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Abstract 

In this study, the successful development of a Cyber-Physical 

System (CPS) tailored for four conventional machines in a 

real manufacturing environment was presented. Each machine 

was equipped with multiple sensors to monitor key operational 

parameters and ensure comprehensive data acquisition. The 

collected data is processed and visualized through an intuitive 

smart dashboard that can be accessed via a server computer 

and a web-based application. The proposed system allows for 

real-time monitoring, analysis, and report generation, including 

the automated calculation of Overall Equipment Effectiveness 

(OEE) and Overall Line Effectiveness (OLE) for operational 

efficiency. Besides, the CPS proactively identifies and 

mitigates potential errors, and enhances system reliability by 

implementing data thresholding techniques. Furthermore, the 

architecture can support predictive maintenance by analyzing 

trends and anomalies in sensor data. It paves the way for 

minimized downtime and cost savings. The CPS represents 

a significant advancement in digitizing conventional machines 

and manufacturing processes, contributing to increased 

efficiency, transparency, and scalability in line with the Industry 
4.0 era. 

Key Words: IoT; Cyber Physical System; Smart Factory; 

Industry 4.0; Digital Transformation; Digitalization; OEE. 

 

1 Introduction 

CPSs integrate the physical and digital worlds by embedding 

sensors, actuators, and software into industrial equipment, and 

allow precise monitoring and control. This integration fosters 

predictive maintenance that reduces downtime and optimizes 

resource utilization. By enabling seamless communication 

between devices, machines, and systems, the Internet of Things 

(IoT) plays a critical role in smart factories. Through IoT 

connectivity, real-time data is collected and shared across 

networks and helps enhance operational efficiency and decision- 

making. Together, IoT and CPS enable advanced automation, 

flexibility, and scalability, which are fundamental to Industry 

4.0. By leveraging these technologies, smart factories can 

achieve unprecedented levels of productivity and innovation 

(Dornho¨fer et al. [10]; Averyanov et al. [2]). CPSs have 

found applications across a wide range of industries. In 

healthcare, CPS is utilized to enhance patient care and 

streamline medical procedures (Hemalatha et al. [13]; Rosado 

et al. [24]). Agriculture has benefited from CPS through 

innovations in precision farming and resource management 

(Hamzah et al. [12]). In transportation, CPS improves safety 

and efficiency by integrating intelligent systems( Wang and Liu 

[31]). Furthermore, CPS is a key enabler in smart city initiatives 

and drives sustainable urban development (Hemalatha et al. 

[14]). It also plays a role in water sustainability by monitoring 

and managing resources effectively (Cui [8]). CPS supports 

supply chain management and aids in the development of 

strategic policies across various sectors (Tonelli et al. [28]; 

Cheong and Lee [5]). Many studies have highlighted the 

vulnerability of CPS to external cyber-attacks, which can disrupt 

industries and lead to financial losses (Jamaludin and Rohani 

[17]). Besides, in (Oks et al. [23]), the authors present a novel 

categorization of industrial CPS across 10 sections, 32 areas, 

and 246 fields, and offer insights into future research directions 

to enhance Industry 4.0 applications. The others explore the 

defining characteristics, design methodologies, current state 

of the art, applications, challenges, and opportunities for 

addressing complex problems in the field of CPS (Lozano and 

Vijayan [21]). In (Habib and Chimsom I [11]), the authors 

highlight CPS’s evolution toward intelligent, decision-making 

systems, their applications in smart cities, manufacturing, and 

supply chains, and the challenges of cybersecurity, real-time 

control, and interoperability that must be addressed for future 

advancements. The integration of digitization, Industry 4.0, the 

IoT, machine learning, and artificial intelligence is transforming 
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the roles of plant operators and maintenance technicians. In 

