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Abstract 

 

Functional programming can be called modern programming 

in that it enables robust development and favours the programmer 

over hardware and performance considerations. Some character- 

istic features of the functional paradigm, such as map, have indeed 

been introduced into languages of other programming paradigms, 

like C++ and JavaScript. In spite of this deserved success, some 

challenges remain, such as input-output (I/O) operations, which 

often involve compromises with respect to the functional model. 

For instance, heavy memory I/O applications may keep prospec- 

tive users afar. In this paper, we give a constructive proof of 

the practicability of the functional paradigm for such a scenario, 

by concretely considering image processing with the functional 

programming language Racket (a Lisp dialect). Both theoretical 

and experimental quantitative evaluations are conducted to show 

the performance of the implemented algorithms. Furthermore, in 

an attempt at establishing the capabilities and versatility of func- 

tional programming, this work also covers parallel processing, 

on both a single core and multiple cores. 

Key Words: graphics; dithering; parallel; programming; soft- 

ware; Racket. 

 

1 Introduction 

 

The importance of the functional paradigm and functional 

programming need not be proven any more [6]. Functional 

constructs have even penetrated other paradigms, such as the 

object-oriented one with, for example, JavaScript’s Array.prototype 

.map method [13] and C++’s std::apply function [7]. This is also 

the case of anonymous functions [14]. Moreover, it has been 

shown that functional programming is positive for Internet of 

Things (IoT) applications [5]. Considering concrete implementa- 

tions of the functional paradigm, Lisp dialects can be found in 

robotics [11] and microcontroller applications [8]. It is thus no 

wonder that the functional paradigm is increasingly popular [2]. 

Despite all the advantages of the functional paradigm, users 

are likely to rapidly face some challenges, not to say limita- 

tions, inherent to this programming model. They mostly concern 

input-output (I/O) operations as those generally harm referential 

transparency [10]. 
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To address some of these issues, several solutions have been 

proposed. For instance, Haskell, another functional programming 

language, relies on monads [9]. In addition, the SOF program- 

ming paradigm has been described to address the state tracking 

issue of pure functional programs, and especially those featuring 

lazy evaluation [1]. The Racket programming language is said 

multi-paradigm in that it allows imperative programming, albeit 

clearly stating that it is a best practice to limit as much as possi- 

ble such non-functional constructs [3]. High-performance image 

processing with a functional programming style approach was 

proposed by Se´rot et al. [12], but it requires a specific, complex 

hardware architecture. 

Our objective in this paper is to give a constructive proof that 

shows the functional programming paradigm remains practicable 

even when conducting image processing, that is, memory oper- 

ations on rather large data. In other words, that such heavy I/O 

operations are not an excuse to sweep the functional paradigm 

aside [4]. 

To this end, we have selected the Racket language, based 

on Scheme and thus a Lisp dialect, as it tolerates imperative 

programming when needed, as previously recalled [3], which 

drastically improves usability over pure functional languages like 

Haskell. 

The rest of this paper is organised as follows. First, prelim- 

inaries for this work are presented in Section 2. Then, a first 

image processing algorithm, dynamic palette calculation, is dis- 

cussed in Section 3. Next, this algorithm is reused to describe in 

Section 4 a dithering algorithm. Dithering is further discussed 

from the parallel processing point of view in Section 5. Finally, 

concluding remarks are made in Section 6. 

 

2 Preliminaries 

 
About the notations used hereinafter, for the sake of brevity 

but without introducing any ambiguity, set operations such as \ 

(exclusion) and | . . . | (cardinality) are sometimes applied to lists 

(i.e. sequences). 

Regarding image file loading and pixel access, Racket provides 

convenient functions. First, read-bitmap takes a path to an image 

file (the GIF, JPEG, PNG, BMP and a few other formats are 

supported) and instantiates and returns the corresponding bitmap% 

object. Second, the pixel values, that is colours, that make the 

bitmap can be retrieved with the get-argb-pixels method of the bitmap% 
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class; note that memory needs to be allocated beforehand for 

their storage. Conversely, the pixels of a bitmap% object can be 

set with the set-argb-pixels method. Finally, a bitmap% object can be 

saved to an image file with the save-file method, which is how we 

produced the images included hereafter. 

