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Abstract 

This research explores the optimization and 

deployment of YOLO (You Only Look Once) -based 

object detection models for real-time pest detection in 

agricultural environments. Four YOLO variants—

YOLOv8, YOLOv9, YOLOv10, and YOLOv11—

were evaluated for their performance across metrics 

such as precision, recall, F1-score, accuracy, and 

mean Average Precision (mAP@0.5). The study 

utilized the NBAIR dataset, encompassing 40 pest 

species, and applied advanced data augmentation 

techniques to enhance model robustness. Among the 

models, YOLOv9 achieved the best overall 

performance with 93% accuracy, 0.959 mAP@0.5, 

and a 0.96 F1-score, making it suitable for real-time 

agricultural applications. YOLOv11 demonstrated the 

highest precision (0.932), while YOLOv10 provided 

efficient latency and competitive detection 

capabilities, particularly on mobile devices. Although 

YOLOv8 underperformed in comparison, its 

optimization potential is noted. The findings 

underscore the importance of lightweight, efficient, 

and accurate AI models in sustainable pest 

management, reducing pesticide reliance, and 

enabling data-driven decisions in precision 

agriculture. 
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1. Introduction 

 Agriculture is essential for maintaining human 

life, but it encounters major challenges from pest 

infestations, leading to considerable losses in global 

crop yield. Presently, pest detection techniques in 

agriculture mainly depend on manual identification, 

a process that is not only labour-intensive but also 

vulnerable to human error. Automated pest 

detection systems present a solution to these 

challenges, providing a quicker and more 

dependable method for monitoring pest 

populations. This project seeks to address the 

existing research gap by utilizing advanced object 

detection models to transform pest detection 

methodologies(Singh et al., 2024).  

This project is driven by the critical necessity to 

enhance agricultural efficiency and reduce crop 

losses. On time and precise identification of pests 

minimizes dependence on widespread pesticide 

use, allowing farmers to focus on particular threats, 

thus enhancing resource efficiency and promoting 

environmental sustainability. This project seeks to 

enhance pest management strategies through the 

integration of advanced machine learning models, 

focusing on precision and automation in pest 

detection. 

The idea for this project significantly improves 

sustainable agriculture through the encouragement 

of environmentally conscious farming methods. 

Precise identification of pests minimizes reliance 

on chemical pesticides, which often negatively 

impact non-target organisms and contribute to soil 

and water contamination. Moreover, prompt 

identification reduces crop loss, enhances food 

security, and decreases waste. 

Artificial intelligence (AI) has emerged as an 

essential component of contemporary agricultural 

methods, due to its capacity to analyze extensive 

datasets and produce practical insights. AI 

applications have revolutionized traditional 

farming, ranging from precision irrigation to 

automated harvesting. Object detection, a 

specialized area within artificial intelligence, is 

essential for recognizing and monitoring pests, 

diseases, and various elements that affect crop 

health.  

YOLO (You Only Look Once)(Sapkota et al., 

2024) was selected for this project because of its 

remarkable speed and precision in object detection 

tasks. In contrast to conventional models that rely 

on region-based detections, YOLO analyzes the 

entire image simultaneously, resulting in 

outstanding performance for real-time applications. 

This study analyzes various iterations of YOLO (v8 

(Rizk & Bayad, 2023), v9, v10, and v11) to assess 

the development of the model and its effectiveness 

in pest detection (Bhatnagar et al., 2023). 

Analyzing the results from different (Sapkota et al., 

2024)YOLO versions is crucial for determining the 

most efficient model for this application. Aspects 
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such as inference speed, memory efficiency, model 

compatibility, and detection accuracy play a critical 

part in the deployment of systems in practical 

agricultural contexts, particularly in environments 

with limited resources. 

The selected dataset for this study includes a wide 

array of pest images, carefully gathered to ensure 

accurate representation from multiple pest species 

and habitats. The variety present strengthens the 

model's capacity to generalize and operate 

consistently across various agricultural contexts. 

Jetson devices (Swaminathan et al., 2024)are 

essential in the Internet of Things (IoT) for 

agriculture, because of their compact design and 

impressive computational capabilities. Utilizing 

optimized models such as TensorRT-converted 

YOLOv8 and YOLOv9 on Jetson devices 

facilitates real-time pest detection in the field, 

positioning them as(Pham et al., 2023) excellent 

options for IoT-based solutions. 

This project aligns with the principles of 

sustainable agriculture through the integration of 

advanced AI models and IoT technologies. This 

initiative provides farmers with the necessary tools 

to make up-to-date data-driven choices, minimizes 

environmental consequences, and plays a vital role 

in developing a more resilient food system. 

2. Related Works 

 

Several studies(Rane et al., 2024)(Huo et al., 

2024)(Piancharoenwong & Badir, 2024) have 

explored different approaches for identifying pests 

and diagnosing plant diseases in the field of 

agriculture. Conventional methods frequently 

utilized image processing techniques for the 

analysis of visual symptoms, yet they were limited 

by their dependence on manually crafted features. 

Support Vector Machines (SVMs) and k-Nearest 

Neighbors (k-NNs) are among the machine learning 

algorithms that have been utilized, often alongside 

feature extraction techniques. Although these 

methods enhanced accuracy relative to 

conventional techniques, (Deng et al., 2023)their 

dependence on manual feature engineering limited 

scalability and adaptability. 

 

Deep learning, especially Convolutional Neural 

Networks (CNNs), has become a more efficient 

approach. Convolutional neural networks have the 

capability to autonomously extract features from 

unprocessed image data, which enhances their 

effectiveness in applications like pest and disease 

detection. The application of transfer learning, 

involving the fine-tuning of pre-trained models for 

targeted agricultural tasks, has significantly 

improved the efficacy of deep learning systems. 

Moreover, deep CNNs have demonstrated 

encouraging outcomes in the classification of 

microscopic images, broadening their use in 

accurate identification tasks within plant pathology. 

