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Abstract

Elliptic Curve Cryptography (ECC) represents a promising
public-key cryptography system due to its ability to achieve the
same level of security as RSA with a significantly smaller key
size. ECC stands out for its time efficiency and optimal resource
utilization. This paper introduces two distinct new software
implementations of ECC over the finite field GF(p), utilizing
character arrays and bit sets. Our implementations operate on
ECC curves of the form y2 ≡ x3 +ax+b mod p.

We have optimized the point addition operation and
scalar multiplication on a real SEC (Standards for Efficient
Cryptography) ECC curve over a prime field. Furthermore,
we have tested and validated the Elliptic Curve ElGamal
encryption/decryption system and the Elliptic Curve Digital
Signature Algorithm (ECDSA) on a real SEC ECC curve with
two different implementations of the big integer classes, and
compared and analyzed their performances.

Key Words:Cryptography, ECC, point addition, ElGamal,
ECDSA.

1 Introduction

Data security is very crucial for almost any system nowadays
[20]. Cryptography is a mathematical tool utilized in software
and hardware systems to provide security services, safeguard
data and information in storage and transmission against
unauthorized access or tampering, and facilitate key exchange
between communicating parties. It plays a critical role in
various applications. During the early stages of cryptography,
symmetric key cryptographic systems [5] were used to encrypt
and decrypt messages. Subsequently, public-key cryptography
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systems [2], including the Diffie-Hellman key exchange system
and RSA, were developed in 1976 and 1977, respectively. These
systems offered increased security compared to symmetric
encryption methods as they were based on number theory,
employing two separate keys: the public key and the private key.
In contemporary times, public key cryptography holds immense
importance as data integrity and confidentiality depend on it.
It must ensure forward secrecy, ensuring information that’s
secure presently remains secure in the future [15]. RSA
stands as the most popular public key cryptography algorithm,
relying on the complexity of factoring large numbers for
security [9]. However, with the advancing computational
capabilities of computers, RSA struggles to provide sufficient
forward secrecy without exponentially increasing key sizes.
Due to the computational overhead of RSA systems with
large key sizes, Elliptic Curve Cryptography (ECC), a public-
key cryptography system rooted in algebra, gained popularity.
ECC, developed in 1985 by Neal Koblitz and Victor Miller
and widely adopted since 2005 [7], can achieve the same
level of security as RSA but with much smaller key sizes.
Table 1 demonstrates the key size comparisons between RSA
and ECC for equivalent security levels. ECC stands as a
promising public key cryptography system, excelling in time
efficiency and resource utilization. The logic behind ECC is
enrely unique compared to other cryptographic algorithms. It

Table 1: Comparable key sizes in terms of computational effort
for cryptanalysis

Symmetric Key Size (bits) RSA Key Size (bits) ECC Key Size (bits)
80 1024 160

112 2048 224
128 3072 256
192 7680 384
256 15360 512

relies on the challenges associated with solving the discrete
logarithm problem through point additions and multiplications

ISCA Copyright© 2024
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on elliptic curves. ECC’s popularity continues to grow, finding
applications across numerous systems and protocols. One of the
most popular applications of ECC is facilitating key exchange
between two communication parties. ECC is utilized in a variant
of the Diffie-Hellman key exchange known as Elliptic Curve
Diffie-Hellman (ECDH). Around 97% of popular websites
support ECDH, specifically using Elliptic Curve Diffie-Hellman
Ephemeral Elliptic Curve Digital Signature Algorithm (EDHE
ECDSA) for key exchange during HTTPS connections [7].
Additionally, ECDSA finds widespread use in blockchain
technology [14]. ECC also plays a role in the DNSSEC
protocol, a secured version of DNS that shields DNS servers
from DDoS attacks [7]. While it’s feasible to implement
DNSSEC using RSA as a signature algorithm, this approach
exposes servers to various potential attacks [7]. Alternatively,
Using ECDSA on DNS servers protects them from amplification
attacks without requiring packet fragmentation or introducing
additional complexities [23]. Mobile devices, and IoT devices
have become integral to people’s lives. However, they
are vulnerable to attackers exploiting various vulnerabilities
[4]. Mobile devices, and IoT devices often use embedded
processors, require robust security mechanisms [6]. However,
public key cryptography algorithms prove computationally
expensive due to the computing capabilities and memory
constraints of these devices. ECC’s efficiency and strong
security make it ideal for protecting IoT devices from cyber
threats. For instance, a lightweight protocol proposed by a
team of researchers leverages elliptic curves, and it is resistant
to various attacks like man-in-the-middle and replay attacks
[16]. ECC can also be employed in a one-time password
(OTP) scheme based on Lamport’s OTP algorithm [7]. Finally,
ECC could be used in safeguarding smart grids and securing
communication channels for autonomous cars [8, 3]. This paper
concentrates on the new software implementation of ECC over
the finite field GF(p) using character arrays and bit sets in the
C++ programming language. Our implementation operates on
ECC curves of the form y2 ≡ x3 +ax+b mod p.

We have implemented and optimized the core elliptic curve
operations, specifically point addition and scalar multiplication,
on a real SEC (Standards for Efficient Cryptography) ECC curve
over a prime field using two different approaches. In addition,
the Elliptic Curve ElGamal encryption/decryption system and
Elliptic Curve Digital Signature Algorithm (ECDSA) on a
real SEC ECC curve with two different implementations are
tested, and validated. The performances of these two different
implementations are compared and analyzed. The rest of
this paper is organized as follows: Section 2 provides basic
background information used in this paper. It introduces
the ECC cryptographic system, detailing point addition and
point doubling operations. Section 3 describes the detailed
implementation of ECC public- key systems on real SEC ECC
curves over a prime field using two distinct implementations
of the Big Integer objects: character arrays and bit sets. This
section elaborates on the design of each component of the
ECC system and introduces optimization techniques utilized

to improve the efficiency of our implementations. Section 4
presents the experimental results of our ECC implementations
in C++ on a Linux Ubuntu OS. It presents a comparison
of the timing performance of fundamental operations such as
point addition and point doubling using our implementations
of Big Integer objects in ECC systems. Additionally, it
presents the applications of these implementations in two
widely used cryptographic schemes: the Elliptic Curve ElGamal
encryption/decryption system and the Elliptic Curve Digital
Signature Algorithm (ECDSA) (The implementations and
performance comparisons of the ECDH key exchange system
have been presented in [12]). These two cryptographic systems
are tested and validated on a real SEC ECC curve. The
performance of these Elliptic Curve cryptographic systems are
compared and analyzed. Finally, Section 5 summarizes the
paper and discusses the future work of this paper.