(Wittenberg [33]), these advancements over the decades, current 

industry demands, and key research areas are examined. In 

([1]), the authors investigate the interoperability challenges 

and integration of Digital Twins (DTs) within edge-enabled 

CPS in the context of Industry 4.0/5.0. The study identifies 

77 interoperability challenges and proposes a framework with 

six levels—technical, syntactic, semantic, pragmatic, dynamic, 

and organizational—to help practitioners effectively adopt and 

use interconnected DTs in CPS. The CPSs Co-Simulator 

(CPS-Sim), a framework that integrates Matlab/Simulink for 

physical system simulation and QualNet (or OMNeT++) for 

communication network simulation is introduced. The key 

innovation lies in synchronizing these simulators with different 

time management methods, effectively demonstrated through a 

distributed clock synchronization algorithm in wireless sensor 

networks (Suzuki et al. [27]). Integrating CPS with IoT and 

Artificial Intelligence (AI) enables smart decision-making, and 

drives innovations in process optimization and customization. 

The researchers explore the integration of AI with CPS through 

Representation Learning (RepL) and emphasize its potential 

to extract meaningful abstractions from noisy sensor data and 

discrete system states. The study examines contemporary RepL 

methodologies applied to time-series data generated by CPS. A 

three-tank system as a case study to evaluate their strengths, 

limitations, and conditions for practical deployment in CPS 

contexts is used (Steude et al. [26]). The IoT holds a vital role in 

transforming traditional factories into smart factories in Industry 
4.0. It enables predictive maintenance, energy optimization, 

and enhanced workplace safety through interconnected devices 

and sensors. Existing IoT connectivity solutions, highlighted 

IoT applications, technical challenges, and explored emerging 

technologies in smart factories are reviewed. They consist of 

predictive maintenance, asset tracking, inventory management, 

supply chain optimization, and so on (Ding et al. [9]; Soori 

et al. [25]; Cherif and Frikha [6]). In this paper, a CPS was 

successfully developed for two conventional milling machines 

and two conventional turning machines. The system collects 

and processes data from these machines, displaying it on a 

smart dashboard. Key performance metrics such as OEE and 

OLE are automatically calculated, providing valuable insights 

into operational efficiency. Four distinct Programmable Logic 

Controllers (PLCs) were integrated to manage the machines 

and ensure seamless data communication. By applying data 

thresholding techniques, the system effectively detects and 

prevents potential errors in order to enhance reliability. This 

CPS demonstrates a robust solution for digitizing conventional 

machines and aligning them with Industry 4.0 standards. 

 

2 Literature Review 

 

The field of industrial automation leverages CPS to 

optimize production processes and equipment performance. In 

(Hoffmann et al. [15]), the authors present a concept for the 

development, commercialization, operation, and maintenance 

of industrial CPSs in modern production, and highlight the 

challenges and opportunities for advancing both research and 

industrial practice. It defines the components and technological 

aspects of industrial CPS, compares them with traditional 

systems, and discusses key challenges and solutions to ensure 

the long-term sustainability of these systems. CPSs can 

transform technologies that bridge the physical and virtual 

worlds to create innovative applications and processes while 

dissolving traditional boundaries. The authors explore how 

CPS and IoT can drive a paradigm shift in manufacturing 

systems, optimize strategies, and introduce new applications, 

services, and data-driven business models (Kim and Park 

[19]). In (Chugh and Taqa [7]), the authors explore the 

role of Industry 4.0 technologies, including CPS and IoT, in 

transforming manufacturing through automation, real-time data 

exchange, and interconnected systems. By integrating physical 

components with software and communication networks, these 

technologies enhance decision-making, predictive maintenance, 

traceability, and production optimization. The proposed 

system is demonstrated through examples and a real-world 

case study. To increase productivity without the high costs 

of new machinery, the authors propose digitizing traditional 

machines by integrating motor controllers and sensors to collect 

and transmit data. This approach enhances the machining 

process by improving surface quality, reducing tool wear, 

and minimizing the risk of failure (Nguyen et al. [22]). In 

(Briatore and Braggio [3]), the research explores how Industry 
4.0 technologies like IoT, DTs, and CPSs can revolutionize 

maintenance through predictive and prescriptive maintenance. 