 

Object detection algorithms based on YOLO (Raja 

Gopal & Prabhakar, 2024) have been investigated 

for use in agriculture, particularly in areas such as 

pest detection and the identification of wheat 

spikes. These studies emphasize YOLO’s capacity 

to provide real-time performance, even under 

demanding field conditions. Optimizing models 

such as YOLOv5 for deployment on devices with 

limited resources has shown considerable decreases 

in inference time while maintaining a slight 

reduction in accuracy. These advancements closely 

align with our objectives, highlighting the 

importance of efficient and practical solutions for 

real-time pest detection in sustainable agriculture. 

Object detection algorithms based on YOLO (Raja 

Gopal & Prabhakar, 2024)have been investigated 

for use in agriculture, particularly in areas such as 

pest detection and the identification of wheat 

spikes. These studies emphasize YOLO’s capacity 

to provide real-time performance, even under 

demanding field conditions. Optimizing models 

such as YOLOv5 for deployment on devices with 

limited resources has shown considerable decreases 

in inference time while maintaining a slight 

reduction in accuracy. These advancements 

closely(Donapati et al., 2023) align with our 

objectives, highlighting the importance of efficient 

and practical solutions for real-time pest detection 

in sustainable agriculture. 

 

The findings from these studies illustrate the 

transition from conventional techniques to those 

based on deep learning, emphasizing the 

effectiveness of CNNs and YOLO models in the 

areas of pest detection and plant disease 

classification. (Li et al., 2023) Using these   

advancements, our study aims to enhance 

performance for real-time agricultural applications. 

 

 

The major contributions and limitations of 

significant related works relevant to this study are 

summarized in Table 1, offering a comprehensive 

overview of existing methods in the context of pest 

detection.
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Table 1 Key Contributions and Key Limitations of the Significant Related Works 

Related Study Major Contribution Major Limitation 

(Yang et al., 

2023) 

Implemented DPAG and FEM to enhance 

accuracy, substituted standard convolution 

with DSConv for improved speed, and 

utilized a variety of tomato datasets. 

There are challenges related to missed 

detections for obscured tomatoes, constraints 

in mobile deployment testing, and the necessity 

to optimize the trade-offs related to DSConv. 

(Shang et al., 

2024) 

Investigated sustainable pest management 

approaches, focusing on secondary 

metabolites, phytohormones, biocontrol 

agents, and insect pheromones. 

Issues related to the expense of phytohormone 

treatments, the intricacies of biocontrol 

programs, the application of pheromone-based 

techniques, and the delivery and stability of 

RNAi. 

(S. Guan et al., 

2024) 

Improved YOLOv10 using BiFPN for multi-

scale feature integration, SEAM for attention 

enhancement, and GCNet for global context, 

resulting in superior detection of wheat 

spikes. 

Future investigations will focus on thermal 

infrared imagery, advancements in 3D 

technology, the development of lightweight 

versions suitable for devices with constrained 

computing capabilities, and their incorporation 

into smart agricultural machinery. 

(Mishra et al., 

2024) 

Advancements in the management of storage 

pests encompass nano-pesticides, bio-

pesticides, integrated pest management 

strategies, and genetic control methods. 

There are obstacles related to awareness, 

financial limitations, and the necessity for 

tailored strategies that address the diverse 

climatic conditions across India. 

(H. Guan et al., 

2023) 

A reduced deep learning model designed for 

precise detection of plant diseases and pests, 

integrating ResNet with EfficientNetV2. 

Challenges arise with complex backgrounds 

and restricted samples, highlighting the 

necessity for enhancements in robustness and 

generalization. Future optimization is essential 

for varying environmental conditions. 

(Nnadozie et al., 

2024) 

A streamlined version of YOLOv5 has been 

developed for real-time crop monitoring. By 

eliminating certain detection scales, the 

model size has been reduced, enhancing 

speed and leading to quicker detection while 

maintaining minimal accuracy loss. 

There is a trade-off between speed and 

accuracy, which may lead to reduced accuracy 

for object sizes that fall within discarded scales. 

Additional optimization techniques, such as 

knowledge distillation, are required. 

(Zhou et al., 

2024) 

 

A comprehensive approach that combines 

cultural practices, biological control, genetic 

pest management, and precise pesticide 

application to promote sustainable 

agriculture. 

Issues related to gaps in understanding pest 

biology, the effects of climate change, 

sustainability over the long term, and the 

implications for ecosystems. There is a 

necessity for enhanced awareness among 

farmers, along with improved social and 

cultural acceptance, as well as financial 

incentives. 
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(Dai et al., 

2023) 

Focus on accurate integrated pest 

management, collaboration with additional 

sustainable methods, involvement of the 

public in research, and the utilization of 

innovative technologies such as blockchain 

and artificial intelligence for improved pest 

observation and management. 

There is a necessity for investigating 

innovative control methods such as RNA 

interference, semiochemicals, and gene 

editing. This research should focus on the 

effects of climate change and aim to tackle 

challenges related to awareness, economic 

limitations, and social influences to facilitate 

wider adoption of integrated pest management 

practices. 

(Türkoğlu & 

Hanbay, 2019) 

A new classification framework for 

identifying plant diseases and pests that 

utilizes a blend of pre-trained deep learning 

networks for feature extraction alongside 

traditional classifiers such as SVM, ELM, 

and KNN. This method demonstrates the 

ability to achieve high accuracy while 

maintaining computational efficiency. 

Using a comparatively limited collection of 

images illustrating plant diseases and pests 

sourced from a particular area in Turkey. This 

restricts the applicability of the findings to 

different geographical areas and plant species. 

To validate the effectiveness of the proposed 

method in real-world applications, a larger and 

more diverse dataset is essential. 

(Ebrahimi et al., 

2017) 

Developed and reviewed a vision-based 

system employing SVM classification for 

real-time pest detection in a greenhouse 

environment, attaining impressive accuracy 

with an error rate of less than 2.5% in 

identifying thrips. This method presents an 

exciting, possibilities for automated pest 

monitoring and precise pest management, 

enhancing sustainability and efficiency in 

agricultural practices. 

Performed an experiment within a regulated 

greenhouse setting, concentrating mainly on 

thrips affecting strawberry plants. The 

applicability of the system to additional pests, 

crops, and outdoor settings may be restricted 

and requires further investigation and 

modification. Elements like differing lighting 

conditions, intricate backgrounds, and a range 

of pest morphologies may present obstacles for 

precise detection in practical agricultural 

environments. 

