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Abstract

The classification of lung nodules plays a pivotal role in
the early detection and prognosis assessment of lung-related
diseases. This paper introduces an innovative approach to
nodule classification by leveraging the capabilities of a 3D
Convolutional Neural Network (3D CNN) model. The primary
objective of this method is to enhance the precision and
efficiency of nodule classification, ultimately contributing to
improved medical diagnosis and treatment planning.

Our research introduces customized 3D augmentation
techniques and a distinct 3D CNN model with finely-tuned
parameters. The main focus of the model is to determine
the optimal CT patch size for nodule classification while
minimizing the training requirements on the proposed custom
model. Our research begins by creating patch slice counts
ranging from 64 to 24 and 2D spaces of 96x96, ensuring that
the nodule center is positioned at the center of each patch.
To enhance performance and reduce data transfer bottlenecks
between the GPU and HDD, each data chunk is cached in the
local environment.

Key Words: nodule classification; augmentation; Lung
Cancer;Computed Tomography; Convolutional Neural
Network,

1 Introduction

Deep learning models require substantial amounts of data and
a significant computational capacity. In the earlier stages, such
computational resources were prohibitively expensive and not
accessible to a wide range of researchers. However, the recent
availability of high-performance computing environments, such
as GPUs, has had a profound impact on the processing of
models that harness the capabilities of deep learning [1]. This
development has been particularly influential in fields like
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medical image processing and Computer-Aided Diagnoses,
where deep learning models have seen extensive use [2].

Deep learning-based systems now play a crucial role in
identifying specific regions of interest in medical images,
such as CT scans and X-rays, which require in-depth
examination by medical professionals. Additionally, they can
generate automated reports that aid doctors in correlating their
observations [3].

Lung cancer ranks as the most prevalent form of cancer
among humans [4] [5]. Each year, lung cancer claims more
lives than breast, prostate, and colon cancers combined [5].
Achieving effective treatment necessitates the early detection
of cancer. During the initial stages of cancer development,
cancer cells manifest as tiny nodules. Given the extensive
volume of computed tomography data, medical professionals
must dedicate substantial effort to extract and analyze various
features, such as size, morphology, contours, interval growth
between CT examinations, multiplicity, and location [6].

Among the wvarious deep learning models available,
Convolutional Neural Networks (CNNs) have achieved a
remarkable breakthrough by reducing computational parameters
and enhancing accuracy [7]. Two-dimensional CNNs have
shown superior performance when applied to 2D data. However,
the application of two-dimensional CNNs is limited to single-
slice CT (Computed Tomography) data, potentially resulting in
the loss of inter-slice information [8][9].

Considering the size and spatial distribution of malignant
nodules, they often extend across multiple slices of CT scans.
This necessitates the use of 3D CNN models, but it comes with
the added requirement of substantial GPU resources to handle
the increased computational load.

In this paper, we present a method for addressing
classification challenges in 3D data without causing excessive
strain on GPU resources. Our research involves conducting
experiments with segments of CT scans containing multiple
dimensions, using a custom-built CNN model developed
from the ground up. The model experimentation begins
with a chunk size of 96x96x64 (XxYxZ), and we explore
different combinations of dimensions to determine the most
effective chunk dimension for accurate nodule classification.
Additionally, we introduce custom augmentation techniques,
such as rotation, flip, and offset, to enhance the dataset without
putting undue stress on the hardware.
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The experiments are assessed within a local environment
using a single GPU with 8GB of memory (RTX 3060 Ti) and
an Intel i5 processor with 16 GB of RAM.

Our primary contributions to this study can be summarized as
follows:

1. We have estimated an optimized chunk of CT scan data to
maximize the capabilities of the 3D CNN model.

2. We have introduced a custom-built 3D CNN model tailored
for efficient classification tasks.

3. We have introduced effective data augmentation techniques
specifically designed for CT scan data, all while ensuring
GPU resources are not overwhelmed.

4. We have successfully conducted precise nodule
classification on the LUNA / LIDC-IDRI dataset,
achieving benchmark results.

