
66 IJCA, Vol. 32, No. 01, March 2025

Optimizing Code Generation Efficiency Using the Polyhedral Model

SACI Abdallah*

Computer Science Department, University of BATNA 2, Algeria.

SEGHIR Rachid †

Computer Science Department, University of BATNA 2, Algeria.

Abstract

Optimizing scientific programs is critical for enhancing
performance in modern computing systems, particularly
in applications with stringent resource constraints such as
embedded systems and parallel computing environments. In
this context, the polyhedral model techniques have allowed
to significantly advance the field of affine-loop-nest code
generation by effectively leveraging parallelism and optimizing
data locality. The present work proposes a novel approach based
on the Maximal Parametric Inner-Box (MPIB) approximation
algorithm, which shows promise in optimizing code generation
performance. The basic idea is to introduce a new MPIB-driven
transformation of the CLooG’s mathematical representation
of the source code, aiming at reducing the costly function
calls generated during loop traversal. This leads to a
significant enhancement in code performance, particularly
evident with larger parameter values, where gains of up to
20% are achievable in certain cases. The preliminary results
highlight notable improvements in execution time over existing
techniques.

Key Words: Code Generation; Polyhedral Model; Code
Optimization and Parallelization; Parametric Inner-Box;
CLooG.

1 Introduction

Compiling and optimizing computer programs are of crucial
importance to maximize the hardware-resource utilization and
to enhance the application performances. Generating optimized
code for nested loops is one of the most challenging and
significant tasks in the field of code generation. This area
continues to evolve, driven by the relentless pursuit of optimal
performance and efficiency in modern computing systems
including embedded systems that frequently operate under strict
resource constraints and demand high performance for real-time
applications. Additionally, the rise of parallel computing has
necessitated the development of methods that can efficiently
exploit parallelism inherent in loop nests.
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In this context, the polyhedral model has emerged as a
powerful framework, offering sophisticated tools for analyzing
and optimizing affine loop nests. Through its mathematical
foundations, this model provides a structured approach enabling
automatic identification of parallelism, vectorization, cache
locality improvement, and efficient code generation, which
constitutes the main focus of the current investigation. The
ability to automatically discover and leverage parallelism is
particularly important in the era of multi-core processors and
distributed computing environments, where parallel execution
can lead to substantial performance gains.

Polyhedral code generation techniques, including CADGen
(Continuous Automatic Differentiation Code Generator),
CodeGen (Code Generator), CodeGen+ (Enhanced Code
Generator), isl (Integer Set Library), and ClooG (Chunky Loop
Generator)[2, 6, 5, 22, 21], have revolutionized the field of code
generation for complex nested loops. These techniques enable
considerable improvements in the performance of the generated
code by effectively harnessing parallelism and optimizing data
locality.

However, these methods often face limitations due to
the computational overhead introduced by complex function
calls in loop bounds, such as min, max, ceil, and floor
functions. These operations, while essential for accurate
bounds calculation, can become a bottleneck, particularly in
performance-sensitive environments such as embedded systems
and real-time applications.

In this article, we introduce a new approach for generating
efficient code based on the concept of Maximal Parametric
Inner-Box (MPIB). The main research question that our work
addresses is: how can code generation be optimized to reduce
computational load while maintaining accuracy? The key
questions we seek to answer are: (i) What parametric factors
significantly influence code generation efficiency? (ii) How can
maximal inner-box approximation be applied to achieve this
optimization?

Our method involves identifying and characterizing the
parametric maximal inner box for each polyhedral set.
This approach is used to explore and reorganize the loop
transformation and optimization space, ensuring efficient
utilization of computational resources. Consequently, we
manipulate regular iteration domains to minimize expensive
function calls during loop traversal whenever possible, which
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ultimately results in an improvement in the overall performance
of the generated code. This improvement directly translates to
better utilization of the limited computational resources.

