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Abstract

The digital revolution has led to increased credit card usage
and a corresponding rise in fraudulent activities. Traditional
fraud detection methods often overlook the interconnected
nature of financial data. This study presents a novel
approach using Graph Neural Networks (GNNs) with attention
mechanisms and heterogeneous graph structures to enhance
credit card fraud detection. The method builds heterogeneous
graphs to represent complex interactions among entities such
as cardholders, merchants, and transactions. An autoencoder,
trained on legitimate transactions, learns latent features to
identify anomalies. The model’s performance is evaluated using
benchmark datasets and compared against existing techniques
like GraphSAGE and FI-GRL. Experimental results show that
the proposed model achieves superior performance, with an
AUC-PR of 0.89 and an Fl-score of 0.81. The integration
of GNNss, attention mechanisms, and autoencoders effectively
mitigates issues like class imbalance and captures intricate data
relationships. This research uniquely applies attention-based
GNNs on heterogeneous graphs for fraud detection, improving
accuracy by addressing class imbalance and leveraging rich
relational data. Evaluation is restricted to specific datasets,
and real-world deployment may need adaptation for broader
financial environments. The approach can be adopted by
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financial institutions to enhance fraud detection accuracy,
reduce false positives, and strengthen customer trust and
operational efficiency.

Key Words: Credit card fraud detection; Graph Neural
Networks; Auto-encoders; Heterogeneous graphs; Class
imbalance.

1 Introduction

Financial transactions, especially credit card usage, have
experienced a surge due to the digital revolution. This
has resulted in a vast amount of financial data, empowering
companies to comprehend customer behavior and utilize data
for decision-making. On the other hand, the convenience
that comes with this has a downside - there is a noticeable
rise in fraudulent activities. Traditional methods of fraud
detection often struggle to keep pace with the evolving nature
of these schemes. In order to tackle this challenge, the field
of machine learning (ML) has surfaced as a potent tool that
can effectively identify and prevent fraudulent transactions [2].
By leveraging ML algorithms, it becomes possible to analyze
massive amounts of financial data, identify recurring patterns,
and pinpoint potential fraud through anomaly detection. They
enable financial institutions to automate the fraud detection
process, facilitating real-time monitoring of transactions and
activities. To detect fraud effectively, many professionals rely
on techniques such as decision trees, random forests, and
support vector machines [16, 19].

The conventional approaches to detecting fraud often face
difficulties in capturing the intrinsic interrelationships that exist
within financial data. Transactions typically involve multiple
parties, including cardholders, merchants, banks, and various
other entities. The representation of financial transactions as a
graph enables us to take advantage of the connections among
them, thereby enhancing the effectiveness of fraud detection
measures. Despite their widespread use, it is important to
acknowledge that traditional methods may face difficulties
in accurately differentiating between relevant and irrelevant
relationships within the graph, thus impacting their ability to
effectively detect fraudulent activity.

Graph Neural Networks (GNNs) excel at processing graph
data and utilizing attention mechanisms to focus on the most
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relevant entities and relationships within the network structure
[47]. This makes them well-suited for tasks like fraud detection,
where identifying the most critical factors contributing to a
transaction’s legitimacy is crucial. By applying attention, the
GNN can prioritize information from neighboring nodes (e.g.,
cardholder’s spending habits, merchant’s location) that are most
relevant to understanding the transaction’s nature. This refined
focus on critical relationships improves the model’s ability to
distinguish between normal transactions and those exhibiting
suspicious patterns, potentially indicative of fraud.

In graph induction learning techniques, two types of
graph representations of data are used: homogeneous graph
[5] and heterogeneous graph [37]. Financial fraud data,
especially involving credit cards, is inherently heterogeneous.
It encompasses diverse entities like cardholders, merchants,
and transactions, each with distinct attributes and relationships.
Homogeneous graphs, which represent entities of the
same type, may not fully capture this complexity. In
contrast, heterogeneous graphs offer a more comprehensive
representation, effectively capturing the multifaceted nature of
financial transactions and the intricate relationships between
entities within the financial ecosystem.

