
IJCA, Vol. 31, No. 4, December 2024 233

KubeDeceive: Unveiling Deceptive Approaches to Protect Kubernetes Clusters

Abdelrahman Aly*

Ain Shams University, Cairo. Egypt.

Mahmoud Fayez†

Ain Shams University, Cairo. Egypt.

Mirvat Al-Qutt ‡

Ain Shams University, Cairo. Egypt.
Ahmed M. Hamad §

Ain Shams University, Cairo. Egypt.

Abstract

The widespread adoption of containerization platforms,
such as Kubernetes, has revolutionized application deployment
and management. However, this evolution brings with
it sophisticated security challenges. Deception-based
strategies provide a powerful approach to address these
challenges by misleading attackers with simulated resources.
This paper presents KubeDeceive, a cutting-edge security
framework specifically designed to enhance the security
posture of Kubernetes environments through tailored
deception techniques. KubeDeceive operates as a middleware,
intercepting requests to the Kubernetes API server and guiding
malicious users towards decoy components. Its effectiveness
was evaluated in a Capture the Flag (CTF) competition
designed to simulate real-world attacks. KubeDeceive proved
highly effective, achieving a 100% success rate in preventing
any participant from deploying a master node pod—the
main target and final flag of the challenge—and trapping
89% of participants in deception decoys. Additionally,
participants expended an average of 160 minutes in their
unsuccessful attempts during dynamic scenarios, highlighting
KubeDeceive’s ability to prolong attacker engagement and
decisively thwart their objectives.
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1 Introduction

Deception is pivotal in modern cybersecurity, addressing
evolving threats and limitations of traditional defenses. It
enables early threat detection by deploying traps and decoys
that alert security teams to malicious activities. Deception
tools provide deep insights into attackers’ tactics, enhancing
defensive strategies and adapting to dynamic threat landscapes
effectively. This knowledge, as emphasized in the CSCI
Conference [1], greatly enhances the comprehension and
adaption to the evolving threat landscape. In this context,
the rise of cloud computing and container orchestration
platforms like Kubernetes represents a new frontier for applying
deception strategies. The dynamic and distributed nature of
cloud environments renders traditional security measures less
effective. Adapting deception techniques to the cloud and
Kubernetes offers a flexible defense strategy. By deploying
deceptive assets within these environments, organizations can
proactively detect and respond to potential threats, thereby
protecting sensitive data and critical workloads.
One of the significant security risks highlighted in the
OWASP Kubernetes Top 10 [2] is the potential for insecure
Kubernetes configurations. Kubernetes’ highly configurable
nature can lead to misconfigurations that create security gaps,
allowing attackers to access resources, compromise data, or
disrupt services. Another critical vulnerability is container
escapes, where vulnerabilities in container runtimes or the
host OS enable attackers to break out from containers,
gaining unauthorized access to the host system and potentially
compromising the entire Kubernetes cluster. In the evolving
landscape of Kubernetes security, several tools have become
prominent for their ability to safeguard these environments
against various threats. Tools like ’Clair[3],’ ’Checkov[4],’
’Kubeaudit[5],’ and the ’Open Policy Agent (OPA)[6]’. Each
plays a unique role in fortifying Kubernetes deployments and
will be illustrated in more detail in the related work section.
Despite the existence of these robust tools, there remains a gap
in the realm of deception-based security specifically tailored
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for Kubernetes environments. The current deception solutions
related to Kubernetes, such as HoneyKube[7], do not directly
address Kubernetes-specific attacks but leverage Kubernetes to
deploy deception-powered honeypots. This approach aims to
prevent attacks on other systems—such as web servers, network
devices, industrial systems, and IoT devices—by misleading
attackers through Kubernetes-driven deception strategies.
In the broader realm of cybersecurity, deception frameworks
play a crucial role across various layers of the deception stack,
including system, network, endpoint, and data layers. At
the network layer, frameworks like MTDCD (MTD Enhanced
Cyber Deception Defense System) [8] and DESIR (Decoy-
enhanced seamless IP randomization) [9] construct virtual
network topologies to delay attackers by creating deceptive
environments. However, their effectiveness in dynamic
container networks like Kubernetes is limited due to the
platform’s transient object nature. Moving to the endpoint
layer, tools such as Moonraker [10] and CHAOS (Chaos Tower
Obfuscation System) [11], effective in traditional IT settings
but less so in containerized environments like Kubernetes.
In the software layer, techniques like those in SODA (A
System for Cyber Deception Orchestration and Automation)
[12] manipulate API calls and create deceptive documents
to counter software-based threats. However, applying these
strategies directly to Kubernetes is challenging due to its
unique API interactions and resource management. At the
data layer, web-based deception techniques [13] manipulate
web content and session management, tailored for traditional
web environments, which may not seamlessly integrate with
Kubernetes’ distributed data management models. Further
exploration of these deception frameworks and their specific
implementations will be detailed in the related work section.
To address these challenges, KubeDeceive has emerged
as a robust deception framework specifically tailored for
Kubernetes environments. It focuses on mitigating critical
vulnerabilities highlighted in the Kubernetes OWASP Top
10 by intercepting malicious requests, mimicking genuine
operations, and deploying sophisticated security measures.
KubeDeceive achieves this by directing malicious workloads
to decoy nodes, carefully adjusting pod configurations, and
leveraging audit logs to thoroughly document activities within
the cluster. This approach enables detailed analysis of
malicious behavior, facilitates tracking of attacker movements,
and supports continuous refinement of deception strategies to
enhance Kubernetes security posture.
This paper is organized as follows: Section 1 provides
an introduction to Kubernetes and discusses its security
implications. Section 2 reviews literature on deception
techniques in security contexts. Section 3 introduces the
framework and its deployment approach. Section 4 presents a
detailed CTF case study to assess efficacy. Section 5 concludes
with reflections and future research directions.

