
36 IJCA, Vol. 32, No. 1, March 2025

ISCA Copyright© 2025

Image Processing Without Sacrificing the Functional Paradigm

Antoine Bossard *

Kanagawa University, Yokohama, Kanagawa 221-8686, Japan

Abstract

Functional programming can be called modern programming

in that it enables robust development and favours the programmer

over hardware and performance considerations. Some character-

istic features of the functional paradigm, such as map, have indeed

been introduced into languages of other programming paradigms,

like C++ and JavaScript. In spite of this deserved success, some

challenges remain, such as input-output (I/O) operations, which

often involve compromises with respect to the functional model.

For instance, heavy memory I/O applications may keep prospec-

tive users afar. In this paper, we give a constructive proof of

the practicability of the functional paradigm for such a scenario,

by concretely considering image processing with the functional

programming language Racket (a Lisp dialect). Both theoretical

and experimental quantitative evaluations are conducted to show

the performance of the implemented algorithms. Furthermore, in

an attempt at establishing the capabilities and versatility of func-

tional programming, this work also covers parallel processing,

on both a single core and multiple cores.

Key Words: graphics; dithering; parallel; programming; soft-

ware; Racket.

1 Introduction

The importance of the functional paradigm and functional

programming need not be proven any more [6]. Functional

constructs have even penetrated other paradigms, such as the

object-oriented one with, for example, JavaScript’s Array.prototype

.map method [13] and C++’s std::apply function [7]. This is also

the case of anonymous functions [14]. Moreover, it has been

shown that functional programming is positive for Internet of

Things (IoT) applications [5]. Considering concrete implementa-

tions of the functional paradigm, Lisp dialects can be found in

robotics [11] and microcontroller applications [8]. It is thus no

wonder that the functional paradigm is increasingly popular [2].

Despite all the advantages of the functional paradigm, users

are likely to rapidly face some challenges, not to say limita-

tions, inherent to this programming model. They mostly concern

input-output (I/O) operations as those generally harm referential

transparency [10].

*Graduate School of Science. Email: abossard@kanagawa-u.ac.jp.

To address some of these issues, several solutions have been

proposed. For instance, Haskell, another functional programming

language, relies on monads [9]. In addition, the SOF program-

ming paradigm has been described to address the state tracking

issue of pure functional programs, and especially those featuring

lazy evaluation [1]. The Racket programming language is said

multi-paradigm in that it allows imperative programming, albeit

clearly stating that it is a best practice to limit as much as possi-

ble such non-functional constructs [3]. High-performance image

processing with a functional programming style approach was

proposed by Se´rot et al. [12], but it requires a specific, complex

hardware architecture.

Our objective in this paper is to give a constructive proof that

shows the functional programming paradigm remains practicable

even when conducting image processing, that is, memory oper-

ations on rather large data. In other words, that such heavy I/O

operations are not an excuse to sweep the functional paradigm

aside [4].

To this end, we have selected the Racket language, based

on Scheme and thus a Lisp dialect, as it tolerates imperative

programming when needed, as previously recalled [3], which

drastically improves usability over pure functional languages like

Haskell.

The rest of this paper is organised as follows. First, prelim-

inaries for this work are presented in Section 2. Then, a first

image processing algorithm, dynamic palette calculation, is dis-

cussed in Section 3. Next, this algorithm is reused to describe in

Section 4 a dithering algorithm. Dithering is further discussed

from the parallel processing point of view in Section 5. Finally,

concluding remarks are made in Section 6.

2 Preliminaries

About the notations used hereinafter, for the sake of brevity

but without introducing any ambiguity, set operations such as \

(exclusion) and | . . . | (cardinality) are sometimes applied to lists

(i.e. sequences).