For instance, a heterogeneous graph might include nodes
representing credit card numbers (cc_num), merchants
information (merchant_id), and transaction numbers
(transaction_id), with edges connecting them based
on the specific relationship (e.g., a transaction between a
cardholder and a merchant). This allows us to analyze the
network structure and identify suspicious patterns that might
be missed by simpler models. For instance, in Figure 1, the
relationships between different data points are illustrated.
These relationships are often overlooked by homogeneous
graph learning algorithms and their variants.

Heterogeneous Graph

—8— cCc_num
—8— merchant_id
—— transaction_id

Figure 1: Relationships between different nodes.

The varying characteristics of nodes and edges in
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heterogeneous graph data make it difficult to apply GNNs
directly, thereby necessitating a more sophisticated approach
for information aggregation than what is typically used
for homogeneous graphs. In addition, the effectiveness of
supervised learning is often hindered by class imbalance in
fraud data. This imbalance is characterized by a significantly
smaller number of fraudulent transactions compared to genuine
transactions. As a result, traditional supervised learning models
struggle to learn effectively from such imbalanced data [8].

This work suggests a new approach that effectively handles
heterogeneous graph data by leveraging advanced GNN
techniques for aggregating information from diverse node and
edge types. These techniques ensure that the varying attributes
and relationships within the graph are adequately captured and
utilized in the analysis process.

Furthermore, to tackle the issue of class imbalance, common
techniques such as oversampling and undersampling [7] are
used. Balancing class distribution can be achieved through
oversampling, which generates more instances of the minority
class (fraud transactions), or through undersampling, which
reduces instances of the majority class (genuine transactions).
Nonetheless, these approaches may be complicated and possess
their own limitations.

To overcome these challenges, this approach integrates an
autoencoder (AE) with a decoder that is trained on genuine
transactions. By learning a latent representation, the AE can
accurately reconstruct these transactions. The ability to detect
fraudulent activities in complex heterogeneous graph data is
enhanced by flagging deviations from the learned distribution
during reconstruction, thereby addressing class imbalance.

Considering all scenarios discussed, this work aims to answer
the following research questions (RQs):

¢ RQ1: Effectiveness of GNNs with Attention for Fraud
Detection:How effectively can GNNs utilizing an attention
mechanism detect and prevent credit card fraud when
applied to a heterogeneous graph representation that
captures the complex interrelationships within the financial
ecosystem?

* RQ2: Comparison of Autoencoder with Attention
vs. Traditional Methods: How does the proposed
autoencoder-based fraud detection approach, which
leverages GNNs with attention and is trained on a non-
fraudulent transaction graph dataset, compare to traditional
methods in terms of accuracy, efficiency, and scalability,
especially considering significant class imbalance?

The methodology consists of several steps, one of which is
the processing of a tabular dataset of financial transactions. This
dataset is then transformed into a heterogeneous graph. As a
result, the graph is subjected to analysis using autoencoders
(AE) and graph neural networks (GNNs), which enables the
identification of anomalies that can be linked to fraudulent
activity. By focusing on the class imbalance problem,
the proposed approach effectively tackles the challenge of
fraud detection tasks. The results of this work have
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significant implications for businesses and financial institutions,
empowering them to gain valuable insights into customer
behavior and enhance their ability to identify and prevent
fraudulent transactions. Ultimately, this work contributes to the
advancement of fraud detection systems and the overall security
of financial transactions in the digital era.

This paper provides a comprehensive discussion of the
relevant literature in Section 2. The problem statement is
outlined in Section 3, aiming to address a specific problem. The
methodology employed in this research is elucidated in Section
4. The results obtained from this methodology are analyzed and
presented in Section 5. Finally, Section 5.5 concludes the paper
by summarizing the key findings and implications.

2 Literature Review

In this section, we introduce a range of notable works that
cover various topics such as probabilistic graphical models,
machine learning algorithms (including deep learning models),
and advanced graph neural networks and their various variants.

Papers such as [38] and [34] aim to address the problem
of fraud detection in credit card transactions by modeling
these transactions using a Hidden Markov Model (HMM), a
probabilistic graphical model. The primary difference between
them lies in their approach: in the first paper, a card-centric
HMM is employed to detect abnormalities in transactions, while
the latter paper opts for a merchant-centric HMM model. Both
methods have the capability to identify fraud in real-time for
merchants, operating in conjunction with modern transaction
processing systems that handle card transactions.

