IJCA, Vol. 31, No. 1, March 2024

Docker Container Security Analysis Based
On Virtualization Technologies

Shatha A. Baker*, Hesham Hashim Mohammed?, Omar I. Alsaif $
* 1§ Northern Technical University, Iraq.

Abstract

The utilization of virtualization technology, particularly
Docker containers, has increased significantly in recent
years. As Docker provides a lightweight and efficient
virtualization environment for software packages,
ensuring its security becomes crucial. This paper
performs a security analysis of Docker with two
perspectives: the security within Docker and its
relationship to the security features of the Linux kernel.
Resources that are isolated, controlled, and limited are
all examined in the Docker internal security. Linux
Cgroup is used by Docker to manage computer
resources, while Linux Namespace is used to securely
isolate running environments. In this paper discussed
how to separate resources such as filesystems,
networks, devices, and processes, as well as how to
isolate inter-process communication. Docker's
interactions with Linux kernel security characteristics
such as SELinux, AppArmor, Seccomp, and Linux
functions were also discussed. These capabilities boost
host system security by deploying Docker containers.
AppArmor maintains security policies, SELinux offers
further permission checks, and the Linux function
limits container rights. Network-based assaults are
defended against with the aid of Seccomp and the
network framework. Additionally, the study makes
recommendations for possible enhancements to
improve Docker's security. This involves configuring
Docker to deactivate specific functions within
containers to thwart possible breaches and enhancing
interoperability with Linux kernel security mechanisms.
Keywords: Docker Container, Virtual Machine,
Security Analysis, Linux Kernel, SELinux, AppArmor,
Seccomp.
1 Introduction

In today's world, virtualization has become
essential. It provides a way to share resources among
several users and is an affordable way to cut down on
resource underuse, especially as cloud services become
more and more common. Virtual machines (VM) and

* shathaab@ntu.edu.iq
*1% Computer Systems Department

containers are two widely recognized technologies that
facilitate virtualization [1].

Docker is a significant platform utilized by many
developers. It is an open-source platform for packaging
apps and running them in containers. The engine's
objective is to deliver a quick, light environment for
running the applications of developer and making
deployment easy and efficient. However, ensuring the
security of Docker containers is crucial to protect
applications and sensitive data from potential threats
[2].

Several approaches have been proposed to address
Docker container security. Bui [3] offered a
comprehensive examination of Docker technology,
concentrating on both its aspects of internal securityand
the modules of external security that may be integrated
with Docker. Bélair et al in [4] introduced a novel
taxonomy of container security that focuses on the
infrastructure level, distinguishing it from previous
works. They propose a classification of defense
frameworks based on this taxonomy, specifically
highlighting the methods by which the host OS can
enhance container security. The authors in [5],
extensively described the various attack within Docker
technology and proposed effective strategies to mitigate
these security risks. Another study [6] introduced a
method of dynamic analysis that evaluates the Docker
images security by analyzing their activities. The
dynamic analysis method has been proven to be a
useful addition to static analyses, which are frequently
used in security evaluations of Docker images. In [7],
The authors investigated denial of service attacks
against the architecture of Docker and advocated the
usage of a memory limit technique to mitigate against
resource exhaustion induced by malicious containers.

In this paper, we are going to highlight the Docker
architecture and its key components and analyze the
Docker container security. The analysis looks at several
topics: Docker's internal security depends on the
isolation level that Docker provides for its virtual
environments, the way Docker handles Linux kernel's
security features like AppArmor and SELinux to

ISCA Copyright© 2024

69

70

strengthen the host system, and the challenges which
face Docker container.

The paper is set up like follows: The second section
provides a brief explanation to the Docker platform.
The third section explains the Architecture of Docker.
Docker security analysis is introduced in the fourth
section. The fifth section focuses on discussing Docker
security analysis and what can be done to improve it.
The conclusion forms the final section.