Regarding image file loading and pixel access, Racket provides

convenient functions. First, read-bitmap takes a path to an image

file (the GIF, JPEG, PNG, BMP and a few other formats are

supported) and instantiates and returns the corresponding bitmap%

object. Second, the pixel values, that is colours, that make the

bitmap can be retrieved with the get-argb-pixels method of the bitmap%

mailto:abossard@kanagawa-u.ac.jp
https://orcid.org/0000-0001-9381-9346

IJCA, Vol. 32, No. 1, March 2025

ISCA Copyright© 2025

class; note that memory needs to be allocated beforehand for

their storage. Conversely, the pixels of a bitmap% object can be

set with the set-argb-pixels method. Finally, a bitmap% object can be

saved to an image file with the save-file method, which is how we

produced the images included hereafter.

A bitmap can be conveniently displayed inside a window

thanks to Racket’s GUI components: it suffices to attach a canvas%

object to a frame% object and to call the draw-bitmap method of the dc%

class inside the paint callback of the canvas.

Finally, we have noticed that relying on the class color% pro-

vided by Racket to represent a colour is better avoided for two

reasons: first, it significantly slows algorithm implementations

down compared to, for instance, a simple triple (list), and second,

it forbids using non-integer decimal values for RGB channel val-

ues. Non-integer decimal values are desirable for error diffusion

as considered later.

3 Dynamic Palette Calculation

Two palette calculation methods plus one performance opti-

mization solution are described in this section.

3.1 Main Approach

Be it for compression purposes or to adhere to a standard like

the Graphics Interchange Format (GIF), applying a colour palette

to an image has always been an essential issue of computer graph-

ics. We thus start by considering this well-known scenario to

realise our constructive proof of the relevance and practicability

of the functional paradigm for image processing.

Although simple and fast, relying on a static colour palette,

such as IBM’s 16-colour CGA palette, produces below par results.

So, given that modern computer hardware allows it, it is instead

wiser to dynamically calculate an optimised palette from the

image that is to be rendered.

We proceed as follows: first, we enumerate the different

colours used in the image, and for each of them, we record

their frequency (i.e. the number of times the colour is used in the

image). This can be implemented simply: consider the list l of

all the pixels (i.e. colours) making the image; get the first colour

of l, say c, count in l the number nc of pixels of same colour c

and repeat this process from the list of colours that differ from c,

list which becomes the new l. This can be easily realised with the

partition function called in a way that it returns the list of colours

equal to c, thus inducing nc, and the list of colours different from

c, thus inducing the new list l.

Now that all the image colours and their frequency have been

obtained, the next task is to retain as many colours as can hold

the palette, say k. A na¨ıve approach to this issue is to sort the

obtained list of colours in descending order of frequencies and

to copy the first k colours into the palette. (All the colours of the

image are retained if there are less than or the same number as the

palette size k.) This way, the palette consists of the most frequent

colours of the image. Although simple, this first dynamic palette

calculation method produces unsatisfactory results. A picture is

worth a thousand words: refer to Figure 1a.

So, instead of selecting the colours to be retained inside the

palette depending on their respective frequencies, it is indeed

better to group colours according to their similarity: for two

similar colours, the one with the higher frequency is retained, the

other discarded. Precisely, we start by sorting the image colours

in ascending order of their frequency so that the most infrequent

colours will be grouped, that is eliminated, first; say this is the

colour list l. Then, we iterate l, starting with its first colour, say

c, each time finding within l \ {c} the colour that is the nearest

to c, say c′, and we retain from c and c′ only the one with the
higher frequency, as explained. This is repeated with the new,

smaller sorted list of colours l \{c˜}, with c˜ ∈ {c, c′} the discarded

colour. This iteration is terminated as soon as the number of the

remaining colours, that is |l| the size of l, is smaller than or equal

to the palette size. The superiority of this second dynamic palette
calculation method is clear: refer to Figure 1b.

Finally, a word on palette application to an image: in one

single pass, for each pixel (colour) of the image, iterate the

palette to find the nearest colour, which is stored as the new

pixel value. The nearest colour is found by simply summing the

difference between each of the three RGB channels.

3.2 Optimization

If instead of relying, as previously, on a simple list to count

distinct colours we rely on a hash table, performance can be

raised since Racket provides a hash table mechanism with con-

stant time access operations. Furthermore, hash tables can be

immutable, which allows us to avoid any trade-off with the func-

tional paradigm for that matter.

