
IJCA, Vol. 30, No. 4, Dec. 2023 351

ISCA Copyright 2023

A Survey on the Impact of Hyperparameters on Random Forest
Performance using Multiple Accelerometer Datasets

Hong-Lam Le*‡§

VNU Information Technology Institute, Hanoi, VIETNAM
Vinh University of Technology Education, Vinh City, VIETNAM

Thanh-Tuoi Le and Thi-Thu-Hien Vu§
Vinh University of Technology Education, Vinh City, VIETNAM

Doan-Hieu Tran§

Ho Chi Minh University of Banking, Ho Chi Minh City, VIETNAM

Dinh Van Chau§

Electric Power University, Hanoi, VIETNAM

Thi-Thu-Trang Ngo†§
Posts and Telecommunications Institute of Technology, Hanoi City, VIETNAM

Abstract

Previous studies have examined the effects of

hyperparameters on random forests, but little research has been
done in the context of fall detection. To address this gap, our
study aimed to examine how hyperparameters influence the
performance and training time of a random forest algorithm
used in fall detection systems. Our findings highlighted the
best range of values for each hyperparameter to achieve high
performance. Moreover, we discovered that certain
combinations of hyperparameters could either enhance or
reduce the random forest’s performance compared to the
default settings. To conduct these investigations, we
performed experiments using two datasets: MobiAct v2.0 and
UP-Fall, which were collected from accelerometers in
smartphones and wearables. These insights can contribute to
the optimization of hyperparameters for more effective fall
detection systems.

Key Words: Hyperparameter, random forest, max_depth,
num_Tree, num_features, min_samples_leaf,
min_samples_split.

* Corresponding author, created the first draft, and created the stable
version of this document.
† Corresponding author, created the stable version of this document.
‡ University Information Technology Institute.
§ lehonglam@vnu.edu.vn, fredleektv@gmail.com,
thuhienktv@gmail.com, hieutd@hub.edu.vn, chaudv@epu.edu.vn,
trangnttl@ptit.edu.vn.

1 Introduction

Fall detection systems play a crucial role in ensuring the
well-being and health of older adults and individuals with
mobility impairments. These systems are designed to quickly
identify falls and notify caregivers or emergency responders,
allowing for prompt medical attention and reducing the risk of
harm or fatality. However, current fall detection methods have
drawbacks, such as low accuracy and high false alarm rates,
which affect their reliability. Thus, it is vital to develop and
improve fall detection systems to advance human healthcare.

Enhancing the accuracy, sensitivity, specificity, and
reliability of fall detection systems is a primary goal in
preventing or mitigating the negative consequences of falls.
Various machine learning algorithms, such as J48, Logistic
Regression (LR), K-Nearest Neighbor (kNN), Support Vector
Machine (SVM), Decision Tree (DT), Naïve Bayes (NB), and
Random Forest (RF), have been utilized to classify different
human activities, including falls. Studies have shown that RF
outperforms other algorithms in fall detection using the
MobiAct v2.0 and UP-Fall datasets [5, 10-11, 13]. However,
the RF algorithm’s performance heavily relies on the selection
of hyperparameters [7, 9, 14-15], which poses a significant
challenge.

The random forest algorithm is a general classification
method that uses hyperparameters to adjust or optimize the loss
function. These hyperparameters impact both the model’s speed
and accuracy, making it crucial to find the optimal values [8,
26]. However, the optimal hyperparameter values are not

352 IJCA, Vol. 30, No. 4, Dec. 2023

universal and depend on the specific problem and data. The
influence of hyperparameters on random forest performance,
particularly for human daily activity data crucial for fall
detection systems, has not been extensively studied and requires
further research.

This study determined the optimal range for each
hyperparameter of the random forest algorithm to achieve high
performance. The results also revealed that combining
adjustments of min_samples_leaf and min_samples_split
hyperparameters could decrease the random forest’s
performance. The hyperparameters max_depth, NumTree, and
max_features had the most significant impact on performance
and model-building time. Combining adjustments of NumTree
and max_features, or combining max_depth with NumTree and
max_features, resulted in the best performance. These findings
have practical implications for constructing optimal models for
fall detection systems.

The rest of this paper is structured as follows: Section 2
reviews related work and provides an analysis and summary of
studies on hyperparameter tuning for random forests. Section 3
describes our research's evaluation methods, including the
research process, the dataset used, and the implementation of the
random forest algorithm with adjusted hyperparameters.
Section 4 presents our experimental results on the effect of
hyperparameters on the random forest algorithm’'s performance
and provides an interpretation of these results. Finally, the
conclusions section summarizes our main findings, discusses
their implications, suggests directions for future research,
highlights study limitations, and proposes areas for further
investigation.

2 Related Works

Recently, random forest algorithms have gained widespread

use in machine learning systems due to their high accuracy and
robustness against interference. Several studies have proposed
solutions to enhance the performance of random forests by
optimizing their hyperparameters. For instance, Philipp Probst
et al. [15] surveyed the impact of hyperparameters on predictive
performance in the field of credit risk. The research was divided
into two parts. The first section provided an overview of the
adjustment strategies. Later, the author team utilized the
tuneRanger R package to automate the tuning of random forests
with MBO (Model-Based Optimization) to demonstrate the
validity of applying one of these strategies. The benchmark
research was conducted on datasets from OpenML and
downloaded through the OpenML R package. The authors
concluded that the mtry parameter had the most impact on
performance. Finally, they recommended using a high number
of trees and SMBO (Sequential Model-Based Optimization) to
simultaneously tune the mtry parameters, sample size, and node
size to enhance the performance of the random forest algorithm.