Additionally, [27] models credit card transaction sequences
using the HMM approach, considering three distinct
perspectives:

(i) Determining whether fraud is present or absent in the
sequence.

(i1) Crafting sequences by fixing either the cardholder or the
payment terminal.

(iii) Constructing sequences based on the spent amounts
or the elapsed time between consecutive transactions. The
combination of these three binary perspectives results in eight
distinct sets of sequences derived from the training dataset of
transactions. Each of these sequences is then represented using
a Hidden Markov Model (HMM). Subsequently, each HMM
assigns a likelihood to a transaction based on its sequence
of preceding transactions. These likelihood values serve as
additional features for the Random Forest classifier to detect
fraud. In brief, this model provides a concept of sequential
information flow during credit card transactions as part of a
feature for a machine learning model.

The paper [18] explores the issue of credit card fraud
detection and conducts a comparative analysis of three machine
learning algorithms: logistic regression, Naive Bayes, and K-
nearest neighbor. To address the class imbalance, the authors
utilize different proportions of the dataset and employ a random
undersampling technique. They evaluate the algorithms based
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on various metrics. According to the results, the logistic
regression-based model outperforms the prediction models
derived from Naive Bayes and K-nearest neighbor. The paper
also suggests that applying undersampling techniques to the
data before model development can lead to improved results. In
addition, several machine learning algorithms, such as support
vector machine (SVM) [35], random forest (RF) [35, 22],
AdaBoost, and Majority Voting [31], as well as artificial neural
network (ANN) [33, 1], are being explored as models for
controlling fraudulent transactions in credit cards.

To enhance the performance of the above-mentioned models,
[17] defines a model in an ML-driven credit card fraud detection
system that uses the genetic algorithm (GA) for feature
selection. After identifying optimal features, this detection
system utilizes a range of ML classifiers, including Decision
Tree (DT), Random Forest (RF), Logistic Regression (LR),
Artificial Neural Network (ANN), and Naive Bayes (NB).

While the aforementioned models perform well, a significant
class imbalance exists in the credit card fraud dataset, with non-
fraudulent transactions vastly outnumbering fraudulent ones.
As a result, these models tend to prioritize high precision
by predominantly predicting the majority class. To address
this issue, several machine learning models (referenced as
[28]) employ one or a combination of oversampling and
undersampling techniques (as mentioned in [6]).

The study cited as [3] conducts a comparative investigation
of various approaches to address class imbalance. The findings
indicate that a combination of oversampling and undersampling
methods performs well when applied to ensemble classification
models, including AdaBoost, XGBoost, and Random Forest.
Deep learning algorithms such as Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU), combined with a
multilayer perceptron, are employed in the studies referenced
as [28] and [13]. In [13], the authors use the Hybrid Synthetic
Minority Oversampling Technique and Edited Nearest Neighbor
(SMOTE-ENN) to balance the distribution of positive (fraud)
and negative (non-fraud) instances in the dataset. However,
the effectiveness of the SMOTE-ENN technique is crucial, as
poor performance in resampling can significantly degrade the
model’s overall performance.

While oversampling and undersampling techniques can
address class imbalance, they come with drawbacks like
increased computational cost, potential for overfitting, and
information loss (as discussed in [7, 44]). Additionally, they
can be sensitive to noise [46] and have limited effectiveness
for highly imbalanced datasets [12]. Therefore, [12] propose
an approach for Chronic Kidney Disease (CKD) prediction
using imbalanced data. Their method leverages information
gain-based feature selection and a cost-sensitive AdaBoost
classifier. However, this approach focuses on spatial data and
might not be suitable for graph data due to potential loss
of structural information and inadequate feature representation
during feature selection. So, such models will often struggle to
capture the full picture of fraudulent activity. As noted in [9],
many methods focus solely on spatial data points representing
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financial transactions, neglecting the valuable insights from
temporal relationships. This limitation hinders the ability of
these models to identify evolving fraud patterns. Furthermore,
many existing models rely solely on labeled data for training,
restricting their ability to leverage the vast amount of unlabeled
data available in real-world credit card transactions [36].

