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Abstract 
 
Previous studies have examined the effects of 

hyperparameters on random forests, but little research has been 
done in the context of fall detection.  To address this gap, our 
study aimed to examine how hyperparameters influence the 
performance and training time of a random forest algorithm 
used in fall detection systems.  Our findings highlighted the 
best range of values for each hyperparameter to achieve high 
performance.  Moreover, we discovered that certain 
combinations of hyperparameters could either enhance or 
reduce the random forest’s performance compared to the 
default settings.  To conduct these investigations, we 
performed experiments using two datasets:  MobiAct v2.0 and 
UP-Fall, which were collected from accelerometers in 
smartphones and wearables.  These insights can contribute to 
the optimization of hyperparameters for more effective fall 
detection systems. 
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1 Introduction 

Fall detection systems play a crucial role in ensuring the 
well-being and health of older adults and individuals with 
mobility impairments.  These systems are designed to quickly 
identify falls and notify caregivers or emergency responders, 
allowing for prompt medical attention and reducing the risk of 
harm or fatality.  However, current fall detection methods have 
drawbacks, such as low accuracy and high false alarm rates, 
which affect their reliability.  Thus, it is vital to develop and 
improve fall detection systems to advance human healthcare. 

Enhancing the accuracy, sensitivity, specificity, and 
reliability of fall detection systems is a primary goal in 
preventing or mitigating the negative consequences of falls.  
Various machine learning algorithms, such as J48, Logistic 
Regression (LR), K-Nearest Neighbor (kNN), Support Vector 
Machine (SVM), Decision Tree (DT), Naïve Bayes (NB), and 
Random Forest (RF), have been utilized to classify different 
human activities, including falls.  Studies have shown that RF 
outperforms other algorithms in fall detection using the 
MobiAct v2.0 and UP-Fall datasets [5, 10-11, 13].  However, 
the RF algorithm’s performance heavily relies on the selection 
of hyperparameters [7, 9, 14-15], which poses a significant 
challenge. 

The random forest algorithm is a general classification 
method that uses hyperparameters to adjust or optimize the loss 
function.  These hyperparameters impact both the model’s speed 
and accuracy, making it crucial to find the optimal values [8, 
26].  However, the optimal hyperparameter values are not  
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universal and depend on the specific problem and data.  The 
influence of hyperparameters on random forest performance, 
particularly for human daily activity data crucial for fall 
detection systems, has not been extensively studied and requires 
further research. 

This study determined the optimal range for each 
hyperparameter of the random forest algorithm to achieve high 
performance.  The results also revealed that combining 
adjustments of min_samples_leaf and min_samples_split 
hyperparameters could decrease the random forest’s 
performance.  The hyperparameters max_depth, NumTree, and 
max_features had the most significant impact on performance 
and model-building time.  Combining adjustments of NumTree 
and max_features, or combining max_depth with NumTree and 
max_features, resulted in the best performance.   These findings 
have practical implications for constructing optimal models for 
fall detection systems. 

The rest of this paper is structured as follows: Section 2 
reviews related work and provides an analysis and summary of 
studies on hyperparameter tuning for random forests.  Section 3 
describes our research's evaluation methods, including the 
research process, the dataset used, and the implementation of the 
random forest algorithm with adjusted hyperparameters.  
Section 4 presents our experimental results on the effect of 
hyperparameters on the random forest algorithm’'s performance 
and provides an interpretation of these results.  Finally, the 
conclusions section summarizes our main findings, discusses 
their implications, suggests directions for future research, 
highlights study limitations, and proposes areas for further 
investigation. 

 
2 Related Works 

 
Recently, random forest algorithms have gained widespread 

use in machine learning systems due to their high accuracy and 
robustness against interference.  Several studies have proposed 
solutions to enhance the performance of random forests by 
optimizing their hyperparameters.  For instance, Philipp Probst 
et al. [15] surveyed the impact of hyperparameters on predictive 
performance in the field of credit risk.  The research was divided 
into two parts.  The first section provided an overview of the 
adjustment strategies.  Later, the author team utilized the 
tuneRanger R package to automate the tuning of random forests 
with MBO (Model-Based Optimization) to demonstrate the 
validity of applying one of these strategies.  The benchmark 
research was conducted on datasets from OpenML and 
downloaded through the OpenML R package.  The authors 
concluded that the mtry parameter had the most impact on 
performance.  Finally, they recommended using a high number 
of trees and SMBO (Sequential Model-Based Optimization) to 
simultaneously tune the mtry parameters, sample size, and node 
size to enhance the performance of the random forest algorithm. 

Kavita M Kelkar et al. [9] proposed an effective learning 
system based on the random forest algorithm to detect learners’ 
emotional states.  This research proposed analyzing 
hyperparameters such as n_estimators, max_depth, 
min_samples_split, min_samples_leaf, and criterion to improve 

the system’s performance.  However, their paper did not provide 
a method for investigating the influence of hyperparameters.  
The experimental results showed that the optimal value for the 
hyperparameter max_leaf_nodes was 0, which gave the best 
Kappa score.  Additionally, max_features did not affect the 
accuracy or Kappa value, while a max_depth > 10 provided 
more accurate results.  Of the hyperparameters surveyed, 
n_estimators were the most important, and their value could 
range from 25 to 30 without affecting accuracy or Kappa values. 