Kavita M Kelkar et al. [9] proposed an effective learning
system based on the random forest algorithm to detect learners’
emotional states. This research proposed analyzing
hyperparameters such as n_estimators, max_depth,
min_samples_split, min_samples_leaf, and criterion to improve

the system’s performance. However, their paper did not provide
a method for investigating the influence of hyperparameters.
The experimental results showed that the optimal value for the
hyperparameter max_leaf_nodes was 0, which gave the best
Kappa score. Additionally, max_features did not affect the
accuracy or Kappa value, while a max_depth > 10 provided
more accurate results. Of the hyperparameters surveyed,
n_estimators were the most important, and their value could
range from 25 to 30 without affecting accuracy or Kappa values.

The research by Ningyuan Zhu et al. [27] proposed a random
forest-based intrusion detection model for application in electric
industrial control systems. The authors also introduced an
improved mesh search algorithm (IGSA) to optimize the
hyperparameters of the random forest model and improve its
efficiency and accuracy. The research adjusted the seven
hyperparameters of the random forest model in descending
order of preference, including max_depth, min_samples_leaf,
min_samples_split, criterion, n_estimators, bootstrap, and
max_features. The optimization results revealed that the
optimal values for the hyperparameters were max_depth = 24,
min_samples_leaf = 1, min_samples_split = 2, criterion = gini,
n_estimators = 240, bootstrap = default, and max_features = 9.
The test results demonstrated that the intrusion detection
method based on hyperparameter optimization achieved higher
accuracy, resilience, F1 score, and ROC-AUC score than other
methods.

Bernard et al. [1] recommend using the value mtry = sqrt(p)
as it provides a reasonable error rate. They emphasize that the
number of predictors influences the optimal value of mtry.
When many predictors are involved, mtry should set small to
both the most and least influential variables are a selection for
separation. It may increase relevance but potentially reduce
performance. The computation time of the model is devoted to
the selected separable variables, so the computation time
decreases linearly with decreasing mtry values, similar to the
research of author Wright et al. [25]. Conversely, setting mtry
too high may exclude less influential variables from
contributing to the prediction, as more influential variables are
preferred for separation, inadvertently “blurring” variables of
less influence.

Probst et al. [16] proposed a general structural framework to
evaluate the tunability of hyperparameters in algorithms,
including Random Forest. They presented this approach
through an application to 38 datasets. The results showed that
the mtry parameter had the most influence on the AUC index,
followed by the sample size, while the node size had less effect.
Hyperparameter tuning was a crucial step, as the results showed
that the hyperparameter-tuned random forest model had higher
prediction accuracy than the default one. Besides, the
performance of default hyperparameters was often inconsistent.

In general, authors in each field have their conclusions about
how hyperparameters affect the performance of random forests.
Increasing the number of trees has improved classification
accuracy [17, 19], while some studies suggest that increasing the
maximum depth can lead to overfitting. The computation time
of the model increases with the number of trees, and with a
smaller number of trees, the computation time will be faster.

IJCA, Vol. 30, No. 4, Dec. 2023 353

However, they did recommend using a large enough number of
trees to ensure a stable error rate. Some studies indicate that the
best performance of random forests is typically achieved with
100 trees [6, 17], while Boehmke and Greenwell [2, Ch. 11]
recommend selecting ten times the number of trees as the
number of features of the dataset for forest construction. Out-
of-bag error curves increase with the number of trees and can be
used to test algorithm convergence [17]. Research by P.
Contreras et al. [6] indicated that numTree had the most
influence on model performance, particularly in the value range
of 0 to 100, which is consistent with the research by Probst et al.
[16]. Therefore, numTree tuning is a straightforward method to
achieve optimal model performance.

Based on a search on Google Scholar, we learned about
related work on hyperparameter tuning for random forest
algorithms. However, we have not found studies on this topic
in the range of human daily activity recognition, especially in
fall detection systems. Therefore, we conducted a survey and
evaluated the impact of hyperparameters on the performance of
the random forest algorithm using accelerometer data for fall
detection systems.

3 Evaluation Methods

3.1 Evaluation Process

In this article, the feature extraction and random forest

algorithms are built based on the Java language using the Weka
library version 3.9.6. Figure 1 illustrates the experimental
procedure for evaluating each hyperparameter and combination
of hyperparameters in the random forest.

First, two raw data sets, MobiAct v2.0 and UP-Fall, were
prepared for the experiment. The training dataset was created
by segmenting the raw data into windows of 256 samples with
a 50% overlap, applying preprocessing techniques to the
segmented data, and extracting 44 features [11]. Next, we split
the dataset into a training set (80%) and a test set (20%). We
independently selected the test set to represent the overall
dataset.

We conducted hyperparameter selection by surveying each
hyperparameter individually to assess its influence on the
performance of the random forest model. Afterward, we
examined combinations of two, three, four, and five
hyperparameters to determine the best and worst combinations.

Finally, we analyzed the results to evaluate and draw
conclusions regarding the impact of hyperparameters and their
combinations on the performance and training time of the
random forest model. We utilized the accuracy and F1-score
measures to estimate the performance of the random forest.
Accuracy and F1-score are widely recognized as performance
measures of efficient models by many studies.

Accuracy (Acc) was defined as the ratio of quantity correctly
classified instances to the total quantity instances in the dataset.
It is a simple and popular metric for evaluating the efficiency of
classification algorithms. This measure has the following
definition:

Accuracy =
TP+TN

 TP+TN+FP+FN
 (1)

where TP, TN, FP, and FN are symbols used in the classification
problem and evaluate the accuracy of a classification algorithm,
specifically:

TP (True Positive) represents the amount of data that actually
belongs to a class and the algorithm correctly predicts it to be
that class.