2 Background

In this section, we will introduce basic concepts and
background information used in this paper.

2.1 Mathematical Background

Number theory and algebra play crucial roles in cryptography
[21]. Cryptography algorithms rely on concepts from number
theory, enabling these algorithms to remain secure against
various attacks. The logic behind ECC differs significantly from
other public-key cryptography algorithms, which can make it
challenging to comprehend. In this section, we will introduce
fundamental concepts, including ECC, point addition, scalar
multiplication on ECC curves, and the applications of ECC.

2.2 ECC Concepts

Elliptic Curve cryptography is based on equations describing
elliptic curves and computations involving points that belong
to a given curve. In this section, we introduce the concepts of
ECC as utilized in cryptography. Initially, we elaborate on the
properties and operations of Elliptic curves over real numbers,
as vital details can be visually demonstrated using geometry.
Subsequently, we describe elliptic curves over GF(p), which are
specifically employed in ECC.

2.3 The introduction to ECC

Imagine a large yet finite set E consisting of points on the
plane (xi,yi) derived from the elliptic curve. Within this set E,
we define a group addition operator denoted by +, operating
on two given points P and Q. This group operator enables the
computation of a third point R ∈ E such that P+Q = R.

Given a point G ∈ E, our focus lies in calculating G+G+
G+ · · ·+G using this group operator. To be specific, for any
arbitrary number k ∈ Z, we utilize the notation k×G to signify
the repeated addition of point G to itself k times (the + operator
invoked k− 1 times). The fundamental concept behind ECC is
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the complexity involved in retrieving k from k×G. An attacker
would need to attempt all possible combinations of repeated
additions: G+G, G+G+G, G+G+G+ · · ·+G [10]. This
challenge constitutes the discrete logarithm problem, forming
the foundation for the security of the ECC algorithm.

2.4 ECC Over Real Numbers

Elliptic curves have no direct connection with ellipses [10].
Instead, they are defined using cubic equations, which are
also employed in determining the circumference of an ellipse
[22]. These curves commonly adhere to a form known as the
Weierstrass equation

The general form of an elliptic curve equation is given by:

y2 +axy+by = x3 + cx2 +dx+ e (1)

where parameters a, b, c, d are real numbers. For cryptography
purposes, the equation of the following form is used instead:

y2 = x3 +ax+b (2)

The equation provided pertains to a field of real numbers,
wherein the coefficients a and b, along with the variables x and
y, are elements of the real number field.

Figure 1 shows examples of elliptic curves drawn from
equations with different parameters a and b in equation (2):

Elliptic curves can be singular or non-singular. Figure 1
displays an example of a non-singular elliptic curve. Notice that
the curves are smooth. Smooth curves fulfill the discriminant
condition of a polynomial f (x) = x3 +ax+b:

4a3 +27b2 ̸= 0 (3)

The elliptic curve described in Equation (2) represents a cubic
polynomial, implying it possesses three distinct roots, denoted
as r1, r2, and r3. The discriminant is determined by the
following formula:

D3 =
3

∏
i< j

(ri − r j)
2 (4)

If the discriminant is zero, it indicates that two or more roots
have merged, rendering the curve non-smooth [10]. Singular
curves are unsuitable for cryptographic purposes as they are
susceptible to being easily cracked. Therefore, our focus lies
solely on non-singular curves. signifying that curves used in
ECC algorithms must possess a non-zero discriminant.

Figure 1: Examples of Elliptic Curves

2.4.1 The group operators in ECC

For an elliptic curve defined by Equation 2, the set of points
belonging to the curve is denoted as E (a, b), including a
distinguished special point at infinity, represented as O. The
set E (a, b) forms an abelian group [10, 22] under a unique
addition operator, denoted by +. This addition operator differs
significantly from the traditional algebraic addition and is
described as follows.

2.4.2 Point addition

Suppose we intend to add a point P to another point Q. This
addition process involves the following steps:

1. Draw a straight line connecting points P and Q.
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2. Identify the intersection point of the connecting line with
the elliptic curve to obtain a third point R.

Consider a point R = (x,y) on the curve. The reflection
of R along the x-axis results in a point denoted by −R =
(x,−y). This reflection is feasible due to Equation (2), which
can be reformulated as y2 = x3 + ax+ b, signifying the curve’s
symmetry with respect to the x-axis.

Thus, the addition of two points results in P + Q = R, which
is visually depicted in Figure 2. However, an exception occurs
when the joining line of points P and Q fails to intersect with
the elliptic curve. In such instances, we identify this situation
as being at the distinguished point at infinity. This circumstance
only arises when the line joining P and Q is parallel to the y-
axis. The point at infinity allows us to establish the following
properties:

• P + O = P: Adding point P with a point at infinity requires
us to draw a line parallel to the y-axis. The line intersects the
curve at another point, which acts as the mirrored reflection of

Figure 2: Point Addition Illustration on an Elliptic Curve.

P concerning the x-axis. Consequently, reflecting that
additional point P along the x-axis yields point P. Additionally,
P serves as the additive inverse of P under the + group operator.

• If P is the mirrored reflection of Q concerning the x-axis,
then Let P =−Q

O+O = O, and O =−O.

2.4.3 Point doubling

Elliptic Curve Cryptography (ECC) involves repeatedly
adding a point to itself k times to obtain another point denoted
as kG. This operation, known as point doubling, is expressed
as P+P = 2P. Point doubling is similar to the addition of two
distinct points P and Q. When adding a point to itself, point Q

gradually converges towards point P until they coincide as the
same point on the curve. Hence, the computation of 2P involves
the following steps:

1. Draw a tangent line at point P.
2. Find the point of intersection of the tangent line with the

elliptic curve to determine point R.
3. Reflect the point of intersection along the x-axis.