The research by Ningyuan Zhu et al. [27] proposed a random 
forest-based intrusion detection model for application in electric 
industrial control systems.  The authors also introduced an 
improved mesh search algorithm (IGSA) to optimize the 
hyperparameters of the random forest model and improve its 
efficiency and accuracy.  The research adjusted the seven 
hyperparameters of the random forest model in descending 
order of preference, including max_depth, min_samples_leaf, 
min_samples_split, criterion, n_estimators, bootstrap, and 
max_features.  The optimization results revealed that the 
optimal values for the hyperparameters were max_depth = 24, 
min_samples_leaf = 1, min_samples_split = 2, criterion = gini, 
n_estimators = 240, bootstrap = default, and max_features = 9.  
The test results demonstrated that the intrusion detection 
method based on hyperparameter optimization achieved higher 
accuracy, resilience, F1 score, and ROC-AUC score than other 
methods. 

Bernard et al. [1] recommend using the value mtry = sqrt(p) 
as it provides a reasonable error rate.  They emphasize that the 
number of predictors influences the optimal value of mtry.  
When many predictors are involved, mtry should set small to 
both the most and least influential variables are a selection for 
separation.  It may increase relevance but potentially reduce 
performance.  The computation time of the model is devoted to 
the selected separable variables, so the computation time 
decreases linearly with decreasing mtry values, similar to the 
research of author Wright et al. [25].  Conversely, setting mtry 
too high may exclude less influential variables from 
contributing to the prediction, as more influential variables are 
preferred for separation, inadvertently “blurring” variables of 
less influence. 

Probst et al. [16] proposed a general structural framework to 
evaluate the tunability of hyperparameters in algorithms, 
including Random Forest.  They presented this approach 
through an application to 38 datasets.  The results showed that 
the mtry parameter had the most influence on the AUC index, 
followed by the sample size, while the node size had less effect.  
Hyperparameter tuning was a crucial step, as the results showed 
that the hyperparameter-tuned random forest model had higher 
prediction accuracy than the default one.  Besides, the 
performance of default hyperparameters was often inconsistent. 

In general, authors in each field have their conclusions about 
how hyperparameters affect the performance of random forests.  
Increasing the number of trees has improved classification 
accuracy [17, 19], while some studies suggest that increasing the 
maximum depth can lead to overfitting.  The computation time 
of the model increases with the number of trees, and with a 
smaller number of trees, the computation time will be faster.  
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However, they did recommend using a large enough number of 
trees to ensure a stable error rate.  Some studies indicate that the 
best performance of random forests is typically achieved with 
100 trees [6, 17], while Boehmke and Greenwell [2, Ch. 11] 
recommend selecting ten times the number of trees as the 
number of features of the dataset for forest construction.  Out-
of-bag error curves increase with the number of trees and can be 
used to test algorithm convergence [17].  Research by P. 
Contreras et al. [6] indicated that numTree had the most 
influence on model performance, particularly in the value range 
of 0 to 100, which is consistent with the research by Probst et al. 
[16].  Therefore, numTree tuning is a straightforward method to 
achieve optimal model performance. 

Based on a search on Google Scholar, we learned about 
related work on hyperparameter tuning for random forest 
algorithms.  However, we have not found studies on this topic 
in the range of human daily activity recognition, especially in 
fall detection systems.  Therefore, we conducted a survey and 
evaluated the impact of hyperparameters on the performance of 
the random forest algorithm using accelerometer data for fall 
detection systems. 

 
3 Evaluation Methods 

 
3.1 Evaluation Process 

 
In this article, the feature extraction and random forest 

algorithms are built based on the Java language using the Weka 
library version 3.9.6.  Figure 1 illustrates the experimental 
procedure for evaluating each hyperparameter and combination 
of hyperparameters in the random forest. 

First, two raw data sets, MobiAct v2.0 and UP-Fall, were 
prepared for the experiment.  The training dataset was created 
by segmenting the raw data into windows of 256 samples with 
a 50% overlap, applying preprocessing techniques to the 
segmented data, and extracting 44 features [11].  Next, we split 
the dataset into a training set (80%) and a test set (20%).  We 
independently selected the test set to represent the overall 
dataset. 

We conducted hyperparameter selection by surveying each 
hyperparameter individually to assess its influence on the 
performance of the random forest model.  Afterward, we 
examined combinations of two, three, four, and five  
hyperparameters to determine the best and worst combinations. 

Finally, we analyzed the results to evaluate and draw 
conclusions regarding the impact of hyperparameters and their 
combinations on the performance and training time of the 
random forest model.  We utilized the accuracy and F1-score 
measures to estimate the performance of the random forest.  
Accuracy and F1-score are widely recognized as performance 
measures of efficient models by many studies.  

Accuracy (Acc) was defined as the ratio of quantity correctly 
classified instances to the total quantity instances in the dataset.  
It is a simple and popular metric for evaluating the efficiency of 
classification algorithms.  This measure has the following 
definition: 

 

Accuracy =
TP+TN

 TP+TN+FP+FN
 (1)

where TP, TN, FP, and FN are symbols used in the classification 
problem and evaluate the accuracy of a classification algorithm, 
specifically: 

TP (True Positive) represents the amount of data that actually 
belongs to a class and the algorithm correctly predicts it to be 
that class. 

TN (True Negative) represents the amount of data that 
actually does not belong to a class and the algorithm correctly 
predicts it to not belong to that class. 

FP (False Positive) represents the amount of data that actually 
does not belong to a class, but the algorithm predicts it does. 

FN (False Negative) represents the amount of data that 
actually belongs to a class, but the algorithm predicts it does not 
belong to that class. 

F1-score is a measure of the efficiency of a classification 
algorithm.  It combines the precision and recall of the data 
classes in a classification model.  Formally, accuracy has the 
following definition: 

 

F1-core = 2*
(Precision* Sensitivity)

(Precision+Sensitivity)
(2) 

where Precision is the ratio between the TP and the (TP + FP), 
and Recall is the ratio between the TP and (TP + FN). 