A bitmap can be conveniently displayed inside a window 

thanks to Racket’s GUI components: it suffices to attach a canvas% 

object to a frame% object and to call the draw-bitmap method of the dc% 

class inside the paint callback of the canvas. 

Finally, we have noticed that relying on the class color% pro- 

vided by Racket to represent a colour is better avoided for two 

reasons: first, it significantly slows algorithm implementations 

down compared to, for instance, a simple triple (list), and second, 

it forbids using non-integer decimal values for RGB channel val- 

ues. Non-integer decimal values are desirable for error diffusion 

as considered later. 

 

3 Dynamic Palette Calculation 

 

Two palette calculation methods plus one performance opti- 

mization solution are described in this section. 

 

3.1 Main Approach 

Be it for compression purposes or to adhere to a standard like 

the Graphics Interchange Format (GIF), applying a colour palette 

to an image has always been an essential issue of computer graph- 

ics. We thus start by considering this well-known scenario to 

realise our constructive proof of the relevance and practicability 

of the functional paradigm for image processing. 

Although simple and fast, relying on a static colour palette, 

such as IBM’s 16-colour CGA palette, produces below par results. 

So, given that modern computer hardware allows it, it is instead 

wiser to dynamically calculate an optimised palette from the 

image that is to be rendered. 

We proceed as follows: first, we enumerate the different 

colours used in the image, and for each of them, we record 

their frequency (i.e. the number of times the colour is used in the 

image). This can be implemented simply: consider the list l of 

all the pixels (i.e. colours) making the image; get the first colour 

of l, say c, count in l the number nc of pixels of same colour c 

and repeat this process from the list of colours that differ from c, 

list which becomes the new l. This can be easily realised with the 

partition function called in a way that it returns the list of colours 

equal to c, thus inducing nc, and the list of colours different from 

c, thus inducing the new list l. 

Now that all the image colours and their frequency have been 

obtained, the next task is to retain as many colours as can hold 

the palette, say k. A na¨ıve approach to this issue is to sort the 

obtained list of colours in descending order of frequencies and 

to copy the first k colours into the palette. (All the colours of the 

image are retained if there are less than or the same number as the 

palette size k.) This way, the palette consists of the most frequent 

colours of the image. Although simple, this first dynamic palette 

calculation method produces unsatisfactory results. A picture is 

worth a thousand words: refer to Figure 1a. 

So, instead of selecting the colours to be retained inside the 

palette depending on their respective frequencies, it is indeed 

better to group colours according to their similarity: for two 

similar colours, the one with the higher frequency is retained, the 

other discarded. Precisely, we start by sorting the image colours 

in ascending order of their frequency so that the most infrequent 

colours will be grouped, that is eliminated, first; say this is the 

colour list l. Then, we iterate l, starting with its first colour, say 

c, each time finding within l \ {c} the colour that is the nearest 

to c, say c′, and we retain from c and c′ only the one with the 
higher frequency, as explained. This is repeated with the new, 

smaller sorted list of colours l \{c˜}, with c˜ ∈ {c, c′} the discarded 

colour. This iteration is terminated as soon as the number of the 

remaining colours, that is |l| the size of l, is smaller than or equal 

to the palette size. The superiority of this second dynamic palette 
calculation method is clear: refer to Figure 1b. 

Finally, a word on palette application to an image: in one 

single pass, for each pixel (colour) of the image, iterate the 

palette to find the nearest colour, which is stored as the new 

pixel value. The nearest colour is found by simply summing the 

difference between each of the three RGB channels. 

 

3.2 Optimization 

If instead of relying, as previously, on a simple list to count 

distinct colours we rely on a hash table, performance can be 

raised since Racket provides a hash table mechanism with con- 

stant time access operations. Furthermore, hash tables can be 

immutable, which allows us to avoid any trade-off with the func- 

tional paradigm for that matter. 