The remainder of this paper is structured as follows: Section
2 provides an overview of related research, Section 3 elaborates
on the proposed method, Section 4 presents experimental results
and analysis, and finally, Section 5 offers the conclusion of this

paper.

2 Related Work

This study reviewed multiple categories of articles published
on lung nodule classification. The major categories of
articles are the deep learning approach based on CNN and
the deep learning approach based on non-CNN models. In
the traditional non-deep learning approach, researchers used
strategies available in computer vision with derivatives of
machine learning models. One of the leading developments was
the use of Gabr Local Binary Pattern [10] - LBP with support
Vector Machine [11] algorithm to predict the probability of
nodule.

Hussein [13] worked on creating a 3D CNN model for the
classification of nodules. Due to the 3D volumetric nature of
CT scans, and the unavailability of the pre-trained model at that
time, authors trained their models on sports datasets with more
than 1 million videos. In a later stage, they fine-tuned the results
on the LIDC dataset.

Author Nibali [14] used a transfer learning strategy for
their Resnet18 model. The model was trained on the CIFAR
10 data-set for additional generalization of the pre-trained
network. Based on the views of the nodule, for example, axial,
coronal, and sagittal, the authors have introduced a three-layer
network approach for each view. In the final stage, outputs
from three networks are fed into a fully connected layer for
final classification. The additional overhead of three network
models’s memory and training time was a major drawback
observed there.

Author Liu[15] proposed a multi-view approach for the
classification of nodules. By introducing three scales and four
views, the authors are able to introduce a new data set containing
12 unique images of one slice of a CT scan. The authors trained
the model on each of the images separately and combined the
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model for final training. This method also introduced additional
overhead of memory and training time.

Author Wentao Zhu[9] DeepLung is a comprehensive system
that comprises two core components: one for detecting nodules
and the other for classifying these nodules as either benign or
malignant. Given the three-dimensional nature of lung CT data
and the efficiency of dual path networks (DPN), two distinct
deep 3D DPNs have been developed to handle nodule detection
and classification tasks. To be specific, a 3D Faster Regions with
Convolutional Neural Net (R-CNN) has been tailored for nodule
detection, utilizing 3D dual path blocks and adopting a U- net-
like encoder-decoder structure to effectively capture nodule
features. In the realm of nodule classification, the approach
utilizes gradient boosting machine (GBM) in conjunction with
3D dual path network features.

Author Al-Shabi[16] proposal involves the utilization of
Residual Blocks employing a 3 x 3 kernel size to extract
local features and the incorporation of Non-Local Blocks for
the extraction of global features. The Non-Local Block is
particularly advantageous in extracting global features without
the need for an excessively large number of parameters. The
fundamental concept underpinning the Non-Local Block is the
application of matrix multiplications among features within the
same feature maps.

Table 1: Performance of leading classification methods and
baseline models

Method Accuracy | AUC
DeepLung 90.44 97.13
Local-Global 88.46 95.62
Resnet50 77.62 86.82
Resnet18 78.21 86.41
Densenet121 84.57 92.50
Multi-Crop 89.27 94.32
3 Proposed

3.1 Methods

Our custom CNN model was implemented utilizing the
PyTorch deep-learning library[23]. The model execution took
place on a local GPU environment, specifically the NVIDIA
RTX 3060 Ti with an 8 GB capacity. The operating system used
was Ubuntu OS 22.04, and the Python version employed was
3.9 via Anaconda.

In order to effectively handle the dataset, it was partitioned
into a 70% training set and a 30% validation set. Given the
considerable and fluctuating slice count within the CT scans,
it was not feasible to accommodate full-size CT scans within
our limited GPU environment. To address this constraint, we
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structured our experiment to work with different slice counts,
including 64, 48, 32, and 24 slices.

For each of these slice counts, we explored various 2D patch
sizes, specifically 96x96, 64x64, 48x48, 32x32, and 24x24. Due
to the constraints imposed by our hardware infrastructure, we
maintained a fixed batch size of 16 across all patch sizes. These
patches were derived using a mathematical approximation of the
annotated nodule center, ensuring that it was positioned at the
center of the patch in both 2D and 3D spaces.