2 Related Work

2.1 Traditional Security Solutions for Kubernetes

Kubernetes security has become increasingly complex and
multi-faceted, with a variety of tools and techniques emerging to
address its unique challenges. Prominent among these is ’Clair,’
a container vulnerability scanning tool designed to identify
security weaknesses in container images. ’Checkov’ offers
another layer of defense, auditing Kubernetes configurations to
detect potential misconfigurations and ensure compliance with
established best practices. ’Kubeaudit’ plays a crucial role
in auditing Kubernetes clusters for common security issues,
providing actionable recommendations to enhance security.
The OPA is integral for policy-based control, enabling fine-
grained governance over Kubernetes clusters, and ensuring that
activities and resources comply with corporate and regulatory
policies. Container security platforms like ’Aqua Security’[14]
provides comprehensive security solutions that encompass
scanning container images for vulnerabilities, enforcing strict
runtime security, and ensuring compliance. Network policies
and segmentation tools, such as ’Calico,[15]’ further bolster
security by controlling pod-to-pod communication and limiting
access based on need-to-know principles.

2.2 Deception Solutions in Cybersecurity

While various Kubernetes security tools have emerged, they
lack deception tactics. Deception in cybersecurity adds a
potent layer of defense, facilitating early threat detection and
strategically luring and delaying attackers. By creating decoy
assets, deception tools waste attackers’ time and resources,
allowing security teams to intervene and gather valuable
information on attacker tactics. To categorize the proposed
systems for deception, we classify them into four main
categories based on the general deception stack, as detailed in
[16].
One notable example of such categorization is Moonraker,
introduced by T. B. Shade et al., which serves as a system-
based deception framework. Moonraker is specifically designed
to mislead attackers within the system environment and protect
critical assets. The study further evaluated the effectiveness
of deceptive responses by comparing success rates between
scenarios with and without deception, highlighting the practical
benefits of employing deception strategies within the broader
stack. The study evaluated the effectiveness of deceptive
responses by comparing success rates between conditions with
and without deception. Results demonstrated that deceptive
responses significantly reduced successful attacks, highlighting
their effectiveness in thwarting attacker objectives. Conversely,
the control condition showed higher success rates in executing
tactics, underscoring the disruptive impact of deceptive
techniques on attackers. Moonraker’s challenge lies in creating
convincing system-level deceptions. Limiting participants’
command usage during the study may influence attack behavior
and impact the framework’s real-world applicability.
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Building on this, Gao, Wang et.al developed MTDCD (MTD
Enhanced Cyber Deception Defense System) as an enhanced
Network-Based cyber deception defense mechanism, focusing
on using virtual network topologies (VNTs) to delay attackers
in discovering vulnerable hosts. Their study demonstrated that
deploying VNTs extended the time for attackers to discover
vulnerable hosts by an average of seven times and increased
the time to attack a vulnerable host by an average of eight
times. Additionally, the study evaluated the impact of VNTs
on network overhead, revealing increased network latency and
flow table reinstallation frequency. These findings highlight the
effectiveness of network-based deception in deterring attackers
and introducing delay mechanisms. A noted limitation was the