 

3. Methodology 

This study aims to create an effective and practical 

pest detection system by integrating advanced object 

detection models with optimizations specifically 

designed for real-world application. We perform a 

comparative analysis using YOLO versions 8, 9, 10, 

and 11 (Thakur et al., 2023)to determine the most 

appropriate model for pest detection. The workflow 

incorporates TensorRT conversion to improve 

inference speed and minimize computational 

overhead, rendering it appropriate for resource-

limited settings like Jetson devices. 

 

In addition, (Bahari et al., 2024)(Shang et al., 

2024)ablation studies were carried out by eliminating 

elements such as the AILU activation function and 

Adam optimizer in YOLOv11 to assess their impact 

on model performance. The utilization of the diverse 

NBAIR dataset facilitates comprehensive model 

training and testing across a range of pest species, 

thereby enhancing generalizability in agricultural 

contexts. This approach aims to achieve an optimal 

equilibrium between precision, effectiveness, and 

relevance in developing sustainable agricultural 

practices. 

 

3.1 Dataset 

The dataset used in this study is the National Bureau 

of Agricultural Insect Resources (NBAIR) dataset, 

which includes an extensive compilation of images 

representing 40 different pest species frequently 

found in agricultural environments. This dataset 

provides an accurate basis for the training and 

assessment of object detection models aimed at 

identifying pests in agricultural crops. The NBAIR 

dataset features images that are carefully labeled and 

organized, providing dependable and precise 

annotations for machine learning purposes. 

 

The dataset includes a diverse range of insect classes, 

including the Asian Lady Beetle, Ladybug, Mealy 

Bug, Pyrilla perpusilla, and Stink Bug. The dataset 

shows an imbalance, characterized by a significant 

variation in the number of samples across the 

different classes, as shown in Table 1. 
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The imbalance in the dataset presents difficulties for 

model training, as classes that lack representation 

can result in biased predictions. To address this issue, 

techniques for data augmentation were subsequently 

implemented to balance the class distribution, 

thereby enhancing the diversity of the dataset and 

ensuring more effective model training. 

Table 2 Summary of Data Samples 

S No Insect Name 
No. of 

Samples 

No. Test 

Samples 

1 
Asian Lady 

Beetle  
876 300 

2 Ladybug  503 300 

3 Mealy Bug 802 300 

4 
Pyrilla 

perpusilla 
1099 300 

5 Stink Bug 701 300 

6 Total 3981 1500 

The NBAIR dataset [Table 2] was chosen for this 

study because of its extensive documentation of pest 

species that are essential to agricultural productivity. 

The number of possibilities present makes it highly 

appropriate for developing models that require 

effective generalization across different field 

conditions and pest populations. The carefully 

organized and annotated dataset guarantees a high 

level of reliability, positioning it as an excellent 

option for progressing studies in pest detection. 

This dataset is essential for linking artificial 

intelligence with practical agricultural uses, serving 

as a basis for creating smart systems that support 

farmers in sustainable pest management. 

3.2 Data Augmentation 

 

To address the class imbalance, present in the 

NBAIR dataset and improve the stability of the pest 

detection model, a range of image augmentation 

techniques were used. The initial dataset, 

comprising 3,981 samples from five insect 

categories, was enhanced to create a balanced 

dataset containing 4,500 samples (1,500 samples for 

each category). The augmentation techniques 

facilitated the model's ability to learn distinguishing 

features across all classes, while also reducing bias 

towards the majority class. 

 

15% of the images had random grayscale conversion. 

This transformation enabled the model to prioritize 

texture and structural features over just color 

information, enhancing its stability against 

variations in lighting and color. 

Images underwent zooming, and the bounding boxes 

of relevant objects were extracted. This method 

allowed the model to identify and concentrate on 

important objects, despite variations in scale or 

viewpoint. 

The images underwent rotation, and the bounding 

boxes were modified to correspond with the 

repositioned objects. This allowed the model to 

recognize pests regardless of the angle from which 

they were observed. 

Modifications in color intensity and the use of 

blurring effectively mimicked real-world scenarios 

such as changes in lighting or focus. The 

transformations contributed to the model's enhanced 

ability to generalize across various environments. 

Mixup augmentation [Fig 1] produced unusual 

samples through the combination of two images 

along with their associated labels. This was 

accomplished through the utilization of a mixing 

factor attracted from a Beta distribution. The 

hyperparameter α regulated the interpolation 

strength, maintaining a balance between the original 

and mixed samples. The implementation (eqn. 1) of 

Mixup enhanced the model's ability to generalize by 

creating diverse associations between images and 

labels [eqn 1] [eqn 2]. 

𝑥̅  =  𝜆𝑥1  +  (1 −  𝜆)𝑥2     (𝑒𝑞𝑛 1) 

𝑦̅  =  𝜆𝑦1  +  (1 −  𝜆)𝑦2     (𝑒𝑞𝑛 2) 

 
 

RandAugment [Fig 2] implemented a series of 

randomly chosen transformations, including rotation, 

shear, and color modifications. The magnitude 

parameter governed the intensity of these 

transformations, guaranteeing that they successfully 

modified the images while maintaining the integrity 

of the objects [eqn 3]. 

Figure 1. Mixup Augmentation 
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𝑥̅  =  𝑇𝑖𝑁
(𝑇𝑖𝑁−1

(… 𝑇𝑖1
(𝓍; 𝑀) … ; 𝑀); 𝑀)    (𝑒𝑞𝑛 3) 

 

3.3 Results of Augmentation 

The application of these augmentation techniques 

resulted in an increase in dataset size from 3,981 

images to 4,500 images, maintaining an equal 

distribution of 1,500 samples per class. The 

balanced dataset facilitated effective learning across 

all classes, enhancing the model's capability to 

identify pests under various conditions [Fig 3].  

 

 
Figure 3. Augmented Dataset Distribution 

3.4 Model Identification 

3.4.1 YOLOv8 

YOLOv8 [Fig 4] represents an important 

improvement in the YOLO (You Only Look Once) 

series of object detection models, featuring various 

architectural enhancements aimed at improving 

performance and efficiency. The network causes with 

an input layer that accommodates images sized 

1x3x640x640, reflecting the batch size, channel 

count (RGB), and spatial dimensions in that order. 