Concretely, we iterate the image pixels only once (i.e. in a sin- 

gle pass), each time incrementing the hash value corresponding 

to the pixel colour; colours serve as hash keys. 

Source code is given in Listing 1 to illustrate the elegance 

of this optimised approach which induces significantly higher 

performances (refer to Section 3.3). 

Listing 1: Counting colours faster, in one pass, with a hash table. 

1 (hash->list ; returns colours and frequencies conventionally as a list 

2  (foldl (lambda (c hash-table) ; ‘c’ is the current colour 

3 (let ([current-value (hash-ref hash-table c 0)]) 

4 (hash-set hash-table c (add1 current-value)))) 

5 (hash) image-colours)) ; ‘(hash)’ returns a new, empty hash table 

 

3.3 Quantitative Evaluation 

We begin by considering the worst-case time complexity of the 

non-optimised approach to colour enumeration and frequency 

calculation (i.e. based on the partition function). In the worst 

case, which corresponds to an image with no two pixels of the 

same colour, for each of the n pixels of the image, the remaining 

pixels are split into pixels of the same colour (none in the worst 

case as just explained) and pixels of a different colour. This 

process is repeated for each pixel, each time starting over from 
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Figure 1: Dynamic palette calculation and application to a sample photograph. The 16-colour palette is shown beside the picture. 

(a) Na¨ıve dynamic palette calculation. (b) Improved dynamic palette calculation. (Photograph taken by the author.) 

 

the remaining pixels (i.e. the pixels not classified yet). Hence, 

the worst-case time complexity of this colour enumeration and 

frequency calculation is O(nk) = O(n2) with k the number of 

distinct colours in the image. 

On the other hand, the optimised approach for colour enumer- 

ation and frequency calculation based on a hash table is faster: 

since hash table access operations are constant time O(1), one 

single pass of the n image pixels suffices, thus inducing an O(n) 
time complexity. 

Next, the enumerated colours need to be grouped. So, in either 
approach, palette calculation requires an additional time com- 

plexity of O(log(k/p) × k log k), with k the number of distinct 

colours in the image and p the maximum number of colours in- 
side the palette. Indeed, since each iteration of the k enumerated 
image colours eliminates at least one and at most k/2 colours, a 

palette of size p will be obtained after log(k/p) iterations. So, 

the k enumerated image colours are sorted no more than log(k/p) 
times, which induces the dominant time complexity. 

As a result, in the worst case (i.e. k = n), the non-optimised ap- 

proach requires O(n2 + n log n log(n/p)) and the optimised one 

O(n log n log(n/p)). Moreover, we have empirically confirmed 

the theoretically established worst-case time complexity with 

a computer experiment: we have run an implementation of the 

described dynamic palette calculation algorithm for several im- 

age files as follows. We have selected one photograph, so that 

numerous colours be included and palette calculation be thus 

meaningful, and we have resized it to produce several other im- 

age files of lower resolutions. The different image resolutions 

have thus enabled us to vary the value of n. 

Next, we make a remark regarding the number of colours 

k. While variations of k in the image files selected for this ex- 

periment could impact the measurement of the average time 

complexity, in the worst case k equals n, a case which has been 

considered when establishing the worst-case time complexity 

above. So, variations of k will not prevent experimentally con- 

firming the theoretically established worst-case time complexity. 

In practice, the original photograph, likely because of physical 

limitations of the camera sensor or the camera image compres- 

sion algorithm, may have a lower k/n ratio, and even a lower k, 

than after applying a first resizing operation. So, in an attempt 

to stabilise the k/n ratio and thus to estimate the average time 

complexity by emphasising the variations of n, we consider only 

images resulting from at least one resizing operation. Hence, the 

original photograph is not used in this experiment other than to 

produce the experiment images by resizing. 