The preliminary results of this work reveal that the proposed
method offers significant advantages in terms of execution time
compared to CLooG 0.18.4. This finding paves the way for
further investigation of the impact of this new approach in
the domain of nested loop optimization. Note that the MPIB
approach can also be utilized in other real-world applications
which are out of the focus of the present work, such as the
reachability of hybrid dynamical systems, where it is crucial to
know if the system can reach critical regions or stay within safe
sets[19].

The remainder of this article is organized as follows: Section
2 delves into the foundational concepts of code generation
using the polyhedral model, including its representation of
programs and techniques for optimization. In Section 3, we
present our approach, elucidating the mathematical foundations
of the Maximal Parametric Inner Box (MPIB). The practical
application of the MPIB approximation approach in generating
efficient code is discussed in Section 4. Section 5 provides an
illustrating example of our method. In section 6, we compare
our approach with prior work. Finally, Section 7 presents a
conclusion, summarizing our findings and highlighting avenues
for future research.

2 BACKGROUND

In this section, we introduce the fundamental principles of
code generation in the context of the polyhedral model. Our
discussion delves into how programs are represented within
this framework, emphasizing the role of CLooG tool (Chunky
Loop Generator) in efficiently generating code from polyhedral
representations.

2.1 Polyhedral Model

The polyhedral model is a powerful mathematical and
geometrical framework for the analysis and optimization of
programs through linear algebra and polyhedral geometry [5, 8].
It includes loop transformations, data restructuring, and various
other techniques aimed at enhancing program performance [9,
13, 25, 24, 23, 4, 7]. This form of optimization techniques
usually targets improving data locality and parallelism in code,
which can greatly impact the overall efficiency of a program.
Over the years, the polyhedral model has been proven successful
in a wide range of cases and has become a fundamental tool in
program optimization.

The polyhedral model proceeds through three primary steps.
Initially, it expresses the original code into a geometric
representation, associating each statement with a set of
polyhedra. Next, it performs geometric transformations within
this representation. Finally, it translates the set of polyhedra
back into generated code. In this article, we focus on this later
step where we target generating an efficient code based on our

maximal parametric inner-box approach presented in section 3.

2.1.1 Polyhedral representation of programs

In the polyhedral model, a program is represented by an
iteration domain, which is a set of affine functions mapping each
statement (or point) in the original code to a point in the iteration
domain [1, 16, 18].

Kuck [11] showed that the iteration domain of a loop nest (a
set of nested loops), with affine lower and upper bounds, can
be described by a polyhedron bounded by a set of half-spaces.
Each half-space corresponds to a lower or upper bound on an
index. The dimension of the polyhedron thus defined is equal to
the depth of the loop nest (the number of its indices). Finally,
each point with integer coordinates (integer vector) inside the
polyhedron corresponds to an iteration of the loop nest. When
the number of iterations is not fixed (cannot be determined at
compile time), we refer to parametric loop nests. These are loop
nests that contain symbolic constants (parameters) in the affine
expressions of their bounds. A loop nest where all instructions
are at the innermost level is called perfect. The general form of
a perfect loop nest of depth d is:

for i1=l1(p) to u1(p)
for i2=l2(i1,p) to u1(i1,p)

....
for id=ld(i1,i2, . . . id−1,p) to ud(i1,i2, . . . id−1,p)

....

where i j (j = 1,..., d) are the indices of the loop nest, p is a
parameter vector, and l j, u j (j = 1,..., d) are affine functions.
When the loop nest is not perfect, instructions can appear at any
depth level.

2.1.2 Example

Consider the following piece of code (loop nest):
for(i=1; i≤ n; i++)
for(j=1; j ≤ i+m; j++)

S(i,j);

The iterations of this loop nest correspond to the integer-
coordinate points of the parametric polytope P(p) as follows:

P(p) =
{
(i

j) ∈Q2 | 1≤ i≤ n ∧ 1≤ j ≤ i+m
}

where p = [n m] is an integer parameter vector. The graphical
representation of the iterations of this loop nest, when p =
[n m]=[5 2], is shown in Figure 1.

2.2 Code generation using the polyhedral model

Code generation has seen significant development thanks to
the algorithm introduced by Quilleré et al.[15]. Since then,
many research efforts have been conducted to enhance the
quality of the generated code [2, 10, 14, 17, 20].
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Figure 1: Representation of loop nest iterations for example 1
(with n=5 and m=2).

