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Abstract

Detecting brain tumors at an early stage is an incredibly
demanding responsibility for radiologists. The rapid rate
at which these tumors grow is deeply concerning. When
left untreated, patients commonly experience a significantly
lower survival rate, intensifying the situation to a critical
and potentially life-threatening condition. Consequently,
the urgent need arises for an automated system capable
of early detection of brain tumors. In this research, we
present an approach that offers a streamlined method to
effectively distinguish between cancerous and non-cancerous
brain Magnetic Resonance Imaging (MRI) scans across multiple
planes, including the Axial, Coronal, and Sagittal planes. The
methodology encompasses several distinct stages for lesion
analysis, beginning with preprocessing techniques to eliminate
noise and improve image quality. Next, K-means segmentation
is employed to accurately segment cancerous cells from the
surrounding tissue. Feature extraction is performed using
various methods such as Discrete Wavelet Transform (DWT),
Gray Level Co-occurrence Matrix (GLCM), and Principal
Component Analysis (PCA) to extract informative features
from the segmented regions. In the final step, a Support
Vector Machine (SVM) classifier is employed to classify the
extracted features and make predictions using the given dataset.
The research study utilizes three SVM classifier tools, namely
Linear, Gaussian, Polynomial SVM, for the proposed analysis.
The proposed methodology consists of two distinct phases:
the Skull Stripping phase and the non-skull stripping phase.
Additionally, we proposed a method for accurately detecting the
skull in MRI scans. It has been observed that by excluding
the skull from the analysis, the accuracy of tumor detection
improves by approximately 7% compared to when the skull is
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not removed from the scan. By leveraging automatic detection
techniques; we facilitate the detection of tumors in any plane of
MRI imaging. This approach offers a convenient and efficient
method for identifying and localizing tumors across various
imaging planes.
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1 Introduction

A brain tumor refers to an abnormal growth of cells in the
brain or the central nervous system. There are two primary
categories of brain tumors: primary and secondary. Primary
brain tumors originate from the cells that constitute the brain
and its surrounding tissues. In contrast, secondary brain tumors
are tumors that have spread or metastasized from other parts of
the body to the brain.

There are two types of brain tumors: benign and malignant.
Malignant tumors can grow quickly and may spread to other
parts of the body or brain, but benign tumors are usually non-
cancerous and grow more slowly[1]. Different types of tumors
are classified based on the specific cells involved.

Glioma brain tumors are a type of tumor that develops from
glial cells in the brain. They can be either benign or malignant,
with malignant gliomas being particularly dangerous. These
tumors pose significant risks due to their location within
the brain and their potential to invade surrounding healthy
tissue[2]. The dangers associated with glioma brain tumors
stem from their ability to disrupt vital brain functions and
exert pressure on adjacent structures. As they grow, they can
cause a range of neurological symptoms, including headaches,
seizures, cognitive impairments, and changes in personality or
behavior. The invasive nature of malignant gliomas makes
complete surgical removal challenging, and they can also spread
to other parts of the brain or spinal cord[3]. Treatment
options can be limited, as gliomas may be resistant to certain
therapies. Early detection of glioma is vital for initiating
timely treatment, improving treatment outcomes, implementing
appropriate surveillance, and empowering patients in their
healthcare decisions[4].
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Medical professionals utilize various imaging techniques to
detect and diagnose brain tumors. Among these techniques,
MRIs, or magnetic resonance imaging, are the most often
used modality. MRI creates precise images of the brain using
strong magnets and radio waves, making it possible to identify
the features, size, and location of tumors[5]. Contrarily,
computed tomography (CT) scans employ X-rays to produce
cross-sectional brain pictures, which help evaluate tumor
characteristics as well as any concomitant brain hemorrhage or
edema[6].

MRI offers superior soft tissue contrast compared to CT
scans, making it particularly effective in differentiating between
different types of tissues[7]. It provides highly detailed and
multi-planar images, enabling better visualization of brain
tumors and the surrounding structures. To facilitate the
interpretation and analysis of brain images, different imaging
planes or orientations are commonly used.

The three orthogonal primary MRI brain planes employed
in clinical practice and research are the axial plane, sagittal
plane, and coronal plane. The axial plane, parallel to the ground
when a person is upright, provides a comprehensive top-down
view of the brain, allowing for assessment of structures like the
cerebral hemispheres, ventricles, basal ganglia, thalamus, and
brainstem. The sagittal plane divides the brain into left and
right halves and offers a side view, revealing information about
the cerebral cortex, corpus callosum, cerebellum, and midline
structures[8]. Lastly, the coronal plane divides the brain into
anterior and posterior sections, providing a frontal view that aids
in assessing the frontal lobes, lateral ventricles, hippocampus,
and other critical structures.