Concretely, we iterate the image pixels only once (i.e. in a sin-

gle pass), each time incrementing the hash value corresponding

to the pixel colour; colours serve as hash keys.

Source code is given in Listing 1 to illustrate the elegance

of this optimised approach which induces significantly higher

performances (refer to Section 3.3).

Listing 1: Counting colours faster, in one pass, with a hash table.

1 (hash->list ; returns colours and frequencies conventionally as a list

2 (foldl (lambda (c hash-table) ; ‘c’ is the current colour

3 (let ([current-value (hash-ref hash-table c 0)])

4 (hash-set hash-table c (add1 current-value))))

5 (hash) image-colours)) ; ‘(hash)’ returns a new, empty hash table

3.3 Quantitative Evaluation

We begin by considering the worst-case time complexity of the

non-optimised approach to colour enumeration and frequency

calculation (i.e. based on the partition function). In the worst

case, which corresponds to an image with no two pixels of the

same colour, for each of the n pixels of the image, the remaining

pixels are split into pixels of the same colour (none in the worst

case as just explained) and pixels of a different colour. This

process is repeated for each pixel, each time starting over from

37

IJCA, Vol. 32, No. 1, March 2025

ISCA Copyright© 2025

initial image

Figure 1: Dynamic palette calculation and application to a sample photograph. The 16-colour palette is shown beside the picture.

(a) Na¨ıve dynamic palette calculation. (b) Improved dynamic palette calculation. (Photograph taken by the author.)

the remaining pixels (i.e. the pixels not classified yet). Hence,

the worst-case time complexity of this colour enumeration and

frequency calculation is O(nk) = O(n2) with k the number of

distinct colours in the image.

On the other hand, the optimised approach for colour enumer-

ation and frequency calculation based on a hash table is faster:

since hash table access operations are constant time O(1), one

single pass of the n image pixels suffices, thus inducing an O(n)
time complexity.

Next, the enumerated colours need to be grouped. So, in either
approach, palette calculation requires an additional time com-

plexity of O(log(k/p) × k log k), with k the number of distinct

colours in the image and p the maximum number of colours in-
side the palette. Indeed, since each iteration of the k enumerated
image colours eliminates at least one and at most k/2 colours, a

palette of size p will be obtained after log(k/p) iterations. So,

the k enumerated image colours are sorted no more than log(k/p)
times, which induces the dominant time complexity.

As a result, in the worst case (i.e. k = n), the non-optimised ap-

proach requires O(n2 + n log n log(n/p)) and the optimised one

O(n log n log(n/p)). Moreover, we have empirically confirmed

the theoretically established worst-case time complexity with

a computer experiment: we have run an implementation of the

described dynamic palette calculation algorithm for several im-

age files as follows. We have selected one photograph, so that

numerous colours be included and palette calculation be thus

meaningful, and we have resized it to produce several other im-

age files of lower resolutions. The different image resolutions

have thus enabled us to vary the value of n.

Next, we make a remark regarding the number of colours

k. While variations of k in the image files selected for this ex-

periment could impact the measurement of the average time

complexity, in the worst case k equals n, a case which has been

considered when establishing the worst-case time complexity

above. So, variations of k will not prevent experimentally con-

firming the theoretically established worst-case time complexity.

In practice, the original photograph, likely because of physical

limitations of the camera sensor or the camera image compres-

sion algorithm, may have a lower k/n ratio, and even a lower k,

than after applying a first resizing operation. So, in an attempt

to stabilise the k/n ratio and thus to estimate the average time

complexity by emphasising the variations of n, we consider only

images resulting from at least one resizing operation. Hence, the

original photograph is not used in this experiment other than to

produce the experiment images by resizing.