impact of VNTs on network performance, including increased
latency and flow table reinstallation frequency, which could
potentially affect overall network efficiency.
Similarly, Sajid, Wei, Abdeen et.al developed SODA (System
for Cyber Deception Orchestration and Automation), a
malware-based deception system aimed at thwarting malware
attacks through deceptive tactics. SODA analyzes malware
to extract Malicious Subgraphs (MSGs) representing API
call sequences mapped to the MITRE ATT&CK framework.
Evaluation across RATs, InfoStealers, Ransomware, and
Spyware achieved 95% accuracy, with 224 out of 237 deception
attempts successfully misleading malware. Successful
deceptions included manipulating Command and Control (C2)
interactions and tricking ransomware into generating ransom
notes sans encryption. While effective against various malware
types, SODA’s focus on software-layer interactions may not
fully address broader security needs in complex environments
like Kubernetes, encompassing network, endpoint, and data
layers.
In this context, Han, Kheir, & Balzarotti explored web-based
deception techniques to thwart adversaries by manipulating
web content, session management, and user interactions.
Their experiments, including a CMS application and a CTF
exercise [17], highlighted the effectiveness of deception in
detecting web attacks. In the CMS experiment, honeytrap
resources in the robots.txt file triggered alerts, while hidden
deception elements remained undiscovered. During the
CTF, participants encountered deception traps more frequently
than real vulnerabilities, showcasing how such techniques
can misdirect attackers. While effective in triggering
alerts, web-based deception did not consistently uncover real
vulnerabilities, underscoring the need for more comprehensive
security strategies in diverse attack scenarios.

2.3 Bridging the Gap: The Unique Value Proposition of
KubeDeceive

In contrast to existing frameworks, KubeDeceive is tailored
specifically for Kubernetes, addressing its unique multi-layered
security challenges. While SODA focuses on software-layer
deception, KubeDeceive operates across network, endpoint,
and data layers. It expands beyond Moonraker’s system-level

misleading by integrating deception directly into Kubernetes
orchestration and containerization. Addressing MTDCD’s
limitations, KubeDeceive provides network deception with
minimal overhead and extends web-based deception techniques
to suit Kubernetes’ dynamic nature. KubeDeceive bridges
gaps between current deception frameworks and traditional
Kubernetes tools by offering a holistic approach to deception.
Its innovative strategy includes dynamic pod reconfiguration,
manipulation of network traffic, and deceptive responses to
API calls, ensuring robust defense against various attack
vectors within Kubernetes clusters. Scientifically, KubeDeceive
pioneers the use of Kubernetes-native mechanisms for
deception, leveraging labels, annotations, and controllers
to create indistinguishable deceptive artifacts integrated into
Kubernetes’ control plane. This dynamic environment adapts
to cluster changes, maintaining effective security measures as
new workloads are deployed. By studying how attackers engage
with deceptive elements like fake pods, KubeDeceive enhances
threat detection and mitigation, contributing valuable insights to
cybersecurity practices in cloud-native environments.

3 The Proposed Deception Framework

The main goal of this research is to create a robust deception
framework for Kubernetes environments and develop effective
defense mechanisms against pod breakout attacks. To achieve
this, we undertake a comprehensive problem identification and
analysis phase, where we thoroughly investigate the security
challenges and risks associated with pod breakout scenarios.