The structure of YOLOv8(Thakur et al., 2023)(Rizk 

& Bayad, 2023)(Yi et al., 2024)(Wang et al., 2023) 

complies to a hierarchical feature extraction approach, 

initiating with Conv1 (1x16x320x320) and gradually 

decreasing spatial dimensions while enhancing the 

depth of features.  

This is accomplished by using a sequence of 

convolutional layers (Conv1 to Conv7) interspersed 

with C2f blocks, which represent modified Cross 

Stage Partial Network (CSP) modules aimed at 

enhancing feature extraction. The initial layers 

identify fundamental characteristics such as edges 

and textures, whereas the subsequent layers develop 

more intricate, abstract illustrations of objects. 

An important architectural feature is the arrangement 

of various detection heads (P3, P4, and P5) placed at 

distinct scales within the network. These detect heads 

are carefully engineered to accommodate objects of 

different dimensions - P3 for smaller items, P4 for 

those of medium size, and P5 for larger entities. This 

multi-scale detection method greatly enhances the 

model's capacity to identify objects of varying sizes 

within a single image. The network uses multiple 

upsampling and concatenation processes to combine 

features from various scales.  

The connections illustrated in the diagram via 

"Upsample + Concat" blocks facilitate the model's 

ability to preserve fine-grained spatial details from 

earlier layers alongside semantic information from 

deeper layers. The SPPF module, with dimensions 

1x256x20x20, improves the network's capability to 

manage objects of differing sizes through the 

application of pooling at multiple scales. 

The final output layer (1x84x8400) shows the 

model's predictions, (Yi et al., 2024)with 84 channels 

generally associated with object class predictions, 

bounding box coordinates, and objectness scores, 

while 8400 denotes the number of possible object 

predictions. This output format allows for the 

simultaneous prediction of multiple objects in one 

forward pass, preserving the characteristic speed of 

YOLO while enhancing accuracy through 

architectural improvements. 

Across the network(Terven et al., 2023), different 

convolutional layers modify the feature dimensions, 

with sizes varying from 320x320 at the input to 

20x20 in the deeper layers. The model employs a 

variety of concatenation operations (Concat1 and 

Concat2) to integrate features from multiple 

processing paths, facilitating a comprehensive 

feature representation for exact object detection. The 

alternating arrangement of convolutional layers and 

C2f blocks contributes to the development of a strong 

feature structure, all while ensuring computational 

efficiency is preserved. 

Figure 2. RandAugment Augmentation 
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Figure 4. Yolov8 Backbone Architecture 

 

3.4.2 YOLOv9

YOLOv9 (Lu & Wang, 2024) [Fig 5] indicates an 

important shift in architectural philosophy, 

departing from the trend of simply increasing 

network depth and focusing on the optimization of 

simpler architectural elements. This model presents 

notable advancements that set it apart from 

YOLOv8, especially regarding its foundational 

components and the management of information 

flow. 

The addition of reversible functions and 

programmable gradient information marks a 

significant architectural advancement in YOLOv9. 

The model addresses information loss using a 

mathematical framework articulated as 

I(X, X)  ≥  I(X, fθ(X))  ≥  I(X, gϕ(fθ(X)))   (eqn 4) 

(where, I(X,X) is Maximum information available in 

the original data, I(X,fθ(X)) is Information retained 

after the first transformation and I(X,gϕ(fθ(X))) is 

Information retained after the second 

transformation), ensuring that each transformation 

preserves mutual information between the original 

and transformed data. 

This represents an important change from the direct 

feature pyramid network methodology employed by 

YOLOv8. The basic elements of YOLOv9 went 

through a redesign, as illustrated in the architectural 

diagram. The Conv block has been updated to 

feature a streamlined series of convolution, batch 

normalization, and SiLU activation function. The 

introduction of RepConv blocks enhances this 

approach, utilizing parallel convolution paths along 

with SiLU activation, which offers improved feature 

extraction capabilities in comparison to the C2f 

blocks of YOLOv8. 

An important advancement is the RepNBottleNeck 

structure, which incorporates skip connections 

around a RepConvN block, succeeded by 2D 

convolution. This design facilitates the smooth flow 

of information and effectively tackles the bottleneck 

challenges commonly encountered by deeper 

networks such as YOLOv8. The architecture utilizes 

multilevel auxiliary branches and deep supervision 

methods to enhance gradient flow during training, a 

characteristic absent in YOLOv8 (Thakur et al., 

2023). 

The RepNCSP module in YOLOv9 signifies a 

refined advancement of the CSP (Cross Stage 

Partial) modules implemented in YOLOv8. The 

architecture comprises parallel processing paths 

featuring convolutional blocks, RepNBottleNeck 

components, and concatenation operations, which 

together enhance the efficiency of the feature 

extraction process. This design enhances the 

preservation of information while ensuring 

computational efficiency is maintained. 

GELAN (Gradient Enhancement and Loss 

Attenuation Network) represents a significant 

advancement in YOLOv9, distinguishing it from 

YOLOv8(Yang et al., 2023). This component 

facilitates the management of gradient information 

flow and addresses the challenges associated with 

deep network training using its auxiliary to reversal 

branch mechanism. The design employs partitioned 

blocks and concatenation operations to enhance the 

management of feature flow and integration. 
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The overall structure highlights efficiency and 

information preservation using its reversible 

functions and programmable gradient information, 

rendering it more advanced in addressing the 

conventional challenges faced by deep neural 

networks in comparison to YOLOv8(Thakur et al., 

2023)(Rizk & Bayad, 2023)(Yi et al., 2024)(Wang 

et al., 2023). YOLOv8 emphasized depth and 

conventional feature pyramid networks, whereas 

YOLOv9 prioritizes the optimization of each 

component's functionality through innovative 

architectural elements. This represents a shift 

towards more efficient and theoretically sound 

design choices that tackle the limitations of deeper 

networks while preserving or enhancing detection 

performance. 