By integrating these technologies into the Maintenance 4.0 

framework, the study emphasizes resilience and environmental 

sustainability and proposes a six-step roadmap that begins 

with small-scale pilot projects to generate valuable results. 

The research explores the integration of Cloud Manufacturing 

and CPS through the use of OPC Unified Architecture (OPC 

UA) as a communication protocol to enable seamless data 

exchange and interoperability. The proposed hybrid architecture 

addresses challenges such as real-time monitoring, adaptive 

control, and efficient data management, and provides a pathway 

for optimizing manufacturing processes, and enhances real-time 

capabilities using cloud resources( Ji and Xu [18]). Besides, in 

(Va´squez-Capacho [30]), the authors introduce V-nets, a new 

formalism designed to address diagnosis challenges in CPS 

and industrial processes. V-nets are proposed as a reliable 

tool for managing fault detection and improving supervisory 

control in scenarios where traditional formal models of 

Discrete Event Systems (DES) fall short. The collaborative 

processes and model-based technologies used to develop a 

prototype Cyber-Physical Production System for USB sticks are 

detailed in (Zamfirescu and Neghina˘ [36]). It emphasizes co- 

simulation technology to enhance fidelity, enable independent 

subsystem validation, and facilitate structured dialogue between 

specialized teams. In the metallurgical industry, fused 

magnesia smelting for fused magnesium furnaces (FMF) is an 

energy-intensive process with high temperatures and complex 
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dynamics. This process makes it challenging to measure and 

model the energy consumption per ton (ECPT) accurately. The 

paper introduces a CPS-based embedded optimal operational 

control system integrating advanced algorithms, industrial cloud 

computing, and wireless communication, successfully applied 

to ten FMF production lines in China. This integration 

significantly reduces the ECPT (you Chai et al. [35]). Cyber- 

physical production systems (CPPS), which link physical and 

digital components, serve as the backbone for these smart 

factories. It enables real-time management, adaptive processes, 

and optimization through global cooperation and innovation 

(Hozdic´ [16]). In (Torres et al. [29]), The authors focus on 

developing SmartBoxes using low-cost hardware like Raspberry 

Pi and industrial platforms such as NI CompactRIO, and 

employing OPC-UA and MQTT protocols for real-time data 

collection, processing, and integration. These SmartBoxes 

facilitate seamless interaction between supervisory systems 

and physical assets. And, a study presents a CPS-based 

thermal error compensator for CNC machine tools that are 

designed on an embedded system to rapidly collect sensor data, 

predict thermal errors, and communicate with CNC systems 

and cloud platforms (Lou et al. [20]). Applied to a CNC 

machine tool, the result demonstrates effective performance 

under various machining conditions. In the competitive 

manufacturing landscape, companies are integrating advanced 

technologies to enhance processes and productivity and align 

with Industry 4.0 principles. The research examines the 

transformation process of a factory producing spherical bushels. 

They utilize FlexSim software to create a production simulation 

platform for real-time management of production, supply, and 

logistics via Material Requirement Planning (MRP) and CPPS. 

The simulation optimized by using a load-capacity adjustment 

method. It improves equipment occupancy rates, demonstrates 

significant efficiency gains, and lays the groundwork for a 

future digital twin of the company (Chakroun et al. [4]). In 

(Williams et al. [32]), the authors present the implementation 

of DT of Cyber-Physiscal Tormach CNC machines, which 

replicates physical manufacturing operations by generating tool 

path positional values along the X, Y, and Z axes. The DT 

uses the MTConnect communication protocol to collect and 

store data in standardized XML and JSON formats for analysis. 

Validation was carried out by simulating and manufacturing 

a coin geometry on a real CNC machine. The results show 

a high correlation between the DT and real system. By 

integrating supervisory control and data acquisition (SCADA), 

edge computing, and cloud computing to monitor and analyze 

data streams from CNC machines and sensors, in (Yang et al. 

[34]) the authors propose a new data analysis framework for 

CPS. The framework employs signal smoothing and anomaly 

pattern detection techniques to identify and store significant 

patterns in the data stream. These patterns can then be used 

for further analysis and applications within CPS. 