3.1 Problem Identification and Analysis

In this section, we identify and analyze critical security
issues in Kubernetes environments, focusing on pod breakout
scenarios and aligning them with OWASP Top 10 and MITRE
(TTPs)[18]. The paper highlights two main flaws compromising
node security:

(a) OWASP Top 10: K01 Insecure Workload Configurations
(MITRE TTP: T1611-T1068-T1610)[19]: This flaw is
related to insecure configurations of workloads within
the Kubernetes environment. As part of the exploration
of insecure workload configurations in the Kubernetes
environment, we will closely examine the attributes of
”Privileged Containers,” ”HostPID,” ”HostPath Volumes,”
and ”HostIPC.” These attributes have the potential to
break the principle of least privilege and introduce security
vulnerabilities if they are misconfigured or misused.

(b) OWASP Top 10: K05 - Inadequate Logging and
Monitoring (MITRE TTP: T1070)[20]: This vulnerability
arises from the absence of proper logging and monitoring
mechanisms in the Kubernetes environment . Attackers
can exploit this weakness to carry out stealthy attacks
and evade detection. To address this critical concern,
the deception framework incorporates robust logging and
monitoring features that capture and analyze crucial
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Figure 1: System architecture of KubeDeceive,
integrating Kubernetes components to deceive and monitor attackers.

activities within the Kubernetes cluster. By generating
comprehensive audit logs for all actions, the framework
enhances visibility and provides valuable insights into
potential security incidents.

3.2 Deception System Architecture

The described deception framework integrates multiple
key components to establish a structured environment aimed
at deceiving potential attackers effectively. Illustrated in
Figure 1, the system architecture includes elements like the
Cluster, Pod with Mutation Webhook, Participant/Attacker Pod,
Audit Log, and Overlay script. Together, these components
intercept and mislead attackers within the KIND [21] cluster,
enhancing overall system security. The choice of KIND
(Kubernetes in Docker) over Minikube [22] was driven by
scalability and compatibility needs. While Minikube is
suitable for local Kubernetes development in single-node
configurations, KIND’s multi-node capability better suited the
project’s requirements, especially in VMware environments,
ensuring seamless integration, portability, and performance. In
the following subsections, we will explore each component,
providing a detailed description of its purpose, functionalities,
and interactions within the framework.

3.2.1 Kind Cluster

The cluster serves as the foundation of the system, consisting
of a minimum of three nodes. It includes a master node
responsible for managing th— e cluster, a worker1 node that
acts as a normal environment serving the business, and a
worker2 node that acts as a honeypod environment. The
cluster provides the necessary infrastructure for running various
components, ensuring high availability and scalability.

3.2.2 Webhook Pod

The Webhook Pod serves as the core component responsible
for hosting the mutation webhook logic written in GO based
on the clientgo library [23].Client-go is a Go client library by
Kubernetes for programmatically interacting with Kubernetes
clusters and APIs, enabling developers to build custom
controllers, operators, and applications. The combination of
the following components within the Webhook Pod allows for
effective interception and modification of requests, ensuring
controlled access, secure communication, and seamless
integration within the Kubernetes cluster.
RBAC (Role-Based Access Control) Security Mechanism:
Ensures controlled access by defining privileges and
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permissions for the Webhook Pod within the Kubernetes
cluster. It governs access policies to mitigate security risks like
unauthorized access or misuse.
Webhook Object: Defines specific requests and actions that
the webhook intercepts and modifies. Administrators customize
its behavior based on criteria, specifying triggers for request
interception.on specific criteria. This includes defining the
triggers for intercepting requests.
Service Object: Facilitates communication between the
Webhook Pod and other cluster components. It provides
a stable endpoint for reliable routing of requests, ensuring
seamless integration and efficient request processing.
Secret Object: Manages encryption and decryption of
traffic between the webhook and other components using
TLS certificates. Ensures data confidentiality and integrity,
safeguarding against unauthorized access or tampering.
Deployment Object: Manages execution and scaling of the
Webhook Pod’s GO code. It handles pod creation, updates, and
scaling based on defined replica counts, monitoring pod health
to maintain operational state.

3.2.3 GO Webserver

This server, developed in Go, plays a vital role in managing
intercepted requests. Listing 1 elaborates on the pseudo-
code for the GO server logic. The server initiates by
parsing intercepted requests and deserializing them into REST
request objects (Lines 1-5). It then comprehensively examines
these objects, including their configurations, privileges, and
resource usage (Lines 8-10). This analysis forms the basis
for determining appropriate deception actions, such as rejecting
requests, introducing delays, or modifying actions (Lines 12-
19). To ensure legitimate user interactions are not disrupted, the
server incorporates mechanisms to whitelist user IPs, accounts,
and custom keys (Lines 22-27). This approach balances
robust security measures with the need to maintain operational
integrity.