 
Figure 5. Yolov9 Architecture Diagram

3.4.3 YOLOv10

YOLOv10 [Fig 6] indicates an important 

development in object detection architecture, 

designed specifically to improve model 

compatibility and minimize latency on mobile 

devices. At its core, YOLOv10 presents an 

innovative dual-head detection system that 

significantly alters the approach to object detection 

on devices with limited resources. 

The design of YOLOv10 revolves around its 

significant dual-head system, comprising a One-to-

Many Head and a One-to-One Head. The One-to-

Many Head provides comprehensive supervision 

throughout the training process, enabling numerous 

predictions to align with ground truths. In contrast, 

the One-to-One Head utilizes a streamlined 

matching approach that removes the necessity for 

Non-Maximum Suppression (NMS) during 

inference. This represents a notable shift from the 

conventional methodology of YOLOv9, which 

depended on RepNBottleNeck and RepNCSP 

modules for feature processing, subsequently 

utilizing NMS for post-processing. 

One of YOLOv10's major advancements is its 

lightweight classification head, which presents a 

new method for feature processing. In contrast to the 

concatenation-based feature fusion utilized by 

YOLOv9, YOLOv10 separates spatial and channel 

operations. The approach employs pointwise 

convolutions to adjust the channel dimensions and 

depthwise convolutions for spatial reduction, 

leading to a significant reduction in computational 

overhead without affecting feature quality. 

YOLOv10 presents the Partial Self-Attention (PSA) 

module, offering a more efficient option compared 

to conventional attention mechanisms. YOLOv9 

used traditional convolution blocks and feature 

concatenation, whereas YOLOv10's PSA employs a 

selective self-attention mechanism to divide features 

and strategically positions attention modules post 

Stage 4, enabling effective global feature modeling 

while maintaining a manageable computational cost. 

The model incorporates various mobile-optimized 

components that differentiate it from YOLOv9. The 

approach involves the strategic application of 7×7 

depthwise convolutions in the deeper layers, the 

implementation of structural reparameterization 

with 3×3 convolution branches throughout the 

training process, and the incorporation of adaptive 

scaling that is dependent on the model size. The 

implemented optimizations lead to a known 

decrease in latency for mobile devices, all while 

ensuring that detection performance remains 

competitive. 
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A significant advancement in YOLOv10 is its 

reliable matching metric across both the one-to-

many and one-to-one heads. This integrated method 

guarantees that the best samples chosen by the one-

to-many head in training are equally suitable for the 

one-to-one head throughout inference, building a 

more integrated training process that improves 

overall performance without having extra inference 

costs. 

The architectural advancements in YOLOv10 mark 

an important transition towards mobile-centric 

object detection, highlighting efficiency and real-

world application factors while ensuring high 

detection precision. YOLOv9 emphasized 

enhancements in overall performance via advanced 

feature processing, whereas YOLOv10's specific 

optimizations render it especially appropriate for the 

increasing need for efficient, mobile-compatible 

object detection models. 

Figure 6. Yolov10 Architecture Diagram 

3.4.4 YOLOv11 

YOLOv11 (Khanam & Hussain, 2024) [Fig 7] 

presents three significant architectural 

advancements: the C3K2 block, the SPFF (Spatial 

Pyramid Pooling Fast) module, and the C2PSA 

(Cross Stage Partial with Spatial Attention) block. 

Every one of these components contributes an 

individual part in improving detection capabilities 

while ensuring efficient inference. 

The C3K2 block (Fig 7) signifies a progression in 

the methodology of feature extraction. The features 

are processed(He et al., 2024) using a sequence of 

3×3 kernel convolutions (C3K blocks) followed by 

a concatenation operation. This contrasts with 

YOLOv10's methodology of using lightweight 

classification heads alongside decoupled spatial-

channel operations. The C3K2 block is designed to 

enhance computational efficiency by using smaller 

kernels, all while preserving the quality of features. 

The SPFF module represents a notable shift from the 

feature processing methodology used in YOLOv10.  

YOLOv10 utilized a dual-head system for detection, 

whereas YOLOv11 includes the SPFF module, 

which features a pyramid structure of MaxPool2d 

operations succeeded by concatenation. The image 

illustrates how it processes features through various 

pooling layers, combining them effectively. This 

approach allows for superior multi-scale feature 

handling in contrast to the more basic feature 

processing of YOLOv10. 

The C2PSA block represents an important 

advancement, offering a more refined attention 

mechanism in contrast to the Partial Self-Attention 

(PSA) used in YOLOv10. The C2PSA block, shown 

in the image, divides the input features and channels 

them through two PSA modules before the 

concatenation. This contrasts with the approach 

taken by YOLOv10, which uses selective attention, 

providing enhanced spatial attention capabilities. 

Regarding the design of the detection head, 

YOLOv11 adopts a distinct method compared to the 

dual-head system of YOLOv10. Rather than 

concentrating on NMS-free inference as seen in 

YOLOv10, YOLOv11 utilizes a multi-scale 

prediction approach that incorporates three feature 

maps (P3, P4, and P5) to effectively manage objects 

of varying scales. This offers enhanced detection 

capabilities in a more comprehensive way than 

YOLOv10's focus on mobile optimization. 

The architecture of YOLOv11 indicates a return to 

prioritizing performance optimization, while 

maintaining a level of efficiency, which stands in 

contrast to the emphasis on mobile device 

optimization (He et al., 2024)(Soudeep et al., 

2024)seen in YOLOv10. YOLOv10 focused on 

minimizing latency with its dual-head system and 

lightweight operations, whereas YOLOv11 brings in 

advanced feature processing and attention 

mechanisms to improve detection accuracy across 

various scales. 
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Figure 7. Yolov11 Architecture Diagram 

4. Results and Discussion 

The experimental evaluation of YOLOv8, YOLOv9, 

YOLOv10, and YOLOv11 for pest detection 

showed significant variations in performance 

metrics, offering significant insights into their 

efficiency in agricultural pest monitoring 

applications. This section provides an in-depth 

examination of the models' performance through 

various evaluation metrics, such as precision, recall, 

F1-score, mean Average Precision (mAP), and 

accuracy. 