The three planes of MRI brain imaging, axial, sagittal, and
coronal, each offer distinct anatomical perspectives, allowing
for the identification and characterization of different brain
regions, lesions, and abnormalities. By examining the brain
in these orthogonal planes, radiologists and clinicians can gain
valuable insights into the precise location, extent, and nature
of brain pathologies. This comprehensive evaluation enables
accurate diagnosis and effective treatment planning for patients.
Figure (1) shows MRI brain images in multiple planes.

Figure 1: The descriptive process flow followed in the model

The proposed methodology comprises several sequential
steps to facilitate the detection of tumors in any plane of
MRI imaging, initiating with preprocessing methods to enhance
image quality. Subsequently, K-means segmentation is applied
to precisely delineate cancerous cells from the neighboring

tissue. Then, extract meaningful features from the segmented
regions. Finally, a Support Vector Machine (SVM) classifier
is employed to classify the extracted features on the provided
dataset. That experiment was implemented using MATLAB
R2021a. The primary contributions of this research are as
follows:

Automated Brain Tumor Detection and Classification: This
study introduces an automated method aimed at detecting and
classifying brain tumors using three orthogonal planes of MRI
images. The proposed methodology encompasses multiple
procedural stages, notably preprocessing, feature extraction,
and classification.

Innovative Preprocessing Techniques: A novel skull
stripping method is employed during the preprocessing phase,
significantly impacting the accuracy of subsequent classification
outcomes. This step plays a pivotal role in refining the input data
for enhanced analysis.

Advanced Feature Extraction: In the feature extraction phase,
a fusion of distinctive features is utilized, including:

• Tumor area feature
• Discrete Wavelet Transform (DWT) combined with

Principal Component Analysis (PCA)
• Gray Level Co-occurrence Matrix (GLCM) features

These features encapsulate crucial tumor characteristics
essential for classification.

Classification Strategy: The geometric family of Support
Vector Machines (SVM) is employed, with various kernels such
as Linear, Gaussian, and Polynomial, to determine the optimal
configuration. This iterative process ensures the selection of the
most effective classification approach.

Performance Evaluation on Kaggle Datasets: The proposed
method undergoes rigorous evaluation using Kaggle datasets,
with performance metrics primarily focusing on Accuracy
(ACC).

2 Related Work

( Padlia, M., and Sharma, J. 2017) [9] Presents a
technique for using T1-weighted and fluid- attenuated inversion
recovery (FLAIR) brain images to identify and separate brain
malignancies. A fractional Sobel filter is applied to the brain
image to reduce noise and enhance its texture. The Sobel
filter’s fractional order () provides more versatility in optimizing
the segmentation results. The detection of asymmetry
between hemispheres is achieved through the application
of Bhattacharya coefficients and mutual information. The
hemisphere containing the tumor is determined using a
histogram asymmetry method. Support vector machines
(SVMs) are used to compute and classify statistical aspects of
a specific window in order to segment the tumor region inside
the recognized hemisphere. Images from the BRATS-2013
dataset are used for simulations, and performance measures like
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specificity, sensitivity, and accuracy are calculated for various
values. The outcomes of the simulation show that the suggested
strategy outperforms the majority of similar current techniques.

(Kumar, Rashmi, Ramadoss, Sandhya, and Sangeetha
2017)[10] Present a Support Vector Machine (SVM) classifier-
based approach for brain tumor detection. It starts with
the acquisition of magnetic resonance imaging (MRI) brain
scans, which provide detailed anatomical information for tumor
detection. The MRI scans are preprocessed to enhance the
quality of the images. Feature extraction is then performed on
the preprocessed images. Features such as intensity, texture,
and shape characteristics are computed from the tumor region.
An SVM classifier is trained using the retrieved features as
input. The SVM is a machine learning algorithm that learns to
classify different patterns based on labeled training data. In MRI
scans, the SVM classifier performs admirably in differentiating
between tumor and non-tumor regions.