To address these issues, an increasing number of researchers
are exploring graph-based techniques for fraud detection, as
discussed in [9] and [23]. In this approach, datasets are
transformed into graphs, providing a better understanding
of the relationships among financial transactions.  Graph
Neural Network (GNN) algorithms, as detailed in [45], are
applied to these graph datasets, allowing for efficient data
aggregation from neighboring nodes and the extraction of node
representations within the graph datasets. Among the popular
GNN variants, GraphSAGE [14] and GAT [43] stand out,
utilizing sampling methods and attention mechanisms to gather
neighbor information. These techniques have shown promising
results in the field of fraud detection. Furthermore, the
paper [24] introduces an algorithm designed to tackle the class
imbalance problem in graph-based fraud detection. It employs
an algorithm known as Pick and Choose Graph Neural Network
(PC-GNN) to perform imbalanced supervised learning on
graphs. The PC-GNN algorithm selects neighbor candidates for
each node within the sub-graph using a neighborhood sampler.
Ultimately, it aggregates information from the chosen neighbors
and different relations to derive the final representation of a
target node. The paper reports that PC-GNN surpasses state-of-
the-art baselines in both benchmark and real-world graph-based
fraud detection tasks.

However, inconsistency issues arise in the aggregation
process of GNN models when applied to fraud detection tasks
[25]. The aggregation mechanism relies on the assumption
that neighbors share similar features and labels. When this
assumption breaks down, the aggregation of neighborhood
information becomes ineffective in learning node embeddings.

To address these challenges, researchers in [25] and
[39] have employed a multi-relational graph, known as a
heterogeneous graph, for the classification of financial fraud.
In [25], context inconsistency, feature inconsistency, and
relation inconsistency in GNN are introduced. To tackle these
inconsistencies, the authors propose a new GNN framework
called GraphConsis. GraphConsis addresses these issues by
combining context embeddings with node features to handle
context inconsistency, designing a consistency score to filter
inconsistent neighbors and generate corresponding sampling
probabilities to address feature inconsistency, and learning
relation attention weights associated with the sampled nodes to
tackle relation inconsistency.

In [39], the authors propose semi-supervised methods that
operate with heterogeneous graph datasets to address class
imbalance issues in online credit loans. This paper utilizes
a Graph-Oriented Snorkel approach to incorporate external
expert knowledge, ultimately improving the performance of the
learning algorithm when dealing with imbalanced datasets.
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Another noteworthy work, [26], introduces a heterogeneous
graph-based approach for detecting malicious accounts in
financial transactions. = The authors present an algorithm
called GEM, which adapts to learn discriminative embeddings
for various node types. GEM employs an aggregator to
capture node patterns within each type and utilizes an attention
mechanism to enhance algorithm efficiency.

In [32], the authors endeavor to design heterogeneous graph
embeddings.  Their approach incorporates heterogeneous
mutual attention and heterogeneous message passing,
incorporating key, value, and query vector operations
(self-attention mechanism). This work features both a
detector and an explainer, capable of predicting the validity of
incoming transactions and providing insightful, understandable
explanations generated from graphs to aid in subsequent
business unit procedures.

The framework employed in [41] utilizes an algorithm
for graph representation learning to create concise numerical
vectors that capture the underlying network structure. The
authors in this work assess the predictive capabilities of
inductive graph representation learning with GraphSage and
Fast Inductive Graph Representation Learning algorithms on
credit card datasets characterized by significant data imbalance.

3 Problem Statement

A heterogeneous graph is a specialized graph data structure
that comprises multiple types of nodes and edges, wherein
each node or edge is uniquely associated with a distinct type.
In essence, it represents a graph in which diverse node and
edge types are interconnected. To provide a formal definition,
the characteristics of a heterogeneous graph are delineated as
follows:

Definition 3.1. A heterogeneous graph, also known as a
heterogeneous information network or heterogeneous network,
is mathematically defined as G = (V,E,T,R,X), where:

* V represents the set of nodes in the graph, and each node
vl €V is associated with a specific type t € T, where T
represents the set of node types.

e E represents the set of edges in the graph, and each edge
e" € E connects two nodes (V'',v2), where t| and ty are
node types, and r € R, where R represents the set of edge
types or relationships.