 

4.1 Precision Analysis 

Major variations in precision metrics were observed 

among the various model versions. YOLOv11 

demonstrated the highest precision at 0.932, with 

YOLOv9 following at 0.834, and YOLOv10 at 

0.759. YOLOv8, even after various optimization 

efforts, reached a precision of 0.687, highlighting 

difficulties in reducing false positive detections. The 

findings indicate that the architecture of YOLOv11 

demonstrates a higher reliability in accurately 

identifying pests while minimizing the occurrence of 

false alarms. 

 

4.2 F1-Score and Threshold Analysis 

An analysis of the F1-score identified unexpected 

trends in the performance of the model regarding 

confidence thresholds. YOLOv9 acquired a 

remarkable F1-score of 0.96 at a threshold of 0.452, 

while YOLOv11 followed closely with a score of 

0.95 at 0.298, and YOLOv10 recorded a score of 

0.94 at 0.388. YOLOv8, even after multiple 

optimization efforts, achieved an F1-score of 0.81 at 

a threshold of 0.425, highlighting considerable 

potential for enhancement in its detection 

performance. 

 

4.3 Recall Performance 

A distinct pattern was observed in the recall metrics, 

as all models attained an ideal recall score of 1.0 at 

the lowest threshold (0.000). At practical operating 

thresholds, YOLOv8's recall decreased more 

significantly, reaching only 0.78 at standard 

operating thresholds, whereas other models 

exhibited better results at elevated thresholds. 

4.4 Mean Average Precision (mAP@0.5) 

The mAP@0.5 scores indicated that YOLOv9 was 

in the lead with a score of 0.959, while YOLOv11 

took highly at 0.952 and YOLOv10 at 0.951. 

YOLOv8 exhibited a reduced performance level, 

attaining a mAP of 0.822, which highlights 

difficulties in maintaining accurate identification 

abilities under different conditions. The observed 

variations in mAP scores indicate significant  

differences in the models' effectiveness in 

addressing various pest detection scenarios.  

 

4.5 Accuracy Metrics 

In terms of overall accuracy, YOLOv9 exhibited 

outstanding performance with 93% accuracy, while 

YOLOv11 followed with 89.1% and YOLOv10 

achieved 85%. YOLOv8 attained just 77.5% 

accuracy, despite numerous optimization efforts. 

The significant variations in accuracy scores 

distinctly highlight the overall performance of the 

models in practical pest detection situations. 
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4.6 Model Efficiency Analysis 

 Although the experimental data did not fully 

document latency measurements, the extensive 

performance metrics indicate that YOLOv9 

provides the most balanced combination of accuracy 

and detection reliability. The performance of 

YOLOv8 across various metrics suggests possible 

constraints in its architecture for pest detection 

applications, even though it is a recognized model 

within the YOLO family [Fig 8 - 11]. 

 4.6.1 Comparative Analysis and Practical 

Implications 

The findings indicate that YOLOv9 consistently 

surpasses other models in various metrics, achieving 

the highest accuracy and mAP scores. YOLOv11 

shows outstanding precision capabilities, whereas 

YOLOv10 continues to exhibit competitive 

performance across all metrics. The limitations of 

YOLOv8 in practical applications indicate a 

necessity for substantial architectural adjustments or 

parameter optimization [Table 3]. 

Table 3 Metrics of Comprehensive Analysis of YOLO-S Model Family

The spider graph illustrates a comparative analysis 

of YOLOv8 through YOLOv11 across key 

performance metrics, including precision, accuracy, 

recall, F1-score, and mean average precision 

(mAP@0.5). YOLOv11 demonstrates an overall 

improvement in most metrics, highlighting 

advancements in detection capabilities and model 

robustness. The graph visually captures the 

progressive enhancement from YOLOv8 to 

YOLOv11, with notable gains in recall and 

mAP@0.5. These findings underline the consistent 

refinement of the YOLO architecture to achieve 

superior object detection performance while 

balancing accuracy and computational efficiency. 

Metrics YOLOv8 YOLOv9 YOLOv10 YOLOv11 

Precision 0.687 0.834 0.759 0.932 

F1- Score 0.81 @ 0.425 0.96 @ 0.452 0.94 @ 0.388 0.95 @ 0.298 

Recall 0.78 1 1 1 

PR – mAP @0.5 0.822 0.959 0.951 0.952 

Accuracy 0.775 0.93 0.85 0.89 

Figure 8 Performance Comparison of YOLO Models 
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Figure 9 YOLOv8 Latency per Frame Graph

The latency vs. frame number graph provides an in-

depth evaluation of the real-time performance of 

YOLO models across multiple versions. Among the 

analyzed versions, YOLOv9 emerges as the most 

efficient, achieving significantly lower latency 

while simultaneously processing a higher number 

of frames compared to YOLOv8, YOLOv10, and 

YOLOv11. This superior performance highlights 

YOLOv9's ability to optimize computational 

efficiency without compromising speed, which is a 

crucial factor in time-sensitive applications. The 

model's capability to balance rapid processing with 

consistent performance makes it particularly well-

suited for real-time object detection scenarios, such 

as autonomous navigation, surveillance, and live-

stream analytics. In contrast, while YOLOv8, 

YOLOv10, and YOLOv11 demonstrate 

competitive performance, they fall short in 

achieving the same throughput-latency equilibrium 

as YOLOv9. These results emphasize YOLOv9's 

advancements in architecture and algorithm 

optimization, positioning it as a leading choice for 

latency-critical tasks where delays can have 

significant operational impacts. 

 

4.6.2 Throughput vs. Accuracy Analysis of 

YOLO Models 

 

The GPU Throughput vs. Accuracy graph 

highlights the performance trade-offs across 

YOLOv8 to YOLOv11. YOLOv8 achieves the 

highest throughput, processing up to 2400 frames 

per second (FPS), but its accuracy is limited to 

around 80%, making it ideal for applications 

prioritizing speed over precision. YOLOv9 stands 

out by offering the best balance between throughput 

and accuracy, maintaining a competitive 

throughput of approximately 2200 FPS while 

achieving close to 95% accuracy. YOLOv10 shows 

a moderate trade-off, with slightly reduced 

throughput and accuracy compared to YOLOv9, 

making it less favorable for high-performance 

demands. YOLOv11, while delivering the highest 

accuracy among all models (surpassing 95%), 

operates at a lower throughput, around 1000 FPS, 

making it more suitable for precision-critical tasks 

where speed is less of a concern. This analysis 

underscores the versatility and progression of the 

YOLO models in adapting to varying application 

needs Figure 12. 