( Vani, N., Sowmya, A., & Jayamma, N. 2017) [11]develop
a model that will help identify and categorize brain tumors.
Specifically, the objective is to classify whether a tumor is
cancerous or non-cancerous by utilizing the SVM algorithm.
While Artificial Neural Networks (ANN) based on Empirical
Risk Minimization has been used in prior studies for
detection, this paper introduces the application of the Support
Vector Machine algorithm, which operates on structural risk
minimization, for image classification. The SVM algorithm
is implemented on medical images to extract tumors, and
a Simulink model is created for the purpose of tumor
classification. In order to classify the images and determine
whether they are malignant or not, the research presents a
prototype for SVM-based object detection. This study maintains
a high detection accuracy of 82

( Rashid, M. H. O., Mamun, M. A., Hossain, M. A., and
Uddin, M. P. 2018)[12] Proposed a method that involved three
main steps: anisotropic filtering, support vector machine (SVM)
classification, and morphological operations. Anisotropic
filtering was applied to enhance the MR images and improve the
quality of the tumor region. This filtering technique selectively
smoothes the image in different directions, preserving edges
and details. After the anisotropic filtering, The tumor and non-
tumor areas were classified using the SVM classifier. The ideal
hyper plane that divides the data points into distinct classes is
found via SVM. In the final step, morphological operations were
performed on the classified image to refine the tumor region
and remove any noise or artifacts. Morphological operations
involve the manipulation of image pixels based on their spatial
arrangement. According on the experimental results, the SVM
achieved 83% segmentation accuracy.

( Birare and Chakkarwar. 2018) [13]develop an automated
system that uses the support vector machine (SVM) algorithm
to identify brain tumor cells. Manual detection of tumor
cells in microscopic images is a time-consuming and error-
prone process, hence the need for an automated system. The
authors propose a methodology that involves multiple steps.
Firstly, they acquire microscopic images of brain tumor cells.

Then, they preprocess the images to enhance the features and
remove any noise. Next, they extract relevant features from the
preprocessed images, which serve as input to the SVM classifier.
SVM was used in the experiment to identify malignant and
normal cells with 98.51% accuracy.

( Selvapandian and Manivannan 2018) [14]addresses the
challenging task of detecting tumor regions in Glioma brain
images, which are often characterized by low sensitivity in
boundary pixels. The Non-Subsampled Contourlet Transform
(NSCT) is used to improve the brain image, and texture
characteristics are then extracted from the improved image. The
Adaptive Neuro Fuzzy Inference System (ANFIS) technique is
then used to train and classify these extracted features, allowing
it to discriminate between brain scans with gliomas and normal
ones. Then, using morphological functions, the tumor regions in
the Glioma brain picture are segmented. The performance of the
proposed Glioma brain tumor detection algorithm is assessed
on the publicly available Brain Tumor Image Segmentation
Challenge (BRATS) dataset. The suggested approach achieves
96.7% accuracy.

(Keerthana and Xavier 2018) [15]introduce an intelligent
system that seeks to identify and categorize brain cancers in
their early stages. The system incorporates various stages,
starting with image acquisition using magnetic resonance
imaging (MRI). After image acquisition, Preprocessing
methods are used to improve the MRI image quality. These
methods could include noise removal, intensity normalization,
and spatial filtering. Next, To extract valuable information from
the preprocessed images, feature extraction is done. Statistics
pertaining to texture, shape, and intensity are calculated based
on the tumor region. Tumor categorization uses the support
vector machine (SVM). The results demonstrate that the
proposed intelligent system achieves high accuracy in the early
assessment and classification of brain tumors.

( Amin, J., Sharif, M., Raza, M., Saba, T., and Anjum, M.
A. 2019) [16]develop a method for brain tumor detection using
a combination of statistical and machine learning techniques.
The researchers proposed a framework that utilized statistical
features extracted from brain images and employed machine
learning algorithms for tumor detection. Magnetic resonance
imaging (MRI) scans were primarily used as the imaging
modality for brain tumor detection. The framework comprised
several steps. Firstly, pre-processing techniques were applied to
remove noise or artifacts and improve the quality of the MRI
images. Subsequently, pertinent information on the tumor site
was retrieved from the pre-processed images using statistical
features like mean, standard deviation, skewness, and kurtosis.
Various classifiers, include k-nearest neighbors (KNN), support
vector machines (SVM), and decision trees were experimented
with to determine the most effective approach for tumor
classification. At the fused feature-based level, the obtained
results showed a specificity of 1.00, sensitivity of 0.92, accuracy
of 0.93, 0.96 for both the dice similarity coefficient (DSC) and
area under the curve (AUC).

(Hussain and Khunteta 2020)[17]utilizes a set of MRI images
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as input data and employs a series of preprocessing steps,
including median filtering and skull stripping, to enhance the
images. The thresholding process is performed using the
watershed segmentation method to isolate the brain tumor
tissues. After that, the gray-level co-occurrence matrix (GLCM)
approach is used to extract features. A support vector machine
(SVM) is then used to classify the images based on the
features that were extracted. The system’s accuracy on average
is 93.05% surpassing the performance of other conventional
models.