Quilleré’s algorithm involves calculating a disjoint union of
polyhedra at each recursion level across dimensions, and then
generating code for each resulting subset sequentially.

Although this approach results in more extensive output code,
it lowers execution complexity. This reduction is crucial for
minimizing energy consumption and optimizing performance
in applications with strict resource limitations, like embedded
systems. However, some tests and multiple loop bounds
requiring calls to ceil/floor and min/max functions are not
eliminated.

This algorithm is implemented in the widely used code
generation tool CLooG (Chunky Loop Generator) [2], which
incorporates various enhancements aimed at preventing large
code generation. These improvements include reducing the
complexity of splitting, the number of scanned subsets, and the
size of the generated code, all while maintaining performance
[17].

2.3 CLooG: Chunky Loop Generator

CLooG (Chunky Loop Generator) is a crucial tool in the
field of polyhedral code generation. It enables the efficient
translation of polyhedral representations into optimized nested
loop structures, which is essential for maximizing performance
in resource-constrained environments or those requiring high
levels of parallelism.

In the following, we give an overview of the primary
algorithm used in CLooG, as initially proposed by Cedric

Bastoul [2].
The CLooG tool takes as input a union of polyhedra

representing the source program. Each statement of the program
is thus represented by a subset of polyhedra and a set of
scheduling functions. Applying these functions to the integer
points of the associated polyhedra results in a new list of
polyhedra that the resulting code must scan.

According to the technique proposed by LeVerge [12], the
set of integer points in a polyhedron is represented as a
ZPolyhedron1.

In order to generate a loop code, the CLooG algorithm
starts by computing the projection of polyhedra at dimension
(d = 1), subsequently separating them into an ordered list of
disjoint polyhedra. It then scans this list to produce code for the
outermost loops (level-one loops). These disjoint polyhedra are
then projected onto the second dimension (d = 2) to generate
code for level-two loops. CLooG iterates recursively across the
remaining dimensions (levels 3, 4, . . . ) to generate loop codes
at the corresponding levels. The detailed algorithm is given in
Algorithm 1.

In step 5, the algorithm computes the lower bound and
the stride for each loop level (d ∈ 1,2, . . . , n) defined by
its subdomains (polyhedra). Then, it merges inner polyhedra
whenever possible in step 5(b.i) in order to reduce the code
size. In step 5(b.ii), the function is recursively called for the
next dimension (d +1) by intersecting the context domain with
the bounds of the currently generated loop. Step 7 involves
reuniting certain point polyhedra with their host polyhedra, from
which they were separated in the previous step, with the aim of
minimizing the overall size of the generated code [17].

Although CLooG excels at managing polyhedral sets to
produce high-performance code, it has limitations, particularly
with the generated min, max, ceil, and floor function calls in
loop bounds, which can become computationally expensive.
In the following sections (3 and 4), we will show that our
MPIB-based method reduces these costs by simplifying loop
bounds, thereby reducing function calls and enhancing the
overall execution time of the generated code.

3 Maximal Parametric Inner-Box (MPIB) approximation
approach

In this section, we propose a new approach for approximating
the maximal parametric inner box based on the method of
Bemporad et al. [3]. In their work, and starting from a non-
parametric polytope P, the authors search for two collections of
boxes (I and E) such that:

- The interiors of the boxes in each collection do not overlap,
- The union of all boxes in I is contained in P.
- The union of all boxes in E contains P.

Note that in the current work, we are interested in
determining only one approximate maximal inner box within a

1A ZPolyhedron is the intersection of an integral lattice and a polyhedron.
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Algorithm 1: CLooG’s code generation algorithm [2].
Data: A polyhedron list (T S1, ...,T Sn), a context C, the

current dimension d.
Result: Code scanning the polyhedra inside the input

list.
Begin

1. Intersect each polyhedron Pi ∈ TSi with the context C.
2. Compute the projection Pi onto the outermost d

dimensions for each resulting polyhedron TSi , and
consider the new list where TSi is replaced by Pi.