TN (True Negative) represents the amount of data that
actually does not belong to a class and the algorithm correctly
predicts it to not belong to that class.

FP (False Positive) represents the amount of data that actually
does not belong to a class, but the algorithm predicts it does.

FN (False Negative) represents the amount of data that
actually belongs to a class, but the algorithm predicts it does not
belong to that class.

F1-score is a measure of the efficiency of a classification
algorithm. It combines the precision and recall of the data
classes in a classification model. Formally, accuracy has the
following definition:

F1-core = 2*
(Precision* Sensitivity)

(Precision+Sensitivity)
(2)

where Precision is the ratio between the TP and the (TP + FP),
and Recall is the ratio between the TP and (TP + FN).

The F1-score ranges from 0 to 1, with a higher value
indicating a better classification model. It is used in binary
classification problems where the balance between precision
and recall is crucial.

Figure 1: Hyperparameter evaluation process of random forest

354 IJCA, Vol. 30, No. 4, Dec. 2023

3.2 Experimental Dataset

To evaluate the impact of hyperparameters, we conducted
experiments using two commonly used datasets in human
activity recognition and fall detection, namely MobiAct v2.0
[23] and UP-Fall detection [13]. These datasets are used widely
in related research to action recognition and fall detection due
to their large size and popularity. What sets these datasets apart
is the diversity of the number of actions, volunteers, and
collection methods. The MobiAct v2.0 dataset was collected
using sensors on smartphones, whereas the UP-Fall dataset
utilized wearable sensors for collection.

The MobiAct v2.0 dataset [23] was collected from the
accelerometer, gyroscope, and orientation sensor of the
Samsung Galaxy S3 smartphone with a sampling frequency of
around 85 Hz for all activities. This dataset has 16 actions, of
which 12 were daily activities (ADLs) and four fall behaviors,
collected from 66 volunteers. The sampling of fall behaviors
was done three times for action, with each sample lasting 10
seconds. Standing and walking activities were sampled only
once for 5 minutes. Other daily activities have sampling times
ranging from six seconds to 30 seconds, depending on the
action. The sample rate of fall behaviors accounts for only about
8% of the total data collected from smartphone accelerometers.
We only use the data collected from the accelerometer in this
dataset for our research.

For the UP-Fall dataset [13], Martínez-Villaseñor and
colleagues used five Mbientlab MetaSensor wearable sensors to
collect raw data from the 3-axis accelerometer and gyroscope.
They also used a NeuroSky MindWave headset to measure
brainwave signals in the forehead, installed six infrared sensors
as a grid 400mm above the lab floor to measure changes in
actions, and positioned two Microsoft LifeCam Cinema
cameras 1820 mm above the floor to collect images of the
subject from the front and side. All types of sensors work
simultaneously to collect data for each type of action. The
standardized sampling frequency for all samples is 100 Hz. In
this research, we only used data collected from the 3-axis
accelerometer of the IMU device placed inside the right pocket
of the volunteer. This part of the data includes 11 types of
actions collected, of which the number of samples for five
falling behaviors accounts for nearly 9% of the dataset.

The owners and authors of both datasets have permitted us to
use them in community support and educational studies. These
datasets have been reviewed and approved by experts in human
research ethics.

3.3 Processing

The preprocessing steps applied to the raw dataset include

data cleaning, noise filtering, normalization, and extraction of
matching features. The data cleaning step removes missing or
corrupted data, normalizes the data to keep it in a consistent
range, and extracts feature that identify characteristics suitable
for classifying human actions and behaviors.

The dataset used in this research includes 44 features
extracted from MobiAct v2.0 and UP-Fall. We used the same

preprocessing and feature extraction methods as in previous
studies [11], and details of these methods have been presented
in previous publications [11].

For experimentation, we segmented the data into sliding
window sizes of 256 samples with an overlap rate of 50%,
extracting 44 features [11]. However, the MobiAct v2.0 dataset
was so large that using all the data for experimentation would
have been time-consuming. Therefore, to shorten the
experimental time, we used only 1/3 of the sample number of
each action in the dataset to build the experiment data. The total
sample quantity of the MobiAct v2.0 and UP-Fall datasets were
used for experimental 15,776 and 2,025, respectively.

3.4 Random Forest Algorithm

Random Forest (RF) is a supervised learning algorithm [3]

that uses multiple classifiers instead of a single one to achieve
higher accuracy in predicting future cases. It is an extended
version of a decision tree that uses two random steps to generate
highly diverse sub-datasets, reducing variance error. Unlike
traditional decision trees, each Classification and Regression
Tree (CART) [4] in RF can only select a random subset of
features, making the trees in the model more diverse. RF is
particularly effective in handling datasets with specific issues
[24] and can help resolve complex interactions between input
features, enabling good over-model matching [22].
Additionally, RF can estimate the importance of each feature in
the feature space [12]. Each decision tree in RF does not use all
the training data or all the attributes of the data to build the tree.
The information from the trees complements each other, leading
to a low-bias and low-variance model with good prediction
results and fast training time.

3.5 Hyperparameters in Random Forest

The random forest algorithm uses hyperparameters to control

the learning process and time, which has a significant impact on
its performance. Understanding the function of each
hyperparameter is crucial to optimize the algorithm. These
hyperparameters include the maximum depth of a tree, the
number of trees in the forest, the maximum number of features
for node splitting, the minimum number of samples in leaf
nodes, the minimum number of samples for node separation,
and the data percentage used for tree construction [3, 15].
Additionally, another set of hyperparameters focuses on
dividing the nodes within each tree.