3 Research Methodology 

In this project, four new control boxes for four machines were 

built. Each machine was equipped with a PLC controller from a 

different brand because, in reality, the company is using a wide 

variety of PLCs from different manufacturers and generations. 

A central server simultaneously connects to all four PLCs to 

collect data and store it in a shared database. A smart dashboard 

to show critical values that need to be monitored and provide 

alerts when sensor signals indicate that the equipment is about 

to operate abnormally was developed. Two important indicators 

calculated and displayed on the dashboard are OEE and OLE. 

Among them, Overall Equipment Efficiency (OEE) is a critical 

indicator, calculated as follows: 

OEE = A x P x Q (1) 

where: A = Run Time / Planned Production Time. This 

measures how much time the production line was running as 

planned. 

P = (Ideal Cycle Time × Total Count) / Run Time. This assesses 

whether the line is running at its maximum speed or capacity. 

Q = Good Count / Total Count. This evaluates the proportion of 

defect-free products. 

Planned Production Time and Ideal Cycle Time are 

predefined values that can be set in advance. Total Count 

represents the total number of products produced. Good Count 

refers to the quantity of products meeting quality standards. 

Both Total Count and Good Count are manually recorded. 

Consequently, Run Time is the only variable that requires 

automatic measurement during production. To address this, the 

authors propose capturing this value by transmitting an on/off 

signal to the data center whenever the machine starts or stops. 

With accurate information on machine start and stop times, Run 

Time can be calculated efficiently and reliably. Besides, OLE is 

a metric used to evaluate the performance and efficiency of an 

entire production line. It is similar to OEE but focuses on the 

performance of multiple machines or stations working together 

in a line. OLE was also calculated and displayed in this project. 

Based on actual production needs, three parameters (Capacity 

Utilization, First Pass Yield, and Scrap Rate) are also calculated 

using formulas (2), (3), and (4) and displayed. Where: 

Capacity Utilization = Actual output / Maximum possible 

output (2) 

First pass yield = (the number of units successfully produced 

without rework) / (the total number of units entering the 

process) (3) 

Scrap rate = the amount of scrap / the total amount of output (4) 

By equipping inverters, display screens, and sensors, the two 

traditional milling machines have been digitized as follows: 

• The system for controlling spindle speed in milling 

machines has been enhanced by integrating a 3-phase 
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inverter. It allows precise speed adjustments for optimal 

machining performance, product quality, and tool life. 

Additionally, the authors propose using optical sensors to 

record spindle speed data with high accuracy and enable 

analysis to identify and address factors affecting tool life 

and surface quality. 

• Monitoring coolant parameters is essential for efficient 

milling machine operations. The coolant helps manage 

temperature, clear abrasive particles, and maintain 

machining quality. By using ultrasonic and thermal 

sensors, the developed CPS can automate the collection 

of coolant level and temperature data, enable better 

maintenance planning, and address issues such as low 

density, insufficient coolant levels, or overheating. 

• In production, electric energy consumption during system 

operation is a crucial factor that can be calculated using 

wattage and spindle torque. Through torque value 

inspection, the operator can assess the compatibility 

between the feed rate, spindle speed, and the material 

properties of the workpiece. This process helps prevent 

tool breakage or wear during machining and ensures 

accuracy by enabling corrective actions for tool wear. 

Similarly, the digitization of two traditional lathes 

integrates sensors, control systems, and visualization tools 

with the following enhancements: 

• Spindle speed monitoring: an optical sensor has been 

installed to record high-precision spindle speed data for 

real-time analysis. This enables optimization of machining 

processes and enhances tool life. 

• Temperature monitoring: two temperature sensors measure 

spindle and motor temperature that provide critical insights 

to prevent overheating, ensure operational stability, and 

help condition-based maintenance planning. 

• Energy efficiency monitoring: a current sensor is utilized 

to monitor the machine’s power consumption that supports 

efficient energy management and early fault detection 

through monitoring the abnormal changes in current. 