3. Separate the list of resulting projections Pi from step 2
into a new list of non-overlapping polyhedra.

4. Order each list of non-overlapping polyhedra representing
the projection Pi, from step 3, in the lexicographical order.

5. For each polyhedron P→ (TSp, · · · ,TSq) in the list:

(a). Compute the stride and the lower bound by looking
for stride constraints in the (TSp, · · · ,TSq) list.

(b). While there is a polyhedron in (TSp, · · · ,TSq):
(i). Merge adjacent polyhedra scanning the same

statements in a new list.
(ii). Recurse for the new list with the new loop

context C∩P and the next dimension d +1.

6. Apply steps 2 to 4 of the algorithm to the inside list in
order to eliminate dead code, for each polyhedron P inside
the list.

7. Reduce code size by making all possible unions of host
polyhedra with point polyhedral.

8. Return the code scanning the polyhedron list.

End.

2-dimensional parametric polytope P(p) that has one parameter
(p = [n])2 . This box will be used in section 4 to generate an
efficient code based on CLooG Algorithm. Our method can be
succinctly described as follows:

Let P(n) be the parametric polytope defined by:

P(n) = {X ∈ R2 : AX ≤ Bn+b}

And let :

- A+ : be the positive matrix of A.
- A+

1 : be the first column of A+.

- A+
2 : be the second column of A+.

To determine an approximation of the maximal parametric
box included in P(n), we start by assigning distinct values to
n in order to obtain different instances of the polytope P(n).
For each instance of P(n), we determine the maximal inner box
based on the method proposed by Bemporad et al. [3], which
involves the following steps:

2Our method can be extended to address problems involving higher
dimensions and additional parameters.

1. Solve LP1 to find r1, the maximum ratio along the first
dimension.
LP1 : r1 = max{r : AX +A+

1 r ≤ Bn+b}.
2. Solve LP2 to find r2, the maximum ratio along the second

dimension.
LP2 : r2 = max{r : AX +A+

2 r ≤ Bn+b}.
3. Solve LP3 to determine the scaling factor λ ∗ which

maximizes the box dimensions while ensuring it stays
within P(n).
LP3 : λ ∗ = max{λ : AX +A+rλ ≤ Bn+b}, with r = [r1r2].

The solution of LP3 is defined by: (X∗,λ ∗), with X∗= [i∗ j∗]t .
For a given instance of the polytope P(n), i.e for a given value

of n, the MPIB is defined by its two extremal non-parametric
points (V1 and V2) such that:

• V1(iV1 , jV1), with : iV1 = i∗ and jV1 = j∗.
• V2(iV2 , jV2), with: iV2 = i∗+ r1.λ

∗ and jV2 = j∗+ r2.λ
∗.

These points mark the endpoints of the approximate largest
box included in the considered instance of polytope P(n). To
compute the parametric coordinates of the extremal points of
the MPIB included in the parametric polytope P(n), we need
to compute a regression line for each of the four coordinates.
These lines are given by the following equations:

iV1(n) = α1.n+β1

jV1(n) = α2.n+β2

iV2(n) = α3.n+β3

jV2(n) = α4.n+β4

The parametric coordinates of V1(n)(iV1(n) , jV1(n)) and
V2(n)(iV2(n) , jV2(n)) define the parametric maximal inner box
of P(n). Indeed, in order to determine this box, it suffices
to find its two extremal points V1 and V2 having the lowest,
respectively highest coordinates as shown in Figure 5.
Our approach of approximating the MPIB is described in
Algorithm 2.