2.5 ECC Over GF(p)

Elliptic curves over real numbers are not well-suited for
cryptography. Instead, prime numbers are favored due to the
error-free arithmetic they offer in prime fields denoted as Zp.
ECC over GF(p) operates solely with elements from the set
{0,1, . . . , p− 1}. This indicates that parameters a and b, along
with variables x and y, belong to the set GF(p). Furthermore,
all operations are conducted modulo p. As a result, the form of
the elliptic curve is given by:

y2 ≡ x3 +ax+b (mod p) (5)

where the condition (3) is also satisfied in the form:

4a3 +27b2 ̸≡ 0 (mod p) (6)

A collection of points (x,y) on the elliptic curve over GF(p)
is represented by Ep(a,b), including a distinguished point at
infinity, labeled as O. These points no longer form a continuous
curve but instead constitute a set of discrete points on the plane
[10]. Consequently, it becomes impractical to visually depict
point addition and point doubling geometrically. Nevertheless,
all algebraic expressions and properties are valid under the
modulo p operation. The primary difference lies in how slopes
are calculated for point addition and doubling. In point addition,
the slope of a line passing through points P and Q can be found
as follows:

α = yQ − yPxQ − xP
−1 (mod p) (7)

where (xQ − xP)
−1 denotes the multiplicative inverse modulo

p. Similarly, the slope of a tangent line for point doubling is
calculated as

α = 3x2
P +a2yP

−1 (mod p) (8)

Finally, the set Ep(a,b) forms a group with an addition
operator +. The prime number p represents the characteristic of
the field Zp. Prime finite fields where p ≤ 3 are deemed unsafe
for cryptographic purposes [10].

2.6 Point Encoding

In most cryptographic systems, it’s necessary to transform a
plaintext into a value applicable to a particular cryptographic
algorithm [22]. The process of mapping messages to points
on the elliptic curve is integral to ECC. Specifically, in ECC,
converting a message into a point on the elliptic curve precedes
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the execution of point operations that lead to the generation of
ciphertext.

However, there exists a significant challenge in converting
a message to a point on the elliptic curve. There isn’t a
deterministic algorithm for specifying points on a curve over
GF(p) [22]. Nonetheless, the Koblitz algorithm [17] provides a
solution, enabling the discovery of an appropriate point on the
elliptic curve with an exceedingly low probability of error.

For instance, considering an elliptic curve described in
Equation (5), the plaintext m, represented as a number, is
embedded within the x-coordinate of a point, with additional
appended bits. Directly using the message m as the x-coordinate
provides only a 50% chance that a square modulo p equals
m2 +am+b.

Instead, we select an integer K, which signifies a failure
rate of 1

2K . The plaintext message must fulfill the following
condition:

(m+1)K < p (9)

This restricts the message to be in the following range of
values:

0 ≤ m ≤ p−K (10)

The x-coordinate of a point, which contains the encoded
plaintext, is described using the following equation:

x = mK + j (11)

where j is within the range 0≤ j <K. We then iterate through
all possible values of j and compute x3 +ax+b until we find a
square root of x3 + ax+ b (mod p). This value will represent
the y-coordinate. of the point. If we cannot find a square root
for all potential j values, it means the given message cannot
be mapped to a point on the given elliptic curve. The values
obtained from equation (11) and the square root y generate a
point Pm = (x,y), which can then be utilized in encryption. To
retrieve the plaintext m from the point, we use the following
equation:

m =
⌊ x

K

⌋
(12)

2.7 The applications of ECC

Repeated additions aren’t directly utilized for encryption,
as described by m × G [10]. Instead, the concept of point
multiplication is employed in various cryptographic schemes
and algorithms. In this subsection, we introduce the applications
of ECC, the Elliptic Curve ElGamal cryptosystem, and the
ECDSA cryptosystem.

2.8 ElGamal cryptosystem

The ElGamal cryptosystem is an asymmetric key encryption
algorithm rooted in the ECDH key exchange systems presented
in [12]. ElGamal, similar to RSA, is widely adopted for

encryption purposes [22]. It can also be implemented utilizing
ECC. The elliptic curve variant of ElGamal operates on points
residing on a specified curve over GF(p) and involves repeated
point addition operations, distinct from the exponentiation
utilized in RSA [18].

Alex and Bob agree on an elliptic curve and a base point B ∈
Ep(a,b). Alice selects a random large integer a = 1,2, . . . , p−1
as her private key, and similarly, Bob selects b = 1,2, . . . , p−1
as his private key. Subsequently, the public keys (p,B,G) are
calculated, where GA = a ·B for Alice and GB = b ·B for Bob.

Suppose Alice intends to transmit a message m to Bob.
The message is initially encoded into a point Pm. Alice then
represents the ciphertext Pc as a pair of points on the curve:

Pc = [(a ·B),(Pm +a ·GB)] (13)

and sends it to Bob, where B and GB are obtained from Bob’s
public key (p,B,GB).

Bob can decrypt the message by computing the product of the
first point from Pc and his private key b (i.e., a ·B). Then, Bob
subtracts this product from the second point of Pc:

(Pm+a ·GB)− [b ·(a ·B)] =Pm+a ·(b ·B)−b ·(a ·B)=Pm (14)

Finally, Bob can decode the original message from the point
Pm using equation (12).

2.9 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algorithm is a variant
of the Digital Signature Algorithm (DSA) that uses elliptic
curves. The ECDSA algorithm is implemented in DNSSEC
protocol and blockchain technology to provide sufficient level
of security in terms of authenticity.Similar to the ECDH and the
Elgamal cryptosystemboth parties have to agree on an elliptic
curve equation, a base point B, and a prime integer n, which is
the order of B, such that n × B = O.

Suppose Alice wants to send a message along with the digital
signature to Bob. Alice’s private key is an integer a that is in the
range 1,2, . . . , p−1. The public key GA = aB is obtained using
scalar multiplication, where B is the base point of the selected
curve. Alice needs to perform a series of steps to generate a
signature for a message m as follows:

1. Calculate e = HASH(m)
This step involves applying a cryptographic hash function
to the message m to generate a hash value e. The hash
function is typically SHA-256 or similar.