 

Figure 10 YOLOv9 Latency per Frame Graph 

Figure 11 YOLOv10 Latency per Frame Graph Figure 12 YOLOv11 Latency per Frame Graph 
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Figure 12. GPU Throughput vs Accuracy for YOLO models  

4.6.3 Inference Time(ms) vs  Yolo Models 

The graph illustrates the inference time per model 

for YOLOv8 to YOLOv11, measured in 

milliseconds (ms), providing insight into the 

computational efficiency of each version. YOLOv8 

exhibits the lowest inference time, approximately 

3.5 ms, showcasing its optimized architecture for 

rapid processing, making it well-suited for real-

time applications such as video surveillance or 

autonomous systems. YOLOv9, while slightly 

slower at around 4.0 ms, achieves a balanced trade-

off between speed and accuracy, likely due to 

enhancements in its detection layers and feature 

extraction mechanisms, which slightly increase 

computational overhead. YOLOv10 further 

increases inference time to approximately 5.0 ms, 

reflecting the addition of more complex layers or 

refined post-processing steps aimed at improving 

detection precision. YOLOv11, with the highest 

inference time of around 5.5 ms, likely incorporates 

more advanced algorithms or higher-resolution 

feature maps, prioritizing accuracy and robustness 

over speed. This progressive increase in inference 

time across the models highlights the trade-offs 

between computational efficiency and the pursuit of 

enhanced accuracy and detection performance 

Figure 13.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 13 Inference Time(ms) vs YOLO Models 
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4.6.4 YOLOvM: Advancing Object Detection 

Efficiency and Precision 

 Having explored the performance of YOLO 

models from YOLOv8 to YOLOv11, it is evident 

that advancements in their architectures and 

optimizations have significantly contributed to 

object detection efficiency and precision. YOLOv9 

stood out for its balanced performance across 

metrics, YOLOv10 excelled in mobile device 

optimization, and YOLOv11 showcased 

remarkable precision enhancements. 

Building on this trajectory of innovation, we now 

delve into YOLOvM. This new iteration is designed 

to address key challenges identified in previous 

versions, such as maintaining high detection 

accuracy while improving computational efficiency 

and adaptability. Below, we present a comparative 

table summarizing the metrics of the YOLO model 

family, including YOLOvM, to provide a 

comprehensive view of their relative performance. 

 

Table 4 Metrics of Comprehensive Analysis of YOLO-M Model Family

  

 

Figure 14 Performance Comparison of YOLO Models 

 

The spider graph illustrates a comparative analysis 

of YOLOv8 through YOLOvM across key 

performance metrics, including precision, accuracy, 

recall, F1-score, and mean Average Precision  

(mAP@0.5). YOLOvM demonstrates an overall 

improvement across most metrics, highlighting 

significant advancements in detection capabilities, 

computational efficiency, and robustness. The 

graph visually captures the progressive 

enhancement from YOLOv8 to YOLOvM, with 

notable gains in precision and mAP@0.5, 

showcasing its optimized architecture and 

innovative feature extraction mechanisms. These 

findings emphasize the consistent refinement of the 

YOLO family 

4.6.5 Latency vs. Model Size Analysis (YOLO 

Series) 

The graph above illustrates the relationship 

between latency (ms) and model size (MB) across 

the YOLO series, from YOLOv8 to YOLOv11-M. 

As observed, there is a steady increase in latency 

Model Precision F1-score Recall 
PR-mAP 

@ 0.5 
Accuracy 

Yolov8-M 0.730 0.87 @ 0.450 0.85 0.860 0.775 

Yolov9-M 0.870 0.94 @ 0.440 1.0 0.950 0.910 

Yolov10-M 0.800 0.92 @ 0.400 1.0 0.945 0.870 

Yolov11-M 0.900 0.96 @ 0.310 1.0 0.948 0.880 
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corresponding to the growth in model size as the 

architecture evolves. YOLOv8 exhibits the smallest 

latency and model size, ensuring faster inference 

times but at the cost of reduced complexity. On the 

other hand, YOLOv11-M shows the highest latency 

and model size, indicating an emphasis on 

advanced detection capabilities and improved 

robustness, albeit with increased computational 

requirements. 

Notably, intermediate versions such as YOLOv9-M 

and YOLOv10-M strike a balance, providing 

moderate latency with enhanced detection 

performance. This trend underscores the consistent 

development of the YOLO series to cater to diverse 

use cases, where higher accuracy and feature 

complexity come at the cost of increased 

computational load. The latency vs. model size 

trade-off provides insights into selecting the 

appropriate YOLO model for applications based on 

performance and hardware constraints.

  

 

Figure 15. Latency Comparison of YOLO Models with Sizes 

 

 

 

4.6.6 Energy Consumption vs Model Size 

 

The area plot highlights the energy consumption of 

various hardware devices—RTX 3060, RTX 4060, 

Jetson Nano 2GB, and CPU—across different 

YOLO model sizes, ranging from YOLOv8 to 

YOLOv11-M. The RTX 4060 emerges as the most 

energy-efficient option, maintaining the lowest 

energy usage across all models, making it well-

suited for power-sensitive applications. The RTX 

3060 follows closely, offering slightly higher 

energy consumption but still proving efficient and 

practical for most tasks. In contrast, the Jetson Nano 

2GB shows the highest energy consumption, 

particularly with larger models like YOLOv11-M, 

making it less suitable for energy-constrained 

scenarios. The CPU starts with moderate energy 

usage but exhibits a steep increase as the model  

 

 

 

 

 

complexity grows, underscoring its inefficiency for 

computationally intensive operations. 

This trend highlights the importance of selecting 

hardware that balances energy efficiency with 

performance, particularly for real-time or edge 

applications. While GPUs like the RTX 4060 and 

3060 are ideal for high-performance tasks, their 

cost might be a factor in large-scale deployments. 

