
IJCA, Vol. 31, No. 2, June 2024 95

The execution of the Partition Problem: A Comparative Study of Various Techniques for
Efficient Computation

Pratik Shrestha *

Grand Valley State University, Grand Rapids, Michigan, USA.

Chirag Parikh †

Grand Valley State University,Grand Rapids, Michigan, USA.

Christian Trefftz ‡

Grand Valley State University, Grand Rapids, Michigan, USA.

June 20, 2024

Abstract

Exponential-time algorithms for solving intractable problems
are considered inefficient when compared to polynomial-time
algorithms for solving tractable problems. The reason being
that the execution time for former grows rapidly as problem
size increases. A problem is considered NP- complete when
a problem is non-deterministic polynomial (NP) and all other
NP-problems are polynomial-time reducible to it. The partition
problem is one of the simplest NP- complete problems. Many
real-life applications can be modeled as NP-complete problems,
and it is important for software developers to understand the
limitations of existing algorithms that can solve those problems.
Solving the partition problem is a time-consuming endeavor.
Exact algorithms can find solutions, in a reasonable amount
of time, only for small instances of these problems. Large
instances of NP-hard problems will take so long to solve
with exact algorithms, that for practical purposes those large
instances should be considered intractable. The execution time
required to find a solution to instances of the partition problem is
greatly reduced by using parallel processing counterparts such
as Graphics Processing Unit (GPU) and Field Programmable
Gate Array (FPGA). In this paper, we talk about the use of
the NVIDIA T4 GPU and PYNQ FPGA board in conjunction
with an overlay to accelerate the execution of a function that
evaluates if a partition is a solution to an instance of the partition
problem. To assist with the evaluation, four different overlays
are created

for FPGA and performance comparison among them with
GPU using python and the numba/cuda library is then presented
in the paper.

*Reasearch Assistant Email: shrestpr@mail.gvsu.edu.
†Professor and Chair of Computer Engineering program at Grand Valley

State University. Email: parikhc@gvsu.edu.
‡Professor at the College of Computing at Grand Valley State University .

Email: trefftzc@gvsu.edu.

1 Introduction

Parallel processing is a topic of growing importance in the
computing world. The exponential growth of processing and
network speeds means that parallel architecture is not just a
good idea but now a necessity. Many problems require an
enormous amount of time to be solved. For e.g., exponential-
time algorithms take longer for solving intractable problems in
comparison to their polynomial- time algorithm counterpart for
large problem sizes. In addition, parallel systems have proven
to be the only alternative to obtain solutions in a reasonable
amount of time. Hence, there is lot of recommendations
for curricula of computer science undergraduate degrees to
emphasize on topic of parallel processing. Introductory courses
in parallel processing include surveys of different computer
architectures: Shared memory machines with microprocessors
comprising of several cores, Graphics Processing Units (GPUs)
and clusters of computers, among others. Field Programmable
Gate Arrays (FPGAs) on the other hand have proven to
be efficient accelerators for the execution of many different
applications [1]. Hence, it is of benefit to have the topic of
FPGAs be included in a course in parallel processing. The
challenge faced by an instructor who wants to cover FPGAs in a
parallel processing course is that programming FPGAs requires
a very strong background and skills in hardware design that
most computer science students lack. To assist with this, Xilinx
has created a board called PYNQ [2] for pedagogical purposes
that can be easily programmed using Python without the need
to be proficient in hardware design. Figure 1 shows the PYNQ
board

ISCA Copyright© 2024



96 IJCA, Vol. 31, No. 2, June 2024

PYNQ board contains an FPGA device with a built-in Arm
microprocessor that has two cores and a programmable fabric.
PYNQ board runs a custom version of Linux and are therefore
considered as a stand-alone computer. A PYNQ board can
connect to a traditional computer through an Ethernet cable and
a USB cable. Xilinx has chosen Jupyter notebooks to provide
a very convenient way of interacting with a PYNQ board. The
PYNQ board can run a web server that interacts with a python
interpreter. The user can start a browser on his/her computer
and access web pages on the server running on the PYNQ board.
Those web pages may contain python code that will be executed
on the PYNQ board. The Python interpreter on the PYNQ
board can interact with overlays, which are configurations of
the programmable fabric of the FPGA that can execute specific
functions. On the other hand, a GPU is a specialized electronic
circuit designed to accelerate graphics rendering, primarily used
in rendering images and videos for computer displays [7]. Over
time, GPUs have evolved beyond their original graphics-centric
purpose, finding significant applications in parallel processing
tasks. Due to their parallel