2. Obtain value z by extracting the leftmost Ln bits of e,
where Ln is the bit length of the group order n
The value z is extracted by truncating the hash e to Ln bits,
where Ln is the bit length of the order n of the elliptic curve
group.

z = leftmost Ln bits of e
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3. Select a cryptographically secure random integer k in
the range {1,2, ...,n−1}
A random integer k is selected in the range from 1 to n−1,
which will be used for the point multiplication operation
on the elliptic curve.

4. Calculate a point (x1,y1) = k ·B
The point (x1,y1) is calculated by performing the point
multiplication of the random integer k with the base point
B of the elliptic curve.

5. Calculate r = x1 mod n
The value of r is derived by taking the x-coordinate of the
point (x1,y1) and reducing it modulo the order n. If r = 0,
the process repeats by selecting a new k.

r = x1 mod n

The generated signature is the pair of values r and s denoted
by (r,s). Alice sends it together with the message m to Bob. Bob
can verify the received signature using the following steps:

1. Check that both values r and s are in the range 1,2, . . . ,n−
1. If at least one number does not satisfy this condition,
then the signature is invalid.

2. Calculate e = HASH(m) using the hashing algorithm
identical to the one used by Alice during the signature
generation process.

3. Identical to the signature generation process, obtain value
z by extracting the Ln leftmost bits of e, where Ln is the bit
length of the group order n.

4. Calculate the multiplicative inverse of s.
5. Obtain values u1 = zs−1 mod n and u2 = rs−1 mod n.
6. Calculate a point (x1,y1) = u1B+ u2GA. If (x1,y1) = O,

then the signature is invalid.
7. If r ≡ x1 mod n, then the signature is valid. Otherwise, the

signature is invalid.

2.10 Jacobian Projective Coordinates

As discussed in the previous sections, when points
are represented in affine coordinates, the operations on
the elliptic curve involve arithmetic additions, subtractions,
multiplications, squaring, and the computation of modulo
multiplicative inverses. As we are dealing with elliptic curves
over GF(p), calculating multiplicative inverses, crucial for point
addition and doubling operations requiring the calculation of
slopes, is a fundamental process, as seen in Equations 7 and
8. The calculation of multiplicative inverses is computationally
intensive, especially when involved in point multiplication,
which necessitates multiple point addition and multiplication
operations. Given this computational cost, representing elliptic
curve points in projective coordinates, particularly in the
Jacobian projective coordinate system, proves practical.

Utilizing Jacobian coordinates can significantly enhance the
performance of ECC algorithms by reducing the number of
computations involving multiplicative inverses on large integers
[19].

A point represented in Affine coordinates (x,y) can be
transformed into Jacobian coordinates (X ,Y,Z). For instance,
a point P with Affine coordinates (xP,yP) can be depicted in
Jacobian coordinates as (X ,Y,Z) = (xP,yP,1).

Conversely, a point expressed in Jacobian coordinates
(X ,Y,Z) can be converted back to Affine coordinates using the
following equations:

x =
X
Z2

y =
Y
Z3

The point at infinity corresponds to (1,1,0), while the
negative of (X ,Y,Z) is (X ,−Y,Z).

Suppose we intend to add a point P with coordinates
(XP,YP,ZP) to another distinct point Q with coordinates
(XQ,YQ,ZQ). Initially, we define variables A, B, C, and D as
described by the following equations:

A = XP ·Z2

B = YP ·Z3

C = XQ ·Z2 −A

D = YQ +Z3 −B

Now, the coordinates (XR,YR,ZR) representing the result of
point addition R = P+Q can be obtained using the following
equations:

XR =−C3 −2A ·C2 +D2

YR =−B ·C3 +D(A ·C2 − xR)

ZR = ZP ·ZQ ·C

When performing the point doubling operation on a point
represented in Jacobian coordinates, where P+P = 2P = R, we
need to calculate three variables A, B, and C using the following
equations:

A = 4XP ·Y 2

B = 3X2 +a ·Z4

C =−2A+B2

The coordinates of the point R are determined using the
following equations:

XR =C

YR =−8Y 4 +B · (A−C)

ZR = 2YP ·ZP
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3 ECC Implementations

Implementations of the ECC require an understanding of the
main components of the ECC from the software engineering
prospective. We identify 4 main components of any security
system implemented using ECC. We present the hierarchy of
these components in a pyramid-like view in order to underline
the dependence of all layers from each other. Figure 3 shows
these components

Figure 3: ECC Components Pyramid.

Encryption algorithms utilizing ECC properties rely on scalar
multiplication, which combines point addition and doubling
techniques. This operation requires handling big integers,
as standard primitive data types are limited to 64-bit values.
Big integer arithmetic is essential for representing plaintext
messages as points on an elliptic curve, forming the foundation
for ECC arithmetic and point operations. This section initially
introduces algorithms and data structures within our custom Big
Integer class. It then demonstrates implementations of elliptic
curve point addition, doubling, and multiplication, utilizing
two distinct Big Integer object implementations: character
arrays and bit sets. Additionally, it illustrates the workings of
the ElGamal encryption/decryption algorithms and the ECDSA
cryptosystems, highlighting design choices and considerations
made during the ECC implementations. Our demonstrations
use a real SEC (Standards for Efficient Cryptography) ECC
curve over a prime field, specifically the secp192r1 curve,
with its parameters presented in Table 2 [1]. However, our
implementation is compatible with any valid elliptic curve over
GF(p).