• Precision control system: a three-phase variable frequency 

drive (VFD) replaced traditional contactor-based motor 

control to allow step-less control and precise speed 

adjustments for enhancing machining accuracy, product 

quality, and tool life. A three-tier light tower provides 

real-time operational status updates, improves situational 

awareness, and ensures machine safety. 

• Monitoring operations and observing graphical data: 

A Human-Machine Interface (HMI) has been installed 

to provide intuitive control and monitor operational 

parameters that can improve productivity and interaction 

between operators and machines. 

 

This digitization establishes a foundation for cyber-physical 

integration in advanced manufacturing systems. Based on 

practical working experience, key indicators that directly affect 

product quality, machine failure, and tool breakage—such as 

spindle speed and coolant temperature—have been set with 

thresholds to notify operators before issues occur. Critical data 

is stored and analyzed, and reports can be easily generated 

to facilitate the management process. To easily monitor the 

dashboard in the areas inside and outside the company, a web- 

based application with a control flow as shown in Figure 1 was 

developed. 

 

Figure 1: Connection diagram and transmission protocol of 

devices in the CPS system. 

 

The diagram illustrates a system where various input devices, 

such as optical sensors, ultrasonic sensors, temperature sensors, 

and current transducers, provide essential data to multiple PLCs, 

including Siemens, Mitsubishi, Omron, and Allen-Bradley. 

Each sensor serves a specific purpose: optical sensors measure 

the spindle motor’s speed, ultrasonic sensors monitor the 

coolant water level, temperature sensors track both the spindle 

motor’s temperature and the coolant water’s temperature, and 

current transducers measure the total current consumption of the 

machine. The Siemens PLC acts as the master, consolidating 

data from other stations and transmitting it to an SQL server 

using OPC UA for further processing. This data supports 

web-based monitoring and dashboard visualization via Grafana. 

Additionally, at each station, the PLCs control spindle motors 

using Variable Frequency Drives (VFD) via Modbus 485, 

with all configurations and operations at each machine being 

managed through the HMI. Furthermore, the spindle motor’s 

torque is calculated based on the current measured from 

the VFD to enable precise motor management and system 

optimization. This setup integrates data acquisition, control, and 

visualization for efficient industrial automation. 

 

4 Results and Discussion 

Figure 2 depicts the actual CPS system with four 

traditional machines (02 milling and 02 turning) connected and 

transmitting data to the server computer. The inverters, sensors, 

light towers, and control cabinets integrated into each machine 

are all operating as planned. The entire system was operated 

simultaneously to test connectivity and the seamless flow of 

data. Additionally, to ensure the accuracy of OEE and OLE 

values, the CPS was continuously operated for several days. 

For the milling machines, four sensors are installed at suitable 

locations as below: 
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• An optical sensor is mounted on the gearbox of the main 

motor to measure spindle speed. 

• A temperature sensor is positioned in the coolant reservoir 

to monitor coolant temperature. 

• An ultrasonic sensor is also installed in the coolant 

reservoir to measure the coolant level. 

• A current sensor is placed on the power line within 

the machine’s electrical cabinet to track its current 

consumption. 

Similarly, the digitization of two traditional lathes includes 

the installation of four sensors, control systems, and 

visualization tools with the configuration as follows: 

• Spindle speed monitoring: An optical sensor is installed 

inside the headstock to record high-precision spindle 

rotational speed data for real-time analysis. 

• Spindle motor temperature monitoring: A temperature 

sensor is mounted on the spindle motor housing to measure 

its temperature. 

• Spindle temperature monitoring: Another temperature 

sensor is installed within the headstock to measure the 

spindle temperature. 

• Energy efficiency monitoring: A current sensor is 

located in the electrical cabinet to track the lathe’s power 

consumption and energy usage. 

Additionally, a three-color light tower is mounted at the 

top of the machines to indicate its operational status. The 

data collected from these sensors is processed and displayed 

on the HMI which is mounted on the control panel. This 

HMI interface allows operators to monitor machine parameters 

and adjust control settings flexibly. The spindle speed is 

managed by a VFD located in the electrical cabinet and 

can be modified either through the HMI or the dashboard. 