Example:
Let P(p) be the parametric polytope defined by the following
inequations:

P(p) =


−i+ j ≤−2
i+ j ≤ n
2i−6 j ≤ n+4
−9i+18 j ≤ n−2
n ≥ 20

P(p) can be rewritten as follows:

P(p) = {X ∈ R2 : AX ≤ Bp+b}, where :

X =

[
i
j

]
,A =


−1 1
1 1
2 −6
−9 18

 ,b =


−2
0
4
−2

 ,B =


0
1
1
1

 ,and p =
[
n
]
,
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A+,A+
1 , and A+

2 , are given as follows:

A+ =


0 1
1 1
2 0
0 18

 ,A+
1 =


0
1
2
0

 ,and A+
2 =


1
1
0

18


By assigning different values to the parameter n (instantiation

of P(n)) and solving the linear programs LP1, LP2, and LP3
below, we obtain the coordinates of the two extremal points V1
and V2 of the approximate MPIB of P(n), as shown in Table 1.

LP1 : r1 =max

r :


−1 1
1 1
2 −6
−9 18

X +


0
1
2
0

r ≤


0
1
1
1

n+


−2
0
4
−2




LP2 : r2 =max

r :


−1 1
1 1
2 −6
−9 18

X +


1
1
0

18

r ≤


0
1
1
1

n+


−2
0
4
−2




LP3 : λ
∗=max

λ :


−1 1
1 1
2 −6
−9 18

X+


0 1
1 1
2 0
0 18

rλ≤


0
1
1
1

n+


−2
0
4
−2




, where r = [r1 r2]
Then, we use Microsoft Excel solver to determine the four

regression lines defining the four parametric coordinates of
points V1(n)(iV1(n), jV1(n)) and V2(n)(iV2(n), jV2(n)) from the
instances of V1(iV1 , jV1) and V2(iV2 , jV2):

iV1(n) = 0,384258945560599.n−0,318353165232634
jV1(n) = 0,084104990554686.n−0,576570768496135
iV2(n) = 0,752314971664028.n+0,270287695130927
jV2(n) = 0,247685028335843.n−0,270287693456269

Finally, the parametric inner box is defined by the two
extremal points V1(n)(iV1(n), jV1(n)) and V2(n)(iV2(n), jV2(n)) as
illustrated in Figure 5 (for n=50).

In determining the regression lines for the coordinates of the
maximal parametric inner box (MPIB), we experimented with
various levels of decimal precision to ensure that each calculated
point remains a valid integer point within the polytope, across
a wide range of values for the parameter n. Specifically, we
evaluated precision levels of 6, 8, 10, 12, and 15 decimal
places in the regression expressions. The results showed
that a precision of at least 15 decimal places was necessary
to maintain the validity of all coordinates as integer points
inside the polytope for n values ranging from the initial
value up to 1,000,000. With fewer than 15 decimal places,
certain coordinates occasionally fell outside the bounds of the
polytope, which would compromise the accuracy of the MPIB

Algorithm 2: Approximation of the Maximal
Parametric Inner Box.

Data: A parametric polytope P(n).
Result: MPIB
Begin
Let :

A+ be the positive matrix of A.
A+

1 and A+
2 be the first and second columns of A+,

respectively.
Let :

AiV1
[ ], A jV1

[ ], AiV2
[ ] and A jV2

[ ] be the coordinate
arrays of points V1 and V2 (for different values of the
parameter).

Step 1:
counter← 1;
n← intilal value;
while (n≤ f inal value) do

Solve LP1 : r1 = max{r : AX +A+
1 r ≤ Bn+b}.

Solve LP2 : r2 = max{r : AX +A+
2 r ≤ Bn+b}.

Solve LP3 : λ ∗ = max{λ : AX +A+rλ ≤ Bn+b}.
with r = [r1r2].

//The solution of LP3 is: (X∗,λ ∗),
//where: X∗ = [i∗ j∗]t .
// The inner box is defined by the two points
// V1(iV1 , jV1) and V2(iV2 , jV2), where
//iV1 = i∗, jV1 = j∗, iV2 = i∗+ r1λ ∗ and
// jV2 = j∗+ r2λ ∗.
AiV1

[counter]← i∗;
A jV1

[counter]← j∗;
AiV2

[counter]← i∗+ r1λ ∗;
A jV2

[counter]← j∗+ r2λ ∗;
counter← counter+1;
n← n+ step; //step = 100000

end
Step 2
Determination of the four regression lines corresponding
to the values stored in arrays:
AiV1

[ ],A jV1
[ ],AiV2

[ ], and A jV2
[ ] as follows:

iV1(n)← α1.n+β1;
jV1(n)← α2.n+β2;
iV2(n)← α3.n+β3;
jV2(n)← α4.n+β4;

The approximate MPIB is defined by the two parametric
points :

V1(n)(iV1(n), jV1(n)) and
V2(n)(iV2(n), jV2(n)).

end.

approximation. Thus, we opted for 15 decimal places in the
regression expressions to ensure that the MPIB coordinates
reliably represent integer points within the polytope over the full
range of parameter values considered in our study.