3.1 Big Integer Class Implementation

Arithmetic operations involving large integers form the
foundation of all arithmetic in public cryptography. To explore
and potentially

enhance performance, we’ve developed our own Big Integer
class. This class aims for flexibility by allowing users to provide
implementations for Big Integer classes specific to elliptic

c
Parameter Value

Prime number p FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFF
a FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFFFF FFFFFFFC
b 64210519 E59C80E7 0FA7E9AB 72243049 FEB8DEEC C146B9B1

Base point G 04 188DA80E B03090F6 7CBF20EB 43A18800 F4FF0AFD
82FF1012 07192B95 FFC8DA78 631011ED 6B24CDD5 73F977A1 1E794811

Table 2

curves. In our research for the master’s thesis, we implemented
the Big Integer class using character arrays and bit sets. The
first Big Integer class utilizes a character array to represent each
digit of a large number. Conversely, the second class employs
an array of Boolean values to store the binary representation
of integers, specifically using bit sets. Before implementing
the Big Integer class, determining the most suitable data
structure for representing large integers was essential. While
considering linked lists as an option, their O(n) complexity
for element access and the performance overhead introduced
by node pointers were noted. Vectors from the standard C++
library, though providing ease of use and rich functionality,
lacked control over dynamic array size changes during runtime.
Considering these factors, arrays emerged as the optimal choice
for faster performance, typically associated with primitive data
types. The next consideration was determining the ideal data
type for the array to hold. We chose the char data type to
represent each digit of a big integer (0-9). Using the int data type
wasn’t memory-efficient due to its 32-bit occupancy per value.
Alternatively, representing big integers as an array of long
values might also be feasible. For instance, a 320-bit integer
could potentially be stored in an array of long values with a size
of 5. Additionally, the order of storing digits in the array needed
consideration. While arithmetic operations often use the most
significant bit (MSB) fashion, accessing the least significant bit
(LSB) first is typically required. Hence, we store digits in the
LSB format, simplifying value printing but somewhat limiting
flexibility. Despite these considerations, our implementation
allows for easy use of any elliptic curve by modifying only the
parameters of the elliptic curve equation 5. The character array
proves suitable for our goals, offering flexibility in working
with ECC parameters of varying sizes and maintaining relative
efficiency. The second implementation using bit sets is explored
due to advantages in implementing arithmetic operations like
addition and multiplication without data dependencies, while
division and exponentiation use algorithms requiring fewer data
manipulations. Each integer bit is stored as a Boolean value
in a separate index of the array. Given that each Boolean
value occupies 8 bits of memory, we intended to balance
speed and memory. Similar to the character array version,
numbers are stored in LSB format. Both implementations of
the Big Integer class support all arithmetic operations, including
addition, subtraction, multiplication, division, modulus, and
modulo exponentiation. Additionally, comparisons and shift
operators are implemented for each version of the Big Integer
class, expanding their utility beyond cryptography. Arithmetic
operations on elliptic curve points are essential for ECC
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applications. Scalar multiplication, involving repeated point
addition, is crucial for forward secrecy. Our Point class,
representing x and y coordinates of a point using Big Integer
objects, implements add(), double(), and multiply() public
member functions [11]. In this section, we illustrate ECC point
operations in detail. Due to the space limit, the pseudocode
algorithms are not presented in this paper.

1. Big Integer Addition: The addition operation involving
big integers is one of the most crucial and fundamental
operations in ECC. To support the addition operation, we
overload the + addition operator for the purpose of adding
two Big Integer objects together. This operator takes two
Big Integer objects, performs the addition operation, and
returns the result as a Big Integer object.

2. Big Integer Subtraction: Our implementation of the
Big Integer class supports subtraction operations by
overloading the subtraction operator. As previously
mentioned, addition may involve numbers with different
signs. Therefore, we can convert subtraction into an
addition operation. Specifically, the operation A − B is
transformed into A+(−B), which calls the overloaded +
operator. Internally, if-else conditions are utilized to
invoke either the add() or subtract() wrapper function
within the addition operator function.

3. Big Integer Multiplication: The multiplication operation
on two big integers is executed using the overloaded ∗
operator. Unlike other arithmetic operations previously
discussed, multiplication doesn’t necessitate the use of
conditional statements to account for all potential cases
regarding sizes and signs of the operators. However, the
multiplication operation tends to be the most memory-
intensive because it requires constructing an array of size
m × n, where m and n are the sizes of the first and
second big integers, respectively. Additionally, there are
two notable extreme cases to consider: when one of the
operands is zero, resulting in a zero result, and when one
of the operands is one, yielding the other operand as the
result. For all remaining cases, multiplication logic similar
to manual multiplication must be implemented.

4. Big Integer Division Operations: Division and modulo
operations are closely related. As with all other
mathematical operations in our Big Integer class, the
operators / and % are overloaded. For most cases, division
operations entail manipulating the digits of both numbers.
While repeated subtraction could be an option, it proves
to be inefficient. Hence, we implement the long division
algorithm within a divide() wrapper function, which is
then invoked within the overloaded / operator.

5. Big Integer Modulo Operations: The modulo operation
relies on the division operation, implemented within
the overloaded % operator, utilizing wrapper member
functions described earlier in this section. Hence, it is
compatible with both versions of the big integer classes.

6. Big Integer Modulo Exponentiation: The exponentiation

operation is a fundamental part of numerous algorithms in
ECC. Fundamentally, exponentiation involves repeatedly
multiplying a number by itself.However, this method can
overwhelm system resources, especially when handling
large numbers [22]. As an alternative, we implement a
repeated squaring algorithm, which involves a maximum
of n multiplications, where n represents the length of the
exponent in bits.

3.2 ElGamal Implementation

The ElGamal cryptosystem is utilized for encrypting and
decrypting with symmetric keys. We have developed a sample
program that simulates the ElGamal encryption and decryption
process between two parties employing the secp192r1 elliptic
curve. The complete process, encompassing encryption and
decryption, is illustrated in Figure 4.

Figure 4: Message exchange using the ElGamal cryptosystem.

Suppose Alice intends to send a message to Bob. We assume
that both Alice and Bob have agreed upon a curve and a base
point, denoted as B. Each party calculates their respective
private keys. In our implementation, we utilize randomly
generated numbers. The public key is obtained through scalar
multiplication of the base point. Alice’s public key is calculated
using the equation GA = a · B. Similarly, Bob’s public key
is derived using the equation GB = b · B. Once Alice and
Bob exchange their public keys, Alice can securely transmit a
message to Bob.

Alice encodes the message as a point Pm on the curve and
encrypts it using Bob’s public key, employing equation 13.
Upon receiving the ciphertext, Bob can recover the plaintext by
decrypting the ciphertext using equation 14 and decoding the
message using equation 12.