Learning rate, hyper tuning parameter is tuned from 1x10? to
1x10%[24]. The first 30 epochs are run with 1x10 and series
of epochs 31 to 60 with 1x103 and the final epochs 61 to 75
with 1x10™. The approach used for the learning rate selection
was to introduce faster changes in the initial training phases and
fine-tune in the last stage of training[25].

We followed an approach of Kaiming initialization of neural
network weight to explicitly initialize the weight of kernels[28].
Since the CNN model relies on ReLU for activation, during the
Kaiming initialization process, opted ReLU for non-linearity.
Adam optimizer are used with default values for 8 ;and 8 »[26].
Checkpoints are saved on each model performance on each
patch size with model state and neural weights.

3.2 Dataset Description

The dataset utilized in this study is the LIDC-IDRI [17]
dataset, which has been made available by the National Cancer
Institute, NIH. This dataset is renowned for being the most
expansive and comprehensive public repository of lung nodules.
It encompasses a compilation of 1,018 CT scans, derived from
a total of 1,010 patients. Due to its substantial scale and public
accessibility, the LIDC-IDRI dataset serves as a fitting resource
for the development, comparison, and validation of diverse
deep-learning methodologies. Moreover, it holds a significant
presence in the existing literature, being frequently referenced
[13] [15] in studies.

The image collection process encompassed contributions
from four different institutions, each employing separate CT
scanners. This approach introduced significant diversity in
various image attributes. One notable area of diversity lies in
image resolution, as evidenced by variations in pixel spacing
across different CT scanners. Additionally, the thickness of CT
scan slices ranged from 0.45 to 5.0 mm.

Leveraging a heterogeneous dataset like LIDC-IDRI for
algorithm design presents the benefit of ensuring robustness
to previously unencountered or broadly applicable data. This
robustness arises because the algorithms are trained on a wide
spectrum of cases, offering versatility in handling diverse
scenarios.

Within the LIDC-IDRI dataset, the malignancy likelihood of
each nodule underwent evaluation by a panel consisting of four
highly experienced radiologists. Initially, all nodules present
in each CT scan were annotated, and their boundaries were
meticulously documented in individual XML files. It’s worth
noting that these annotations were restricted to nodules with
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diameters spanning from 3 to 30 mm.

Interestingly, despite the thorough evaluation by the four
experienced radiologists, variations in the nodule annotations
were observed, as noted in prior research. Specifically, only
a subset of nodules received annotations by the majority of
radiologists, which means they were annotated by at least three
out of the four experts.

The radiologists also provided a malignancy rating for each
nodule, employing a scale ranging from 1 to 5, where higher
values indicated higher levels of malignancy (1 represented
a benign nodule, and 5 indicated a highly malignant one).
To consolidate the ratings provided by the radiologists, we
computed the median malignancy score. Nodules receiving
ratings below three were categorized as benign, while those with
ratings exceeding 3 were classified as malignant. Following
a common practice in similar studies, nodules with a rating
of exactly 3 were omitted from the analysis due to their
indeterminate malignancy status.

3.3 Preprocessing

The LIDC-IDRI dataset initially came in .mhd format along
with corresponding raw data files. Our initial step involved
converting these .mhd files into a tensor data type, while
carefully considering variations in coordinate systems, vertical
spacing, and differing slice counts.

In this research, we applied a clamping operation to the
Hounsfield unit (HU) values of the scans, specifically restricting
values below -1000 or above 400. This practice is well-
established in the literature and is commonly used to exclude
regions corresponding to air and bone tissues [25][22].

As part of our initial data preprocessing, we performed batch-
level normalization of pixel intensities to ensure consistent
mean and variance across the dataset. To precisely identify
nodules, which are the areas of interest in CT scans, we utilized
annotations to pinpoint the center of each nodule. We developed
a versatile conversion function to prepare data chunks, ranging
in size from 96x96x64 to 24x24x24, for input into our neural
network.

To optimize performance and reduce data transfer bottlenecks
between the GPU and HDD, each chunk of data was cached in
the local environment.