This digitization establishes a foundation for cyber-physical 

integration in advanced manufacturing systems. 
 

 

Figure 2: CPS system. 

 

A professionally designed smart dashboard includes a general 

page summarizing the statistics of all four machines (Figure 3). 

On the General Page, which displays the overall statistics for all 

machines, the top part features graphs of the statistical values: 

OLE, Capacity Utilization, First Pass Yield, and Scrap Rate. 

The bottom part shows the key values of these parameters for 

each machine. Additionally, the OLE value of the whole system 

consisting of 4 machines is also calculated and displayed. 

 

Figure 3: General page – Smart Dashboard on the server 

machine. 

 

Each machine also has its own dedicated page displaying data 

from sensors, statistics, and warnings to alert operators about 

potential errors (Figure 4). The current basic awareness consists 

of Excessively High Coolant Temperature, Low Coolant Level, 

Abnormal Spindle Torque, and Excessively High Spindle 

Temperature. The displayed data for each machine are Machine 

operating status (Run/Idle/Error), OEE, Name of operator, 

Sensor data, power consumption (in watts and currency), 

warning messages, and statistics of specific data. On the left 

side of the interface, the machine’s image is displayed along 

with the manufacturer’s name and model. Below this, the 

operator’s information is shown, including the name and photo. 

The system tracks data about the primary operator, the machine 

they are using, and their working hours. This information helps 

to visually identify the current operator and review operation 

history. The system includes a feature to change the operator 

by double-clicking the “Change Operator” option. This allows 

another operator to use the machine with permission and records 

each operator’s operating time. As a result, any issues caused 

by operators can be traced back through the stored database. 

All data collected from the 4 machines are stored and can be 

exported according to the storage time when needed. 

 

 

Figure 4: The user interface of the milling machine with the 

warning message “Abnormal Spindle Torque” 
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The web-based interface of the system is displayed as 

shown in Figure 5. Through this interface on the web-based 

application, operators can remotely monitor the operational 

status of the entire CPS system. A mobile application is 

currently being developed to facilitate monitoring. 

 

Figure 5: Smart Dashboard on the web application. 

 

The result of the project is a favorable first step toward 

developing predictive maintenance modes as well as creating an 

automated production plan to optimize the production planning 

process. This is a basic, typical CPS system that includes the 

following functions: 

• Sensors: Collect data from the physical environment. 

• Control Systems: Process data collected from sensors and 

make decisions or commands to control physical devices. 

• Communication Network: Connect sensors, control 

devices, and computers or servers to transmit data between 

components in the system. This network may include both 

wireless and wired protocols. 

• Computing and Software Processing: Process and 

analyze data from sensors, and provide functions such 

as real-time analysis, forecasting, optimization, and 

automatic decision-making. 

• Actuators and Physical Devices: Execute physical 

actions based on control commands from the system. 

• User Interface: Allow operators to monitor, supervise, 

and control the system. 

• Safety: Prevent damage or accidents. 

• Data Integration and Analytics: Integrate data from 

various sources and use analytical algorithms to extract 

useful information, optimize system performance, and 

support decision-making. 

 

5 Conclusions 

In this paper, the successful development of a CPS designed 

to integrate four conventional machining tools is presented. The 

system effectively collects and visualizes data through a smart 

dashboard, and generates reports and alerts for potential risks 

that could impact the equipment. The alerts are based on data 

analysis from various sensors to ensure timely responses to 

anomalies. The CPS not only enhances real-time monitoring 

and operational reliability but also serves as a foundational 

step toward transforming traditional manufacturing systems into 

smart factories. The proposed system is full of functions 

that a standard CPS needs. By adopting this system, 

manufacturers can align with Industry 4.0 objectives so that 

they can achieve higher efficiency, improved decision-making, 

and greater adaptability to the demands of modern production 

environments. 
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