(Sharath Chander, Soundarya, and Priyadharsini 2020)
[18]proposed method utilizes well-defined algorithms to handle
challenging scenarios, such as poor image quality.To extract
relevant tumor locations from the MRI data, an adaptive
k-means clustering segmentation algorithm is used. The
segmented images are then classified using a Support Vector
Machine (SVM) classifier, which also helps identify the type
of tumor. The linear kernel provides better accuracy results
when the study compares the various SVM classifier kernel
functions. By utilizing MRI imaging data, the proposed system
seeks to offer a more precise method for brain tumor diagnosis
and categorization.

( Chen et al. 2021) [19] provide a novel method for the
automatic detection and classification of brain cancers utilizing
support vector machines (SVMs) and extended Kalman filters
(EKF). There were five parts to the EKF-SVM algorithm.
The images were first subjected to image normalization,
noise reduction using a non-local means filter, and contrast
enhancement using enhanced dynamic histogram equalization.
Second, image features were extracted using a gray- level co-
occurrence matrix. Thirdly, an EKF was utilized to categorize
brain cancers in the brain MRIs after the retrieved characteristics
were supplied into an SVM to classify the MRI images
initially. Fourth, cross-validation was done to confirm the
classifier’s accuracy. Lastly, brain tumors were identified using
an artificial segmentation technique that included region growth
and k-means clustering. The outcomes demonstrated that
the EKF-SVM algorithm successfully classified brain tumors
automatically with an astounding 96.05% accuracy rate.

( Shahajad, Gambhir, and Gandhi 2021) [20]proposes a
method to determine the optimal number of quantifiable
gray level co-occurrence matrix (GLCM) texture features for
identifying brain cancers in medical MRI image collections
as aberrant versus normal. After extracting all of the GLCM
texture features from the MRI pictures, the best features are
chosen via a method based on heat maps. The support vector
machine (SVM) classifier then uses these chosen characteristics
as input. Results show that the SVM classifier achieves high
accuracy, with a peak testing accuracy of approximately 92%
when using 6-7 features. However, further increasing the
number of features does not lead to improved accuracy, as the
accuracy plateaus.

3 Proposed Methodology:

Figure (2) Show the block diagram of proposed methodology.

3.1 MRI Scan of obtained Brain Tumor Images:

Magnetic Resonance Imaging (MRI) is a type of image that
is represented using 8 bits, containing brightness information
ranging from 0 to 255. A pixel value of ’0’ in this notation
denotes black color, and a value of ’255’ denotes white color.
We resized the MRI images to dimensions of 200x200 pixels.
Grayscale images, which only consist of brightness information
and lack color information, were used in this specific case.

3.2 Preprocessing:

3.2.1 Vertical Flipping for Sagittal plane images:

In the case of sagittal images, it is important to consider the
different directions, namely right and left. When these images
are utilized with varying directions, it can lead to a decrease in
accuracy. To mitigate this issue, a possible solution is to flip all
the images in the right direction. By consistently using a single
direction, it has been observed that accuracy tends to increase.

3.2.2 3.2.2. Detected Area of tumor:

In this study, we proposed approach for the identification
and quantification of tumor regions within medical images.
Our method encompasses several stages, starting with the
conversion of the original image into a binary representation.
Subsequently, we proceed to calculate the solidity and area
metrics for the detected regions. By comparing the density
of these regions against a predefined threshold (0.5), we
select the region with the highest density as the primary area
of interest. To enhance the discriminatory power of our
analysis, we employ advanced techniques for feature extraction.
Specifically, we utilize the extracted area of the tumor region
as a fundamental feature, which is then combined with
features derived from Principal Component Analysis (PCA)
and Gray-Level Co-occurrence Matrix (GLCM). This fusion
of features allows for a comprehensive and multidimensional
representation of the tumor, enabling a more refined and
scientifically grounded analysis. Through the integration of
these innovative methodologies, our research offers a robust
and sophisticated framework for tumor area detection. By
leveraging binary image conversion, density-based selection,
and feature fusion techniques, we have achieved a significant
advancement in the identification and characterization of tumor
regions in medical imaging, paving the way for improved
diagnostic accuracy and treatment planning.

3.2.3 3.2.2. Median Filter:

A nonlinear filter is the median filter. It operates extremely
effectively to eliminate the ”salt and pepper” noise, or impulse
noise, from the image. The rationale behind the median filter
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is to use the median of the gray levels in a neighborhood
surrounding each pixel to replace the gray level of each
individual pixel.