3.2.4 Participant/Attacker Pod

The participant pod is a critical component in the system,
acting as a simulated adversary. It hosts an attacker who, once
inside the cluster, mimics harmful actions. These actions can
result from system vulnerabilities or, in some cases, an insider
with unauthorized access. This setup allows participants to
interact with the Kubernetes API server, potentially executing
harmful attacks. Participants use SSH [24] connection which
serves as the entry point for such attacks. The connection is
closely monitored and controlled through the GO logic on
a web server, with admission controllers ensuring thorough
scrutiny and security management of potentially harmful
activities within the cluster.

Listing 1: Pseudocode for Webhook Pod logic in Go

1

2 parseAndAnalyzeRequests () {

3 for each intercepted request {

4 parsedRequest := deserializeRequest(request)

5 goFormatObject := bindToGOFormat(parsedRequest)

6 analyzeObject(goFormatObject)

7 }

8 }

9 analyzeObject(goObject) {

10 deceptionAction:=

determineDeceptionAction(goObject)

11 performDeceptionAction (deceptionAction, goObject)

12 }

13 performDeceptionAction (deceptionAction, goObject) {

14 switch deceptionAction {

15 case "reject":

16 rejectRequest(goObject)

17 case "delay":

18 delayRequest(goObject)

19 case "change":

20 changeAction(goObject)

21 }

22 }

23 determineDeceptionAction(goObject) {

24 if isWhitelistedUser(goObject) {

25 return "none" // No deception action

26 } else {

27 deceptionAction := randomlyChooseAction()

28 return deceptionAction

29 }

30 }

31 // Main execution

32 parseAndAnalyzeRequests()

3.2.5 Audit Log

KubeDeceive capitalizes on Kubernetes’ native audit log
functionality [25] to monitor cluster activities. Audit logs play a
crucial role in Kubernetes’ security architecture by providing
a chronological record of system-affecting events. In our
Kubernetes cluster configuration, we specify the audit log path
and policy file within the API server arguments. This setup
logs all relevant API calls, creating a detailed trail for security
analysis. The main webhook includes an admission control
endpoint to parse and analyze audit logs in real-time, enabling
proactive security measures and continuous monitoring.
For example, Figure 2 illustrates a sample audit log entry
captured by KubeDeceive. This entry denotes an attempt to
access a pod resource. The suspicious nature of the pod name,
resembling a potential decoy, triggers KubeDeceive’s analysis
protocol. The admission control hook processes this request,
and by correlating it with the defined security policies and the
context of the user’s activity, it determines whether the action is
legitimate or potentially malicious.
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Figure 2: Sample audit log showing intercepted API request
analysis by KubeDeceive

3.2.6 Overlay Script

The overlay script is a critical component of the system,
developed as a Python script to automate and streamline
the environment creation process. Its primary purpose is to
empower users by enabling them to specify essential options
and configurations during setup. This approach significantly
improves user experience by eliminating the need for manual
intervention and complex configurations. Furthermore, the
overlay script is designed for high flexibility, capable of
seamlessly adapting to future upgrades or framework changes.

3.3 Deception Framework Deployment Strategy

The deployment strategy for our deception framework in
Kubernetes is designed to intercept and mitigate malicious
actions effectively. Illustrated in Figure 3, the process begins
with requests from users and potential attackers passing through
a webhook pod. This pod intercepts requests aimed at the
API server and applies deception actions based on predefined
logic implemented in GO. If needed, deception measures are
executed before forwarding modified requests to the API server.
In the deployment process of KubeDeceive, several critical steps
are undertaken to ensure its effective integration and operation
within a Kubernetes environment. The process begins with the
configuration of essential security components. Following this,
a Python script is executed to set up the cluster and admission
control functionalities.

(a) TLS Certificate and Secret Configuration: The initial
step involves configuring the Transport Layer Security
(TLS) certificate and secrets. These are crucial for
secure communication between users and the Kubernetes
API server. This setup ensures that all interactions,
especially those related to the admission control webhook,
are encrypted and protected from unauthorized access or
tampering.