It is worth noting that it is possible to consider coordinates
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Table 1: Coordinates of V1 and V2 for Example 1.

n 20 100 1000 10000 100000 150000 200000 1000000
iV1 8 39 384 3843 38426 57639 76852 384259
jV1 2 8 84 841 8410 12616 16821 84105
iV2 16 76 753 7524 75232 112848 150464 752316
jV2 4 24 247 2476 24768 37152 49536 247684

with fewer decimal places. However, an additional verification
step is required to ensure that all coordinates lie within the
polytope. If any coordinate does not satisfy this inclusion
constraint, it is necessary to adjust the point by selecting the
nearest valid coordinates within the polytope.

4 ENHANCING CODE GENERATION
PERFORMANCE USING THE MPIB

APPROXIMATION ALGORITHM

Methodology

Our methodology is based on the Maximal Parametric Inner-
Box (MPIB) approximation algorithm, which aims to optimize
code generation by reducing costly function calls in loop
bounds. The approach involves three main steps:

1. Start by running the first three setps of CLooG algorithm
to generate a polyhedral representation of the source code
to be optimized.

2. Apply the MPIB approach to convert the polyhedral
representation into a new form that enhances code
performance.

3. Resume the CLooG algorithm from Step 4 to generate a
new code using this later polyhedral representation.

In the following, we will show how the Maximal Parametric
Inner Box (MPIB) approximation approach can be applied in
generating effective code. The main objective of our work is
to generate an efficient code using the polyhedral model. This
code will be generated by combining CLooG algorithm with our
method of approximating the MPIB presented in the previous
section. This approach consists in modifying CLooG algorithm
(Algorithm 1) immediately after step 3. In this new algorithm,
we start by calling CLooG until step 3. Then we compute the
approximate MPIB for each sub-polytope Pi obtained at step 3
and replace it with the following 5 sub-polytopes Pi1 ,Pi2 ,Pi3 ,Pi4 ,
and Pi5 :

- Pi1 = Pi∪{i < iV1(n)},
- Pi2 = Pi∪{i≥ iV1(n), i≤ iV2(n), j < jV1(n)},
- Pi3={i≥iV1(n), i≤ iV2(n), j≥ jV1(n), j≤ jV2(n)} // the MPIB,
- Pi4 = Pi∪{i≥ iV1(n), i≤ iV2(n), j > jV2(n)},
- Pi5 = Pi∪{i≥ iV2(n)}.

After the step of generating this new polyhedral
representation of the code to be optimized, we resume

CLooG algorithm from step 4. This means that, instead of
generating the code for the polyhedral set given by CLooG, we
do it for the new polyhedral representation based on the MPIB
approximation approach. This approach offers the advantage
of efficiently handling regular polyhedral sets, requiring only a
few calls to min/max and floor/ceil functions. This optimization
significantly improves the execution time of the generated code.

We note that the core factor in our work is the execution time,
as this is critical in evaluating the efficiency of the generated
code within the polyhedral model. Algorithm 3 summarizes our
MPIB-based code generation method.

It should be noted that the method for determining the MPIB
can, if necessary, be applied recursively to one or all of the
sub-polytopes Pi1 ,Pi2 ,Pi4 or Pi5 when the polytope is sufficiently
large. Furthermore, this method can be generalized to higher
dimensions, which involves solving (d +1) linear programs for
a dimension d.