This experiment has been conducted on a computer running the 

Debian GNU/Linux 12 (64-bit) OS equipped with a 12th genera- 

tion Intel Core i5-12400 processor and 16 GB RAM. The experi- 

mental results show the difference between the non-optimised dy- 

namic palette calculation method, based on the partition function, 

and the optimised dynamic palette calculation method, based on a 

hash table. Time measurements were reported by the time function 

of Racket (applied to the dynamic palette calculation function), 

whose “real time” value was retained. The photograph of Figure 1 

before applying a palette has been considered in the following 

different resolutions (in pixels): 591 × 443 (i.e. n = 261813), 

443 × 332 (i.e. n = 147076), 296 × 222 (i.e. n = 65712) and 

148 × 111 (i.e. n = 16428). The number of colours k was 29 721, 
23 190, 16 326 and 6 854, respectively. The palette size p was 

fixed to 16. The obtained results are illustrated in Figure 2. 

(a) 

(b) 
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5.104 + 2.10−6(n2 + n log n log(n/p)) 

104 + 10−3(n log n log(n/p)) 

We have conducted an empirical evaluation in similar con- 

ditions as for the experiment of Section 3.3, this time with 

the photograph of Figure 3 before applying a palette. The 

following distinct resolutions (in pixels) were used: 591×787 

(i.e. n = 465117), 443×590 (i.e. n = 261370), 296×394 (i.e. n = 
116624) and 148×197 (i.e. n = 29156). The number of colours 
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k was 42 216, 33 210, 23 636 and 9 629, respectively. The palette 

size p remained fixed at 16. The time taken by the dithering 

process is shown in Figure 4. 

As in the previous experiment, the empirical results show the 

efficiency of our implementation as the evolution of the measured 

dithering times is slower than the theoretical estimation. 
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5 Going Further: Parallel Processing 

We complete this constructive proof of the practicability of 

functional programming for image processing by considering 

parallel processing. 

 

5.1 Threads 

First, we have relied on Racket threads to conduct dithering 

Figure 2: Experimental measurement of the dynamic palette cal- 

culation time with and without optimisation, function 

of n the number of pixels. Theoretical estimations of 

the worst-case time complexity (with coefficients for 

visibility) are also plotted for reference. 

 

Experimental evaluation shows that the evolution (slope) of 

the measured execution times is significantly slower than the 

theoretical worst-case estimation, which first confirms what has 

been theoretically established and second is a positive indicator 

of the performance of the algorithm and of its implementation, 

and thus of the practicability of the functional paradigm in this 

case. 

 

4 Application to Dithering 

In order to further inspect the practicability of functional pro- 

gramming for image processing, we next consider a dithering 

(error diffusion) algorithm for images based on a colour palette. 

We have selected the well-known Floyd-Steinberg dithering 

algorithm whose approach is to calculate the difference between 

the current pixel’s colour and the nearest colour inside the palette, 

and to next diffuse with predefined coefficients this error to 

neighbours of the current pixel, precisely to the east pixel, south 

west pixel, south pixel and south east pixel of the current pixel. 

This algorithm can be implemented in accordance to the func- 

tional paradigm with a function that takes as parameters the 

image pixels as a list of colours, the palette to apply and the 

image width and height. The returned value is the new image 

pixels, as a list of colours. Dithering is applied in one single pass, 

with thus a worst-case time complexity of O(n). 

Application of this error diffusion algorithm implementation 

to a sample image is illustrated in Figure 3. 

in parallel. The idea to enable parallel processing for the Floyd- 

Steinberg dithering algorithm is to divide the image into several 

consecutive areas and to process each of those in a separate 

thread. Each thread applies dithering on its area and returns the 

result. Results are then merged back into one single image. 

We have used two threads, in addition to the control (main) 

thread, for our experiments, with thus the original image divided 

into what we call the upper half and the lower half. One can note 

that the first pixel row of the lower half does not fully aggregate 

error since the previous pixel row, that is the last pixel row of the 

upper half, is treated separately in another thread, and without 

resource sharing. Therefore, error is not diffused from the last 

pixel row of the upper half to the first pixel row of the lower 

half. It is however merely a remark since this does not produce 

artefacts and thus goes unnoticed. 

An excerpt of our implementation with threads is given in 

Listings 2 and 3. 