(b) Execution of Overlay Python Script: Subsequently,
an overlay Python script is executed. It runs a
predefined cluster configuration YAML file, which outlines
the number of nodes required for the cluster and the
configurations necessary for audit logging. This script
ensures that the Kubernetes cluster is set up with the
appropriate settings to support the advanced monitoring
and logging capabilities needed for effective deception.

• Application of RBAC and Webhook
Configurations. As part of the script execution,
several key YAML files are applied to the cluster:

– Rbac.yaml: This file defines the necessary
permissions for the webhook’s pod, ensuring
that it has the appropriate access rights within
the Kubernetes environment.

– Webhook.yaml: This configuration file sets up
the Mutation Admission Webhook object. The
webhook acts as a gatekeeper, modifying or
rejecting requests to the API server based on
predefined rules and logic.

• Whitelisting Mechanism: An important feature
of this deployment is the ability to whitelist
certain usernames and IP addresses. Users and
systems with these credentials are allowed to bypass
the restrictions imposed by the admission control.
This mechanism is critical for maintaining normal
operation within the environment while selectively
targeting and stopping only malicious actors.

• Building the Deception Deployment: Finally,
the script proceeds to build the deployment that
encapsulates the main logic of the admission
controller and the various deception techniques
employed by KubeDeceive. This deployment
includes the creation of a Kubernetes object that
integrates closely with the Kubernetes API server and
uses a container image containing the server logic
written in Go.

The setup is designed to be dynamic, allowing for real-time
adjustments and updates to the deception tactics based on

3.4 Challenges and Limitations

As we developed a deception framework for Kubernetes, we
faced challenges in intercepting traffic, prompting a thorough
exploration of various approaches. This subsection details the
encountered challenges and diverse methods considered for
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Figure 3: Data flow diagram showing request interception and deception by the webhook

effective traffic interception within the Kubernetes ecosystem.
The analysis provides insights into the complexities involved,
shaping the foundation of our deception framework.

(a) Kubernetes Code Modification: We initially considered
modifying the Kubernetes codebase to incorporate
interception logic using source graph extension and Visual
Studio tools. However, the complexity of Kubernetes
internals and the risk of disrupting the environment
deterred us from this approach. Integrating custom
solutions into the Kubernetes codebase required a thorough
understanding of the system’s intricacies and could
introduce unintended complications.

(b) GRPC Calls for Traffic Redirection[26]: We explored
using GRPC calls for redirecting traffic to address
interception requirements. The goal was to find a seamless
way to control the redirection process. However, we
faced challenges in finding libraries or APIs for calls from
outside the API server. Additionally, using a Python plugin
led to errors and compatibility issues, hindering progress.

(c) Mitmproxy Implementation[27]: We considered
mitmproxy for intercepting and redirecting requests
between components and the Kubernetes API server.
Mitmproxy offered features for intercepting and
manipulating network communications, making it a
promising solution. However, configuring system
components to work with an external proxy, particularly
with SSL settings, posed significant challenges. Managing
SSL certificates and establishing trust required substantial

effort to ensure secure and functional communication
between components and the proxy.

While KubeDeceive effectively addresses many threats to
Kubernetes clusters, it does have some key limitations:

(a) Limited Scope of Attack Detection: KubeDeceive
is designed to handle specific types of attacks, such
as API request-based exploits and common Kubernetes
misconfigurations. However, it is not yet equipped to
detect obfuscated or behavior-based attacks. Addressing
such threats would require integrating AI-powered models
[28] capable of identifying subtle anomalies and patterns
indicative of advanced attacks.

(b) Dependence on Decoy Environment Setup: The
effectiveness of the framework heavily relies on how
well the decoy environment aligns with the organization’s
specific business use case. Deploying a decoy environment
tailored to the unique configurations and operations of
each business can be resource-intensive and requires a
deep understanding of the business’s Kubernetes setup.
These limitations underscore the need for future work to
expand the framework’s capabilities, particularly through
AI-powered threat detection and automation of decoy
environment setup to align with diverse business contexts.