architecture and capability of high- performance computing,
GPUs excel in handling large amounts of data simultaneously,
making them highly efficient for parallelizable tasks such
as scientific simulations and artificial intelligence (AI)
computations. The environment used to implement the version
of the program that uses a GPU was Google COLAB. COLAB
executes on a dedicated machine with a Xeon microprocessor

and a NVIDIA T4 GPU. [8]. A T4 GPU has 2560 cores.
It has 16 gigabytes of main memory, and it is connected to
the host computer using a PCI Express bus (version 3.0 x16).
In this work, the GPU is utilized to solve the NP-Complete
problem through parallelization. A problem is considered NP-
complete when a problem is non-deterministic polynomial (NP)
and all other NP-problems are polynomial-time reducible to it.
In this paper, we describe the process of creating an overlay
to accelerate the execution of a python program that finds a
solution to the partition problem, a problem that belongs to the
“NP- complete” category of problems. Algorithms to find exact
solutions to problems in this category are very time consuming
The rest of this paper is structured as follows: The partition
problem is described in section 2 followed by a “brute force”
approach to solve the Partition problem outlined in section 3.
process of creating the overlay is described in section 5 followed
by experimental results and conclusions in sections 6 and 7
respectively.

2 The Partition Problem

In the world of computer science, partition problem or
sometimes called as number partitioning [3] is the task of
deciding when given a multi-set of positive integers S, if it
can be partitioned into two sub multi-sets S1 and S2 such
that the sum of the elements is S1 is equal to the sum of the
elements in S2? Consider the following example: Let S be
the multi-set 4,5,9. In this particular case it is evident that the
answer to the problem is yes: We partition the multi-set into
two sub multi-sets S1: 4,5 and S2: 9. The partition problem
is one of the simplest NP-complete problems. NP-complete
problems are very interesting for several reasons. Many real-
life applications can be modeled as NP-complete problems,
and it is important for software developers to understand the
limitations of existing algorithms that can solve those problems.
Exact algorithms can find solutions, in a reasonable amount
of time, only for small instances of these problems. Large
instances of NP-hard problems will take so long to solve
with exact algorithms, that for practical purposes those large
instances should be considered intractable. Other alternatives
are available (heuristics, approximation algorithms) but the
solutions produced by these alternatives are likely to be sub-
optimal. NP-complete problems are yes/no questions. The
letters NP stand for Non-deterministically Polynomial. These
problems have the characteristic that it is possible to write an
algorithm with Polynomial execution time that will be able to
determine if a candidate solution is indeed a solution to the
problem or not. The challenge for this family of problems

Implementation of the partition problem using NVIDIA T4
GPU is described in section 4. The

is to generate the appropriate candidate solution. To this day,
the exact time complexity of algorithms that solve NP- complete
problems is not known. So far, the only algorithms that generate
the proper candidates for a problem have exponential time
complexity. The consensus among most practitioners is that it



IJCA, Vol. 31, No. 2, June 2024 97

is not feasible to find algorithms with better time complexity
to generate the proper candidates. NP-complete problems have
another interesting property: Algorithms to transform the input
of one NP-complete problem to other NP-complete problems
exist. Those algorithms are called “reductions” and they have
polynomial complexity. When a researcher comes across a
new problem and wants to show that this is an NP-complete
problem, the proof is the description of a “reduction” to an
existing NP-complete problem. Thus, if anybody were to write
an exact algorithm with polynomial time complexity to solve
an NP-complete problem, all the problems in the class could
be solved in polynomial time as well, thanks to the existing
reduction algorithms. It is important for software developers
to be aware of the existence of NP-complete problems. Some
problems from real life are in this category. It is important to
be able to tell the users that only small instances of problems
in this class can be solved exactly in reasonable amounts
of time. Large instances of these problems are intractable,
and it becomes necessary to use other alternatives, to use
approximation algorithms or to use procedures that may not
produce optimal solutions. The next section talks about the
exact algorithm to solve the partition problem.