Failure to find the optimal hyperparameter value can reduce
the performance of the RF algorithm. However, adjusting the
hyperparameters for each dataset can improve classification
performance or speed up the model’s predictive ability [15].
This article investigates identifying the hyperparameter value
range that yields the best RF performance and predictability.
Based on relevant studies, we conclude that hyperparameters
significantly affect the RF classification performance and time
in various ways, such as:

(1) max_depth (M) is a hyperparameter that determines the

IJCA, Vol. 30, No. 4, Dec. 2023 355

maximum depth at which a tree in a forest can grow. It is an
essential hyperparameter that considerably impacts the model's
accuracy [15, 21]. Increasing the tree’s depth improves the
model’s accuracy by providing more information and data
division. However, setting M too high will complicate the
tree’s structure and result in an overfit to the data. Therefore,
selecting an appropriate M value is crucial in optimizing the
model.

(2) num_tree (N) is the number of decision trees (DT)
utilized in the forest, and it is correlative with the training
dataset's size. The number of trees should be sufficient to
stabilize the error rate. The higher the number of trees, the
greater the classification accuracy. However, using too many
trees increases the computation time. There is no rule for
determining the optimal number of trees, but some sources
suggest that [2, Ch. 11] the number of trees should be
approximately ten times the number of dataset features. The
initialization trees’ number can be increased or decreased
depending on hyperparameters such as max_features and
min_samples_leaf.

(3) The max_features (M) parameter represents the
maximum number of features used when the algorithm searches
for node separation. It is a crucial hyperparameter that
influences the model's classification performance [15, 21]. By
setting M to a low value, the correlation between trees
decreases, which enhances prediction stability. However, when
M is too low, the selected features may not be optimal, thus
affecting the performance of the forest. Conversely, when M is
set too high, the trees become similar, which results in
overfitting.

The optimal value of M depends on the dataset used and
should be adjusted through cross-validation. For regression
problems, the default value of M is p/3, where p is the number
of features in the training dataset. For classification problems,
M_F can take one of four values: “none”, “sqrt”, “log2”, and
“auto”, and the default value is usually “sqrt”. Let the number
of features in the training dataset be p (n_features), if M =
“none”, then m = p; if M = “sqrt”, then m = sqrt(p); if M
= “log2”, then m = log2(p)+1; and if M = “auto”, then m
= p/3. The choice of M value should balance the stability and
accuracy of each tree in the forest.

(4) The hyperparameter min_samples_leaf (m) specifies the
minimum number of samples required for a node to become a
leaf after splitting. Changing its value can affect the depth of
the tree, so allowing us to control it. A small value of m may
lead to a deeper tree, increasing the possibility of overfitting.
However, if m is set too high, the model may fail to learn from
the data.

(5) The hyperparameter min_samples_split (m) represents
the minimum number of samples necessary to split a node into
child nodes. When the number of samples in a node exceeds
m and is not pure, the splitting process continues until purity is
attained or the sample count in the node is less than or equal to
m . By increasing m , the total number of splits decreases,
which reduces the number of parameters and can potentially
prevent overfitting. However, increasing m too much can

result in decreased model performance.

4 Results and Discussion

This section presents the results of experimenting with each
hyperparameter to evaluate its impact on the performance of the
random forest algorithm. Our program was written in Java
using the library Weka 3.9.6 and running on a Dell Precision
5510 laptop which is pre-installed with Eclipse software and
runs on the Windows 11 64-bit operating system. The basic
configuration of this laptop includes an Intel Core i7-6820HQ
CPU, 24GB RAM, and NVIDIA M1000M GPU.

To ensure the objectivity and analogy of the data, we clear the
cache and restart the computer after each hyperparameter result
is collected.

Five hyperparameters that were to have the most influence on
classifier performance were selected to testing [15, 2, Ch. 11].
These hyperparameters included: max_depth (M), numTree
(N), max_features (M), min_samples_split (m), and
min_samples_leaf, (m). For each hyperparameter, 18 different
values were selected for testing within specific ranges, as
follows: M [0, 100], N [1, 100], M [1, 150], m
[0, 150], m [0.001, 150]. We then tested combinations of
two, three, four, and five hyperparameters to determine the best
and worst combinations. The survey results for each
hyperparameter are as follows:

4.1 Effect of Max_Depth ()

This hyperparameter reflects the maximum depth a tree in the

forest can grow. Conceivably, the nodes are expanding until all
leaves are pure or the leaves have a sample number less than
min_samples_split. The default value of this parameter in Weka
is 0 [18], and in Scikit-learn, it is “none” [20]. Figure 2 shows
the experimental results.

The graph in Figure 2 shows that when the tree depth is too
small, the model’s performance is low because the input data
does not provide enough information to train the model.
Although the Accuracy measure received classification results,
the F1-score and MCC measures did not produce results for tree
depths M < 7 for the MobiAct v2.0 dataset and M < 3 for
the UP-Fall dataset, as some actions occur quickly with a small
number of data samples, resulting in insufficient information for
evaluation. However, as the tree depth increases, the model’s
performance rapidly improves, along with an increase in the
time taken to build the model. Both datasets had similar results,
and when the tree depth increases to a certain threshold (M >
11 for the MobiAct v2.0 dataset and M > 7 for the UP-Fall
dataset), both the performance and training time of the model
reached near saturation.