Similar to the implemented ECDH key exchange mechanism
[12], in the established communication channel using sockets,
Bob assumes the role of a server while Alice acts as a client. The
pseudocode for the ElGamal cryptosystem on the client side is
depicted in Algorithm 1.
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The code segment including lines 1 to 3, is primarily used
to initialize the socket for subsequent communication. The
client establishes a connection with the server, which runs on
the local host, depicted in line 5. Alice computes her public
key via the point multiplication algorithm and transmits it to
Bob. Upon receiving Bob’s public key, obtained by reading a
message from the socket (as shown in line 11), Alice proceeds to
encode a message as a point on the chosen curve. Subsequently,
she encrypts this message utilizing the function encrypt(),
implementing the logic specified by equation 13, involving point
addition and multiplication operations.

Algorithm 2 illustrates the ElGamal cryptosystem’s server-
side implementation. In this algorithm, lines 1-10 are dedicated
to

Algorithm 1: The pseudocode for the ElGamal cryptosystem
on the client side

1. sockfd = socket(afinet, sockstream, 0);
2. if sockfd <0 then
3. print(error opening socket);

end
4. servername = gethostbyname(”localhost”);
5. connect(sockfd, serveraddress);
6. if not connected then
7. print(error connecting to the server);

end
8. privKey = genPrivateKey();
9. pubKey = privKey * BasePoint;
10. write(sockfd, pubKey);
11. serverPubKey = read();
12. encodedMessage = encodeMessage(message);
13. cipher = encrypt(encodedMessage, serverPubKey);
14. write(sockfd, cipher);
15. response = read();

configuring a socket and initiating the listening process for
incoming messages through the stream socket. Subsequently,
Bob generates a private key using a built-in random number
generator and computes his public key, which he then transmits
to Alice. Subsequent incoming messages are regarded as
ciphertext sent by Alice. Bob decrypts this ciphertext using the
procedure detailed in Equation 14. The decryption process is
demonstrated in the pseudocode below. The resulting decrypted
message is passed to the decodeMessage () function, designed
to handle a point embedding the encoded message within its
x-coordinate. If Bob intends to send an encrypted message
to Alice, he follows the procedure outlined in lines 12-14
of Algorithm 1, albeit using Alice’s public key. ciphertext
constitutes a pair of points on an elliptic curve within the
ElGamal cryptosystem.

As indicated in Equation 14, Bob’s task is to compute a
point that results from the product of the first point within the
ciphertext pair and his private key.

Algorithm 2: The pseudocode for ElGamal cryptosystem on
the server side

1. sockfd = socket(afinet, sockstream, 0);
2. if sockfd <0 then
3. print(error opening socket);

end
4. bind(sockfd, servAddr);
5. if not binded then
6. print(error binding socket);

end
7. listen(sockfd, 5);
8. getClientAddress();
9. acceptConnection(sockfd, clientAddress);
10. clientPubKey = read();
11. privKey = genPrivateKey();
12. pubKey = privKey * BasePoint;
13. write(sockfd, pubKey);
14. cipherText = read();
15. encodedMessage = decrypt(ciphertext);
16. plainText = decodeMessage(encodedMessage);

Algorithm 3: The pseudocode for decrypting a message in
the ElGamal cryptosystem

Input: p1, p2

Output: encodedMessage

1. product = b * p1;
2. product.y = -product.y mod p;
3. encodedMessage = p2 + product;
4. return encodedMessage;

This operation is executed straightforwardly through point
multiplication. Subsequently, Bob accomplishes the subtraction
by addition of the negative point to the first point of the
ciphertext pair since a direct point subtraction operation isn’t
supported. As previously discussed in Section 2, obtaining the
negative of a point entails reflecting the same point across the
x-axis. However, in elliptic curves over GF(p), simply altering
the sign of the y-coordinate is inadequate. Modulo operation
is also employed in line 2 of Algorithm 3. Ultimately, the
point obtained in line 1 is combined with the second point of
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the ciphertext pair. The encoded message is then recovered,
wherein the plaintext resides within the x-coordinate and can
be retrieved employing Equation 12.

Figure 5: Message exchange using ECDSA.

Suppose, Alice wants to send a message along with the
generated digital signature of the message to Bob. We make an
assumption that both parties agreed on a curve, a base point B,
and the order n. Alice and Bob calculate their public-private key
pairs. Alice calculates her public key GA = aB, where a is her
private key. Similarly, Bob calculates his public key GB = bB,
where b is his private key. Next, Alice and Bob exchange their
public keys. If Alice wants to send a message along with the
digital signature, she generates a pair of values (r,s), which
constitutes the digital signature, and sends it to Bob together
with the original message. After Bob receives the message and
the signature, he is able to verify the integrity and authenticity
of the message using the procedure described in Section 2.

We simulate the ECDSA algorithm by building
communication between two parties using sockets. Identical
to the previously described implementations, Bob will act as
the server and Alice will act as the client. Algorithm 4 shows
the pseudocode for ECDSA Implementation on the client side.
Lines 1-7 show the logic for establishing connection with the
server using C++ standard sockets. The implementation of
key generation and exchange is shown on lines 8-11. Before
sending a message to the server, Alice generates the signature
using sign () function. The message is written to the socket
along with the signature as shown on line 13.

Algorithm 5 shows the implementation of sign () function,
which is responsible for generating the digital signature of a
given message. The algorithm takes a message as an input and
returns a pair of values r and s that constitutes a signature. We
use SHA-256 hashing algorithm provided by CryptoPP library
in order to generate the hash of a message. Next, we extract
192 leftmost bits of the generated hash because the order of the
secp192r1 curve is 192 bits long. Next, we generate a random
number k and perform a point multiplication operation to get an

intermediate point. We obtain the first value of the signature

Algorithm 4: The pseudocode for ECDSA on the client side

Input: message

Output: signedMessage

1. sockfd = socket(AFINET,SOCKST REAM,0);
2. if sockfd <0 then
3. print(”Error opening socket”);
4. end
5. servername = gethostbyname(”localhost”);
6. connect(sockfd, serveraddress);
7. if not connected then
8. print(”Error connecting to the server”);
9. end
10. privKey = genPrivateKey();
11. pubKey = privKey * BasePoint;
12. write(sockfd, pubKey);
13. serverPubKey = read();
14. signature = sign(message);
15. write(sockfd, message, signature);