5 ILLUSTRATING EXAMPLE

Consider the following parametric polytope:

P(p) =


−i+ j ≤−2
i+ j ≤ n
2i−6 j ≤ n+4
−9i+18 j ≤ n−2
n ≥ 20

The corresponding code generated by CLooG-0.18.4 for this
polytope and its graphical representation are shown in Figures
2 and 3, respectively. Note that the presence of calls to the
min/max and floor/ceil functions in the inner-loop bounds of
the generated code results in a substantial control overhead,
affecting execution time. The idea of our approach is to
avoid, as much as possible, costly function calls inside loop
bounds using the modified GLooG algorithm (Algorithm 3)
based on the MPIB approximation method (Algorithm 2). The
resulting optimized code and its corresponding iteration domain
are shown in Figures 2 and 3, respectively.

6 COMPARISON WITH PRIOR WORK AND
ANALYSIS

In this section, we provide a comparative analysis between
our method and existing techniques, particularly focusing on
the latest version of the CLooG tool (0.18.4), which has been
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for (i=2; i≤ floord(7*n+4,8); i++) {
for(j=max(0,ceild(2*i-n-4,6));j≤min(min(floord(9*i+n-2,18),-i+n),i-2); j++){

S(i,j);
}
}

Figure 2: Generated code by CLooG 0.18.4

Algorithm 3: Code generation using MPIB
approximation approach (Modified CLooG’s
algorithm).

Data: a parametric polytope P(n).
Result: Generated Code
Begin
Step 1.
Execution of Steps 1, 2 and 3 of the ClooG algorithm
(Algorithm 1) to generate a disjoint union of polytopes
S =

⋃|S|
i=1 Pi corresponding to the union of input

polytopes (Polyhedral representation of the source code
to be optimized)

Step 2
Decomposition of each polytope Pi ∈ S into a disjoint

union of 5 sub-polytopes Pi1 ,Pi2 ,Pi3 ,Pi4 , and Pi5 , where :

For all l,k ∈ {1,2,3,4,5} and l ̸= k :

{
Pi = ∪5

j=1Pi j

Pil ∩Pik = /0

with:

- Pi1 = Pi∪{i < iV1(n)},
- Pi2 = Pi∪{i≥ iV1(n), i≤ iV2(n), j < jV1(n)},
- Pi3 = {i≥ iV1(n), i≤ iV2(n), j ≥ jV1(n), j ≤ jV2(n)},
- Pi4 = Pi∪{i≥ iV1(n), i≤ iV2(n), j > jV2(n)},
- Pi5 = Pi∪{i≥ iV2(n)}.

Step 3
Resume the CLooG algorithm from Step 4 to generate
the code corresponding to the disjoint union of polytopes
generated in the previous step (Step 2). end.

widely used for polyhedral code generation. While CLooG is
recognized for its efficiency in generating code from polyhedral
representations, our method introduces the Maximal Parametric
Inner-Box (MPIB) approximation, which offers notable impro-
vements in execution time.

One of the key differences between our approach and
previous work lies in the way the loop bounds are handled.
Traditional methods, including CLooG, rely heavily on the
use of min/max and ceil/floor function calls, which can add
significant overhead in execution. In contrast, our approach
minimizes these function calls by approximating the maximal
inner-box, leading to reduced computational load and enhanced
performance. This difference is more significant for large

Figure 3: Graphical representation of example 1

parameter values.
In order to demonstrate the performance of our method,

we consider the codes from Figures 2 and 4 generated by
the original CLooG algorithm and our MPIB-based method
respectively. These codes were compiled with gcc 5.4 and
executed on an Intel i5 processor at 2.30GHz, with the values
of the parameter n ranging from 100000 to 10000000 and a step
of 100000.

Figure 6 and Table 2 present the execution times for both
the standard CLooG algorithm and the proposed MPIB-based
approach across varying parameter values. This comparison
allows us to observe the substantial improvement in execution
time when employing our approach, particularly noticeable with
larger values of the parameter n. For instance, with n = 500000,
the runtime for the code produced by CLooG-18.0.4 is 173.99 s,
whereas our method yields a runtime of 140.87 s, resulting in a
gain rate of 19.04%. This improvement is due to the decreased
number of calls to min/max and floor/ceil functions in the code
generated by our approach.