3 An Exact algorithm to solve Partition problem

Woeginger [4] has observed that there is a subset of NP-
complete problems that can be solved by brute-force by
enumerating exhaustively all the possible subsets (the power
set) of a particular set of elements. For each of those possible
subsets, one uses a function that evaluates if that subset is
a solution to the problem of interest. One then proceeds to
choose, among the subsets that are possible solutions, the one
that works best. Other NP-hard algorithms that can be solved
using the same brute-force approach include the maximum-
clique problem, the maximum independent set problem and the
minimum dominating set problem. If we wanted to explore the
power set of the multi-set S, we could do it by observing that
the binary representation of the integers between 1 and 2n-1 -
1 encode the possible subsets of interest. Notice that the other
values between 2n-1 and 2n - 2 are symmetrical to the values
considered. Table 1 illustrates the values for the example in
the previous section: S = 4,5,9. The indices for the different
encodings of the subsets are listed on the first column, Index, on
Table 1. The binary encoding is listed on the second column.
The rightmost digit encodes to the subset to which element 1
belongs, the middle digit encodes the subset to which element
2 belongs and the leftmost digit encodes the subset where node
3 belongs. Take the entry that corresponds to 3: 011. This is
interpreted as subset 1 (encoded by 0) containing element 3 and
subset 2 (encoded by 1) containing elements 1 and 2. The table
contains all the integers between 0 and 7(23 - 1), but it is not
necessary to consider the value 0, nor the value 7. Observe
that the values between 0 and 3 are symmetrical to the values
between 4 and 7; the values are each other’s complements, 1
(001) is the complement of 6 (110), 2 (010) is

the complement of 5 (101), and 3 (011) is the complement of
4 (100).

Notice that the set of possible subsets of interest is encoded by
the set of integers in the range between 1 and 2n-1 - 1. As soon
as an algorithm finds a possible partition of the multiset, the
algorithm can stop and the answer for this particular instance
of the problem is yes. If all possible partitions are considered
and no possible satisfying partition is found, the answer for this
particular instance of the problem is No. The outline of the
main algorithm is shown in Figure 2. As can be observed, the
complexity of the algorithm is O(2n), exponential

This algorithm can be easily parallelized using environments
like OpenMP, for shared memory machines, Thrust, for GPUs,
or MPI

for clusters or computers. The evaluation of each possible
partition can be carried out independently from the evaluation
of the other possible partitions. On computing platforms with
several processors, every processor can evaluate a possible
partition in parallel with other processors evaluating other
possible partitions [5]. Most of the execution time of the
program is spent in the function that evaluates if a particular
partition is a solution for the problem. In the next section, we
use NVIDIA T4 GPU to speed-up the execution of the function.



98 IJCA, Vol. 31, No. 2, June 2024

Algorithm 1 Algorithm to solve instances of the Partition
problem

1: input: n size of the problem, array: values in the multiset
2: output: true or false
3: indexO f PossiblePartition = 1
4: while indexO f PossiblePartition < 2n −1 do
5: if evaluatePossiblePartition(indexO f PossiblePartition,

n, array) then
6: return true
7: else
8: indexO f PossiblePartition++
9: end if

10: end while
11: return false

Algorithm 2 Algorithm to evaluate if partition is the solution

1: Input: n, array that contains the values,
indexO f PossiblePartition

2: Output: true or false
3: sumO fValuesInPartition0 = 0
4: sumO fValuesInPartition1 = 0
5: index = 0
6: while index < n do
7: if bit index in the binary representation of

indexO f PossiblePartition is 0 then
8: sumO fValuesInPartition0+= array[index]
9: else

10: sumO fValuesInPartition1+= array[index]
11: end if
12: index++
13: end while
14: if sumO fValuesInPartition0 = sumO fValuesInPartition1

then
15: return true
16: else
17: return false
18: end if

4 Implementation using NVIDIA T4 GPU

The NVIDIA T4 Tensor Core GPU is a powerful accelerator
designed for various cloud workloads, including deep learning,
machine learning, data analytics, and video transcoding. Even
though the NVIDIA T4 Tensor Core GPU is not specifically
designed to solve NP-Complete problems directly, however,
it can significantly accelerate certain aspects of solving such
problems due to its parallel processing capabilities and high
throughput. In terms of performance, the T4 delivers up to 40
times higher performance than CPUs [9]. This implementation
was performed in Google Colab using Nvidia T4 GPU as shown
in Figure 4 below.

