GM))
)
 (//SL-to-GM process
 SL-to-GM (SL-Image, Goal-Model-Elemts)
 GMSL Aggregation (Goal-Model-Elemts, Soft-GM)
)
 }// end parallel

// merging
 GM GMUC U GMSL;
 }
End Req-to-GM

Figure 5b: The Req-to-GM process using algorithmic notations

168 IJCA, Vol. 30, No. 2, June 2023

Include framework, actor, //ADT
Read(), Extract() //functions

Process Actor-Extracting (in framework UC-Description, out actor Actors)
 actor Actors, Primary-actors, Secondary-actors
Begin
 Read (UC-Description.Actors)

Actors Extract (Primary-actors) U Extract (Secondary-actors)
End Actor-Extracting

Include framework, actor //ADT
Read(), Extract-Boundary() //functions

Process Actor-Boundary-Extracting (in framework UC-Description, out actor Actor-
boundary)

Begin
Read (UC-Description.Primary-actors, UC-Description.Secondary-actors)
Actors-boundary Extract-Boundary (Primary-actors U Secondary-actors)

End Actor-Boundary-Extraction

Include framework, goal //ADT
 Read(), Extract-Goal() //functions

Process Goal-Extracting (in framework UC-Description, out goal Goals)
Begin

Read (UC-Description.Use cases)
Goals Extract-Goal (Use cases)

End Goal-Extracting

Include framework, task //ADT
 Read(), Extract-task() //functions

Process Task-Extracting (in framework UC-Description, out task Tasks)
Begin
 Read (UC-Description.Use cases)
 Tasks Extract-task (Use cases)
End Task-Extracting

Figure 5g: The task-extracting process specification using algorithmic notations

Figure 5d: The actor-extracting process specification using algorithmic notations

Figure 5e: The actor-boundary-extracting process specification using algorithmic notations

Figure 5f: The Goal-Extracting process specification using algorithmic notations

IJCA, Vol. 30, No. 2, June 2023 169

Include framework, relation //ADT
Read(), Extract-Relation () //functions

Process Relation-and/Isa-Extraction (in framework UC-Description, out relation
Relations)

Begin
Read (UC-Description. Note)

 Relations Extract-Relation (relation And) U Extract-Relation (relation Isa)
End Relation-and/Isa-Extraction

Include framework, attribute //ADT
 Read(), Extract-Attributes () //functions

Process ORRelation-GoalType-Quality-Extraction (in framework UC-Description, out attribute
ORTypeQuality)

Begin
 Read (UC-Description. Note)
 ORTypeQuality Extract-Attributes (OR, GoalType, Quality)
End ORRelation-GoalType-Quality-Extraction

Include framework, relation //ADT
 Read(), Extract-Constraints () //functions

Process Constraints-Extraction (in framework UC-Description, out constraint Constraints)
Begin
 Read (UC-Description. Note)
 Constraints Extract-Constraints (Note)

End Constraints-Extraction

Include image, data //ADT
 Scan(), Data-Pattern-Match () //functions

Process Data-Extraction (in image SL-Image, out data Data)
Begin
 Scan (SL-Image)
 Data Data-Pattern-Match (SL-Image)
End Constraints-Extraction

Figure 5k: The Data-Extraction process specification using algorithmic notations

Figure 5h: The relation (AND / IS-A)-extracting process specification using algorithmic notations

Figure 5i: The ORRelation-GoalType-Quality-Extraction process specification using algorithmic notations

Figure 5j: The constraints-extraction process specification using algorithmic notations

170 IJCA, Vol. 30, No. 2, June 2023

Figure 6a: Generated output by the process UC-to-GM for the QA agenda system

Figure 6b: Generated output by the process SLC-to-GM for the QA agenda system

IJCA, Vol. 30, No. 2, June 2023 171

to finally extract the main goals. Consequently, it takes a
considerable time. They do not take into account various types
of goals and their automatically generated model was only a
single unit.

In [14], the authors used a semi-automatic method that relies
on a tool that enables the analyst to ask questions and receive
answers, and through these answers, goals and relationships can
be determined. However, they have noticed that there is a
weakness in this method as it defines the relationships between
the objectives as “And relationship”. Thus, this method as in
the previous one takes time for processing natural language
phrases but it’s simpler. On the other hand, extracted goals were
without types, and the generated models were large single units.