3.4 Data Augmentation

The LIDC-IDRI dataset is imbalanced in terms of the nodule
and non-nodule counts: 40,772 out of 62,492 patches are lung
nodules, and 21,720 out of 62,492 patches are non-nodules
[18]. Such scenarios make actual nodules have less impact on
the training of networks. The resolution was to introduce and
implement augmentation on chunks of CT scans. The following
augmentation has been applied on the patches of CT.

Rotation: We carried out rotations at random angles of 0°,
90°, 180°, and 270°. The rotation logic was executed within a
loop, repeating three times. During each iteration, an additional
90° angle was added based on a randomly generated number.
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fa) A 2D lung CT slice.
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(b} Demonsiration of a nodule at different Z-axis positions.
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Figure 1: Represents sample CT image in 2D and 3D space

Augmentation of CT scans through flipping involves applying
various transformations to the original scans to generate
additional training data. Flipping typically includes horizontal
or vertical flips. Horizontal Flip: This augmentation technique
involves flipping the CT scan horizontally along its vertical
axis. Vertical Flip: In contrast, a vertical flip flips the CT scan
vertically along its horizontal axis[19].

Augmentation of CT scans through offset involves applying
spatial translations or shifts to the original scans. This technique
can create variations in the position of structures or objects
within the CT images, which can help improve the robustness
and generalization of machine learning models trained on
these images[20]. The CT scan is shifted horizontally and/or
vertically by a certain number of pixels. This simulates a
change in the position of the patient or the scanner during image
acquisition. Translations can be applied in both positive and
negative directions along the x and y axes[19]

Augmentation techniques, which have a significant impact on
the shape of nodules, are avoided [21].

3.5 Network Architecture

Figure 3 represents the overall architecture and methodology
ofresearch. The approach is modularized into 3 stages. In Stage
1, a 3D neural network model is developed using the PyTorch
library 1.13. The model includes four blocks of 3D CNN where
each set block has two 3D neural layer with ReLU activation
function as represented in figure 2. Scale down has been applied
using MaxPool 3D with kernel size and stride with 2 on the end
of each block. Each layer of the 3D neural layer will have kernel
size 3x3x3, stride 1, and padding 1.

The initial block comprises one input channel and yields eight
output channels. Within this block, the first 3D CNN layer
takes one input channel and produces eight output channels.

3D CNN Layer

aD
MaxPool

Activation Function
-RelLU

Figure 2: Represents unit block of our 3D CNN model

The output is then subjected to a ReLU activation function
before being fed into the second 3D CNN layer. This second
layer possesses eight input channels and generates eight output
channels, once again going through a ReLU activation function.
The outcome of this activation function is subsequently passed
through a 3D Max pooling layer, where the pooling operation
reduces the dimensionality by dividing the three-dimensional



IJCA, Vol. 31, No. 1, March 2024

29

Gage 1: 3D CNN Model Development
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Figure 3: Represents the overall architecture of the study. In stage 1, the initial design of the 3D CNN model is built. Models are
initialized with random parameters. In stage 2, the built model is evaluated on the different patch sizes and evaluate the
model performance. The best model is saved for stage 3. In stage 3, the model is fine-tuned over different depths of CNN

model
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input into cuboidal regions and computing the maximum value
in each region [source: network:maxpool].

The second block involves eight input channels and results
in sixteen output channels. In this block, the first 3D CNN
layer takes eight input channels and produces sixteen output
channels, followed by a ReLU activation. The output is then
fed into the second 3D CNN layer, which operates with sixteen
input channels to yield sixteen output channels. Again, a ReLU
activation is applied before the result is passed through a 3D
Max pooling layer for downsampling.

Moving on to the third block, it encompasses sixteen input
channels and delivers thirty-two output channels. The initial
3D CNN layer in this block takes sixteen input channels
and generates thirty-two output channels, followed by ReLU
activation. The subsequent 3D CNN layer within this block
operates with thirty-two input channels to produce thirty-two
output channels, once again undergoing ReL U activation. The
result from this activation is then channeled through a 3D Max
pooling layer for downsampling,.