Listing 2: Parallel processing for dithering with threads: thread 

creation and result reporting to the main thread. 

1 (define (create-thread parent-thread half-id half-image palette bitmap-width 

half-bitmap-height) 

2 (thread (lambda () (let ([half-result (apply-palette-dithering half-image 

palette bitmap-width half-bitmap-height)]) 

3 ; completed: report the result to the main thread, together with 

the half identifier 

4 (thread-send parent-thread (cons half-id half-result)))))) 

(The function apply-palette-dithering applies the dithering algorithm 

as described in Section 4.) 

Listing 3: Parallel processing for dithering with threads: the 

control (main) thread. 

1 (define (dith-thread image-colours palette bitmap-width bitmap-height) 

2 (let* ([upper-half-height (floor (/ bitmap-height 2))] 
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(a) (b) 

Figure 3: 16-colour palette: (a) no dithering; (b) dithering applied. (Photograph taken by the author.) 
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12 (if (eq? id1 ’upper-half) ; merge the results based on the half 

identifier 

13 (append data1 data2) (append data2 data1)))))) 

Moreover, it is recalled that Racket threads run on one single 

core of the processor, even if several are available. One should 

note that our implementation is elegant, short and using thread 

mail boxes (thread-send, thread-receive). There are no shared resources 

across threads (no concurrent access), which will be even more 

important for the next section on futures. 

We have conducted an empirical evaluation in similar condi- 

tions as for the experiment of Section 4, notably with the same 

four image files, but this time with the multithreaded implemen- 

tation. As explained, two threads in addition to the control (main) 

thread were used. The measured dithering times are summarised 

in Table 1 together with the experimental results of the sequential 
the number of pixels n ·105 implementation for comparison. 

Figure 4: Experimental measurement of the dithering time, func- 

tion of n the number of pixels. The theoretical estima- 

tion of the worst-case time complexity is also plotted 

for reference. 

Table 1: Experimental measurement of the dithering time in- 

duced by the multithreaded implementation, function 

of n the number of pixels. The results in the case of the 

sequential implementation are included for reference. 

 

 

 

 

 

 

 

 

7 [id-data1 (thread-receive)] ; receive one half of the result 

8 [id1 (car id-data1)] [data1 (cdr id-data1)] 

9 [data2 (cdr (thread-receive))]) ; receive the other half 

10 (thread-wait thread1) ; for safety as ‘thread-receive’ signals... 

11 (thread-wait thread2) ; ... that the thread is about to terminate 

 

 

The empirical results show significant speed-up compared to 

the sequential implementation. Furthermore, the speed-up value 

is rather stable at approximately 1.4. Which is remarkable in that 

measured time 
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[lower-half-height (- bitmap-height upper-half-height)]) 
Image 

resolution 

Sequential 

implementation 

Multithreaded 

implementation 

Speed-up 

factor 
4 (let-values ([(upper-half lower-half) (split-at image-colours (* 

bitmap-width upper-half-height))]) (pixels) (ms) (ms)  

 

5 (let* ([thread1 (create-thread (current-thread) ’upper-half upper-half 148×197 3 032 2 369 1.28 

palette bitmap-width upper-half-height)] 296×394 25 365 18 041 1.41 

6 [thread2 (create-thread (current-thread) ’lower-half lower-half 443×590 87 420 61 370 1.42 
 palette bitmap-width lower-half-height)] 591×787 212 302 148 652 1.43 
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Figure 5: Output of the future visualizer tool: the green bar from start to end of the dithering algorithm execution shows that the main 

thread and the future’s thread successfully run fully in parallel on distinct CPU cores. 

 

as explained, all the Racket threads run on one single processor 

core. 

 

5.2 Futures 

In order to achieve parallel processing, unlike threads, on sev- 

eral cores of the processor, Racket provides the “future” mech- 

anism. Parallelism with futures can however become rapidly 

hampered when information from the main thread is required, 

thus blocking parallel processing. This is the case, for instance, 

when I/O operations are conducted. 