This experiment has been conducted on a computer running the

Debian GNU/Linux 12 (64-bit) OS equipped with a 12th genera-

tion Intel Core i5-12400 processor and 16 GB RAM. The experi-

mental results show the difference between the non-optimised dy-

namic palette calculation method, based on the partition function,

and the optimised dynamic palette calculation method, based on a

hash table. Time measurements were reported by the time function

of Racket (applied to the dynamic palette calculation function),

whose “real time” value was retained. The photograph of Figure 1

before applying a palette has been considered in the following

different resolutions (in pixels): 591 × 443 (i.e. n = 261813),

443 × 332 (i.e. n = 147076), 296 × 222 (i.e. n = 65712) and

148 × 111 (i.e. n = 16428). The number of colours k was 29 721,
23 190, 16 326 and 6 854, respectively. The palette size p was

fixed to 16. The obtained results are illustrated in Figure 2.

(a)

(b)

38

IJCA, Vol. 32, No. 1, March 2025

ISCA Copyright© 2025

·105
2

non-optimised calculation

optimised calculation

5.104 + 2.10−6(n2 + n log n log(n/p))

104 + 10−3(n log n log(n/p))

We have conducted an empirical evaluation in similar con-

ditions as for the experiment of Section 3.3, this time with

the photograph of Figure 3 before applying a palette. The

following distinct resolutions (in pixels) were used: 591×787

(i.e. n = 465117), 443×590 (i.e. n = 261370), 296×394 (i.e. n =
116624) and 148×197 (i.e. n = 29156). The number of colours

1.5

1

k was 42 216, 33 210, 23 636 and 9 629, respectively. The palette

size p remained fixed at 16. The time taken by the dithering

process is shown in Figure 4.

As in the previous experiment, the empirical results show the

efficiency of our implementation as the evolution of the measured

dithering times is slower than the theoretical estimation.

0.5

0

0 0.5 1 1.5 2 2.5

the number of pixels n ·105

5 Going Further: Parallel Processing

We complete this constructive proof of the practicability of

functional programming for image processing by considering

parallel processing.

5.1 Threads

First, we have relied on Racket threads to conduct dithering

Figure 2: Experimental measurement of the dynamic palette cal-

culation time with and without optimisation, function

of n the number of pixels. Theoretical estimations of

the worst-case time complexity (with coefficients for

visibility) are also plotted for reference.

Experimental evaluation shows that the evolution (slope) of

the measured execution times is significantly slower than the

theoretical worst-case estimation, which first confirms what has

been theoretically established and second is a positive indicator

of the performance of the algorithm and of its implementation,

and thus of the practicability of the functional paradigm in this

case.

4 Application to Dithering

In order to further inspect the practicability of functional pro-

gramming for image processing, we next consider a dithering

(error diffusion) algorithm for images based on a colour palette.

We have selected the well-known Floyd-Steinberg dithering

algorithm whose approach is to calculate the difference between

the current pixel’s colour and the nearest colour inside the palette,

and to next diffuse with predefined coefficients this error to

neighbours of the current pixel, precisely to the east pixel, south

west pixel, south pixel and south east pixel of the current pixel.

This algorithm can be implemented in accordance to the func-

tional paradigm with a function that takes as parameters the

image pixels as a list of colours, the palette to apply and the

image width and height. The returned value is the new image

pixels, as a list of colours. Dithering is applied in one single pass,

with thus a worst-case time complexity of O(n).

Application of this error diffusion algorithm implementation

to a sample image is illustrated in Figure 3.

in parallel. The idea to enable parallel processing for the Floyd-

Steinberg dithering algorithm is to divide the image into several

consecutive areas and to process each of those in a separate

thread. Each thread applies dithering on its area and returns the

result. Results are then merged back into one single image.

We have used two threads, in addition to the control (main)

thread, for our experiments, with thus the original image divided

into what we call the upper half and the lower half. One can note

that the first pixel row of the lower half does not fully aggregate

error since the previous pixel row, that is the last pixel row of the

upper half, is treated separately in another thread, and without

resource sharing. Therefore, error is not diffused from the last

pixel row of the upper half to the first pixel row of the lower

half. It is however merely a remark since this does not produce

artefacts and thus goes unnoticed.