Algorithm 5: The pseudocode for signing a message using
ECDSA

Input: message

Output: r, s

1. hash = SHA256(message);
2. z = extract(hash);
3. while true do

4. k = generateRandomKey();
5. point = k * basePoint;
6. r = point.x mod n;
7. while r = 0 do

8. k = generateRandomKey();
9. point = k * basePoint;
10. r = point.x mod n;
11. end

12. kInverse = gcdExtend(k, n);
13. s = kInverse * (z + r * privateKey) mod n;
14. if s = 0 then

15. return pair(r, s);
16. end

17. return pair(r, s);
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using modulo operation as shown on line 6. We check
if the value of r is equal to zero. If it is zero, then we
enter a while loop that will iterate until we are able to
obtain r distinct from zero. We compute the multiplicative
inverse of k and obtain the value of s using equation on line
12. If the calculated value is zero, then we need to start
over by going back to line 4. The algorithm returns a pair
of values r and s as soon as the valid signature is generated.

Algorithm 6: The pseudocode for ECDSA on the server side

1. sockfd = socket(afinet, sockstream, 0);
2. if sockfd <0 then
3. print(error opening socket);

end
4. bind(sockfd, servAddr);
5. if not binded then
6. print(error binding socket);

end
7. listen(sockfd, 5);
8. getClientAddress();
9. acceptConnection(sockfd, clientAddress);
10. clientPubKey = read();
11. privKey = genPrivateKey();
12. pubKey = privKey * BasePoint;
13. write(sockfd, pubKey);
14. clientMessage = read();
15. verify(clientMessage.signature, clientMessage.message);

The server side implementation is similar to the previously
described implementations of ECC application, ElGamal.
Algorithm 6 shows the server side implementation for ECDSA.
More precisely, lines 1-14 are identical to the pseudocode used
in ElGamal implementation on the server side. However, the
server needs to verify the integrity and authenticity of the
message using the received signature from the client.

Algorithm 7 describes the implementation of signature
verification using ECDSA. The algorithm accepts two
parameters. The first parameter is a pair, which holds two
values r and s that constitute a generated digital signature. The
algorithm returns a Boolean value to describe if the signature
is valid. The second parameter is a message received by the
server. Line 1 is an i f statement used to check if the values r
and s are within a valid range. If at least one value is out of
range, then the function returns false, meaning the signature is
invalid. If the values are in the range, we perform a series of
steps identical to the signature generation process as shown on
lines 3 and 4. Next, we compute the multiplicative inverse of
s using the Extended Euclidean Algorithm and obtain values

of u1 and u2 as shown on lines 6 and 7. An intermediate point
on the selected curve is obtained using scalar multiplication
and point addition operation on line 8. If the calculated point
is a distinguished point at infinity, then the signature is invalid.
Otherwise, we calculate the values n1 and n2 used in the final
step of signature verification process. If these two values are
identical, then the signature is valid and the veri f y () function
returns true. Otherwise, false Boolean value is returned.

Algorithm 7: The pseudocode for verifying a signature using
ECDSA

Input: signature, message
Output: valid
1. if r or s are not in the range from 1 to n-1 then
2. return false;

end
3. hash = SHA256(message);
4. z = extract(hash);
5. sInverse = gcdExtend(signature.s, n);
6. u1 = sInverse * z mod n;
7. u2 = (signature.r * sInverse) mod n;
8. result = (u1 * G + u2 * publicKey) mod n;
9. if result = pointAtInfinity then
10. return false;

end
11. n1 = signature.r mod n;
12. n2 = result.x mod n;
13. if n1 = n2 then
14. return true;

end
15. else

return false;
end

4 Evaluation

In this section, we conduct a performance evaluation of
the arithmetic operations performed by the Big Integer classes
on operands of varying sizes. Additionally, we analyze the
point operations essential for all applications of ECC on the
secp192r1 curve.

4.1 Platforms

All arithmetic and point operations underwent testing on a PC
equipped with a quad-core Intel(R) Core(TM) i7-7700K CPU
running the Ubuntu 15.04 operating system. The execution
times were measured as part of the testing process. The
software program, developed for this evaluation, was compiled
and executed using the standard GNU C++ compiler version
4.9.2. Additionally, the program underwent memory-related
error checks using the Valgrind dynamic analysis tool [13].
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4.2 Experimental Results

This subsection outlines the experimental findings in which
we compare the time performance of arithmetic operations,
including addition, subtraction, division, multiplication, and
modulo exponentiation, performed using the Big Integer
classes. Additionally, we conducted measurements to report
the execution times for point addition, point doubling, and
scalar multiplication operations over the secp192r1 curve.
These operations were utilized in the implementation of both
the Elliptic Curve ElGamal cryptosystem, and the ECDSA
cryptosystem. The program underwent 20 executions, and the
average running time for these operations is presented

4.3 Big Integer Arithmetic Operations

The execution time of multiple arithmetic operations is
measured using operands of various sizes. Each operation’s
timing performance is compared between the two versions of
the Big Integer classes: one implemented using an array of
characters and the other using an array of Boolean values.

Operands Size in bits BigInteger addition in µs Bitset addition in µs
160 0.9024 1.2686
192 0.9602 1.0700
256 0.7904 1.1150
384 1.4684 2.7106
512 1.6644 2.2730

Table 3: Comparison of performance: Addition Operation

Table 3 presents a comparison of the average execution
time for the addition operation between the two versions of
the Big Integer classes across various operand sizes. Each
operand represents a randomly generated number of the size
specified in the first column of the table. Notably, the
results show that adding two 192-bit or 256-bit long numbers
is marginally faster than adding two 160-bit long numbers
in both implementations. However, the precise reason for
this observation is challenging to determine. Moreover, the
arithmetic operations of the Big Integer class implemented
using a bit set exhibit slower performance across all operand
sizes. This disparity in performance can be attributed to the
larger number of loop iterations in the algorithm utilizing a
bit set compared to the algorithm using arrays of characters.
Additionally, the memory required to represent a specific big
integer using a bit set is larger than that needed for the same
big integer represented with a character array. This is due
to the internal storage in C++, where every bit in the bit set
is allocated one byte. Interestingly, the smallest difference
in average execution time occurs when adding two 192-bit
integers, which presents another challenge to explain. Please
note that this research paper does not include a comparison of
the average execution time for other mathematical operations.