The fourth block has thirty-two input channels and yields
sixty-four output channels. Here, the first 3D CNN layer in this
block takes thirty-two input channels and generates sixty-four
output channels, followed by ReLU activation. Subsequently,
the second 3D CNN layer within this block operates with sixty-
four input channels to yield sixty-four output channels, going
through ReLU activation once more. The output from this
activation function is passed through a 3D Max pooling layer
for downsampling purposes.

The model’s head consists of a single layer of fully connected
linear neurons with two output units, which is subsequently
followed by the application of a softmax activation function.
In contrast, the model’s tail includes batch-level normalization,
where mean and standard deviation values are computed
separately for each dimension across mini-batches.

During stage 2, the model undergoes evaluation on diverse
patches extracted from chest scans, each with different
dimensions. Promising patches that exhibit favorable
performance will be chosen for further refinement during stage
3. In stage 3, the fine-tuning process takes place on the same
dataset, with adjustments being made to various depths of the
model.

4 Experimental Results and Analysis

Table 4 represents the performance of the classification
model on a patch size of 96x9x96. Two-dimension size
96x96 with slice length of 64 to 24. Considering the
model capacity and large patch size compared to nodule
size, classification performance was not showing significant
improvement compared to baseline models and other leading
methods. Table 5 represents the performance of the
classification model on a patch size of 96x96x64. Two-
dimension size 64x64 with slice length of 64 to 24. Among
the various patch sizes, 64x64x48 and 64x64x32 lead the
classification performance.
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Table 2: Model’s detailed block architecture

Block Layer (‘)“Lll’t;'}tu/t Kernel PS;diéiii /g
Block1 | CNN 1/8 | 33.3) EHB
Block 1 RelLU - - -
Block 1 CNN 8/8 | (3,3.3) 8:%:1)
Block 1 RelLU - - -
Block I | MaxPool3D | - | (22.2) 5(2)(2)(23
Block2 |  CNN 8/16 | (33.3) EHB
Block 2 ReLU - - -
Block2 |  CONN | 16/16 | (3.3,3) EHB
Block 2 ReLU - - -
Block 2 | MaxPool3D | - | (22.2) 53(2)(2);
Block3 | CNN 16/32 | (33.3) 813
Block 3 RelLU - - -
Block 3 CNN 32/32 | (333) (iji)
Block3 | ReLU ] ] ]
Block3 | MaxPool3D | - | (2.2,2) Eﬁﬁ%
Block 4 CNN 32/64 | (3,3,3) EHR
Block 4 ReLLU - - -
Block4 | CNN | 64/64 | (33.3) EHB
Block 4 ReLU - - -
Block4 | MaxPool3D | - | (2.2,2) E(z)ﬁ:g;

Table 6 represents the performance of the classification model
on a patch size of 48x48. Two-dimension size 48x48 with slice
length of 64 to 24. Among the various patch sizes, 48x48x48
and 48x48x32 lead the classification performance.

Table 7 represents the performance of the classification model
on a patch size of 32x32xZ Two-dimension size 32x32 with
slice length of 64 to 24. Among the various patch sizes,
32x32x48 and 32x32x64 lead the classification performance,
and patch size 32x32x48 has the highest accuracy across all the
patches.
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Table 3: model architecture for head and tail (32x32x48)

Block Layer g lfgu/t Kernel s;ggi;
Tail | BatchNorm - - :

Head Linear 1152/2 - :

Head SoftMax 2/1 - :

Table 4: Performance of patch size 96x96 on CNN model

Patch Size | Accuracy | AUC
96x96x64 78.00 79.01
96x96x48 79.00 80.10
96x96x32 74.00 73.76
96x96x24 73.00 72.06

Table 8 represents the performance of the classification model
on a patch size of 24x24xZ Two-dimension size 24x2 with slice
length of 64 to 24. The performance of the classification model
was below the other patches except the 96x96 patch.