An excerpt of our implementation with threads is given in

Listings 2 and 3.

Listing 2: Parallel processing for dithering with threads: thread

creation and result reporting to the main thread.

1 (define (create-thread parent-thread half-id half-image palette bitmap-width

half-bitmap-height)

2 (thread (lambda () (let ([half-result (apply-palette-dithering half-image

palette bitmap-width half-bitmap-height)])

3 ; completed: report the result to the main thread, together with

the half identifier

4 (thread-send parent-thread (cons half-id half-result))))))

(The function apply-palette-dithering applies the dithering algorithm

as described in Section 4.)

Listing 3: Parallel processing for dithering with threads: the

control (main) thread.

1 (define (dith-thread image-colours palette bitmap-width bitmap-height)

2 (let* ([upper-half-height (floor (/ bitmap-height 2))]

p
al

et
te

 c
al

cu
la

ti
o

n
 t
im

e
(m

s)

39

IJCA, Vol. 32, No. 1, March 2025

ISCA Copyright© 2025

(a) (b)

Figure 3: 16-colour palette: (a) no dithering; (b) dithering applied. (Photograph taken by the author.)

5

4

3

2

1

0

·105

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

12 (if (eq? id1 ’upper-half) ; merge the results based on the half

identifier

13 (append data1 data2) (append data2 data1))))))

Moreover, it is recalled that Racket threads run on one single

core of the processor, even if several are available. One should

note that our implementation is elegant, short and using thread

mail boxes (thread-send, thread-receive). There are no shared resources

across threads (no concurrent access), which will be even more

important for the next section on futures.

We have conducted an empirical evaluation in similar condi-

tions as for the experiment of Section 4, notably with the same

four image files, but this time with the multithreaded implemen-

tation. As explained, two threads in addition to the control (main)

thread were used. The measured dithering times are summarised

in Table 1 together with the experimental results of the sequential
the number of pixels n ·105 implementation for comparison.

Figure 4: Experimental measurement of the dithering time, func-

tion of n the number of pixels. The theoretical estima-

tion of the worst-case time complexity is also plotted

for reference.

Table 1: Experimental measurement of the dithering time in-

duced by the multithreaded implementation, function

of n the number of pixels. The results in the case of the

sequential implementation are included for reference.

7 [id-data1 (thread-receive)] ; receive one half of the result

8 [id1 (car id-data1)] [data1 (cdr id-data1)]

9 [data2 (cdr (thread-receive))]) ; receive the other half

10 (thread-wait thread1) ; for safety as ‘thread-receive’ signals...

11 (thread-wait thread2) ; ... that the thread is about to terminate

The empirical results show significant speed-up compared to

the sequential implementation. Furthermore, the speed-up value

is rather stable at approximately 1.4. Which is remarkable in that

measured time
 n

d
it

h
er

in
g
 t
im

e
(m

s)

3

[lower-half-height (- bitmap-height upper-half-height)])
Image

resolution

Sequential

implementation

Multithreaded

implementation

Speed-up

factor
4 (let-values ([(upper-half lower-half) (split-at image-colours (*

bitmap-width upper-half-height))]) (pixels) (ms) (ms)

5 (let* ([thread1 (create-thread (current-thread) ’upper-half upper-half 148×197 3 032 2 369 1.28

palette bitmap-width upper-half-height)] 296×394 25 365 18 041 1.41

6 [thread2 (create-thread (current-thread) ’lower-half lower-half 443×590 87 420 61 370 1.42
 palette bitmap-width lower-half-height)] 591×787 212 302 148 652 1.43

40

IJCA, Vol. 32, No. 1, March 2025

ISCA Copyright© 2025

sequential

single core multithreaded

future multithreaded

Figure 5: Output of the future visualizer tool: the green bar from start to end of the dithering algorithm execution shows that the main

thread and the future’s thread successfully run fully in parallel on distinct CPU cores.

as explained, all the Racket threads run on one single processor

core.