Python lacks native support for GPU programming, but
developers can leverage the NUMBA/CUDA library to write
code tailored for NVIDIA GPUs. This library harnesses the

Figure 1: Selection of Runtime type

LLVM compiler infrastructure to generate binary executable
code. Through the NUMBA library, specific functions within
a Python program can be compiled into native binaries.
Decorators are applied to signal which functions should
undergo compilation, guiding the library towards optimization.
Upon successful compilation, function calls execute as binary
code, resulting in accelerated performance compared to
the interpretation process of standard Python code. The
NUMBA/CUDA library, a subset of NUMBA, specializes in
producing GPU- executable code. Decorators are utilized just
before functions intended for GPU execution. The evaluate
partition has been decorated as shown below:

Figure 2: Decorator used in the implementation

In addition to utilizing decorators, developers must employ
additional functions when working with GPUs. GPUs function
as distinct computing units with their own dedicated memory.
Hence, it is essential to transfer variables, typically arrays, from
the host memory to the GPU’s memory. Once the relevant
variables have been transferred to the GPU’s

memory, the code designated for GPU execution is invoked.
This requires calling a function that has been compiled with
the necessary decorators. Developers must specify the size of
the arrays that the functions will operate on. As previously
mentioned, the code executing on the GPU corresponds to



IJCA, Vol. 31, No. 2, June 2024 99

a function marked with the apropriate decorator. Upon
completion of the GPU code, the program retrieves the desired
results and transfers them back to the host’s memory. figure
below highlights the most important actions in the code to
interact with the GPU:

• Moving arrays to the GPU memory
• Executing the code on the GPU
• Finally copying the results from the GPU memory to the

host memory

Figure 3: Important steps while interacting with GPU

As discussed in the previous section, the essence of the
algorithm is to execute a function that evaluates if a particular
integer value is an encoding of a partition that solves the
instance of the problem. All the integers that encode subsets
(elements) from the power set can be evaluated in parallel. If
the number of elements to be evaluated is larger than the number
of cores available in the GPU, the GPU operating system takes
care of executing the code the necessary number of times so
that the function is executed on all the elements. On the
COLAB notebook mentioned before, an instance of size 25
took 1.024 seconds to execute. In the next section, we use the
programmable fabric of the FPGA to accelerate the execution of
that function

5 Implementation on an FPGA using an Overlay

Overlays, also known as Hardware libraries, are
programmable/configurable FPGA designs that

extend the user application from the Processing System into
the programmable logic [6]. They are extremely useful to
accelerate a piece of software using a hardware platform for
a particular application. The software programmer can use an
overlay in a similar way to a software library to run some of
the applications on an FPGA as overlays can be loaded into
the FPGA dynamically. This allows software programmers to
take advantage of FPGA capabilities without having detailed
knowledge about the low-level hardware design. All they have
to worry about is the top-level program. Creating an Intellectual
Property (IP) core

using High Level Synthesis (HLS) is the very first step
required to create a custom overlay. For the HLS portion of

this design, Xilinx’s Vivado HLS was used. Different pragmas
were inserted in a C program to boost the efficiency. After the
successful creation of the IP core, the IP component is imported
into the Vivado Suite. In the block diagram shown in Figure 4,
the Zynq processor is connected to the custom IP. For this work,
the High- performance AXI bus is chosen explicitly to boost
up the execution. After successful synthesis of the overlay, the
bitstream is then generated. This step produces .BIT and .HWH
files which are then stored in the working directory inside the
PYNQ board.

Figure 4: Block design of the overlay

To interact with the IP, first the overlay must be loaded into
the Jupyter notebook which contains the IP. The PYNQ board
must be physically connected to the PC for this step as all
the rest of the process will be done in PYNQ board. This
step has been depicted in Figure 8 below using the Python
code. Here, the overlay “PartitionCheckII” has been imported.
Then the next line indicates that the overlay consists of an IP
PartitionCheckII0 which is the IP of interest here

Figure 5: Import Overlay

This overlay can be thought as a block, as shown in Figure 6,
which takes an array as the input and produces single output, 1
or 0, indicating if the given numbers can be partitioned or not.
The very first element of the array indicates the total numbers
present in the array.

As can be seen clearly from the overlay block in Figure
6, there are two ports in total. Each of them has their
own physical memory address used as Memory Mapped Input



100 IJCA, Vol. 31, No. 2, June 2024

Figure 6: Overlay block

Output (MMIO) for I/O operation. In the code snippet shown in
Figure 10 below, the address 0x18 is used as the input address
for the array and 0x10 is used as output address. The bit value 1
in the address 0x00 indicates beginning of the process.

Figure 7: Implementation of the overlay

Execution time is another important aspect of this work as the
main goal is to accelerate the partition problem using FPGA.
To measure the execution time, the “time” module is imported
and used. In Figure 10 above, the array “numbers” include
26 elements where the first element, 25, denotes that there are
a total 25 numbers which are to be partitioned. The output
“Done” indicates the execution has been completed with the
time consumption of 15.03 seconds. Along with the above-
mentioned overlay, three additional overlays were created for
this work bringing the total to four overlays. The next section
discusses the remaining overlays in brief along with their
implementation results.