The F1-score ranges from 0 to 1, with a higher value 
indicating a better classification model.  It is used in binary 
classification problems where the balance between precision 
and recall is crucial. 

 
 

Figure 1:  Hyperparameter evaluation process of random forest 
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3.2 Experimental Dataset 
 

To evaluate the impact of hyperparameters, we conducted 
experiments using two commonly used datasets in human 
activity recognition and fall detection, namely MobiAct v2.0 
[23] and UP-Fall detection [13].  These datasets are used widely 
in related research to action recognition and fall detection due 
to their large size and popularity.  What sets these datasets apart 
is the diversity of the number of actions, volunteers, and 
collection methods.  The MobiAct v2.0 dataset was collected 
using sensors on smartphones, whereas the UP-Fall dataset 
utilized wearable sensors for collection. 

The MobiAct v2.0 dataset [23] was collected from the 
accelerometer, gyroscope, and orientation sensor of the 
Samsung Galaxy S3 smartphone with a sampling frequency of 
around 85 Hz for all activities.  This dataset has 16 actions, of 
which 12 were daily activities (ADLs) and four fall behaviors, 
collected from 66 volunteers.  The sampling of fall behaviors 
was done three times for action, with each sample lasting 10 
seconds.  Standing and walking activities were sampled only 
once for 5 minutes.  Other daily activities have sampling times 
ranging from six seconds to 30 seconds, depending on the 
action.  The sample rate of fall behaviors accounts for only about 
8% of the total data collected from smartphone accelerometers.  
We only use the data collected from the accelerometer in this 
dataset for our research. 

For the UP-Fall dataset [13], Martínez-Villaseñor and 
colleagues used five Mbientlab MetaSensor wearable sensors to 
collect raw data from the 3-axis accelerometer and gyroscope.  
They also used a NeuroSky MindWave headset to measure 
brainwave signals in the forehead, installed six infrared sensors 
as a grid 400mm above the lab floor to measure changes in 
actions, and positioned two Microsoft LifeCam Cinema 
cameras 1820 mm above the floor to collect images of the 
subject from the front and side.  All types of sensors work 
simultaneously to collect data for each type of action.  The 
standardized sampling frequency for all samples is 100 Hz.  In 
this research, we only used data collected from the 3-axis 
accelerometer of the IMU device placed inside the right pocket 
of the volunteer.  This part of the data includes 11 types of 
actions collected, of which the number of samples for five 
falling behaviors accounts for nearly 9% of the dataset. 

The owners and authors of both datasets have permitted us to 
use them in community support and educational studies.  These 
datasets have been reviewed and approved by experts in human 
research ethics. 

 
3.3 Processing 

 
The preprocessing steps applied to the raw dataset include 

data cleaning, noise filtering, normalization, and extraction of 
matching features.  The data cleaning step removes missing or 
corrupted data, normalizes the data to keep it in a consistent 
range, and extracts feature that identify characteristics suitable 
for classifying human actions and behaviors. 

The dataset used in this research includes 44 features 
extracted from MobiAct v2.0 and UP-Fall.  We used the same 

preprocessing and feature extraction methods as in previous 
studies [11], and details of these methods have been presented 
in previous publications [11]. 

For experimentation, we segmented the data into sliding 
window sizes of 256 samples with an overlap rate of 50%, 
extracting 44 features [11].  However, the MobiAct v2.0 dataset 
was so large that using all the data for experimentation would 
have been time-consuming.  Therefore, to shorten the 
experimental time, we used only 1/3 of the sample number of 
each action in the dataset to build the experiment data.  The total 
sample quantity of the MobiAct v2.0 and UP-Fall datasets were 
used for experimental 15,776 and 2,025, respectively. 

 
3.4 Random Forest Algorithm  

 
Random Forest (RF) is a supervised learning algorithm [3] 

that uses multiple classifiers instead of a single one to achieve 
higher accuracy in predicting future cases.  It is an extended 
version of a decision tree that uses two random steps to generate 
highly diverse sub-datasets, reducing variance error.  Unlike 
traditional decision trees, each Classification and Regression 
Tree (CART) [4] in RF can only select a random subset of 
features, making the trees in the model more diverse.  RF is 
particularly effective in handling datasets with specific issues 
[24] and can help resolve complex interactions between input 
features, enabling good over-model matching [22].  
Additionally, RF can estimate the importance of each feature in 
the feature space [12].  Each decision tree in RF does not use all 
the training data or all the attributes of the data to build the tree.  
The information from the trees complements each other, leading 
to a low-bias and low-variance model with good prediction 
results and fast training time. 

 
3.5 Hyperparameters in Random Forest  

 
The random forest algorithm uses hyperparameters to control 

the learning process and time, which has a significant impact on 
its performance.  Understanding the function of each 
hyperparameter is crucial to optimize the algorithm.  These 
hyperparameters include the maximum depth of a tree, the 
number of trees in the forest, the maximum number of features 
for node splitting, the minimum number of samples in leaf 
nodes, the minimum number of samples for node separation, 
and the data percentage used for tree construction [3, 15].  
Additionally, another set of hyperparameters focuses on 
dividing the nodes within each tree. 

Failure to find the optimal hyperparameter value can reduce 
the performance of the RF algorithm.  However, adjusting the 
hyperparameters for each dataset can improve classification 
performance or speed up the model’s predictive ability [15].  
This article investigates identifying the hyperparameter value 
range that yields the best RF performance and predictability.  
Based on relevant studies, we conclude that hyperparameters 
significantly affect the RF classification performance and time 
in various ways, such as: 

 
(1) max_depth (M ) is a hyperparameter that determines the 
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maximum depth at which a tree in a forest can grow.  It is an 
essential hyperparameter that considerably impacts the model's 
accuracy [15, 21].  Increasing the tree’s depth improves the 
model’s accuracy by providing more information and data 
division.  However, setting M too high will complicate the 
tree’s structure and result in an overfit to the data.  Therefore, 
selecting an appropriate M value is crucial in optimizing the 
model. 