The following is a definition of the median filter operation:

I′(x,y) = median(I(x+ i,y+ j)) for (i, j) ∈ filter window

Where: I represents input image, I’ represents the filtered
image, (x, y) represents the pixel position in the image, and (x+i,
y+j) represents the neighboring pixels within the filter window
centered at (x, y). The filter window size is usually odd to ensure
there is a unique median value. The median function sorts the
pixel values within the window and selects the middle value as
the new pixel value. The median is determined by averaging the
two middle values if the number of pixels in the window is even.

3.2.4 Gamma Law:

For many image processing applications, such as color
correction, image enhancement, and display calibration, gamma
correction is a necessary first step. Gamma correction is a
method that modifies an image’s brightness or contrast by
transforming the pixel values non-linearly. In the context of
image preprocessing, gamma correction is often applied to
compensate for the non-linear relationship between pixel values
and perceived brightness. The gamma correction function is
typically expressed as:

V out =V inγ (2)

Where:

• Vout is the corrected pixel value after gamma correction
• Vin is the original pixel value
• γ is the gamma parameter that controls the intensity

transformation

The gamma parameter γ determines the degree of correction
applied to the image. If γ < 1, the image becomes brighter
because the transformation amplifies the lower pixel values.
On the other hand, if γ > 1, the image becomes darker as the
transformation compresses the lower pixel values[21].

3.2.5 Skull Stripping:

Skull stripping, also known as brain extraction or skull
removal, is a process in medical image analysis that involves
segmenting the brain tissue from other structures such as the
skull and scalp in neuroimaging data, usually from scans using
magnetic resonance imaging (MRI). There are various methods
used for skull stripping in MRI images such as Thresholding,
Region growing, and Cropping.

In this research, we introduce a precise methodology for
the identification and subsequent removal of the skull from
MRI images. Firstly, we employ a binary image conversion
technique and conduct connected component analysis on the
MRI data. Subsequently, we assess the solidity area and employ
a condition wherein if this area falls below a predetermined
threshold value, it is deemed skull-free; conversely, if the
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solidity area exceeds the threshold value, it is identified as the
presence of the skull.

Secondly, we employ the Sobel edge detection algorithm
to discern the edges of the skull accurately. Following this,
we normalize the MRI image and perform subtraction of the
detected skull from it, resulting in a refined image without the
skull artifact.

By employing these scientific methodologies, we achieve a
precise and reliable means of skull detection and removal from
MRI images. Figure (3) represents the block diagram of Skull
Stripping methodology.

3.3 Segmentation:

3.3.1 K-Mean Clustering:

Then update by making Recalculate the cluster centers µi
based on the pixels assigned to each cluster according to this
equation:

µi =
1
|Ci| ∑

p∈Ci

p

where Ci represents the set of pixels assigned to cluster i,
and |Ci| is the number of pixels in that cluster. This process of
assignment and update is repeated iteratively until convergence,
where the cluster centers do not significantly change between
iterations.

3.4 Feature Extraction:

3.4.1 Discrete Wavelet Transform (DWT):

An analytical mathematical method for signal processing and
data analysis is the Discrete Wavelet Transform. It breaks
down a signal into its constituent frequency components so that
it can be analyzed on various scales[?]. The DWT is based
on wavelets, which are small waveforms or functions that are
scaled and shifted to analyze different parts of a signal. The
signal is transformed by running it through a number of filters
that divide it into several frequency ranges. Mathematically, the
DWT can be represented by the following equation:

DWT(x) = ∑
k

hk · (x∗φk)+∑
j
∑
k

gk · (x∗ψ jk)

Where, x represents the input signal, φk and ψ jk are the
scaling and wavelet functions, respectively. The coefficients
hk and gk are the filter coefficients associated with the scaling
and wavelet functions. The symbol ∗ denotes the convolution
operation. By performing the DWT, the original signal can be
decomposed into different frequency bands, often referred to as
approximation and detail coefficients[?]. The high-frequency
details are captured by the detail coefficients, whilst the low-
frequency components are represented by the approximation
coefficients.

3.4.2 Principal Component Analysis PCA:

PCA, or Principal Component Analysis, is a statistical
technique that simplifies and visualizes high- dimensional
data. The method accomplishes this by locating the principal
components, which are linear combinations of the initial
variables that account for the majority of the variance in
the observations[25]. Mathematically, PCA involves several
steps. The data is first normalized by dividing by the standard
deviation and subtracting the mean. Next, a covariance matrix
is computed to capture the relationships between variables. The
eigenvectors and eigenvalues of the covariance matrix are then
calculated through an eigendecomposition. The eigenvectors
represent the principal components, while the eigenvalues
indicate the amount of variance each component explains. By
selecting the top k eigenvectors with the highest eigenvalues,
a reduced-dimensional space is formed. Finally, the data is
transformed by multiplying the standardized data matrix with
the matrix formed from the selected principal components. The
most important patterns and information are preserved while
the data can be visualized and analyzed in a lower-dimensional
space due to this transformation[26].