4.2 Effect of numTree ()

This hyperparameter represents the number of decision trees

(DT) used in the forest. In toolkits such as Weka and Scikit-
learn, the default number of trees is 100. In this experimental
part, we evaluate the effect of the number of trees in the forest

356 IJCA, Vol. 30, No. 4, Dec. 2023

on the performance and computation time of the model. Figure
3 is the synthetic results from the experimental evaluation of the
influence of numTree.

The results presented in Figure 3 demonstrate that the model’s
performance improves with an increase in the number of trees.
To a certain threshold, adding more trees does not further
enhance the model’s performance. The performance of RF is
better when the number of selected trees exceeds the default
value. However, choosing too many trees increases the model’s
complexity and computational time. Therefore, increasing the
number of trees to improve the model’s performance is not an
optimal solution.

4.3 Effect of Max_Features ():

In this experiment, we evaluated the influence of the
max_features hyperparameter on the performance of the random
forest model. This hyperparameter controls the maximum
number of features the algorithm uses when searching for node
splits. In Weka, the default value for this hyperparameter is 0,
while in Scikit-learn, it is 1.0. The test results for two datasets,
MobiAct v2.0, and UP-Fall, are displayed in Figure 4.

The synthesized results in Figure 5 indicate that the RF
achieves nearly optimal performance with the default value.
Gradually increasing the value of m causes the model’s
performance and the computation time to decrease, although the
reduction is not significant.

4.4 Effect of Min_Samples_Leaf (mL)

This hyperparameter controls the minimum number of
samples required for a node to be considered a leaf after a split.
It is set to 1 by default in Weka and Scikit-learn. Figure 5 shows
the experimental investigation of the influence of this
hyperparameter.

The synthesized results in Figure 5 indicate that the RF
achieves nearly optimal performance with the default value.
Gradually increasing the value of mL causes the model’s
performance and the computation time to decrease, although the
reduction is not significant.

4.5 Effect of Min_Samples_Split ()

This hyperparameter controls the minimum number of
samples to split into child nodes. If the number of samples in a
node > m , then splitting continues until £ m . The default
values for this hyperparameter in Weka and Scikit-learn are 1e-
3 and 2, respectively. Figure 6 displays the results of an
investigation into the influence of this hyperparameter.

Similar, to the m hyperparameter, the performance of RF
gradually decreases as the minimum number of samples to split
into child nodes increases. However, adjusting this
hyperparameter does not significantly affect the computation
time.

Figure 2: As the tree depth () increased, the RF classification efficiency and model building time
also increased on both (a) MobiAct v2.0 and (b) UP-Fall datasets

Figure 3: The accuracy in classification increases as the number of trees increases and the computation
time also increases very quickly

IJCA, Vol. 30, No. 4, Dec. 2023 357

Figure 4: The performance of the model does not change much when adjusting the value of the max_features
hyperparameter (MF), but the computation time increases very quickly with increasing MF

Figure 5: The model’s performance decreases as the minimum number of samples in a leaf node increases

Figure 6: Increasing the minimum number of samples required to split into child nodes leads to a
decrease in RF performance

4.6 Combined Tuning of Multiple Hyperparameters

In this section, we move beyond evaluating each
hyperparameter independently, as described in previous
sections, and investigate the simultaneous adjustment of two to
five hyperparameters to assess their combined influence on the
model’s performance and building time. We manually select
hyperparameter values based on survey results from Sections
4.1 to 4.5. The default values of hyperparameters are shown in
Table 1 as cells with a dark background (blue) and light text
(yellow). Specifically, we choose max_depth (M) = 19,
NumTree (N) = 150, max_features (M) = 20,
min_samples_leaf, (m) = 2, and min_samples_split (m) = 1
as they have the most positive effect on RF performance

Table 1 presents the experimental results based on the

MobiAct v2.0 and UP-Fall datasets. These results indicate that
combining the simultaneous adjustment of two
hyperparameters, numTree, and max_features, results in the
best RF performance. Additionally, combining the three
hyperparameters M ,N , and M also yields good results,
similar to the combination of numTree and max_features. In
contrast, combining the hyperparameters min_samples_leaf and
min_samples_split yields unexpected results, with the model
having the lowest performance of all combinations. Regarding
time, model building is faster when hyperparameters are set to
their default values than when adjusting the combination of
hyperparameters.

The simultaneous adjustment of numTree and max_features
is crucial in optimizing the model and often produces the most
positive results. Although the combination of max_depth and

358 IJCA, Vol. 30, No. 4, Dec. 2023

Table 1: Combined tuning of multiple hyperparameters results

No. Code
Hyperparameters value Metrics Note

MD NT MF mL mS Accuracy
(MobiAct)

F1-score
(MobiAct)

Accuracy
(UP-Fall)

F1-score
(UP-Fall)1 1 1 1 1

1 00000 0 100 0 1 0.001 95.918 95.867 98.124 98.122 All defaults
2 11000 19 150 0 1 0.001 95.950 95.900 98.321 98.314 MD and NT are tuning
3 10100 19 100 20 1 0.001 95.931 95.893 98.469 98.465 MD and MF are tuning
4 10010 19 100 0 2 0.001 95.702 95.646 97.975 97.973
5 10001 19 100 0 1 1 95.912 95.859 98.124 98.122
6 01100 0 150 20 1 0.001 95.956 95.917 98.568 98.565 Best performance
7 01010 0 150 0 2 0.001 95.778 95.723 97.975 97.971
8 01001 0 150 0 1 1 95.880 95.825 98.321 98.314
9 00110 0 100 20 2 0.001 95.899 95.861 98.370 98.365