(2) num_tree (N ) is the number of decision trees (DT) 
utilized in the forest, and it is correlative with the training 
dataset's size.  The number of trees should be sufficient to 
stabilize the error rate.  The higher the number of trees, the 
greater the classification accuracy.  However, using too many 
trees increases the computation time.  There is no rule for 
determining the optimal number of trees, but some sources 
suggest that [2, Ch. 11] the number of trees should be 
approximately ten times the number of dataset features.  The 
initialization trees’ number can be increased or decreased 
depending on hyperparameters such as max_features and 
min_samples_leaf. 

(3) The max_features ( M ) parameter represents the 
maximum number of features used when the algorithm searches 
for node separation.  It is a crucial hyperparameter that 
influences the model's classification performance [15, 21].  By 
setting M  to a low value, the correlation between trees 
decreases, which enhances prediction stability.  However, when 
M  is too low, the selected features may not be optimal, thus 
affecting the performance of the forest. Conversely, when M is 
set too high, the trees become similar, which results in 
overfitting. 

The optimal value of M depends on the dataset used and 
should be adjusted through cross-validation.  For regression 
problems, the default value of M is p/3, where p is the number 
of features in the training dataset.  For classification problems, 
M_F can take one of four values: “none”, “sqrt”, “log2”, and 
“auto”, and the default value is usually “sqrt”.  Let the number 
of features in the training dataset be p (n_features), if M = 
“none”, then m = p; if M = “sqrt”, then m  = sqrt(p); if M
= “log2”, then m = log2(p)+1; and if M  = “auto”, then m
= p/3.  The choice of M  value should balance the stability and 
accuracy of each tree in the forest. 

(4) The hyperparameter min_samples_leaf (m ) specifies the 
minimum number of samples required for a node to become a 
leaf after splitting.  Changing its value can affect the depth of 
the tree, so allowing us to control it.  A small value of m may 
lead to a deeper tree, increasing the possibility of overfitting.  
However, if m is set too high, the model may fail to learn from 
the data. 

(5) The hyperparameter min_samples_split (m ) represents 
the minimum number of samples necessary to split a node into 
child nodes.  When the number of samples in a node exceeds 
m  and is not pure, the splitting process continues until purity is 
attained or the sample count in the node is less than or equal to 
m .  By increasing m , the total number of splits decreases, 
which reduces the number of parameters and can potentially 
prevent overfitting.  However, increasing m  too much can 

result in decreased model performance. 
 

4 Results and Discussion 

This section presents the results of experimenting with each 
hyperparameter to evaluate its impact on the performance of the 
random forest algorithm.  Our program was written in Java 
using the library Weka 3.9.6 and running on a Dell Precision 
5510 laptop which is pre-installed with Eclipse software and 
runs on the Windows 11 64-bit operating system.  The basic 
configuration of this laptop includes an Intel Core i7-6820HQ 
CPU, 24GB RAM, and NVIDIA M1000M GPU. 

To ensure the objectivity and analogy of the data, we clear the 
cache and restart the computer after each hyperparameter result 
is collected.  

Five hyperparameters that were to have the most influence on 
classifier performance were selected to testing [15, 2, Ch. 11].  
These hyperparameters included: max_depth (M ), numTree 
( N ), max_features ( M ), min_samples_split ( m ), and 
min_samples_leaf, (m ).  For each hyperparameter, 18 different 
values were selected for testing within specific ranges, as 
follows:  M [0, 100], N [1, 100], M [1, 150], m
[0, 150], m [0.001, 150].  We then tested combinations of 
two, three, four, and five hyperparameters to determine the best 
and worst combinations.  The survey results for each 
hyperparameter are as follows: 

 
4.1 Effect of Max_Depth ( )  

 
This hyperparameter reflects the maximum depth a tree in the 

forest can grow.  Conceivably, the nodes are expanding until all 
leaves are pure or the leaves have a sample number less than 
min_samples_split.  The default value of this parameter in Weka 
is 0 [18], and in Scikit-learn, it is “none” [20].  Figure 2 shows 
the experimental results. 

The graph in Figure 2 shows that when the tree depth is too 
small, the model’s performance is low because the input data 
does not provide enough information to train the model.  
Although the Accuracy measure received classification results, 
the F1-score and MCC measures did not produce results for tree 
depths M < 7 for the MobiAct v2.0 dataset and M < 3 for 
the UP-Fall dataset, as some actions occur quickly with a small 
number of data samples, resulting in insufficient information for 
evaluation.  However, as the tree depth increases, the model’s 
performance rapidly improves, along with an increase in the 
time taken to build the model.  Both datasets had similar results, 
and when the tree depth increases to a certain threshold (M >
11 for the MobiAct v2.0 dataset and M > 7 for the UP-Fall 
dataset), both the performance and training time of the model 
reached near saturation. 

 
4.2 Effect of numTree ( )  

 
This hyperparameter represents the number of decision trees 

(DT) used in the forest.  In toolkits such as Weka and Scikit-
learn, the default number of trees is 100.  In this experimental 
part, we evaluate the effect of the number of trees in the forest 
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on the performance and computation time of the model. Figure 
3 is the synthetic results from the experimental evaluation of the 
influence of numTree.