4 Evaluation

To assess the effectiveness of the deception framework, a
CTF competition [29] was organized, involving 20 participants
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with varying experience levels in penetration testing, ranging
from 2 to 5 years of experience. The objective of the
competition was for participants to successfully deploy a
malicious pod on the master node of a simulated Kubernetes
cluster. Participants were presented with a scenario where
they could exploit exposed and vulnerable services within
the cluster to gain unauthorized access. Once inside the
cluster, participants had direct interaction with the Kubernetes
API server, enabling them to execute potentially harmful
commands.
This realistic challenge aimed to assess participants’ skills
and creativity in exploiting Kubernetes vulnerabilities and
orchestrating damaging actions. To facilitate the competition,
we implemented a streamlined approach for participants. Each
participant received access to a specific pod hosted on a worker
node via a secure SSH (Secure Shell) connection.
This SSH connection allowed remote access and control of the
designated pod within the Kubernetes cluster. Additionally, a
service account was set up specifically for this pod, configured
with a predefined role that granted specific permissions and
capabilities within the cluster environment. In our CTF
competition scenario, participants were tasked with deploying
a malicious pod on the Kubernetes Master Node, navigating
through simulated vulnerabilities and controls. They utilized
a service account role allowing pod creation within the
cluster. Figure 4 outlines their procedural flow: accessing a
controlled pod via SSH credentials, configuring environment
variables, and employing kubectl commands, all managed
under KubeDeceive’s protective controls. Despite enforced
rules to prevent unauthorized actions, Figure 5 revealed some
participants bypassing restrictions using the ’exec’ verb on
master pods. In response, we refined controls, restricting
actions to specific service accounts tailored for pod creation
and predefined commands. These measures effectively secured
the CTF environment, highlighting the necessity of dynamic
security protocols in Kubernetes deployments.
This setup demonstrates KubeDeceive’s architecture,
integrating comprehensive security measures with Kubernetes’
native controls to safeguard against evolving threats and
unauthorized accesses.

Approximately 7 participants immediately pursued the token
path, encountering strategically placed fake tokens that tested
their decision-making skills. Meanwhile, others explored
locally and fell into traps set by decoys representing fake tokens
in various locations. After acquiring the token, participants
proceeded to create the kubeconfig file necessary for pod
creation. Participants crafted various malicious YAML files,
and their interactions were closely monitored and analyzed
using audit logs to evaluate their strategies. Interestingly,
only two participants thoroughly examined the created pod
YAMLs, using ‘describe’ actions to identify special notations
and differences.
As demonstrated in the evaluation results, Table 1 indicates
varying trap counts for different actions taken by participants to
achieve their goals. Initially, three static secrets were distributed

Figure 4: Attack Path Taken by Participants with Deception
Solutions in Place

Figure 5: Quantitative Analysis of Participant Compliance in
Kubernetes CTF Challenge

within their Pod, serving as a fixed layer of deception. This
initial layer aimed to test participants’ ability to navigate
through deceptive elements strategically placed within their
environment.
Another flag was found as a label in the pod specifications,
serving as a key to authorize pod creation. In contrast, other
participants relied on hints to locate the secret label needed
to complete the challenges successfully. Upon successful
communication with the API server and retrieval of Pod
information, participants were required to extract labels
and annotations from the created pods. These labels and
annotations, which were part of the whitelisting techniques
mentioned earlier, were then inserted into their malicious
YAML files, which would later be used to create the malicious
pod. Additionally, another IP whitelisting technique was
applied, which prevented participants from creating a pod
on the master node. While the secret label allowed them to
create pods, it alone was insufficient to complete the target.
This combination of techniques led participants to believe they
had achieved progress, only to be ultimately deceived and
thwarted in their attempts. This step was critical in assessing
the effectiveness of our dynamic deception techniques, as it
directly engaged participants in a more complex interaction
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with the deceptive environment, challenging them to distinguish
between legitimate and deceptive information.
Table 2 presents the number of successful participants as
determined by the flags collected at each step, providing
a quantitative measure of the deception framework’s
effectiveness. The progression from identifying the correct
secret token to obtaining the appropriate whitelisting label
and attempting the creation of a privileged pod illustrates
a sequential engagement with the deployed deceptive
mechanisms.
Notably, the absence of participants successfully creating
a pod on the master node highlights the robustness of the
deception mechanisms in thwarting unauthorized access
to critical resources. This layered approach to deception,
starting with static secrets and escalating to more complex
deceptions involving pod label manipulation, exemplifies the
framework’s capability to adaptively challenge and mislead
potential attackers. The dynamic nature of these deceptions
not only delayed participants but also significantly reduced the
likelihood of successful attacks on critical cluster resources.