10 00101 0 100 20 1 1 95.829 95.786 98.469 98.465
11 00011 0 100 0 2 1 95.658 95.597 97.975 97.971 Worst performance
12 11100 19 150 20 1 0.001 95.924 95.885 98.568 98.565
13 11010 19 150 0 2 0.001 95.766 95.712 97.976 97.973
14 11001 19 150 0 1 1 95.950 95.900 98.321 98.314
15 10110 19 100 20 2 0.001 95.855 95.814 98.370 98.365
16 10101 19 100 20 1 1 95.931 95.893 98.469 98.465
17 10011 19 100 0 2 1 95.702 95.646 97.975 97.973
18 01110 0 150 20 2 0.001 95.912 95.873 98.420 98.414
19 01101 0 150 20 1 1 95.924 95.885 98.568 98.565
20 01011 0 150 0 2 1 95.778 95.723 97.975 97.971
21 00111 0 100 20 2 1 95.899 95.861 98.370 98.365
22 11110 19 150 20 2 0.001 95.816 95.775 98.420 98.414
23 11101 19 150 20 1 1 95.956 95.917 98.568 98.565 Best performance
24 11011 19 150 0 2 1 95.766 95.712 97.975 97.971
25 10111 19 100 20 2 1 95.855 95.814 98.370 98.365
26 01111 0 150 20 2 1 95.912 95.873 98.420 98.414 NT, MF, mL and mS tuning
27 11111 19 150 20 2 1 95.816 95.775 98.420 98.414 Tuning of 5 hyperparameters

numTree is slightly less effective than the numTree and
max_features combination, it significantly reduces model
building time. It is worth noting that adjusting
min_samples_leaf and min_samples_split together can reduce
the model’s performance. With a powerful computer system,
the number of trees should be beyond 200 to keep the
modelstable, which is also supported by theoretical evidence
from Probst and Boulesteix [17].

5 Discussion

This research aims to identify the range of hyperparameter

values that can performance enhance random forests in fall
detection systems. Our findings suggest that each
hyperparameter has a different impact on the performance and
training time of RF, and inappropriate selection of
hyperparameter values may lead to decreased model
performance compared to default values.

Out of the five hyperparameters analyzed, max_depth (M)
exerts the most substantial influence on RF classification
performance. When the value of max_depth is set too small, the
model performs poorly. However, optimal performance is
maintained when M > 15 (for the MobiAct v2.0 dataset) and
M > 7 (for the UP-Fall dataset), as shown in Figure 2.

Optimizing the tree depth can enhance the model’s
performance, but this comes at the expense of longer training

time. Furthermore, the research underscores the significance of
having adequate data samples for model training since
insufficient samples may result in inadequate information for
evaluation. Overall, these results indicate that a balance
between tree depth and data samples is critical for attaining
optimal model performance.

The default value of numTree is 100 trees that can also
produce a model with good performance. However, increasing
N beyond 100 trees can improve performance but at the cost of
longer training time, which can be overcome by using powerful
computers. When N exceeds 35 trees, RF performance
becomes good and stabilizes on both datasets, as shown in
Figure 3. This finding is consistent with the assessment of
Probst et al. [1, 16]. Therefore, the optimal value of numTree
should be chosen within the range of [35, 150] to balance
performance and training time optimization.

The max_features hyperparameter plays a crucial role in the
RF algorithm, especially for datasets with a large number of
samples, as it significantly affects the training time. Increasing
the value of max_features lead to a rapid increase in training
time. In this research, with datasets consisting of 44 features, the
default value of “none” outperforms the other default values of
“sqrt”, “log2”, and “auto”. As the maximum number of features
is increased from 1 to 20, the performance of the random forest
increases. However, once max_features exceed 20, the
performance of the random forest is stable and better (Figure 4).

IJCA, Vol. 30, No. 4, Dec. 2023 359

The simultaneous adjustment of numTree and max_features
is crucial in optimizing the model and often produces the most
positive results. Although the combination of max_depth and
numTree is slightly less effective than the numTree and
max_features combination, it significantly reduces model
building time. It is worth noting that adjusting
min_samples_leaf and min_samples_split together can reduce
the model’s performance. With a powerful computer system,
the number of trees should be beyond 200 to keep the model
stable, which is also supported by theoretical evidence from
Probst and Boulesteix [17].

The experimental results demonstrate a correlation between
the hyperparameters min_samples_leaf and min_samples_split,
as both follow the same distribution and define the minimum
number of samples for splitting. Figures 5 and 6 illustrate that
to achieve high performance with RF, it is advisable to select
small values for m_L and m_S, preferably below five.

Generally, tuning hyperparameters can have either positive or
negative effects on the performance of the RF algorithm.
Selecting optimal values for hyperparameters can improve RF
performance and vice versa. Setting a large number of trees can
enhance performance and maintain accuracy during training,
but it comes at the expense of increased computational costs.
Hyperparameters such as max_features, max_depth, and node
size act as controls for the randomness of the RF. Of these,
max_depth and numTree are the most influential
hyperparameters, as per our theoretical analysis and
experimental findings.

6 Conclusion

This study evaluates the impact and determines the optimal

range of hyperparameters on the performance of the random
forest classification algorithm in the fall detection system.
Based on the test results on human activity simulation datasets
collected by accelerometers, we drew the following
conclusions:

(i) The number of trees (N_T) is the most crucial

hyperparameter of the RF algorithm. Models with N_T
< 35 yield poor classification results, while increasing
N_T to 100 or higher significantly improves model
performance. Therefore, to enhance the RF algorithm's
performance, we should choose several trees > 100 for
this hyperparameter, as supported by related literature
and our experiments.