2 Docker Overview

The "Docker" was initially established in March
2013 following the introduction of an innovative
approach termed containerization, which prompted OS-
level virtualization. Docker provides automated
deployment capabilities for applications through
containers. It adds an additional layer to the container
environment, allowing virtualization and execution of
applications. Docker is intended to build a lightweight
and fast environment for efficient code execution.
Additionally, it provides a convenient workflow for
testing code before deploying it to production [8].

The container model is often misrepresented. While
container technology appears secure due to its ability to
contain all dependencies in one package, it does not
guarantee overall security. Container platforms, like
other cloud platforms, are also vulnerable to various
threats from both internal and external sources.
Operating secure services within a multi-tenant cloud
challenges in virtual
environments. It is widely acknowledged that VMs
created through

system poses several
hypervisor-based virtualization
methods offer higher levels of security compared to
containers, table 1 shows the differences between the
two technologies [9].

Table 1: The distinction between Docker containers
and virtual machines [9]

Docker container Virtual Machine

Within a few seconds, It needs a few minutes

boots to boot.

The Docker engine is
utilized by Docker.

VMs are operated by
Hypervisor.

The utilization The use of and
interaction with VM

tools is simple.

mechanism for Docker
is complex.

The VMs increase the level of isolation between the
host and the apps. VM-based applications are restricted
to communicating solely with the VM kernel and are
unable to access the host kernel directly. Therefore, for

1JCA, Vol. 31, No. 1, March 2024

an attacker to target the host kernel, they would need to
bypass both the hypervisor and the kernel of VM.
Conversely, the container model enables direct
application access to and communication with the
kernel of host, as illustrated in figure 1.

Virtual Machines

Containers

Host Operation System

Docker Engine

Infractructure Infractructure

Figure 1: Docker and VM [10]

This situation enables an attacker to directly attack
the host kernel, making container technology more
susceptible to security concerns when compared to VM
platforms [10].

3 Architecture of Docker

Docker architecture consists primarily of major
components, as shown in Figure 2: Docker host and
client, Docker image, Docker registries, and Docker
container[11]. In the sections that follow, these
elements will be covered in more detail:

Docker Host

Docker Deamon

Docker Client Containers

Images

Docker Registry

9
'Q 45
Q
h—e
(]
Image | Image| Image

Dacker run

nede

Dacker pull

Docker push

Figure 2: Docker Architecture [11]

IJCA, Vol. 31, No. 1, March 2024

3.1 Docker Host and Client

Docker client and Docker host or daemon can
operate on the same machine, or a local Docker client
can connect to a host or daemon operating on a
different machine.

Docker clients allow users to interact with Docker.
When a Docker command is executed, the client sends
it to the Docker daemon, that executes it and is in
responsible of all container-related activities and
collects commands. The Docker client can
communicate with multiple daemons. A complete
environment for executing and running applications is
provided by the Docker host. This includes the Docker
daemon, image, container, storage, and network [12].

3.2 Docker Images

It is significant to build docker images based on two
methods. The first one includes building an picture
from a read-only pattern. A base image serves as the
foundation for all images. These operating system
images allow the creation of a container with a fully
functional operating system. Alternatively, a center
image can be produced from scrape and modified by
adding the required applications. The second step
involves creating a Dockerfile containing a list of
instructions. When the "Docker build" command is
executed, it uses these instructions to construct the
image. With the use of this technology, creating images
can be automated [13].

3.3 Docker Registries

Registries, which function similarly to source code
repositories, are where Docker images are kept. These
registries serve as centralized locations for uploading
and downloading images. Private and public
registrations are the two different categories of
registers. Anyone may push and pull their images from
public registries like Docker Hub without having to
start from scratch. It is commonly known that Docker
Hub is a public registry that makes it simple to access
and share Docker images. Docker has the possibility to
construct private registries in addition to public ones.
These private registries use Docker's hub feature to
limit access and let businesses or individuals share
images to particular public or private spaces. Finally,
Docker registries are essential for organizing and
distributing Docker images because they provide both
private and public choices to meet varying security
needs and use cases. [14].