The results presented in Figure 3 demonstrate that the model’s 
performance improves with an increase in the number of trees.  
To a certain threshold, adding more trees does not further 
enhance the model’s performance.  The performance of RF is 
better when the number of selected trees exceeds the default 
value.  However, choosing too many trees increases the model’s 
complexity and computational time.  Therefore, increasing the 
number of trees to improve the model’s performance is not an 
optimal solution.  

4.3 Effect of Max_Features ( ): 

In this experiment, we evaluated the influence of the 
max_features hyperparameter on the performance of the random 
forest model.  This hyperparameter controls the maximum 
number of features the algorithm uses when searching for node 
splits.  In Weka, the default value for this hyperparameter is 0, 
while in Scikit-learn, it is 1.0.  The test results for two datasets, 
MobiAct v2.0, and UP-Fall, are displayed in Figure 4.

The synthesized results in Figure 5 indicate that the RF 
achieves nearly optimal performance with the default value.  
Gradually increasing the value of m causes the model’s 
performance and the computation time to decrease, although the 
reduction is not significant.

4.4 Effect of Min_Samples_Leaf (mL)

This hyperparameter controls the minimum number of 
samples required for a node to be considered a leaf after a split.  
It is set to 1 by default in Weka and Scikit-learn.  Figure 5 shows 
the experimental investigation of the influence of this 
hyperparameter.

The synthesized results in Figure 5 indicate that the RF 
achieves nearly optimal performance with the default value.  
Gradually increasing the value of mL causes the model’s 
performance and the computation time to decrease, although the 
reduction is not significant.

4.5 Effect of Min_Samples_Split ( ) 

This hyperparameter controls the minimum number of 
samples to split into child nodes.  If the number of samples in a 
node > m , then splitting continues until £ m .  The default 
values for this hyperparameter in Weka and Scikit-learn are 1e-
3 and 2, respectively.  Figure 6 displays the results of an 
investigation into the influence of this hyperparameter. 

Similar, to the m hyperparameter, the performance of RF 
gradually decreases as the minimum number of samples to split 
into child nodes increases.  However, adjusting this 
hyperparameter does not significantly affect the computation 
time.

Figure 2: As the tree depth ( ) increased, the RF classification efficiency and model building time 
also increased on both (a) MobiAct v2.0 and (b) UP-Fall datasets  

Figure 3: The accuracy in classification increases as the number of trees increases and the computation 
time also increases very quickly
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Figure 4: The performance of the model does not change much when adjusting the value of the max_features 
hyperparameter (MF), but the computation time increases very quickly with increasing MF

Figure 5: The model’s performance decreases as the minimum number of samples in a leaf node increases

Figure 6: Increasing the minimum number of samples required to split into child nodes leads to a 
decrease in RF performance

4.6 Combined Tuning of Multiple Hyperparameters

In this section, we move beyond evaluating each 
hyperparameter independently, as described in previous 
sections, and investigate the simultaneous adjustment of two to 
five hyperparameters to assess their combined influence on the 
model’s performance and building time. We manually select 
hyperparameter values based on survey results from Sections 
4.1 to 4.5. The default values of hyperparameters are shown in 
Table 1 as cells with a dark background (blue) and light text 
(yellow). Specifically, we choose max_depth (M ) = 19, 
NumTree ( N ) = 150, max_features ( M ) = 20, 
min_samples_leaf, (m ) = 2, and min_samples_split (m ) = 1 
as they have the most positive effect on RF performance

Table 1 presents the experimental results based on the 

MobiAct v2.0 and UP-Fall datasets.  These results indicate that 
combining the simultaneous adjustment of two 
hyperparameters, numTree, and max_features, results in the 
best RF performance.  Additionally, combining the three 
hyperparameters M ,N , and M also yields good results, 
similar to the combination of numTree and max_features.  In 
contrast, combining the hyperparameters min_samples_leaf and 
min_samples_split yields unexpected results, with the model 
having the lowest performance of all combinations.  Regarding 
time, model building is faster when hyperparameters are set to 
their default values than when adjusting the combination of 
hyperparameters.

The simultaneous adjustment of numTree and max_features 
is crucial in optimizing the model and often produces the most 
positive results.  Although the combination of max_depth and 
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Table 1:  Combined tuning of multiple hyperparameters results 

No. Code 
Hyperparameters value Metrics Note

MD NT MF mL mS Accuracy 
(MobiAct)

F1-score 
(MobiAct)

Accuracy 
(UP-Fall)

F1-score 
(UP-Fall)1 1 1 1 1

1 00000 0 100 0 1 0.001 95.918 95.867 98.124 98.122 All defaults
2 11000 19 150 0 1 0.001 95.950 95.900 98.321 98.314 MD and NT are tuning
3 10100 19 100 20 1 0.001 95.931 95.893 98.469 98.465 MD and MF are tuning
4 10010 19 100 0 2 0.001 95.702 95.646 97.975 97.973
5 10001 19 100 0 1 1 95.912 95.859 98.124 98.122   
6 01100 0 150 20 1 0.001 95.956 95.917 98.568 98.565  Best performance 
7 01010 0 150 0 2 0.001 95.778 95.723 97.975 97.971   
8 01001 0 150 0 1 1 95.880 95.825 98.321 98.314   
9 00110 0 100 20 2 0.001 95.899 95.861 98.370 98.365   