(ii) Simultaneously tuning numTree and max_features, or
max_Depth and numTree, or max_Depth and numTree
and max_features can improve RF performance.

(iii) The hyperparameters min_samples_leaf and
min_samples_split should be selected as defaults for
achieving high performance in RF. In particular, when
these two hyperparameters are adjusted simultaneously,
the performance of the RF is at its worst.

While our research has shown promising results in developing

a random forest algorithm for fall detection, there are still

certain limitations. These limitations include using only two
accelerometer datasets, limiting the number of hyperparameters
considered, and focusing only on the Weka toolkit without
experimentation with other toolkits, such as Scikit-learn.
Additionally, the hyperparameter tuning combination was
limited to a manual method based on the survey results of each
hyperparameter individually.

Future studies can address these limitations by expanding the
range of datasets, extending the scope of surveys to multiple
parameters, and utilizing various popular toolsets to evaluate the
impact of hyperparameters. Also, we want to use genetic
algorithms to find optimal combinations of hyperparameters for
random forests to improve the performance of fall detection
systems. With these lines of research in mind, we aim to
develop more advanced and effective fall detection systems that
enhance the safety and well-being of populations requiring
special care.

Acknowledgment

The authors sincerely thank the Hellenic Mediterranean

University- Department of Electrical and Computer
Engineering - Biomedical Informatics and eHealth Laboratory
(BMI) for sharing the MobiAct dataset. Great thanks to
Martínez-Villaseñor et al. for sharing the UP-Fall dataset.

References

[1] S. Bernard, L. Heutte, and S. Adam, “Influence of

Hyperparameters on Random Forest Accuracy,” Multiple
Classifier Systems: 8th International Workshop, MCS
2009, Reykjavik, Iceland, June 10-12, 2009. Proceedings
8, Springer, pp. 171–180, 2009.

[2] B. Boehmke and B. Greenwell, Hands-on Machine
Learning with R. Chapman and Hall/CRC, 2019.

[3] L. Breiman, “Random Forests,” Machine Learning,
45(1):5-32, 2001.

[4] L. Breiman, “Bagging Predictors,” Machine Learning,
24(2):123-140, 1996.

[5] C. Chatzaki, M. Pediaditis, G. Vavoulas, and M.
Tsiknakis, “Human Daily Activity and Fall Recognition
using a Smartphone’s Acceleration Sensor,” International
Conference on Information and Communication
Technologies for Ageing Well and e-Health, Springer, pp.
100-118, 2016.

[6] P. Contreras, J. Orellana-Alvear, P. Muñoz, J. Bendix,
and R. Célleri, “Influence of Random Forest
Hyperparameterization on Short-Term Runoff
Forecasting in an Andean Mountain Catchment,”
Atmosphere, 12(2):238, 2021.

[7] D.-M. Ge, L.-C. Zhao, and M. Esmaeili-Falak,
“Estimation of Rapid Chloride Permeability of SCC using
Hyperparameters Optimized Random Forest Models,”
Journal of Sustainable Cement-Based Materials, 0(0):1-
19, July 2022. doi: 10.1080/21650373.2022.2093291.

[8] C. Joo, H. Park, J. Lim, H. Cho, and J. Kim,
“Development of Physical Property Prediction Models

360 IJCA, Vol. 30, No. 4, Dec. 2023

for Polypropylene Composites with Optimizing Random
Forest Hyperparameters,” International Journal of
Intelligent Systems, 37(6):3625–3653, 2022.

[9] K. M. Kelkar and J. W. Bakal, “Hyper Parameter Tuning
of Random Forest Algorithm for Affective Learning
System,” 2020 Third International Conference on Smart
Systems and Inventive Technology (ICSSIT), IEEE, pp.
1192-1195, 2020.

[10] K. Lai, S. N. Yanushkevich, V. Shmerko, and M. Hou,
“Capturing Causality and Bias in Human Action
Recognition,” Pattern Recognition Letters, 147:164-171,
2021.

[11] H.-L. Le, D.-N. Nguyen, T.-H. Nguyen, and H.-N.
Nguyen, “A Novel Feature Set Extraction Based on
Accelerometer Sensor Data for Improving the Fall
Detection System,” Electronics, 11(7):1030, 2022.

[12] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts,
“Understanding Variable Importances in Forests of
Randomized Trees,” Advances in Neural Information
Processing Systems, Vol. 26, 2013.

[13] L. Martínez-Villaseñor, H. Ponce, J. Brieva, E. Moya-
Albor, J. Núñez-Martínez, and C. Peñafort-Asturiano,
“UP-Fall Detection Dataset: A Multimodal Approach,”
Sensors, 19(9):1988, 2019.

[14] N. Mohapatra, K. Shreya, and A. Chinmay,
“Optimization of the Random Forest Algorithm,”
Advances in Data Science and Management: Proceedings
of ICDSM 2019, Springer, pp. 201-208, 2020.

[15] P. Probst, M. N. Wright, and A.-L. Boulesteix,
“Hyperparameters and Tuning Strategies for Random
Forest,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, 9(3):e1301, 2019.

[16] P. Probst, “tuneRanger: Tune Random Forest of the
Ranger Package,” R Package Version, Vol. 2, 2018.

[17] P. Probst and A.-L. Boulesteix, “To Tune or Not to Tune
the Number of Trees in Random Forest,” The Journal of
Machine Learning Research, 18(1):6673-6690, 2017.