Following the utilization of Principal Component Analysis
(PCA) and the Discrete Wavelet Transform (DWT), we
have extracted seven features, representing the most salient
components of the data. These features have been derived using
advanced mathematical techniques to capture essential patterns
and information. The DWT has allowed for a multi resolution
analysis of the data, decomposing it into different frequency
bands. PCA then found the principle components that explain
the largest variance, thereby reducing the dimensionality. We
have derived a succinct collection of seven features (Mean,
Standard deviation, RMS, Variance, Entropy, Smoothness, and
Skewness) that capture the most important and scientifically
meaningful aspects of the data through this combined technique.

Mean:

Mean =
1
N

N

∑
i=1

xi

Standard Deviation:

Standard Deviation =

√
1
N

N

∑
i=1

(xi −mean)2

2. RMS (Root Mean Square):

RMS =

√
1
N

N

∑
i=1

x2
i

3. Variance:

Variance =
1
N

N

∑
i=1

(xi −mean)2

4. Entropy:

Entropy =−∑ p(x) · log2(p(x))
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Figure 2: represents the block diagram of Skull Stripping methodology.

5. Smoothness:

Smoothness =
1
N

N

∑
i=1

(xi −µ)2

6. Skewness:

Skewness =
1
N

N

∑
i=1

(xi −mean)3

std dev3

Where N is the total number of pixels in the image, Σx is
the sum of pixel values, Σ(x−mean)2 is the total of squared
discrepancies between each pixel value and the mean, Σx2 is
the sum of squared pixel values in the image, p(x) is the
probability of occurrence of each pixel value in the image,
and the summation is performed over all possible pixel values,
Σ(x−µ)2 is the sum of squared differences between each pixel

value and the average of its neighboring pixels, Σ

(
(x−mean)3

std dev3

)
is

the total of the cubed differences between each pixel value and
the mean, divided by the cubed standard deviation.

3.4.3 Gray-Level Co-occurrence Matrix (GLCM):

A texture analysis method called the Gray-Level Co-
occurrence Matrix (GLCM) is used to map out the spatial
correlations between an image’s pixel intensities. It provides
information about the texture patterns present in an image by
quantifying the co-occurrence of different pixel intensity values
at specified pixel distances and angles. GLCM works by
constructing a matrix that counts the frequency of occurrence
of pairs of pixel values at a given distance and angle[17]. The
GLCM matrix is typically square and symmetric, with each
element representing the number of times a particular pair
of pixel values appears in the specified spatial relationship.
From the GLCM matrix, various statistical measures can
be derived to describe different aspects of texture, such as

contrast, correlation, energy, and homogeneity. These measures
capture information about the distribution and spatial patterns
of pixel values in an image, providing insights into the texture
characteristics.

Contrast:
Calculates the difference in local intensity between adjacent
pixels.

Contrast = ∑
i, j
(i− j)2 ·P(i, j)

Correlation:
Calculates the linear dependence between two pairs of pixels.

Correlation =
∑i, j(i−µi)( j−µ j) ·P(i, j)

σi ·σ j

Energy (additionally referred to as Angular Second
Moment):
Reflects the overall uniformity or homogeneity of the image.

Energy = ∑
i, j
[P(i, j)]2

Homogeneity:
Calculates the degree to which the GLCM diagonal and the
element distribution are closest to one another.

Homogeneity = ∑
i, j

P(i, j)
1+ |i− j|

3.5 SVM Classifier:

SVM, or Support Vector Machine, is a powerful and widely
used classification algorithm in machine learning. It looks for
the best hyper plane in a high-dimensional feature space to
divide various classes of data points. The primary goal of
SVM is to maximize the margin, or the separation between
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each class’s closest data points and the hyper plane[27].
SVM facilitates improved robustness and generalization by
optimizing the margin.

The linear SVM classifier is the basic form of SVM that uses
a linear decision boundary. It assumes that the classes can be
separated by a straight line or hyper plane. The equation of a
linear SVM classifier can be represented as:

f (x) = wT ·x+b

Where x is the input feature vector, w is the weight vector, b
is the bias term, and f(x) is the decision function.

The Gaussian (RBF), polynomial, and other kernel-based
SVM classifiers are extensions of the linear SVM that allow
for non-linear decision boundaries[28]. In order to accomplish
this, they convert the input data into a higher-dimensional
space that allows for the establishment of a linear decision
boundary. The mapping from the original feature space to the
higher-dimensional space is determined by the kernel function.
The following formula applies to the Gaussian (RBF) SVM
classifier:

f (x) = ∑
i

αi ·K(xi,x)+b

Where f (x) is the decision function, αi are the support vector
coefficients, xi are the support vectors, K is the kernel function
(typically the Gaussian or radial basis function), and b is the bias
term.