Trap Name Trap
Count

Detected
Participants

Avg N. of
Attempts

Fake Secrets (Different Locations) 3 11 17

Update Privilege (Privileged/runasuser) 2 8 10

Update Malicious Attributes
(HostIPC/HostNetwork/HostPID/HostPath)

4 7 7

Update Selected Node (MasterNode) 1 10 13

Table 1: Analysis of Traps and Participants Actions

Flags N. of Participants

Retrieve the correct Token 12

Get the Secret Label 8

Create a privileged pod 6

Create a pod on the master node 0

Table 2: Summary of Flags and Participant Engagement

Additionally, we introduced a ’static deception’ scenario,
where the absence of active deception solutions (mechanisms
implemented by KubeDeceive) required participants to navigate
only static obstacles. These included crafting the kubeconfig
file, identifying correct labels and annotations from misleading
pod specifications, and dealing with fake secrets strategically
placed within the participant’s pod.
Figure 6 compares the time taken by participants to perform
malicious actions across three distinct environments: the full
deception environment, the static deception environment,
and the baseline environment. The full deception
environment, powered by KubeDeceive, dynamically intercepts
and manipulates API requests, deploys misleading pod
configurations, and uses adaptive deceptive tactics to actively

Figure 6: Time Consumed to Reach the Target

delay and mislead attackers. In contrast, the static deception
environment features pre-configured obstacles such as fake
secrets, misleading labels, and static pod specifications,
providing a fixed and non-interactive deceptive layer. Lastly,
the baseline environment serves as a control, offering no
deception measures, allowing attackers unrestricted access to
exploit vulnerabilities directly.
As a result, no participants were able to bypass the deception
mechanisms or identify deceptive behaviors within the allocated
time frame of 160 minutes. KubeDeceive’s deployment within
a Kubernetes environment proved highly effective, as shown
in the evaluation results. Approximately 89% of participants
fell for at least one trap, with the ‘Fake Secrets’ and ‘Update
Selected Node’ traps being the most effective. Additionally,
KubeDeceive was 100% successful in preventing participants
from creating a pod on the master node, the ultimate challenge
of the simulation, demonstrating its robust capability to delay
and halt potential threats within the Kubernetes ecosystem.

5 Conclusion and Future Work

In conclusion, this paper introduces KubeDeceive, a
pioneering cybersecurity framework designed specifically for
Kubernetes environments. KubeDeceive stands out by
integrating innovative deception strategies across multiple
layers of Kubernetes, effectively mitigating inherent platform
vulnerabilities. Its effectiveness is evident in its exceptional
ability to safeguard the master node, achieving a 100%
success rate in thwarting unauthorized pod creations. This
underscores its capacity to strengthen critical components of
Kubernetes against sophisticated attacks, such as insecure
workload configurations, inadequate logging and monitoring,
and privilege escalation, which pose significant threats to
Kubernetes environments as discussed earlier. Compared to
existing solutions, KubeDeceive offers a comprehensive and
adaptable security posture capable of dynamically responding
to evolving threats within containerized infrastructures.
Future work aims to build upon its foundation by incorporating
advanced features and expanding its scope. One key area of
focus is integrating anomaly detection systems powered by
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machine learning (ML) and artificial intelligence (AI)[30]. By
analyzing audit logs and identifying unusual patterns in pod
behavior or network traffic, these models can provide real-time
detection and response to potential threats, further strengthening
the framework’s capabilities. Extending KubeDeceive to
other cloud-native platforms, such as OpenShift, Docker
Swarm, and Amazon EKS, represents another promising
direction. Additionally, automating the generation of deceptive
Kubernetes resources, such as fake pods, services, and
secrets, is a priority. Automation would enable dynamic
updates to decoys based on observed attacker strategies and
ensure seamless integration with CI/CD pipelines, promoting
continuous deployment of updated deception tactics.
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