The experimental results on the validation dataset show that
patch sizes 32x32x48 and 48x48x32 have better performance
yield compared to other patch sizes. These two patches are
further taken for stage 3, the fine-tuning stage where depth-level
fine-tuning of the CNN model is performed. Models are fine-
tuned with depths 1 to 3 on the epoch of 50s. The model will be
re-trained with all other layers of the model kept intact except
layers up to specified depth. The table 9 and 10 shows the model
performance of best classification patches on various depths

Table 9 represents the performance of the classification
model on a patch size of 48x48x32 with fine-tuning at various
depths. Among the various depth, depth 2 lead the classification
performance.

Table 10 represents the performance of the classification
model on a patch size of 32x32x48 with fine-tuning at various
depths. Among the various depth, depth 3 lead the classification
performance.

5 Discussion

The main objective of this work was to utilise the
LIDC dataset for training and evaluating the acquired
results. Additional validation can be attained through the
implementation of extensive experiments that utilise diverse
datasets. This approach serves to mitigate any biases and
bolster the overall strength and reliability of the results.
Further enhancements can be investigated by effectively
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Table 5: Performance of patch size 64x64 on CNN model

Patch Size | Accuracy | AUC
64x64x64 81.04 81.00
64x64x48 84.09 84.00
64x64x32 84.69 83.34
64x64x24 70.03 73.10

Table 6: Comparative performance of the model on best slice-

count
Patch Size | Accuracy | AUC
48x48x64 83.90 84.00
48x48x48 90.89 91.09
48x48x32 91.29 91.98
48x48x24 81.01 81.24

implementing augmentation techniques, activation functions,
and incorporating them in conjunction with loss functions,
among other considerations.

6 Conclusions and Future work

In our research paper, we introduced a specialized CNN
model designed for the classification of nodules as either benign
or malignant. The rationale behind developing this custom
CNN model was to gain a deeper understanding of the hardware
needs and achieve enhanced accuracy in performance. Given
the substantial size of CT scans, there could be challenges in
processing them in resource-limited GPU environments. To
address this, we devised a solution: generating CT scan patches
centered around the annotated center of the nodules. Our
study revealed that the 32x32x48 patch size yielded superior
performance results when used with our custom classification
model.

The augmentation strategy was created with the aim of
minimizing the machine’s workload and expediting network
training through faster networking. Additionally, the
augmentation approach has been devised to facilitate parallel
execution, relieving the CPU from excessive burdens.

Furthermore, to enhance the utilization of GPU bandwidth,
we pre-cache CT patches prior to conducting experiments. This
approach helps minimize data loading latency on the GPU.

Our observations indicate that both higher-dimensional and
lower-dimensional patch sizes yield classification accuracy that
falls below that of middle-sized patches. The reduced accuracy
observed in lower-dimensional patches may be attributed to
the limited information contained within them. On the other
hand, the diminished accuracy in higher-dimensional patches
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Table 7: Performance of patch size 32x32 on CNN model

Patch Size | Accuracy | AUC
32x32x64 88.12 87.27
32x32x48 92.10 93.23
32x32x32 87.09 88.14
32x32x24 88.98 87.12

Table 8: Performance of patch size 24x24 on CNN model

Patch Size | Accuracy | AUC
24x24x64 86.12 85.28
24x24x48 85.95 85.00
24x24%32 82.63 80.12
24x24x24 80.18 79.65

could be due to the model’s smaller receptive field and/or the
need for more training epochs to effectively process the richer
information in the data. Conducting further research in this
domain would necessitate additional computational resources
and in-depth analysis.

An alternative approach to consider is combining the best-
performing patches with a common fully connected linear
layer within the CNN model, which may lead to improved
results. This avenue presents an opportunity for future research
exploration in this field.

Additionally, in the context of multi-modal feature extraction,
it is possible to customise the model architecture to
accommodate different inputs, such as MRI and X-rays.
This customization allows for the inclusion of additional
characteristics related to nodules, hence enhancing the
accuracy of classification. One significant obstacle that
we anticipate encountering is the need for a one-to-one
correspondence between computed tomography (CT) scans and
their corresponding magnetic resonance imaging (MRI) or X-
ray images in order to validate findings.
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