Through [21], again the authors have dealt with the
requirements document directly (NLP). Thus, generating a
parsing tree through which the analyst can determine the goals
then draw the goal model. The intentional tree is often complex
and difficult to understand. Finally, there is no distinction
between target types.

In [7], once again, entries are written in the natural language.
The pipeline technology is used to deal with language keys and
the NLP is used to analyze sentences to define goals and
relationships. The generated model is based on heuristics which
may not generate the optimal model. Their work can’t identify
the (Or) relation but only the (And).

As a conclusion, the above-mentioned works are NLP-based,
they do not take into consideration slicing the generated GMs
on behavioral, soft, and constraints aspects leading to difficulty
in understanding and maintaining the generated models. This
paper proposes a solution to this insufficiency by providing a
target cleaned GM separating behavior, soft, and constraints
goals, which necessitated addition of some information in the
input UML diagrams. The application of the generation
process, Req-to-GM, on a real application case revealed its
feasibility and effectiveness.

7 Conclusion

The study of similar works revealed that the current methods

only generate the basic goal models, which are usually huge,
complex containing a lot of goals, tasks and other components.
It has been observed that the generation methodologies are not
formalized which leads to misunderstanding. Therefore,
automated generation methodologies and their input and output
remain challenging and need enhancements. This paper
proposes the inputs specified semi-formally by UML models.
The goal is represented by the use case in first level diagram,
and the tasks by the use case in the other levels of the use case
diagram. The notes help in representing the rest of the
requirements of the components and parts of the goal model (the
type of the goal and relationships), it is possible through the
swim lanes diagram to represent the data (resources). A formal
methodology was developed consisting of two parallel
processes, the first process performing extraction from use case
description, and the second process performing extraction from
swim lane diagram image. The methodology consists of three
steps: the extraction, the aggregation, and the merging the

proposed methodology feasibility was validated on a real
business domain running example. The comparative evaluation
with the closest recent works led to clarify the conceptual and
practical value of the proposed methodology. This study used
UML specification diagrams as input (use case description and
swim lane diagram). It could be valuable, in the future, to try
other specification models and to compare between the obtained
results. The variability and meta modeling of input, process,
and output is an important issue.

References
[1] S. Abrahão, E. Insfran, F. González-Ladrón-de-Guevara,

M. Fernández-Diego, C. Cano-Genoves, and R. Pereira de
Oliveira. “Assessing the Effectiveness of Goal-Oriented
Modeling Languages: A Family of Experiments,” Inf.
Softw. Technol., 116:1-24, 2019.

[2] I. Alexander and L. Beus-Dukic, Discovering
Requirements: How to Specify Products and Services,
John Wiley & Sons, 2009

[3] Software
Requirements and Conceptual Models: A Systematic
Literature Review,” Eng. Sci. Technol. an Int. J., 24(1):71-
82, 2021

[4] M. B. Duran and G. Mussbacher, Reusability in Goal
Modeling: A Systematic Literature Review, Information
and Software Techonology, 110:156-173, 2019.

[5] I. A. ElSayed, Z. Ezz, and E. Nasr, “Goal Modeling
Techniques in Requirements Engineering: A Systematic
Literature Review,” Journal of Computer Science, Science
Publications, 13(9):430-439, 2017.

[6] V. Etemadi, O. Bushehrian, and G. Robles, “Task
Assignment to Counter the Effect of Developer Turnover
in Software Maintenance: A nowledge Diffusion
Model,” Inf. Softw. Technol., 143:106786, 2022.

[7] T. Gunes and F. B. Aydemir. “Automated Goal Model
Extraction from User Stories Using NLP”, Proc. IEEE Int.
Conf. Requir. Eng., 2020:382-387,August 2020.

[8] C. Gupta, P. Inácio, and M. Freire, “Improving Software
Maintenance with Improved Bug Triaging,” Journal of
King Saud University - Computer and Information
Sciences, Part A, 34(10):8757-8764, 2022,

[9] J. Horkoff, N. A. Maiden, and D. Asboth, “Creative Goal
Modeling for Innovative Requirements,” Inf. Softw.
Technol., 106:85-100, 2019.

[10]
and A. Rausch, “Model-Based Requirement Engineering
to Support Development of Complex Systems,” Procedia
CIRP, 84:239-244, 2019.