10 00101 0 100 20 1 1 95.829 95.786 98.469 98.465   
11 00011 0 100 0 2 1 95.658 95.597 97.975 97.971 Worst performance
12 11100 19 150 20 1 0.001 95.924 95.885 98.568 98.565
13 11010 19 150 0 2 0.001 95.766 95.712 97.976 97.973
14 11001 19 150 0 1 1 95.950 95.900 98.321 98.314
15 10110 19 100 20 2 0.001 95.855 95.814 98.370 98.365   
16 10101 19 100 20 1 1 95.931 95.893 98.469 98.465   
17 10011 19 100 0 2 1 95.702 95.646 97.975 97.973
18 01110 0 150 20 2 0.001 95.912 95.873 98.420 98.414   
19 01101 0 150 20 1 1 95.924 95.885 98.568 98.565   
20 01011 0 150 0 2 1 95.778 95.723 97.975 97.971   
21 00111 0 100 20 2 1 95.899 95.861 98.370 98.365   
22 11110 19 150 20 2 0.001 95.816 95.775 98.420 98.414   
23 11101 19 150 20 1 1 95.956 95.917 98.568 98.565  Best performance 
24 11011 19 150 0 2 1 95.766 95.712 97.975 97.971   
25 10111 19 100 20 2 1 95.855 95.814 98.370 98.365   
26 01111 0 150 20 2 1 95.912 95.873 98.420 98.414 NT, MF, mL and mS tuning 
27 11111 19 150 20 2 1 95.816 95.775 98.420 98.414 Tuning of 5 hyperparameters 

numTree is slightly less effective than the numTree and 
max_features combination, it significantly reduces model 
building time.  It is worth noting that adjusting 
min_samples_leaf and min_samples_split together can reduce 
the model’s performance.  With a powerful computer system, 
the number of trees should be beyond 200 to keep the 
modelstable, which is also supported by theoretical evidence 
from Probst and Boulesteix [17]. 

 
5 Discussion 

 
This research aims to identify the range of hyperparameter 

values that can performance enhance random forests in fall 
detection systems.  Our findings suggest that each 
hyperparameter has a different impact on the performance and 
training time of RF, and inappropriate selection of 
hyperparameter values may lead to decreased model 
performance compared to default values. 

Out of the five hyperparameters analyzed, max_depth (M ) 
exerts the most substantial influence on RF classification 
performance.  When the value of max_depth is set too small, the 
model performs poorly.  However, optimal performance is 
maintained when M > 15 (for the MobiAct v2.0 dataset) and 
M > 7 (for the UP-Fall dataset), as shown in Figure 2. 

Optimizing the tree depth can enhance the model’s 
performance, but this comes at the expense of longer training 

time.  Furthermore, the research underscores the significance of 
having adequate data samples for model training since 
insufficient samples may result in inadequate information for 
evaluation.  Overall, these results indicate that a balance 
between tree depth and data samples is critical for attaining 
optimal model performance. 

The default value of numTree is 100 trees that can also 
produce a model with good performance.  However, increasing 
N beyond 100 trees can improve performance but at the cost of 
longer training time, which can be overcome by using powerful 
computers.  When N exceeds 35 trees, RF performance 
becomes good and stabilizes on both datasets, as shown in 
Figure 3.  This finding is consistent with the assessment of 
Probst et al. [1, 16].  Therefore, the optimal value of numTree 
should be chosen within the range of [35, 150] to balance 
performance and training time optimization. 

The max_features hyperparameter plays a crucial role in the 
RF algorithm, especially for datasets with a large number of 
samples, as it significantly affects the training time. Increasing 
the value of max_features lead to a rapid increase in training 
time. In this research, with datasets consisting of 44 features, the 
default value of “none” outperforms the other default values of 
“sqrt”, “log2”, and “auto”.  As the maximum number of features 
is increased from 1 to 20, the performance of the random forest 
increases.  However, once max_features exceed 20, the 
performance of the random forest is stable and better (Figure 4). 
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The simultaneous adjustment of numTree and max_features 
is crucial in optimizing the model and often produces the most 
positive results.  Although the combination of max_depth and 
numTree is slightly less effective than the numTree and 
max_features combination, it significantly reduces model 
building time.  It is worth noting that adjusting 
min_samples_leaf and min_samples_split together can reduce 
the model’s performance.  With a powerful computer system, 
the number of trees should be beyond 200 to keep the model 
stable, which is also supported by theoretical evidence from 
Probst and Boulesteix [17]. 

The experimental results demonstrate a correlation between 
the hyperparameters min_samples_leaf and min_samples_split, 
as both follow the same distribution and define the minimum 
number of samples for splitting.  Figures 5 and 6 illustrate that 
to achieve high performance with RF, it is advisable to select 
small values for m_L and m_S, preferably below five. 

Generally, tuning hyperparameters can have either positive or 
negative effects on the performance of the RF algorithm.  
Selecting optimal values for hyperparameters can improve RF 
performance and vice versa.  Setting a large number of trees can 
enhance performance and maintain accuracy during training, 
but it comes at the expense of increased computational costs.  
Hyperparameters such as max_features, max_depth, and node 
size act as controls for the randomness of the RF.  Of these, 
max_depth and numTree are the most influential 
hyperparameters, as per our theoretical analysis and 
experimental findings. 

 
6 Conclusion 

 
This study evaluates the impact and determines the optimal 

range of hyperparameters on the performance of the random 
forest classification algorithm in the fall detection system.  
Based on the test results on human activity simulation datasets 
collected by accelerometers, we drew the following 
conclusions: 

 
(i) The number of trees (N_T) is the most crucial 

hyperparameter of the RF algorithm. Models with N_T 
< 35 yield poor classification results, while increasing 
N_T to 100 or higher significantly improves model 
performance.  Therefore, to enhance the RF algorithm's 
performance, we should choose several trees > 100 for 
this hyperparameter, as supported by related literature 
and our experiments. 

(ii) Simultaneously tuning numTree and max_features, or 
max_Depth and numTree, or max_Depth and numTree 
and max_features can improve RF performance. 