6 Experiments, Results and Analysis

Altogether four different versions of overlays were created
for this work, every

overlay had slight modifications. Thus, the experiments were
conducted with four different methods. For reference purposes,
a partition program was created in native python to compare
with the obtained result. The followings are the details about
methods used in the project:

1. Method 1: In this method, an overlay was created with
inputs ‘n’ and ‘array ’. The S AXILITE Bus was used instead
of the High- Performance AXI bus. A loop was used to assign
every array element to every memory location which made this
overlay significantly slower. This method performed well with
up to ‘n=20’ but with ‘n=25’ the execution time took so long
that the execution had to be stopped forcefully

2. Method 2: In this method, the overlay was created
with ‘n=25’ defined (hardcoded) inside the overlay. Thus, the
only input was ‘array []’. Instead of assigning every array
element one by one into the memory addresses in the FPGA,
it uses the AXI Burst method (High performance AXI Bus)
which improves the execution time drastically. As this method
explicitly uses ‘n=25’ inside the overlay, this overlay performs
efficiently only for ‘n=25’. The numbers in array can be
changed. This method produces result efficiently for instances
of the problem of this specific size, but the user does not want a
software implementation with this restriction. 3. Method 3: in
this method, the overlay was created with inputs ‘n’ and ‘array
[]’. This overlay is similar to the one created in method 1 but
this time the bus used is High Performance AXI bus instead
of S AXILITE bus. Also, this overlay uses AXI burst method
to transfer array numbers into the memory addresses instead of
using a loop and transferring data one by one. This method is
also significantly faster

than method 1 but not as much as method 2 for ‘n=25’. The
good thing with this method is that it provides the user flexibility
to change the value of ‘n’ unlike method 2 which only works
efficiently with ‘n=25’. 4. Method 4: In this method, the overlay
uses ‘array []’ as the only input. The very first element of the
array denotes the value of ‘n’ in this method. Then rest of the
elements denotes the numbers that needs to be partitioned. If the
first element in the array is 25, which means ‘n=25’ and there
are 25 numbers after the first element in the array. This method
uses High Performance Bus for data transfer and uses AXI
Burst method instead of transferring one data at a time. This
method produced the same results as method 3. Table 2 below
summarizes the results obtained with the methods discussed
above. Similarly, Table 3 illustrates the execution time achieved
using various methods for different values of ‘n’.

It can be deduced from Table 4 shown below that as the value
of ‘n’ increases the speed factor increases. Hence, computing
this problem in FPGA and NVIDIA GPU is much more efficient
if the instance of the partition problem is larger. Particularly for
n=25, NVIDIA T4 GPU turned out to be the fasted among all,
which is 979 times faster than pure python executed in CPU. If



IJCA, Vol. 31, No. 2, June 2024 101

the size of the instance problem is smaller, then it might not be
significantly faster. From Table 4, one can see that method 2 is
124 times faster than pure python code when n= 25. Table 4.
Execution time speed factor versus the pure python code

Figure 8 below shows the graphical representation of the
results achieved using various methods. From the above result,

method 1 is the slowest among all the methods as it uses loop
technique to transfer the array values into the memory address
into the overlay. In method 1, the execution for ‘n=25’ took too
long so eventually the process had to be stopped. Thus, there is
no data for that particular size. Also, it can be concluded from
the Table 4 and Figure 8 that the methods 2, 3 and 4, which
use HLS as well as AXI Burst technique for data transfer, are
faster in execution than compared to pure python code without
HLS. Additionally, particularly for n=25, NVIDIA T4 GPU is
the fastest among which has the execution time of 1.024 sec.

From Figure 8, it can be seen that FPGA outperforms GPU
for all cases except n=25. We think this behavior was observed
due to the following factors:

• Architecture and Design o FPGAs and GPUs have
fundamentally different architectures. FPGAs are highly
customizable hardware that can be tailored to specific tasks,
but their design and optimization can be complex. GPUs,
on the other hand, are designed for parallel processing
and may have better-suited architectures for certain types of
algorithms. It is possible that the algorithm we used for
this NP- hard problem is better suitable for GPU than FPGA,
specifically the FPGA we used. • Optimization and Compiler
Efficiency o GPUs have more mature and well-optimized
compilers, and their ecosystems, such as CUDA, have extensive
community support. This contributes to better compiler
optimization and overall efficiency, potentially resulting in
improved performance. Whereas in FPGA, we used pragmas
manually for optimization. Thus, it is possible that the
built-in optimizer of T4 GPU compiler provided by Google
outperformed our manual optimization.