5.2 Futures

In order to achieve parallel processing, unlike threads, on sev-

eral cores of the processor, Racket provides the “future” mech-

anism. Parallelism with futures can however become rapidly

hampered when information from the main thread is required,

thus blocking parallel processing. This is the case, for instance,

when I/O operations are conducted.

As with the single core multithreaded approach above, we

divide the image into two parts, the upper and lower half. The

upper half is treated in parallel by a future, and the lower half in

the main thread. Both results are eventually merged and returned.

Refer to Listing 4.

Listing 4: Parallel processing on several cores for dithering with

futures.

1 (define (dith-future image-colours palette bitmap-width bitmap-height)

2 (let* ([upper-half-height (floor (/ bitmap-height 2))]

3 [lower-half-height (- bitmap-height upper-half-height)])

4 (let-values ([(upper-half lower-half) (split-at image-colours (*

bitmap-width upper-half-height))])

5 (let* ([future1 (future (lambda () (apply-palette-dithering upper-half

palette bitmap-width upper-half-height)))]

6 [lower-half-result (apply-palette-dithering lower-half palette

bitmap-width lower-half-height)]

7 [upper-half-result (touch future1)])

8 (append upper-half-result lower-half-result)))))

The results obtained from this multithreaded implementation

based on futures show that parallelism on several cores of the

CPU has been successfully achieved. When applied to the small-

est of the four sample images of the previous experiment, the

future visualizer tool output is as shown in Figure 5. The topmost

row represents the main thread, for us processing the lower half

of the image, and the second row corresponds to the future’s

thread: it displays a green bar spanning the whole dithering

execution time. This uninterrupted green bar means that the cor-

responding future has been successfully run fully in parallel to

the main thread, on a distinct CPU core. This desirable situation

is enabled by the absence of shared resources, and communica-

tion in general, between the main thread (processing the lower

half of the image) and the future’s thread (processing the upper

half of the image).

We have conducted an empirical evaluation in similar condi-

tions as for the experiment of Section 4, notably with the same

four image files, but this time with the multithreaded implementa-

tion based on futures. As explained, one future in addition to the

control (main) thread was used. The measured dithering times

are plotted in Figure 6 together with the experimental results of

the sequential and single core multithreaded implementations for

comparison.

This empirical evaluation shows that parallel processing on

several cores, when successfully achieved by futures as explained

(see Figure 5), further significantly reduces the time required to

apply the dithering algorithm to the image: as shown in this

figure, we measured a 1.87, 1.90, 1.98 and 1.94 speed-up factor

for the four images, respectively, compared with the single core

multithreaded approach.

·105

2

1.5

1

0.5

0

29 156 116 624 261 370 465 117

the number of pixels n

Figure 6: Experimental measurement of the dithering time in-

duced by the implementation based on futures, func-

tion of n the number of pixels. The results in the case

of the sequential and single core multithreaded imple-

mentations are also displayed for reference.

d
it

h
er

in
g
 t
im

e
(m

s)

41

IJCA, Vol. 32, No. 1, March 2025

ISCA Copyright© 2025

6 Concluding Remarks

Through this work, we have successfully shown that functional

programming, with some minor exceptions to the functional

paradigm, is capable for image processing. Image processing

algorithms, such as dynamic palette calculation and dithering

(error diffusion) can be elegantly implemented. Moreover, even

parallel processing, with threads on one single core and with

futures on distinct physical cores, is feasible and brings signifi-

cant performance improvements, as quantitatively shown by our

experiments.

Besides, parallelization is notoriously challenging for program-

mers, and often harmful to program robustness. Thanks to the

functional paradigm, robustness is retained when implementing

parallel computation tasks. Overall, because Racket is a high-

level language and tolerates exceptional imperative programming

constructs, it features a very high usability, notably confirmed

throughout our experiments.

Although we have been able to show to some degree the appli-

cability and practicability of functional programming, and more

generally of the functional paradigm, to image processing, the

experimentally measured processing times remain relatively high.