On the other hand, the Jetson Nano, despite its 

energy limitations, may still hold value for small-

scale embedded systems. Overall, the results 

underscore the necessity of aligning hardware 

choices with specific application requirements, 

particularly as YOLO models become more 

computationally demanding Fig 15. 
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Figure 16 Energy Consumption of YOLO Models with Sizes(mWh) 

 

The bar plot illustrates the resource utilization 

percentages of different hardware devices—CPU, 

RTX 3060, RTX 4060, and Jetson Nano 2GB—

across various YOLO-M model versions, ranging 

from YOLOv8-M to YOLOv11-M. The Jetson 

Nano 2GB consistently displays the highest 

resource utilization, often nearing or reaching 

100%, indicating that it struggles to handle the 

computational demands of these models, 

particularly as they grow in complexity. On the 

other hand, the RTX 3060 and RTX 4060 exhibit  

efficient resource utilization, with percentages 

ranging from 70% to 90%, where the RTX 4060 

slightly outperforms the RTX 3060 in terms of 

optimization and efficiency. The CPU, while 

showing the lowest utilization among all devices, 

demonstrates a steady increase as the model 

complexity escalates, reflecting its limitations in 

managing computationally intensive tasks. This 

analysis underscores the importance of selecting 

hardware based on the balance between resource 

efficiency and the computational demands of the 

YOLO-M models.

 

 
Figure 17 Resource Utilization of YOLO Model
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5. Ablation Study 

 

The SiLU (Sigmoid-Weighted Linear Unit) [Table 

3] activation function is known as an essential 

element in contemporary deep learning structures, 

due to its individual capacity to integrate 

smoothness with non-linearity. In contrast to 

conventional activation functions like ReLU, SiLU 

provides a continuous and smooth gradient flow, 

maintaining this characteristic even for small or 

negative input values.  

This property tackles significant challenges like 

vanishing gradients and dead neurons, rendering it 

especially effective for training deep neural 

networks. Ensuring smooth gradient propagation 

across layers, SiLU plays a crucial role in 

enhancing stability and efficiency during training, 

particularly in architectures characterized by a large 

number of layers [Eqn 5]. 

A significant advantage of SiLU is its capacity to 

preserve some information from negative input 

values, in contrast to ReLU, which entirely 

eliminates them. This feature enables the model to 

identify deeper and subtle patterns within the data, 

leading to improved learning processes and a more 

accurate depiction of complex characteristics. The 

retention of negative input information has an 

essential part in tasks that demand precise pattern 

recognition, thereby enhancing the overall 

performance of the model. 

SiLU shows improved convergence features, 

mainly assigned to its smooth activation landscape, 

assisting in achieving improved optimization. This 

seamlessness not only speeds up training but also 

enhances the model’s ability to generalize well on 

unfamiliar data. Moreover, SiLU works effectively 

with contemporary optimization methods and 

normalization layers, enhancing its effectiveness in 

cutting-edge architectures. 

In summary, the implementation of the SiLU 

activation function markedly improves the 

endurance and effectiveness of neural networks. 

The smooth gradient flow, nuanced handling of 

input values, and compatibility with modern 

optimization strategies make it an essential option 

for those engaged in the development of advanced 

and reliable deep learning models.     

𝑓(𝑥) = 𝑥 ⋅ sigmoid(𝑥) =
𝑥

1 + 𝑒−𝑥
    (𝑒𝑞𝑛 5) 

x: The input to the activation function. 

sigmoid(𝑥): Scales the input within a smooth 

range of [0,1] [0, 1] [0,1] 

Table 5 Metrics of Comprehensive Analysis of 

YOLOv9 with ReLU and SiLU 

Metrics YOLOv9_relu YOLOv9_Silu 

Precision 0.788 0.834 

F1- Score 0.94 @ 0.408 0.96 @ 0.452 

Recall 1 1 

PR – mAP 

@0.5 
0.938 0.959 

Accuracy 0.82 0.93 

6. Conclusion 

This study provides a comprehensive assessment of 

various YOLO models (YOLOv8, YOLOv9, 

YOLOv10, and YOLOv11) focused on real-time 

pest detection in agriculture, emphasizing their 

accuracy, effectiveness, and adaptability to 

resource-limited settings. Among the models, 

YOLOv9 stands out as the most balanced performer, 

attaining the highest accuracy (93%), mAP @ 0.5 

(0.959), and a notable F1-score (0.96). YOLOv11 

exhibits remarkable precision (0.932), establishing 

it as a significant option for situations requiring 

high accuracy, whereas YOLOv10 reveals strong 

metrics, especially suited for latency-sensitive 

applications. In contrast, YOLOv8, even with its 

enhancements, depends short in terms of accuracy 

and recall, highlighting the necessity for additional 

architectural improvements. 

The integration of varied datasets and advanced 

augmentation methods greatly enhanced the 

reliability of these models, allowing for steady 

detection performance across numerous pest 

species and agricultural settings. The results 

highlight the significant impact that lightweight, 

high-accuracy models can have on sustainable pest 

management. These models facilitate accurate pest 

identification, minimizing pesticide excessive use, 

improving crop productivity, and helping 

immediate decision-making in precision farming. 

This study highlights the practical use of YOLO-

based detection systems while establishing the way 

for future advancements. Enhancing these models 

for improved efficiency, minimized latency, and 

range in various field conditions will be essential. 

These advancements have the potential to transform 

pest management practices, providing farmers with 

accessible, AI-driven tools for more intelligent and 

sustainable agricultural methods. 
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7. Future Research Implications and 

Limitations 

 

The comprehensive evaluation of these YOLO 

variants shows many possibilities for enhancement, 

especially concerning YOLOv8. Although 

alternative models exhibit solid performance across 

multiple metrics, there is still potential for 

improvement in particular aspects like threshold 

optimization and the reduction of false positives. 

The lack of comprehensive latency data indicates a 

necessity for a more detailed efficiency analysis in 

upcoming research endeavors. 

The findings offer significant insights for the 

implementation of agricultural technologies, 

indicating that YOLOv9 shows the most effective 

outcomes for pest detection applications, whereas 

YOLOv8 may need significant enhancements to 

reach similar performance levels. The investigation  

highlights the significance of comprehensive 

empirical assessment in choosing models for real-

world agricultural uses. 
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