Similarly, for the polynomial SVM classifier, the equation is:

f (x) = ∑
i

αi · (xT
i · x+ c)d +b

Where f (x) is the decision function, d is the polynomial
degree, b is the bias term, c is a constant term, and αi and xi are
the support vector coefficients and support vectors, respectively.

These variations of SVM classifiers allow for more flexible
decision boundaries, enabling them to wrestle with intricate
and non-linear classification issues. The choice of the kernel
function and its associated parameters can significantly impact
the performance of the SVM classifier in different scenarios.

4 Experimental Result:

Dataset used:
The MRI images utilized in this study were obtained from

the website (www.kaggle.com). Magnetic Resonance Imaging
(MRI) scans were employed, capturing images across multiple
planes with a resolution of 200*200 pixels in JPEG format. The
implemented methodology was carried out using Matlab 2021a.

The proposed research has successfully completed the
process of tumor region detection from A total of 171 axial,
150 sagittal, and 153 coronal brain MRI images. This detection
was achieved through the utilization of operations for both skull
stripping and non-skull stripping.

In the skull stripping phase, operations were applied to
remove the skull and isolate the brain region. The brain

tumor region was then located using the K-mean segmentation
technique. In the non-skull stripping phase, the images were
directly subjected to the K-mean segmentation technique to
detect the tumor region without prior skull stripping.

Four GLCM features (contrast, correlation, energy, and
homogeneity) were also computed for these images as part of
the investigation.

Fusion of Extracted Features:
In our study, we employed feature fusion by combining the

features extracted from three different sources: the Gray-Level
Co-occurrence Matrix (GLCM), Principal Component Analysis
(PCA), Discrete Wavelet Transform (DWT), and tumor area
detection. A Support Vector Machine (SVM) classifier was
trained using the combined features acquired from these various
approaches.

The first set of features was derived from the tumor area
detection, which involved identifying and analyzing the specific
regions of interest related to tumors in the medical images.
This allowed us to capture relevant information specific to the
tumor characteristics. The second set of features came from
applying DWT and PCA. A signal processing method called
DWT divides the image into many frequency bands, while PCA
reduces the dimensionality of the feature space by identifying
the most significant components. By combining DWT and
PCA, we were able to extract features that captured both the
frequency-based and spatial variations within the image. The
third set of features was obtained from GLCM analysis, which
measures the spatial correlations between the image’s pixel
intensities. GLCM provides information about the texture
patterns present in the image, and the derived features help
characterize the texture properties.

By fusing these three sets of features, we aimed to capture
complementary information from different aspects of the image
data. This fusion approach allowed us to leverage the unique
strengths of each feature extraction method and create a more
comprehensive representation of the image content. Finally, the
combined features were fed into an SVM classifier, a potent
machine learning technique that is well-known for executing
well on classification challenges. The SVM classifier utilized
the extracted features to learn and build a decision boundary
that could accurately classify new and unseen medical images
into appropriate categories, aiding in medical diagnosis and
decision-making processes. Figure (4) show the features fusion
In the subsequent phase, the classification of images was
performed using three types of Support Vector Machine (SVM)
classifiers, namely linear, Gaussian, and polynomial classifiers.
The images were categorized into two phases: the non-skull
stripping phase and the skull stripping phase. The accuracy of
each MRI image plane in these two phases was evaluated, and
the outcomes for the linear classifier, Gaussian classifier, and
polynomial classifier were shown in Tables 1 through 3. It was
observed that skull stripping is a critical step in the classification
process, as it led to a significant improvement in accuracy by
approximately 7% compared to the non-stripping phase.

The largest connected (solid) volume is the main tumor
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Figure 3: show the features fusion.

Table 1: Accuracy for Linear SVM Classifier

MRI Plane NO. of
Images

Without
Skull
Removal

With
Skull
Removal

Coronal 153 74.194% 88.71%
Axial 171 79.71% 86.957%
Unflipped
Sagittal

150 64.912% 73.685%

Sagittal 150 75% 81.667%

Table 2: Accuracy for Gaussian SVM Classifier

MRI Plane NO. of
Images

Without
Skull
Removal

With
Skull
Removal

Coronal 153 75.807% 82.258%
Axial 171 75.362% 82.609%
Unflipped
Sagittal

150 59.649% 64.912%

Sagittal 150 75% 78.333%

Table 3: Accuracy for Polynomial SVM Classifier

MRI Plane NO. of
Images

Without
Skull
Removal

With
Skull
Removal

Coronal 153 70.968% 82.258%
Axial 171 73.913% 79.71%
Unflipped
Sagittal

150 56.14% 70.175%

Sagittal 150 65% 81.667%

volume. The training dataset was used to compute the distance
from each smaller volume (secondary tumor volumes), which
were calculated to the main tumor.