So, as future work, it would be interesting to next compare the

achieved performances and those obtained from an implemen-

tation based on an imperative or object-oriented programming

language. Such a discussion could also be extended to a pure

functional language such as Haskell: it would certainly be more

difficult to manipulate, but the existing libraries, like GUI ones

for Haskell, could perhaps facilitate implementation. Finally,

showing whether graphical animation is possible too, like for in-

teractive content, is yet another interesting subject, with however

even less tolerance for long processing times.

References

[1] Antoine Bossard. The SOF programming paradigm: A se-

quence of pure functions. International Journal of Software

Innovation, 10(1):1–14, 2022.

[2] Antoine Bossard and Keiichi Kaneko. A new methodol-

ogy for a functional and logic programming course: On

smoothening the transition between the two paradigms. In

Proceedings of the 20th Annual SIG Conference on Infor-

mation Technology Education (SIGITE; Tacoma, WA, USA,

2–5 October), pages 63–68. Association for Computing

Machinery, 2019.

[3] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt,

Shriram Krishnamurthi, Eli Barzilay, Jay McCarthy, and

Sam Tobin-Hochstadt. A programmable programming lan-

guage. Communications of the ACM, 61(3):62–71, Febru-

ary 2018.

[4] Jason Gregory. Game Engine Architecture. Taylor and

Francis, Boca Raton, FL, USA, 2009.

[5] Till Haenisch. A case study on using functional program-

ming for Internet of Things applications. Athens Journal of

Technology & Engineering, 3(1):29–38, March 2016.

[6] John Hughes. Why functional programming matters. The

Computer Journal, 32(2):98–107, 1989.

[7] ISO/IEC JTC 1/SC 22. Programming languages – C++.

Technical Report ISO/IEC 14882:2017, 5th edition, Inter-

national Organization for Standardization, December 2017.

[8] Dimitris Kyriakoudis and Chris Kiefer. uSEQ: A LISPy

modular sequencer for Eurorack with a livecodable micro-

controller. In Proceedings of 7th International Conference

on Live Coding (ICLC; Utrecht, The Netherlands, 19–23

April), pages 1–15. Zenodo, April 2023.

[9] Simon Marlow. Haskell 2010 Language Report, April

2010.

[10] Rinus Plasmeijer and Marko van Eekelen. Keep it clean:

a unique approach to functional programming. ACM SIG-

PLAN Notices, 34(6):23–31, June 1999.

[11] Franco Raimondi, Giuseppe Primiero, Kelly Androutsopou-

los, Nikos Gorogiannis, Martin J. Loomes, Michael Mar-

golis, Puja Varsani, Nick Weldin, and Alex Zivanovic. A

Racket-based robot to teach first-year computer science. In

Kent M. Pitman, editor, Proceedings of the 7th European

Lisp Symposium (ELS; Paris, France, 5–6 May), pages

54–62, 2014.

[12] Jocelyn Se´rot, Georges Que´not, and Bertrand Zavidovique.

Functional programming on a dataflow architecture: Appli-

cations in real-time image processing. Machine Vision and

Applications, 7:44–56, December 1993.

[13] Brian Terlson. ECMAScript 2018 language specification.

Technical Report ECMA-262, 9th edition, Ecma Interna-

tional, June 2018.

[14] Mikus Vanags and Rudite Cevere. The perfect lambda

syntax. Baltic Journal of Modern Computing, 6(1):13–30,

2018.

Antoine Bossard is a Professor of the

Graduate School of Science of Kana-

gawa University in Japan. He received

the BS and MS degrees from Univer-

site´ de Caen Basse-Normandie, France

in 2005 and 2007, respectively, and the

Ph.D. degree from Tokyo University of

Agriculture and Technology, Japan in

2011. Amongst others, he is in charge

of the computer architecture and functional programming lec-

tures for undergraduate students, and of a graph theory lecture

for master students. His research activities are focused on inter-

connection networks (e.g. network topologies, routing problems,

fault tolerance) and information representation and processing of

Chinese characters (e.g. fingerprinting). He is a Senior Member

of ACM and a member of TUG.

42