3.4 Docker Containers

A Docker image is used to create a Docker
container, which contains all the parts needed to run an
application in an isolated manner. Docker containers
have a number of advantages. By doing so, developers
may ensure consistent behavior across development,
testing, and production environments and package apps
and their dependencies into a single unit. Additionally,
containers offer isolation, which eliminates issues
while running many applications on the same host.
They provide easy orchestration, scalability, and rapid
deployment, which simplify the management and
scaling of applications in a distributed, cloud-native
environment. [15].

4 Docker Container Security

When it comes to running services in virtual
environments like Docker, which is built on container-
based virtualization technology security is a major
concern. A number of factors are examined in order to
evaluate the security that Docker offers for applications
that are executing. This analysis explores the internal
security measures implemented by Docker containers,
along with the enhanced security features provided by
the underlying kernel. It also addresses the challenges
that arise when working with Docker containers from a
security standpoint.

4.1 Docker Internal Security

Docker containers differ from traditional
virtualization methods as they do not rely on
virtualizing hardware or employing a separate
operating system. Instead, Docker utilizes the Linux
Namespace mechanism to achieve safe isolation of
operating environment. Furthermore, it leverages the
Linux Cgroup mechanism effectively to manage
computer resources. The employing process of these
mechanisms, Docker ensures the secure separation of
virtual objects without the need for hardware
virtualization or an independent operating system [16 -
17].

4.1.1 Isolation of a resource

Docker ensures secure isolation by leveraging the
Linux Namespace mechanism. By using this
mechanism, isolated containers are certain not to be
able to access resources associated with other
containers, thereby providing transparency in computer
resource allocation. The details of resource isolation

71

72

achieved through namespaces are presented in table 2
[18].
Table 2: Details of resource isolation [18]

Call A t
Contents Isolated A%l Arguments Namespace

of System

Isolation of Process CLONE _ PID
NEWPID

Isolation of Inter- CLONE

Process . IPC

L NEWIPC

Communication

Isolati fadevi CLONE _ UTS

solation of a device NEWUTS

Isolation of a network CLONE _ Network
NEWNET

Isolation of a CLONE _ Mount

Filesystem NEWNS out

Isolation of Process PID: Process isolation in Docker
is achieved through the utilization of PID (Process
Identifier) namespaces. The main objective of this
process, prevent compromised containers from
interfering with other containers through management
process interfaces. Docker implement this procedure
by encapsulating processes within containers and
restricting their permissions and access to other

containers that deals with host device [18].

Isolation of Inter-Process Communication (IPC):
shared memory, semaphores and message queues
blocks are good examples of IPC objects used for
exchanging data among processes. When processes
operate in containers, it is important to restrict their
communication to a specific set of IPC resources and
prevent interference with processes running on the host
machine or other containers. Docker employs IPC
namespaces to achieve IPC isolation. By setting the
CLONE_NEWIPC
operation, Docker creates separate IPC namespaces.

parameter during the clone
Each IPC namespace consists of a collection of IPC
object identifiers. Processes within a namespace cannot
access or modify IPC resources in another
namespace[18].

Isolation of a device: In Unix, Device drivers can be
accessed by device nodes, which are special files,
allowing the kernel and programs to access hardware.
However, if a container has unrestricted access to
critical device nodes, it can potentially cause
significant damage to the host system. As a result, it is
critical to limit a container's access to device nodes [3].

Isolation of a network: Network isolation is crucial to
prevent network-based attacks like ManintheMiddle

1JCA, Vol. 31, No. 1, March 2024

and ARP spoofing. Docker creates separate network
stacks for each container, allowing them to interact
through their respective network. By default,
connectivity is provided via the Virtual Ethernet
Bridge, which forwards packets between its network
interfaces. However, this model is vulnerable to ARP
spoofing and Mac flood attacks as it forwards all
incoming packets without filtering [19].