(iii) The hyperparameters min_samples_leaf and 
min_samples_split should be selected as defaults for 
achieving high performance in RF.  In particular, when 
these two hyperparameters are adjusted simultaneously, 
the performance of the RF is at its worst. 

 
While our research has shown promising results in developing 

a random forest algorithm for fall detection, there are still 

certain limitations.  These limitations include using only two 
accelerometer datasets, limiting the number of hyperparameters 
considered, and focusing only on the Weka toolkit without 
experimentation with other toolkits, such as Scikit-learn.  
Additionally, the hyperparameter tuning combination was 
limited to a manual method based on the survey results of each 
hyperparameter individually. 

Future studies can address these limitations by expanding the 
range of datasets, extending the scope of surveys to multiple 
parameters, and utilizing various popular toolsets to evaluate the 
impact of hyperparameters.  Also, we want to use genetic 
algorithms to find optimal combinations of hyperparameters for 
random forests to improve the performance of fall detection 
systems.  With these lines of research in mind, we aim to 
develop more advanced and effective fall detection systems that 
enhance the safety and well-being of populations requiring 
special care. 

 
Acknowledgment 

 
The authors sincerely thank the Hellenic Mediterranean 

University- Department of Electrical and Computer 
Engineering - Biomedical Informatics and eHealth Laboratory 
(BMI) for sharing the MobiAct dataset.  Great thanks to 
Martínez-Villaseñor et al. for sharing the UP-Fall dataset. 

 
References 

 
[1] S. Bernard, L. Heutte, and S. Adam, “Influence of 

Hyperparameters on Random Forest Accuracy,” Multiple 
Classifier Systems:  8th International Workshop, MCS 
2009, Reykjavik, Iceland, June 10-12, 2009. Proceedings 
8, Springer, pp. 171–180, 2009. 

[2] B. Boehmke and B. Greenwell, Hands-on Machine 
Learning with R. Chapman and Hall/CRC, 2019. 

[3] L. Breiman, “Random Forests,” Machine Learning, 
45(1):5-32, 2001. 

[4] L. Breiman, “Bagging Predictors,” Machine Learning, 
24(2):123-140, 1996. 

[5] C. Chatzaki, M. Pediaditis, G. Vavoulas, and M. 
Tsiknakis, “Human Daily Activity and Fall Recognition 
using a Smartphone’s Acceleration Sensor,” International 
Conference on Information and Communication 
Technologies for Ageing Well and e-Health, Springer, pp. 
100-118, 2016. 

[6] P. Contreras, J. Orellana-Alvear, P. Muñoz, J. Bendix, 
and R. Célleri, “Influence of Random Forest 
Hyperparameterization on Short-Term Runoff 
Forecasting in an Andean Mountain Catchment,” 
Atmosphere, 12(2):238, 2021. 

[7] D.-M. Ge, L.-C. Zhao, and M. Esmaeili-Falak, 
“Estimation of Rapid Chloride Permeability of SCC using 
Hyperparameters Optimized Random Forest Models,” 
Journal of Sustainable Cement-Based Materials, 0(0):1-
19, July 2022. doi: 10.1080/21650373.2022.2093291. 

[8] C. Joo, H. Park, J. Lim, H. Cho, and J. Kim, 
“Development of Physical Property Prediction Models 



360 IJCA, Vol. 30, No. 4, Dec. 2023

for Polypropylene Composites with Optimizing Random 
Forest Hyperparameters,” International Journal of 
Intelligent Systems, 37(6):3625–3653, 2022.

[9] K. M. Kelkar and J. W. Bakal, “Hyper Parameter Tuning 
of Random Forest Algorithm for Affective Learning 
System,” 2020 Third International Conference on Smart 
Systems and Inventive Technology (ICSSIT), IEEE, pp. 
1192-1195, 2020.

[10] K. Lai, S. N. Yanushkevich, V. Shmerko, and M. Hou, 
“Capturing Causality and Bias in Human Action 
Recognition,” Pattern Recognition Letters, 147:164-171, 
2021.

[11] H.-L. Le, D.-N. Nguyen, T.-H. Nguyen, and H.-N. 
Nguyen, “A Novel Feature Set Extraction Based on 
Accelerometer Sensor Data for Improving the Fall 
Detection System,” Electronics, 11(7):1030, 2022.

[12] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, 
“Understanding Variable Importances in Forests of 
Randomized Trees,” Advances in Neural Information 
Processing Systems, Vol. 26, 2013.

[13] L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-
Albor, J. Núñez-Martínez, and C. Peñafort-Asturiano, 
“UP-Fall Detection Dataset: A Multimodal Approach,” 
Sensors, 19(9):1988, 2019.

[14] N. Mohapatra, K. Shreya, and A. Chinmay, 
“Optimization of the Random Forest Algorithm,” 
Advances in Data Science and Management: Proceedings 
of ICDSM 2019, Springer, pp. 201-208, 2020.

[15] P. Probst, M. N. Wright, and A.-L. Boulesteix, 
“Hyperparameters and Tuning Strategies for Random 
Forest,” Wiley Interdisciplinary Reviews: Data Mining 
and Knowledge Discovery, 9(3):e1301, 2019.

[16] P. Probst, “tuneRanger:  Tune Random Forest of the 
Ranger Package,” R Package Version, Vol. 2, 2018.

[17] P. Probst and A.-L. Boulesteix, “To Tune or Not to Tune 
the Number of Trees in Random Forest,” The Journal of 
Machine Learning Research, 18(1):6673-6690, 2017.

18] “RandomForest.” https://weka.sourceforge.io/doc.dev/ 
(accessed Oct. 26, 2022).