[11] , “Tools for Logging
and Analyzing Goal Dependency Modeling,” Procedia
Comput. Sci., 192:1639-1648, 2021.

[12] ss, J. Horkoff, G. Liebel, and F. G. de
Oliveira Neto, “Requirements Engineering Challenges
and Practices in Large-Scale Agile System Development,”
J. Syst. Softw., 172:8757-8764, 2021.

[13] Y. Lai, A. Gupta, and Y. Zhang, “Goal-Embedded Dual
Hierarchical Model for Task-Oriented Dialogue

172 IJCA, Vol. 30, No. 2, June 2023

Generation,” Proceedings of the 23rd Conference on
Computational Natural Language Learning, pp.798-81,
2019

[14] H. Nakagawa, H. Shimada, and T. Tsuchiya, “Interactive
Goal Model Construction Based on a Flow of Questions,”
Transactions on Information and Systems, 103(6):1309-
1318, 2020.

[15] A. Pozanco, S. Fern, and D. Borrajo, “Learning-Driven
Goal Generation,” AI Communications, 3(2):137-150,
2018.

[16]
Oriented Programs: Issues and Perspective,” J. Electr.
Syst. Inf. Technol., 5(3):562-575, 2018.

[17] M. R. R. Ramesh and C. S. Reddy, “Metrics for Software
Requirements Specification Quality Quantification,”
Comput. Electr. Eng., 96:107445, 2021.

[18]
Generation,” 33rd Conference on Neural Information
Processing Systems (NeurIPS 2019), 2019.

[19] M. Sadiq and V. S. Devi. “Fuzzy-Soft Set Approach for
Ranking the Functional Requirements of Software,”
Expert Syst. Appl., 193:11-45, 2021.

[20] V. Santos, H. Mamede, C. Silveira, and L. Reis,
“Methodology for Introducing Creativity in Requirements
Engineering,” Procedia Comput. Sci., 196:27-35, 2022.

[21] H. Shimada, H. Nakagawa, and T. Tsuchiya,
“Constructing a Goal Model from Requirements
Descriptions Based on Extraction Rules,” Commun.
Comput. Inf. Sci., 809(no. June):175-188, 2019

[22] L. Yin, Q. Sun, D. Tang, Y. Xu, and L. Shao,
“Requirement-Driven Engineering Change Management
in Product Design,” Comput. Ind. Eng., 168:1-13, 2022.

[23] A. Yousef, S. Ghoul, and M. Taye, “Automatically
Generated Goal Model from Requirements: Toward an
Enhanced Formalism,” Proceedings of ICSIC2022, pp. 1-
6, 2022.

[24] C. Zhang Mentor, A. M. Grubb, and M. Chechik, “Toward
Automatic Generation of Goal Models using Natural
Language Processing,” 1:1-6, 2019, [Online], Available:
https://www.graphviz.org.

Ahlem Yousef holds a MSc in
Software Engineering from
Philadelphia University, Amman,
Jordan.
 She is a member of the research
team in the Research Laboratory on
Bio-inspired Software Engineering.
Her research interest includes:
requirements specification,
automated specifications generation,
and requirements traceability.

Said Ghoul holds a PhD in Software
Engineering and a Doctorate es
Science in Software Processes.
 He is Full Professor of Software
Engineering at Philadelphia
University, Jordan and Chair of the
Research Laboratory on Bio-inspired
Software Engineering.
 His research interest includes: Bio-

inspired Design and Modeling, Variability aspects, and Self-
adaptive systems.

Mohammad Mustafa Taye is an
Assistant Professor in Software
Engineering department at
Philadelphia University, Amman,
Jordan. He received his Ph.D. degree
in Computer Science from De

2009, for his dissertation on
“Ontology Alignment Mechanisms
for Improving Web-based Searching”.

He also holds MSc. degrees in Computer Science from Amman
Arab University for Graduate Study, Amman, Jordan in 2004.
Also, holds a bachelor’s degree in Computer Science from Irbid
National University, Irbid, Jordan, in 2002. Mohammad has
been with Philadelphia University since 2009. His research
interests include semantic web, ontology, ontologies alignment
and matching, ontology languages, artificial intelligence, web
service, software requirement, and network.