Isolation of a Filesystem: Docker uses mount
namespaces to isolate the filesystem hierarchy
different
processes with different views of the file system

associated ~ with containers, providing
structure. However, some kernel file systems do not
have a namespace, causing containers to inherit the
host's view and access them directly. Docker limits
threats through two filesystem protection mechanisms:
revokes container permissions to write to these
filesystems and prohibits processes from remounting a
file system inside the container. Additionally, Docker
uses a copy on write file system, allowing each
container to write content to its specific filesystem[20].

4.1.2. Control of Resources

Docker containers use Linux's Control Group, or
Cgroup to ensure efficient utilization of system
resources like memory, CPU, block 1/0 and bandwidth.
As a result, each container instance is able to compete
for resources equally, and it is nearly impossible for
any container instance to run out of the host computer's
system resources. When a system resource is depleted,
the Linux kernel will trigger out of Memory, that will
terminate all active containers or processes. As a result
of the Cgroup mechanism, Denial-of-Service (DoS)
attacks are able to successfully controlled [21].

4.1.3. Limiting of Resources

A common attack on multi-tenant systems is a DoS
attack, where a process consumes all system’s
resources, disrupting the normal operation of
remaining processes. Limiting the resources allotted to
each container ought to be achievable in order to stop
this kind of attack. The primary tool used by Docker to
address this Cgroups.
management in Docker involves overseeing the
allocation of key resources like CPU disk I/O and

memory for each container. This ensures equitable

problem s Resource

distribution of resources among containers and
prevents any single container from monopolizing
them[3].

IJCA, Vol. 31, No. 1, March 2024

4.2. Docker and Kernel Security System

Two kernel security mechanisms, the Linux
function and the Linux Security Module (LSM), that
can improve the Docker security and the underlying
kernel. The Linux function limits each process's
permissions, while the Linux kernel manage many
security models using the infrastructure provided by
the LSM. LSM integrates security features like
AppArmor, SELinux and other implemented measures
into the official Linux kernel. This kernel security
system contains the following items:

4.2.1. Linux function

Users are classified into two categories on
traditional UNIX systems: root users and non root
users. The first type possess high privileges and can
bypass the kernel's permission checks, while the
second type must adhere strictly to execution
authorizations to perform tasks. Linux introduced the
capability mechanism in version 2.2, which enables
non-root users to execute tasks previously restricted to
root users. This mechanism operates on processes or
files, facilitating access control.

Furthermore, in the event that an intrusion manages
to gain root access within the containers, Docker
employs measures to mitigate its impact on the host
system. This is achieved by restricting a specific set of
Linux functions. Table 3 displays some of the disabled
functions within a Docker container [19] .

4.2.2. SELinux

A security improvement for the Linux system is
SELinux. Linux includes the common Discretionary
Access Controls (DAC) method to manage access to
objects, including owner/group and permission flags.
Following the normal DAC, SELinux offers a second
level of permission checking known as Mandatory
Access Control (MAC). MAC can offer greater
security than DAC. As users are unable to alter their
security level or the object security features, MAC
relies on matching of user and data security levels to
make specific and objective decisions. The subjective
factors of user are secured, resulting in an overall
improvement in system security. MAC is typically
used in conjunction with DAC in the Linux system,
and specialized security modules are developed within
the LSM framework. Everything is managed via labels
in SELinux. Each process, system object, and
file/directory has a label. These labels are used by the
system administrator to create rules that regulate access

among system objects and processes. They are referred

to as policies [22].

Table 3: list of disabled Docker container functions[19]

process name of Docker

Disabled functions

CAP _ SETPCAP

Modifying process
functions

CAP _SYS _ MODULE
Insert

delete kernel module

CAP _SYS RAWIO

Change the memory of
kernel

CAP _SYS PACCT

Configuration process
record

CAP _ SYS _ RESOURCE

Covering resource
constraints

CAP _SYS _NICE

Change the process
priority

CAP _SYS TIME

Change the clock of
system

CAP _ AUDIT _ WRITE

Writing audit logs

CAP_MAC _OV
ERRIDE

Disregard the MAC
policy in the kernel.