7 CONCLUSION AND FUTURE WORK

Optimizing code generation for nested loops is crucial
in maximizing hardware resource utilization and enhancing
application performance. The polyhedral model, with its
sophisticated tools, is extensively employed in code generation
algorithms.

The efficiency of the generated code is significantly impacted
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for (i=2;i≤floord(9606473639*n-7958829131,25000000000);i++) {
for (j=0;j≤min(floord(9*i+n-2,18),i-2);j++){

S1(i,j);
}
}
for(i=ceild(9606473639*n-7958828880,25000000000); i≤floord(47019685729*n+16892980945,

62500000000);i++){
for(j=max(0,ceild(2*i-n-4,6));j≤floord(42052495277*n-288285384248, 500000000000);j++) {

S1(i,j);
}
for(j=max(ceild(2*i-n-4,6),ceild(42052495277*n-288285379248,500000000000));j≤

floord(49537005667*n-54057538692,200000000000);j++){
S1(i,j);

}
for(j=ceild(49537005667*n-54057536691,200000000000);j≤min(floord(9*i+n-2,18),-i+n);j++){

S1(i,j);
}
}
for(i=ceild(47019685729*n+16892981571,62500000000);i≤floord(7*n+4,8);i++) {

for (j=ceild(2*i-n-4,6);j≤-i+n;j++) {
S1(i,j);

}
}

Figure 4: Generated code by our approach

Figure 5: Separation of the polytope into 5 sub-polytopes

Table 2: Execution times for CLooG’s algorithm and Our Algorithm

n 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000
CLooG(s) 6.96 27.84 62.64 111.35 173.99 250.52 340.98 445.36 564.04 689.92
MPIB(s) 5.36 21.29 50.72 90.16 140.87 202.86 276.11 360.60 456.37 563.63

Gain 1.60 6.55 11.92 21.19 33.12 47.66 64.87 84.76 107.67 126.29
Ratio(%) 22.97 23.52 19.03 19.03 19.04 19.03 19.02 19.03 19.09 18.30
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Figure 6: Execution times

by how polyhedral operations are applied to the mathematical
representation of the original code.

This article presents a new approach based on the proposed
parametric maximal inner-box approximation algorithm,
representing a promising avenue for further enhancing code
generation efficiency.

By identifying this box for each polyhedral set and
performing the underling transformations, we mitigate costly
function calls during loop traversal, ultimately leading a
substantial improvement of the code performance, particularly
with larger values of the parameter where the gain could
achieve about 20% in some cases. The experimental
results demonstrate notable advantages compared to existing
techniques, encouraging further exploration of the potential
impact of this approach in nested loop optimization.

In line with the problem statement and research contribution,
our study has successfully addressed the challenge of
optimizing loop-based code generation by leveraging the
polyhedral model. Focusing on reducing computational
overhead, particularly through the new concept of MPIB, we
have provided a solution that improves execution efficiency in a
way that was not previously explored.

Despite the significant improvements in execution time and
efficiency achieved by the proposed MPIB-based approach,
some limitations can be observed. While the method enhances
performance in many cases, its effectiveness is highly dependent
on the structure of the polyhedral sets being processed. In
particular, when iteration domains are highly irregular or
contain non-affine constraints, the approximation may not
deliver optimal results. Additionally, extending the approach
to higher-dimensional polyhedral sets presents challenges, as
the complexity of solving additional linear programs increases
significantly.

This study opens up several promising directions for future

research in nested loop optimization. First, extending the
proposed MPIB approach to more complex cases, such as
higher-dimensional polyhedral sets dealing with deeper levels
of nesting. Additionally, hybrid optimization strategies, like
combining MPIB with techniques such as parametric tiling or
dynamic loop transformations, could yield further performance
improvements. Another key area for exploration is the
integration of this method into modern compilation frameworks
to facilitate its adoption by software developers and increase
its usability in practical applications. Addressing these aspects
would allow the proposed approach to be refined and extended
to a broader range of applications in polyhedral optimization.
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