As with the single core multithreaded approach above, we 

divide the image into two parts, the upper and lower half. The 

upper half is treated in parallel by a future, and the lower half in 

the main thread. Both results are eventually merged and returned. 

Refer to Listing 4. 

Listing 4: Parallel processing on several cores for dithering with 

futures. 

1 (define (dith-future image-colours palette bitmap-width bitmap-height) 

2 (let* ([upper-half-height (floor (/ bitmap-height 2))] 

3 [lower-half-height (- bitmap-height upper-half-height)]) 

4 (let-values ([(upper-half lower-half) (split-at image-colours (* 

bitmap-width upper-half-height))]) 

5 (let* ([future1 (future (lambda () (apply-palette-dithering upper-half 

palette bitmap-width upper-half-height)))] 

6 [lower-half-result (apply-palette-dithering lower-half palette 

bitmap-width lower-half-height)] 

7 [upper-half-result (touch future1)]) 

8 (append upper-half-result lower-half-result))))) 

The results obtained from this multithreaded implementation 

based on futures show that parallelism on several cores of the 

CPU has been successfully achieved. When applied to the small- 

est of the four sample images of the previous experiment, the 

future visualizer tool output is as shown in Figure 5. The topmost 

row represents the main thread, for us processing the lower half 

of the image, and the second row corresponds to the future’s 

thread: it displays a green bar spanning the whole dithering 

execution time. This uninterrupted green bar means that the cor- 

responding future has been successfully run fully in parallel to 

the main thread, on a distinct CPU core. This desirable situation 

is enabled by the absence of shared resources, and communica- 

tion in general, between the main thread (processing the lower 

half of the image) and the future’s thread (processing the upper 

half of the image). 

We have conducted an empirical evaluation in similar condi- 

tions as for the experiment of Section 4, notably with the same 

four image files, but this time with the multithreaded implementa- 

tion based on futures. As explained, one future in addition to the 

control (main) thread was used. The measured dithering times 

are plotted in Figure 6 together with the experimental results of 

the sequential and single core multithreaded implementations for 

comparison. 

This empirical evaluation shows that parallel processing on 

several cores, when successfully achieved by futures as explained 

(see Figure 5), further significantly reduces the time required to 

apply the dithering algorithm to the image: as shown in this 

figure, we measured a 1.87, 1.90, 1.98 and 1.94 speed-up factor 

for the four images, respectively, compared with the single core 

multithreaded approach. 
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Figure 6: Experimental measurement of the dithering time in- 

duced by the implementation based on futures, func- 

tion of n the number of pixels. The results in the case 

of the sequential and single core multithreaded imple- 

mentations are also displayed for reference. 
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6 Concluding Remarks 

 

Through this work, we have successfully shown that functional 

programming, with some minor exceptions to the functional 

paradigm, is capable for image processing. Image processing 

algorithms, such as dynamic palette calculation and dithering 

(error diffusion) can be elegantly implemented. Moreover, even 

parallel processing, with threads on one single core and with 

futures on distinct physical cores, is feasible and brings signifi- 

cant performance improvements, as quantitatively shown by our 

experiments. 

Besides, parallelization is notoriously challenging for program- 

mers, and often harmful to program robustness. Thanks to the 

functional paradigm, robustness is retained when implementing 

parallel computation tasks. Overall, because Racket is a high- 

level language and tolerates exceptional imperative programming 

constructs, it features a very high usability, notably confirmed 

throughout our experiments. 

Although we have been able to show to some degree the appli- 

cability and practicability of functional programming, and more 

generally of the functional paradigm, to image processing, the 

experimentally measured processing times remain relatively high. 

So, as future work, it would be interesting to next compare the 

achieved performances and those obtained from an implemen- 

tation based on an imperative or object-oriented programming 

language. Such a discussion could also be extended to a pure 

functional language such as Haskell: it would certainly be more 

difficult to manipulate, but the existing libraries, like GUI ones 

for Haskell, could perhaps facilitate implementation. Finally, 

showing whether graphical animation is possible too, like for in- 

teractive content, is yet another interesting subject, with however 

even less tolerance for long processing times. 
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