CAP _ SYSLOG

Changing the behavior of
kernel printk

CAP_ SYS _TTY _

Configuring TTY devices

CONFIG
CAP _AUDIT _ Configuring audit
CONTROL subsystem
he MA
CAP_ MAC _ADMIN Set up the MAC
- - configuration
CAP _ SYS _ ADMIN Select all

CAP _ NET _ ADMIN Configure the network

4.2.3 AppArmor

AppArmor is a model for improving Linux security
that relies on required access control, but it limits its
scope to individual programs. This restricts the
functionality of the program by downloading files of
security configuration by administrators in each file.
When a new container is started by Docker on a system
that supports AppArmor, an interface is provided for
loading a AppArmor profile. The profile is installed in
application mode, ensuring that processes within the
container adhere to the profile's restrictions. If no
profile is specified during container startup, a default
profile is automatically loaded into the container by the
Docker daemon. This default profile prevents access to
the host's crucial filesystems [23].

73

74

4.2.4. Seccomp

Seccomp is a mechanism that enables the restriction
of system calls made by user processes and allows the
filtering of system call parameters. System calls play a
crucial role in connecting kernel states and user.
Processes can function within a secure and controlled
range through restricting system calls.

In Docker, a whitelist approach is adopted for
Seccomp, where a configuration file is utilized to
specify the allowed system calls, while over 50 specific
system calls are blacklisted. This approach ensures that
processes running within Docker containers are
restricted to a safe subset of system calls and mitigates
potential security risks[24].

5 Enhancing Docker Containers Security

Docker Containers have gained popularity in the
software development community because they allow
developers to bypass time-consuming library and
dependency setting. However, along with the benefits

1JCA, Vol. 31, No. 1, March 2024

of containerization, there are also security challenges
that may make data vulnerable to attackers so must be
addressed to ensure the integrity and protection of
containerized applications[26]. Let's explore some of
the key security challenges facing Docker containers
and the solutions to address them shown in table 4.

Docker Containers supports the usage of SELinux
and AppArmor frameworks to improve the Docker
containers security. These frameworks enables to
specify rules of the activities and access rights for
containers, such as Docker-sec and Lic-sec.

Docker-sec offers an extra layer of security on top
of Docker's default
constructing per-container AppArmor profiles.Docker-

security by automatically
sec creates profiles of container based on behavior of
application and configuration instructions, see figure 3.
This procedure combines dynamic monitoring and
static analysis to generate and enhance profiles of
container operations during a predetermined test
period.

Table 4: Security challenges for container networks

Security Describti Soluti
escription olution
Challenge P
. . o . Implement strong isolation between containers,
Container Compromise within a container can lead to . . .
. . . apply container runtime security measures, and
Breakouts the entire host being compromised. . :
regularly update container runtimes.
Imace Vulnerabilities within container images can Use trusted base images, regularly update
ma, . . Lo . . L .
Vulneragilities be exploited to compromise containerized container images, perform vulnerability scanning,
applications. and enforce secure image sourcing practices.
Inadequate Weak isolation between containers can Utilize container network segmentation, apply
Isol (tl result in unauthorized access and data proper access controls, and enforce least privilege
sofation leakage. principles for containerized applications
. L Implement network security policies, utilize secure
Ensuring secure communication, traffic ;
Network . . overlay networks or service meshes, and employ
. control, and protection against network- .o . . .
Security network monitoring and intrusion detection
based attacks.
systems.
. Dynamic IP addresses make it challenging Explore container network security solutions that
Dynamic IP . .
Changes to implement IP-based access control and offer dynamic IP-based access controls and
modify firewall rules. leverage container orchestrators' network policies.
. . . e Follow security best practices for container
Orchestration Misconfigurations or vulnerabilities in the . Y p
. . orchestration platforms, regularly update them,
Platform container orchestration platform can lead to .
. . enforce strong access controls, and implement
Security unauthorized access and data exposure. . ..
security auditing.
Malicious insiders with legitimate access Implement strong access controls, enforce the
Insider Threats can misuse privileges and compromise principle of least privilege, monitor and audit user
containers or data. activities, and provide security awareness training.