18] “RandomForest.” https://weka.sourceforge.io/doc.dev/
(accessed Oct. 26, 2022).

[19] E. Scornet, “Tuning Parameters in Random Forests,”
ESAIM: Proceedings and Surveys, 60:144-162, 2017.

[20] “sklearn.ensemble.RandomForestRegressor — scikit-
learn 1.1.2 Documentation.” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.Ra
ndomForestRegressor.html (accessed Oct. 26, 2022).

[21] J. Thorn, “Random Forest: Hyperparameters and How to
Fine-Tune Them,” Medium, Sep. 26, 2021.
https://towardsdatascience.com/random-forest-
hyperparameters-and-how-to-fine-tune-them-
17aee785ee0d (accessed Oct. 26, 2022).

[22] H. Tyralis, G. Papacharalampous, and A. Langousis, “A
Brief Review of Random Forests for Water Scientists and
Practitioners and Their Recent History in Water
Resources,” Water, 11(5):910, 2019.

[23] G. Vavoulas, C. Chatzaki, T. Malliotakis, M. Pediaditis,
and M. Tsiknakis, “The Mobiact Dataset: Recognition of
Activities of Daily Living Using Smartphones,”

International Conference on Information and
Communication Technologies for Ageing Well and e-
Health, SCITEPRESS, pp. 143-151, 2016.

[24] L. Wang, X. Zhou, X. Zhu, Z. Dong, and W. Guo,
“Estimation of Biomass in Wheat Using Random Forest
Regression Algorithm and Remote Sensing Data,” The
Crop Journal, 4(3):212-219, June 2016. doi:
10.1016/j.cj.2016.01.008.

[25] M. N. Wright, T. Dankowski, and A. Ziegler, “Unbiased
Split Variable Selection for Random Survival Forests
using Maximally Selected Rank Statistics,” Statistics in
Medicine, 36(8):1272–1284, 2017.

[26] L. Yang and A. Shami, “On Hyperparameter
Optimization of Machine Learning Algorithms: Theory
and Practice,” Neurocomputing, 415:295-316, Nov. 2020.
doi: 10.1016/j.neucom.2020.07.061.

[27] N. Zhu, C. Zhu, L. Zhou, Y. Zhu, and X. Zhang,
“Optimization of the Random Forest Hyperparameters for
Power Industrial Control Systems Intrusion Detection
Using an Improved Grid Search Algorithm,” Applied
Sciences, 12(20):10456, 2022.

Hong-Lam Le received his B.E degree in
Electrical and Electronics Engineering
from Ho Chi Minh City University of
Technology and Education (HCMUTE) in
2006, and M.E degree in
Telecommunications Engineering from
Hanoi University of Science and
Technology (HUST) in 2015. He is

working as a PhD student in the Information Technology
Institute, Vietnam National University in Hanoi. Currently, he
is a lecturer in Faculty of Electronic Engineering, Vinh
University of Technology Education, Vinh city, Vietnam. His
research interests include machine learning, data analysis, IoT,
and sensor data processing in machine learning.

Thanh-Tuoi Le received the B.E degree in
Information Technology from Vinh
University (TDV) in 2003 and M.E degree
in Information Technology with a
specialization in Information System at the
Military Technical Academy (MTA) in
2010. He has been working with the
Department of Information Technology,

Vinh University of Technology Education, Vinh City, Vietnam.
Since 2022, he has been pursuing a Ph.D. degree in the
Department of Information Technology, Hanoi National
University of Education. His current research interests are in
machine learning methods and their applications in molecular
biology data mining.

IJCA, Vol. 30, No. 4, Dec. 2023 361

Thi-Thu-Hien Vu received the B.E degree
in Information Technology from Vinh
University of Education (TDV) in 2000
and M.E the degree in Computer Science
at Military Technical Academy (MTA) in
2010. Currently, she is the Vice Dean of
Information Technology Department at

Vinh University of Technology Education, with many years of
experience in educating and researching topics such as cloud
computing, embedded system, and applications.

Doan-Hieu Tran received his BSc in
Information Technology from the Ho Chi
Minh City University of Transport in 2010
and a MSc in Information Systems from
the Posts and Telecommunications
Institute of Technology (PTIT) in 2014.
At present, he is a Deputy Head of the
Information Technology Management
Department at the Ho Chi Minh City

University of Banking, Vietnam. He has over 10 years of
teaching and research experience in the fields of financial risk
analysis, applied computer science, computer networks and
communications, and Python programming for data analysis.

Dinh Van Chau received his BSc from
Hanoi University of Science and
Technology (HUST), Vietnam, in 1998;
MSc from De La Salle University, The
Philippines, in 2005 and PhD at Tokyo
Institute of Technology, Japan, in 2009.
He is currently the Acting Rector of
Electric Power University. He has many

years of teaching and research experience in the fields of
Engineering Physics, Nanotechnology, Energy Saving and
Sustainable Development. He was principle investigator and
participated in many domestic and foreign projects.

Ngo Thi-Thu-Trang received her B.E
degree of Telecommunications and
Electronics Engineering from Vietnam
National University, Hanoi (VNUH) in
2002, and M.E degree of Computer and
Communication Engineering from
Chungbuk National University, Korea in
2005, and PhD in Communication

Engineering from Posts and Telecommunications Institute of
Technology (PTIT) in 2021. Now, she is a lecturer in
Telecommunications Faculty 1 of PTIT. Her research interests
include digital signal processing, optical communication, and
broadband networks.