4.4 Point Operations on the Secp192r1 Curve

The performance of essential operations—point addition,
point doubling, and scalar multiplication—in ECC applications
is detailed in Table 4. Among these operations, point
addition proves to be the fastest, taking approximately 7 ms
to execute. On the other hand, point doubling requires 3.5
times more time as it involves more computationally expensive
tasks like multiplication and exponentiation. However, scalar
multiplication emerges as the most resource- intensive point
operation. It includes both point addition and point doubling
operations. In this operation, a given point undergoes doubling
at least n times, where n represents the size of the scalar
multiplier in bits. Comparing the two implementations of the
Big Integer classes, the point operations performed using a bit
set are observed to be twice as slow as those conducted using
character arrays.

Operands Size in bits BigInteger Operations in ms Bitset Operations in ms
Point Addition 7.0504 19.4550
Point Doubling 25.4880 58.7686

Scalar Multiplication 448.0902 1046.708

Table 4: Comparison of performance: Point Operations on the
curve secp192r1

Given that the Big Integer implementation outperforms
the Bitset, we leverage the Big Integer implementation
to contrast the performance between Affine and Jacobian
coordinates. Table 5 displays the performance comparisons
of point operations between the implementation employing
Affine coordinates and the one utilizing Jacobian projective
coordinates.

Operands Size in bits Affine coordinates in ms Jacobian coordinates in ms
Point Addition 7.0504 8.2093
Point Doubling 25.4880 8.3371

Scalar Multiplication 448.0902 294.576

Table 5: Comparison of performance: Affine vs.Jacobian
coordinates on the secp192r1 curve

The table illustrates a slight decrease in performance during
the point addition operation. However, the point doubling
operation displays nearly three times faster performance. This
discrepancy arises due to the significantly reduced number of
arithmetic operations involving Big Integers when employing
Jacobian coordinates. Consequently, this optimization leads
to a substantial enhancement in the efficiency of the point
multiplication operation.

4.5 Verification of the Correctness

We have successfully implemented the Elliptic Curve
ElGamal and the ECDSA cryptosystems and verified the
correctness of these implementations as demonstrated below.We
verified the correctness of the ElGamal cryptosystem by
simulating the encryption and decryption process from Alice
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Table 6: Parameters of the ElGamal and the intermediate results of the ElGamal Cryptosystems

Parameter Value
Message m 986782900181143871212342314312

Pm
x : 9867829001811438712123423143120
y : 2196348078618827511118477981636656982591377148662893949597

P1 of ciphertext
x : 3791578262768645796343505216555460245718061067438303764475
y : 2162218313333713175244319383127064782727282580321136401970

P2 of ciphertext
x : 152545346884612895823185990037253449563301612658927710352
y : 2555668134232493799981445123861833291704734812170729850119

Decrypted Pm
x : 9867829001811438712123423143120
y : 2196348078618827511118477981636656982591377148662893949597

Plaintext from Pm 986782900181143871212342314312

Table 7: Parameters and the Intermediate Results of ECDSA

Parameter Value
Message m 89382075487284788345345
HASH(m) 185F8DB32271FE25F561A6FC938B2E264306EC304EDA518007D17 64826381969
z in hex 185F8DB32271FE25F561A6FC938B2E264306EC304EDA5180
z in decimal 597630496134934525062152428636758271059776916513804145024
Generated r 1131376258843917720091875844748311029151964753646636471475
Generated s 4357797412442008277179215604970751649941568938148867756195
u1 3046439475643938091811248233621120317830886743790315112337
u2 4568854499746066067863265371343606136890756961925481503622
Calculated r mod n 1131376258843917720091875844748311029151964753646636471475
x1 mod n 1131376258843917720091875844748311029151964753646636471475

to Bob, with Bob acting as the server and Alice as the client.
Figures 6 and 7 display the output from the encryption and
decryption processes on the client and server sides, respectively.
Both parties successfully exchanged their public keys.Alice
encoded a sample message as a number and encrypted it using
the ElGamal encryption algorithm, representing the message as
a point on the elliptic curve. The resulting ciphertext, a pair of
points on the curve, was transmitted to Bob. Upon receiving
the ciphertext, Bob decrypted the message and recovered the
plaintext by decoding the embedded message within the x-
coordinate of the point. In figure 7, the recovered plaintext
by Bob matches the original message encoded and encrypted
by Alice. This verifies the correctness of our implemented
ElGamal cryptosystem. Figure 6: Client side of ElGamal Cryptosystem
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Figure 7: Server side of ElGamal Cryptosystem

Figure 8: Client side of ECDSA

Figure 9: Server Side of ECDSA

Table 6 reports the parameters utilized by the ElGamal
cryptosystem, along with details about the plaintext message,
intermediate results, and the recovered plaintext obtained during
the ElGamal encryption/decryption process. Similar to the
ElGamal cryptosystems, we also verified the correctness of the
ECDSA cryptosystems. In our implementation, Alice acts as
a client and Bob acts as a server. Figures 8 and 9 show the
output of the implemented ECDSA using sockets for client
and server side respectively. We can see that both parties
successfully exchanged public keys between each other. Also,
figure 8 shows the calculated values r and s that constitute

the digital signature. We see that the server side obtained the
same hash values of the message using SHA- 256 algorithm.
The values of the calculated intermediate parameters presented
in [12], are required for verifying the validity of the digital
signature. Most importantly, we see that r mod n and x1modn
are also equivalent. This means that the digital signature is valid
and the implemented ECDSA cryptosystem is correct. Table
7 summarizes the obtained results and intermediate parameters
used in ECDSA. Both parties are able to obtain identical values
of the parameter z. We also see that generated value of r by the
client side is identical to the received value of r on the client side.
Finally, the values of r mod n and x1 mod n are also equivalent.
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