1JICA, Vol. 31, No. 1, March 2024

Container

Figure 3. Components of the counter that the Docker-sec can protect

Dynamic Monitoring allows users to schedule
container training time, allowing Docker-sec to capture
behavior data, identify necessary permissions, examine
audit log, adjust execution profile, potentially
decreasing capabilities, and repeat until needed
functionality is documented. Static Analysis gathers
container and operation data from command-line
arguments supplied by the user or data produced by
Docker. The data is employed to create rules basic
security and presentation new containers profiles.
Docker-sec collects critical details from arguments of
command line and utilities of Docker, like container
volumes, privileges of user, and the SHA256 checksum
of the container. Docker-sec may briefly enforce an
AppArmor profile during the container setup process
before switching to the one used during the container's
runtime. Despite the capabilities provided by Docker-
sec, its protection against user space program targeted
exploits is limited[27].

Lic-Sec is an AppArmor profile generator which
merges Docker-sec and LiCShield's best features in
order to offer a more complete and effective security
solution for Docker containers, figure 4 provides an
overview of the Lic-Sec. It concentrates on creating
AppArmor profiles for all Docker components
automatically, assuring greater confinement of rights
inside the container, and facilitating expansion of
functionality, although it still has limits when it comes
to web-server attacks. The LiCShield framework
secures Docker containers and workloads by
automatically generating AppArmor rules for both the
host and container. It traces kernel operations using

SystemTap5, converts traces to AppArmor rules, and
constructs two profiles: one for operations inside the
container and one for operations on the host[28].

6 Discussion of the Docker Container Security

Docker Containers provide an effective method
and lightweight of packaging an application and all of
its dependencies. However, several security concerns
are preventing their wider deployment [29]. According
to the analysis, Docker allows a high level isolation of
process, inter-process communication, device, network,
and filesystem. It also has the ability to control
resources and limiting resources for its containers.

LiCShield and Docker-sec are popular ways to
improve Docker container security based on MAC and
allow container protection without manual
configurations. The design principle of LiCShield is
comparable to Docker-sec. It does not, however, build
rules for capabilities and network accesses, but it does
generate other critical rules that Docker-sec cannot
generate, such as file access rules, mount rules, and so
on. Table 5 shows the differences between the two
methods [28]. Lic-Sec an AppArmor profile generator
combines the strengths of both methods and provides
stronger protection. Lic-Sec provides a mechanism for
creating AppArmor rules that are specific to each
container. It will be possible to create a generator that
provides a greater level of safety with more rules to
protect various portions.

75

1JCA, Vol. 31, No. 1, March 2024

AppArmor profile
k
{3 Pivofrotruies | | Piuotroot e
Systern i # generate o | Flloaccesstilos | | Fllacieds s
' \ |
W00 o flps IS o
| Exeeuion ules | | Execubion rides
.- saneseancy (MU oot yefla
. udig - | fenerde | Capaily s
race flg A -~ Mot
Container profile

Figure 4. Overview of the Lic-Sec framwork

Table 5 : Comparison between and LiCShield and Docker-sec.

LSM MAC Year Tracing Generate Generated Pre-defined Effe.ctive
tool d profiles rules profiles protective range
Pivot root
Container rule access
. . runtime rule mount | = -
LiCShield | AppArmor | 2015 SystemTap . Docker daemon
Docker rule link rule
daemon execution
rule
. Capability RunC .
Docker- . Container Container RunC
AppArmor 2018 Auditd . ! rule network Docker Y
sec runtime Docker daemon
rule daemon
7 Conclusions and Future Work References
The migration of critical applications to containers [1] MP, A. R., Kumar, A., Pai, S. J., Gopal, A.
is anticipated to accelerate as container applications “Enhancing security of docker using linux
continue to gain popularity. While assuring convenient hardening techniques”. 2nd International

deployment and optimum resource usage, improving

container security will become an increasingly
important problem.