[19] E. Scornet, “Tuning Parameters in Random Forests,” 
ESAIM:  Proceedings and Surveys, 60:144-162, 2017.

[20] “sklearn.ensemble.RandomForestRegressor — scikit-
learn 1.1.2 Documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.Ra
ndomForestRegressor.html (accessed Oct. 26, 2022).

[21] J. Thorn, “Random Forest:  Hyperparameters and How to 
Fine-Tune Them,” Medium, Sep. 26, 2021. 
https://towardsdatascience.com/random-forest-
hyperparameters-and-how-to-fine-tune-them-
17aee785ee0d (accessed Oct. 26, 2022).

[22] H. Tyralis, G. Papacharalampous, and A. Langousis, “A 
Brief Review of Random Forests for Water Scientists and 
Practitioners and Their Recent History in Water 
Resources,” Water, 11(5):910, 2019.

[23] G. Vavoulas, C. Chatzaki, T. Malliotakis, M. Pediaditis, 
and M. Tsiknakis, “The Mobiact Dataset:  Recognition of 
Activities of Daily Living Using Smartphones,” 

International Conference on Information and 
Communication Technologies for Ageing Well and e-
Health, SCITEPRESS, pp. 143-151, 2016.

[24] L. Wang, X. Zhou, X. Zhu, Z. Dong, and W. Guo, 
“Estimation of Biomass in Wheat Using Random Forest 
Regression Algorithm and Remote Sensing Data,” The 
Crop Journal, 4(3):212-219, June 2016. doi: 
10.1016/j.cj.2016.01.008.

[25] M. N. Wright, T. Dankowski, and A. Ziegler, “Unbiased 
Split Variable Selection for Random Survival Forests 
using Maximally Selected Rank Statistics,” Statistics in 
Medicine, 36(8):1272–1284, 2017.

[26] L. Yang and A. Shami, “On Hyperparameter 
Optimization of Machine Learning Algorithms:  Theory 
and Practice,” Neurocomputing, 415:295-316, Nov. 2020.  
doi: 10.1016/j.neucom.2020.07.061.

[27] N. Zhu, C. Zhu, L. Zhou, Y. Zhu, and X. Zhang, 
“Optimization of the Random Forest Hyperparameters for 
Power Industrial Control Systems Intrusion Detection 
Using an Improved Grid Search Algorithm,” Applied 
Sciences, 12(20):10456, 2022.

Hong-Lam Le received his B.E degree in 
Electrical and Electronics Engineering 
from Ho Chi Minh City University of 
Technology and Education (HCMUTE) in 
2006, and M.E degree in 
Telecommunications Engineering from 
Hanoi University of Science and 
Technology (HUST) in 2015. He is 

working as a PhD student in the Information Technology 
Institute, Vietnam National University in Hanoi. Currently, he 
is a lecturer in Faculty of Electronic Engineering, Vinh 
University of Technology Education, Vinh city, Vietnam. His
research interests include machine learning, data analysis, IoT, 
and sensor data processing in machine learning. 

Thanh-Tuoi Le received the B.E degree in 
Information Technology from Vinh 
University (TDV) in 2003 and M.E degree 
in Information Technology with a 
specialization in Information System at the 
Military Technical Academy (MTA) in 
2010. He has been working with the 
Department of Information Technology, 

Vinh University of Technology Education, Vinh City, Vietnam. 
Since 2022, he has been pursuing a Ph.D. degree in the 
Department of Information Technology, Hanoi National 
University of Education. His current research interests are in 
machine learning methods and their applications in molecular 
biology data mining.



IJCA, Vol. 30, No. 4, Dec. 2023 361

Thi-Thu-Hien Vu received the B.E degree 
in Information Technology from Vinh 
University of Education (TDV) in 2000 
and M.E the degree in Computer Science 
at Military Technical Academy (MTA) in 
2010. Currently, she is the Vice Dean of 
Information Technology Department at 

Vinh University of Technology Education, with many years of 
experience in educating and researching topics such as cloud 
computing, embedded system, and applications.

Doan-Hieu Tran received his BSc in 
Information Technology from the Ho Chi 
Minh City University of Transport in 2010 
and a MSc in Information Systems from 
the Posts and Telecommunications 
Institute of Technology  (PTIT) in 2014. 
At present, he is a Deputy Head of the 
Information Technology Management 
Department at the Ho Chi Minh City 

University of Banking, Vietnam. He has over 10 years of 
teaching and research experience in the fields of financial risk 
analysis, applied computer science, computer networks and 
communications, and Python programming for data analysis.

Dinh Van Chau received his BSc from 
Hanoi University of Science and 
Technology (HUST), Vietnam, in 1998; 
MSc from De La Salle University, The 
Philippines, in 2005 and PhD at Tokyo 
Institute of Technology, Japan, in 2009. 
He is currently the Acting Rector of 
Electric Power University. He has many 

years of teaching and research experience in the fields of 
Engineering Physics, Nanotechnology, Energy Saving and 
Sustainable Development. He was principle investigator and 
participated in many domestic and foreign projects.

Ngo Thi-Thu-Trang received her B.E 
degree of Telecommunications and 
Electronics Engineering from Vietnam 
National University, Hanoi (VNUH) in 
2002, and M.E degree of Computer and 
Communication Engineering from 
Chungbuk National University, Korea in 
2005, and PhD in Communication 

Engineering from Posts and Telecommunications Institute of 
Technology (PTIT) in 2021. Now, she is a lecturer in 
Telecommunications Faculty 1 of PTIT. Her research interests 
include digital signal processing, optical communication, and 
broadband networks.