The findings for all 171 trained axial plane MRI images
for the various linear, Gaussian, and polynomial classifiers are
shown in Figure 5. The final classification is shown in 5(a),

where the support vectors classifier is represented by circle
(o), the normal images are represented by blue dots, and the
glioma (abnormal) tumor images are indicated by red dots.
The mesh graph for deriving the least feasible point objective

function model is shown in 5(b). The contour lines on the x-
y plane show that the estimated goal function’s accuracy has
increased. The comparison between the next objective function
value and the minimum objective function values is shown in
5(c).

The findings for all 153 trained Coronal plane MRI images for
various linear, Gaussian, and polynomial classifiers are shown
in Figure 6. The final classification is shown in 6(a), where
the support vectors classifier is represented by circle (o), the
normal images are represented by blue dots, and the glioma
(abnormal) tumor images are indicated by red dots. The mesh
graph for finding the least feasible point’s objective function
model is shown in 6(b). The contour lines on the x-y plane
show that the estimated goal function’s accuracy has increased.
The comparison between the next objective function value and
the minimum objective function values is shown in 6(c).

The findings for all 150 trained saggital plane MRI images
for the various linear, Gaussian, and polynomial classifiers are
shown in Figure 7. Final classification is shown in 7(a), where
circle (o) denotes the support vector classifier, blue dots indicate
normal images, and red dots indicate glioma (abnormal) tumor
images. The mesh graph for deriving the least feasible point
objective function model is shown in 7(b). The contour lines on
the x-y plane show that the estimated goal function’s accuracy
has increased. The comparison between the next objective
function value and the minimum objective function values is
shown in 7(c).

The findings for all 150 trained unflipped saggital plane
MRI images for the various linear, Gaussian, and polynomial
classifiers are shown in Figure 8. The final classification is
shown in

8(a), where the circle (o) denotes the support vector classifier,
the blue dots indicate the normal images, and the red dots
indicate the images of gliomas (abnormal tumors). The mesh
graph for finding the least feasible point objective function
model is given in 8(b). The contour lines on the x- y plane show
that the estimated goal function’s accuracy has increased. The
comparison between the next objective function value and the
minimum objective function values is shown in 8(c).

Figure 9(a) show original image,9(b) show the detected
skull,9(c)show the image after skull stripping and 9(d) show
the detected tumor for axial, coronal and saggital plane MRI
images.
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Figure 4: (a) Final classification

Figure 5: (b) Objective function

Figure 6: Comparison of Minimum Observed and Estimated Objective Values using Linear, Gaussian, and Polynomial Classifiers
for SVM on Axial Plane MRI Image

Figure 7: (a) Final classification
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Figure 8: (b) Objective function

Figure 9: (b) Objective function:Linear Classifier: Gaussian Classifier:Polynomial Classifier: SVM for Coronal plane MRI image

Figure 10: (a) Final classification

Figure 11: (b) Objective function



210 IJCA, Vol. 31, No. 3, September 2024

Figure 12: (c) Comparison of Min observed objective and
estimated Min objective values Linear Classifier
Gaussian Classifier Polynomial Classifier Figure 8:
SVM for Unflipped saggital plane MRI image

Figure 13: (a) Final classification

Figure 14: (b) Objective function

Figure 15: (c) Comparison of Min observed objective and
estimated Min objective values Linear Classifier
Gaussian Classifier Polynomial Classifier Figure 8:
SVM for Unflipped saggital plane MRI image
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Figure 16: Axial Plane MRI Image (The original image )

Figure 17: Coronal Plane MRI Image (The detected skull)

Figure 18: Sagittal Plane MRI Image (the image after skull
stripping (d) the detected tumor)
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5 Conclusion

This study presented a streamlined approach for accurately
differentiating cancerous and non-cancerous brain MRI scans.
The method involves preprocessing, K-means segmentation,
and feature extraction using DWT, GLCM, and PCA. A SVM
classifier is used for classification, and three SVM classifier
tools are employed. The study also includes a skull detection
method. Excluding the skull improves tumor detection accuracy
by approximately 7%. The proposed approach enables tumor
detection in all MRI imaging planes, providing a convenient and
efficient method for tumor identification and localization.
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