This paper illustrates the fundamental concepts of
Docker and explains how Docker achieves secure
isolation through the use of Linux Namespace and
Cgroup mechanisms, which ensure resource isolation
within

and control containers, as well as the

importance of considering Linux kernel security
features such as AppArmor and SELinux to strengthen

the host system when using Docker. A variety of

Conference on Applied and Theoretical Computing
and Communication Technology, pp.94-99, 2016.

[2] Lee, Haneul, Soonhong Kwon, Jong-Hyouk Lee.

“Experimental Analysis of Security Attacks for
Docker Container Communications”. Electronics
12.4, 2023.

[3] Bui, Thanh. “Analysis of docker security”. arXiv

[4] Bélair, M.,

preprint arXiv:1501.02967 , 2015.
& Menaud, J.-M.
Leveraging kernel security mechanisms to improve

Laniepce, S.,

container security: A survey. Proceedings of the

additional measures have been proposed to improve the 14th international conference on availability,
Docker containers security, and some of the ways to reliability and security, 1-6, 2019.
enhance container security are reviewed. [S] Souppaya, Murugiah, John Morello, Karen

In the future work, we want to improve Docker's
scheduling feature and create a safer container variant
that will loosen security restrictions.

Scarfone. “Application container security guide”
(2nd draft). No. NIST Special Publication 800-190.
National Institute of Standards and Technology,
2017.

IJCA, Vol. 31, No. 1, March 2024

[6] Brady, K.; Moon, S.; Nguyen, T.; Coffman, J.
“Docker Container Security in Cloud Computing”.
In Proceedings of the 2020 10th Annual
Computing and Communication Workshop and
Conference (CCWC), Las Vegas, NV, USA, 6-8
January; pp. 975-980, 2020.

[7] Chelladhurai, Jeeva, Pethuru Raj Chelliah, Sathish
Alampalayam Kumar. “Securing docker containers
from denial of service (dos) attacks”, International
Conference on Services Computing (SCC). IEEE,
2016.

[8] T. Combe, A. Martin, R. Di Pietro, “To Docker or
Not to Docker: A Security Perspective” in IEEE
Cloud Computing, vol. 3, no. 5, pp. 54-62, Sept.-
Oct. 2016.

[9] Jain, V., Singh, B., Khenwar, M., Sharma, M.
“Static vulnerability analysis of docker images”,
IOP Conference Series: Materials Science and
Engineering. Vol. 1131. No. 1. IOP Publishing,
2021.

[10] Yasrab, Robail. “Mitigating docker security
issues”. arXiv preprint arXiv:1804.05039 , 2018.

[11] Garg, Somya, Satvik Garg. “Automated cloud
infrastructure, continuous integration and
continuous delivery using docker with robust
container security.” IEEE Conference on
Multimedia Information Processing and Retrieval
(MIPR). IEEE, 2019.

[12] Loukidis-Andreou, F., Giannakopoulos, 1., Doka,
K., Koziris, N. “Docker-sec: A fully automated
container security enhancement mechanism.”
IEEE 38th International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018.

[13] Rad, Babak Bashari, Harrison John Bhatti,
Mohammad Ahmadi. “An introduction to docker
and analysis of its performance.” International
Journal of Computer Science and Network
Security (IICSNS) 17.3 ,228, 2017.

[14] Brogi, Antonio, Davide Neri, Jacopo Soldani.
“DockerFinder: Multi-attribute search of docker
images.” 2017 IEEE international conference on
cloud engineering (ic2e). IEEE, 2017.

[15]S. Winkel, “Security Assurance of Docker
Containers: Part 1,” ISSA Journal, April 2017.

[16] Alyas, Tahir, et al. "Container Performance and
Vulnerability Management for Container Security
Using Docker Engine.” Security and
Communication Networks 2022.

[17] E. Reshetova, J. Karhunen, T. Nyman, N. Asokan.
“Security of OS-level virtualization technologies”.
In Proceedings of the 2014 NordSec Conference,
pages 77-93, Norway, 2014.