102 IJCA, Vol. 31, No. 2, June 2024

7 Conclusion

In this paper, a comprehensive comparative analysis was
conducted on various techniques aimed at accelerating the
execution of the Partition Problem, a well- known NP-
complete problem. The potential of parallel processing
architectures, specifically GPUs and FPGAs, was explored
to enhance computational efficiency. The effectiveness
of GPU and FPGA implementations in accelerating the
execution of the Partition Problem was demonstrated through
experimental evaluation. Significant reductions in execution
time were observed, particularly for larger problem instances,
such as n=25, where the GPU implementation on the
NVIDIA T4 GPU outperformed FPGA implementations and
traditional CPU-based approaches. Insights into design
considerations and optimization strategies pertinent to both
GPU and FPGA implementations were provided. While
GPUs offer mature compilers and extensive community
support, FPGAs boast highly customizable hardware tailored
to specific tasks. Thus, the choice of which technology to
use depends on various aspects of the problem. Overall,
this study contributes to advancing the understanding of
efficient computation techniques for NP-hard problems. It
serves as a valuable resource for researchers and practitioners
interested in leveraging parallel processing architectures for
computational acceleration. A github repository has been setup
to assist interested audience with all the resources necessary to
use the software: https://github.com/pratikstha/PartitionProble
mUsingFPGA article

graphicx verbatim
Your Title Your Name June 20, 2024

References

1. M. Gokhale and P. Graham, ”Reconfigurable computing:
Accelerating computation with field programmable gate
arrays.” 2006. [Online]. Available: Springer Science and
Business Media.

2. ”XUP PYNQ,” [Online]. Available:
https://www.xilinx.com/support/

university/boards-portfolio/xupboards/

XUPPYNQ.html.

(a) ”Partition problem” Wikipedia [Online]. Available:
https://en.wikipedia.org/wiki/Partition problem.

3. G. Woeginger, ”Exact algorithms for np-hard problems:
A survey,” in Combinatorial optimization-eureka, you
shrink!, Springer, 2003, pp. 185-207.

4. C. Trefftz, J. Scripps and Z. Kurmas, ”An introduction to
elements of parallel programming with java streams and/or
thrust in a data structures and algoriths course,” Journal of
Computing Sciences in Colleges, 2017, 33(1):11-23.

5. ”Introduction to Overlays - Pyhton
Productivity For Zynq (Pynq) V1.0,”
Pynq.readthedocs.io 2020 [Online]. Available:

https://pynq.readthedocs.io/en/v1.4/6 overlays

.html.
6. ”What is a Graphics Processing Unit (GPU)?

Definition and Examples,” [Online]. Available:
https://www.investopedia.com/terms/g/

graphics-processing-unit-gpu.asp.
7. ”NVIDIA T4,” [Online]. Available:

https://www.nvidia.com/en-us/data-center/tesla-t4.
8. ”NVIDIA Turing GPU Architecture,” [Online]. Available:

https://images.nvidia.com/aem-dam/en-

zz/Solutions/design-visualization/technologies

/turing- architecture/NVIDIA-Turing-Architecture-

Whitepaper.pdf.

BIOGRAPHY / BIOGRAPHIES

Dr. Chirag Parikh earned his
Master’s and Doctoral degrees from University of Texas at San
Antonio in 2003 and 2007 respectively. Currently, he is a
Professor and Chair of Computer Engineering program at Grand
Valley State University. His research interests are embedded
system design, cryptography and FPGA-based system design.

Dr. Christian Trefftz earned a master’s degree in Computer
Science from Western Michigan University in 1989 and Ph.D.
Degree in Computer Science from Michigan State University in
1994. He is a Professor at the College of Computing at Grand
Valley State University. His research interest is in the area of
parallel processing.

Pratik Shrestha holds a Master’s degree in Computer Science
(2020) and a Master’s degree in Electrical and Computer
Engineering (2019) from Grand Valley State University.
Currently, he is a Software Engineer at CTDI. His areas
of expertise and interest include machine learning, computer
vision, embedded systems, and software development. Pratik
has developed a range of software applications and machine
learning models, and he is passionate about using his
technical skills to drive innovation and contribute to advanced
technological solutions.