[18] D. Huang, H. Cui, S. Wen, C. Huang, “Security
Analysis and Threats Detection Techniques on
Docker Container”, IEEE 5th International
Conference on Computer and Communications
(ICCC), Chengdu, China, 2019, pp. 1214-1220

[19]J. Wenhao, L. Zheng, “Vulnerability Analysis and
Security Research of Docker Container”, IEEE 3rd
International Conference on Information Systems
and Computer Aided Education (ICISCAE),
Dalian, China, 2020, pp. 354-357,

[20] Sever D , Kisasondi T . “Efficiency and security of
Docker based honeypot systems”, International
Convention on Information &Communication
Technology, Electronics & Microelectronics. 2018.

[21] S. Wu, K. Wang, H. Jin, “Research Situation and
Prospects of Operating System Virtualization”,
Journal of Computer Research and Development,
vol. 56, no. 1, pp. 58-68, 2019.

[22] Bhalerao, Amol. “Docker and analysis of its
security.” Journal homepage: www. ijrpr. com
ISSN 2582: 7421.

[23] Zhu, Hui, Christian Gehrmann. “Lic-Sec: an
enhanced AppArmor Docker security profile
generator.” Journal of Information Security and
Applications 61: 102924, 2021.

[24] Tolaram, Nanik. “Docker Security.” Software
Development with Go: Cloud-Native Programming
using Golang with Linux and Docker”. Berkeley,
CA: Apress, 89-107, 2022.

[25] Xiang, Jie, Long Chen. “A method of docker
container forensics based on api”. Proceedings of
the 2nd International Conference on Cryptography,
Security and Privacy. 2018.

[26] Baker, S. A., Nori, A. S. “Internet of things
security: a survey”. Advances in Cyber Security:
Second International Conference, ACeS 2020,
Penang, Malaysia, December 8-9, 2020, Revised
Selected Papers 2. Springer Singapore, 2021.

[27]Loukidis-Andreou, F., Giannakopoulos, I., Doka,
K., & Koziris, N. “Dockersec: A fully automated
container security enhancement mechanism”. 2018
IEEE 38thInternational Conference on Distributed
Computing Systems (ICDCS), 1561-1564, 2018.

[28] Zhu, Hui, and Christian Gehrmann. "Lic-Sec: an
enhanced AppArmor Docker security profile
generator." Journal of Information Security and
Applications 61 (2021): 102924.

[29] Baker, S. A., Nori, A. S. “A secure proof of work
to enhance scalability and transaction speed in
blockchain technology for IoT”. In AIP
Conference Proceedings (Vol. 2830, No. 1). AIP
Publishing , 2023.

77

78

BIOGRAPHY / BIOGRAPHIES

Dr. Shatha A. Bakr has a Bachelor's degree in
Computer Science from the University of Mosul,

which she obtained in 1997. In 2013,
she earned a master's degree in
Computer Science from the same
university. Later, in 2022, she
completed her Ph.D. from the
University of Mosul. Dr. Bakr worked
as a Lecturer at the Northern Technical University in

Mosul, Iraq. Her research interests encompass mobile
phone programming, information security, multimedia
communications, and artificial intelligence.

Dr. Hisham Hashem earned his bachelor's, master's,

1 and doctoral degrees from the University

of Mosul, Faculty of Computer Science
and Mathematics, Department of
Computer Science, in 2010, 2013, and
2022, respectively. Currently, he works
as a Lecturer at the Northern Technical University in
Mosul, Iraq. His research areas encompass big data,
artificial intelligence applications, image processing,
and bioinformatics

Omar I. Alsaif is currently a lecturer in the Mosul
Technical Institute/Northern Technical
University in Mosul, Iraq. He received
his B.Sc. in electrical engineering from
the University of Mosul in 1992. In
2005 and 2018, he obtained his M.Sc.
and Ph.D. degrees in Electronics and Microelectronic
Engineering from Mosul University, respectively. His
research interests encompass microelectronic and solid-
state systems, renewable energy, and nanotechnology
devices.

1JCA, Vol. 31, No. 1, March 2024