* X = {X,,X.} represents attributes of nodes and edges,
respectively, where X, represents the set of node attributes,
and each node V' € V can have a vector of attributes Xy,
and X, represents the set of edge attributes, where each
edge e" € E can have a vector of attributes X,r.

By adhering to its definition, the financial fraud dataset can be
depicted as a heterogeneous graph. These datasets encompass
various entities, including customer or credit card numbers,
merchants’ names, and transaction numbers. These entities are
represented as nodes in the graph, denoted by V. Specifically,
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Figure 2: A heterogeneous graph illustrating different types of
nodes and edges.

the nodes V1, representing ‘customer’, V2, representing
‘merchants’, and V3, representing ‘transaction’, encapsulate the
essence of this heterogeneous graph. Consequently, these nodes
(V'1, v2, and v3) are distinguished by their respective types.

The heterogeneous graph depicted in Figure 2 illustrates
a network where nodes are categorized into three distinct
types: ‘customers’ (in orange), ‘merchants’ (in blue), and
‘transactions’ (in green). Each node type is uniquely identified
by an index (i), where i indexes different instances of
customers, merchants, and transactions within the same type
t(e.g., vtl1 for the first customer, vtzl for the second customer).
The graph captures complex interactions: customers initiate
transactions (e’!) that involve merchants (e'2).  Notably,
customers can engage in multiple transactions across different
merchants, as represented by multiple transaction nodes
(vtf,vtf,...,vtg). This structured representation facilitates the
analysis of interconnected relationships within heterogeneous
networks, essential for understanding dynamics financial
transactions.

Problem 1. For the given graph G = (V,E,T,R,X), the task
is to determine whether it can be classified as fraudulent,
considering that the transaction associated with the graph
represents a fraudulent class.

4 Methodology

The primary objective of this paper is to develop an encoder
capable of learning graph embeddings for a given heterogeneous
graph G = (V,E,T,R,X), where V represents nodes, E denotes
edges, T indicates node types, R specifies edge types, and X
contains node attributes. This encoder is designed to effectively
capture the complex information present in a heterogeneous
graph, including both its structure and attributes. Subsequently,
a decoder function fy.. reconstructs the graph. Figure 3
illustrates the model architecture used in this paper.

The model comprises / encoder units. The first encoder unit
takes (D(d'), ¢,d") as input, where D(d") represents the source
nodes of d' € V, and ¢ denotes edges ¢ from each source node
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Figure 3: Encoder Units and Decoder Unit of the Model

to d'. Each encoder unit processes these inputs to produce
intermediate representations. The final output of Encoder; is
fed into a decoder unit, implemented as a deep neural network,
which utilizes the encoded information to generate d".

The model calculates the reconstruction error by comparing
the reconstructed graph to the original graph. This error
measures the dissimilarity between the original input and the
reconstructed output. A threshold for the reconstruction error
is established to identify data points that deviate significantly
from normal patterns. Any data point with a reconstruction error
exceeding the threshold is classified as an anomaly, indicating a
deviation from expected behavior, such as fraudulent activity in
a financial transaction network.

While the methods discussed above claim to perform well
with unbalanced heterogeneous graph datasets, techniques
such as autoencoders and decoders, as presented in [40,
10, 11], offer alternative solutions. For instance, [11]
successfully addressed imbalanced medical datasets using a
modified Sparse Autoencoder (SAE) and Softmax regression
for enhanced diagnosis. However, SAEs are less suitable
for data with inherent relationships between elements, which
is particularly relevant for fraud detection in transactional
networks, where connections between nodes are crucial for
identifying suspicious activity. Similarly, [10] employed a
Stacked SAE (SSAE) for credit card default prediction on
imbalanced data.  Nevertheless, SSAEs, like SAEs, lack
the ability to explicitly prioritize information from relevant
neighboring nodes. This limitation necessitates a different
approach for this work, which leverages a transactional network
to represent data and identify fraudulent activities.

4.1 Dataset Preprocessing

The heterogeneous graph G is constructed from a financial
transaction dataset, where nodes represent entities (e.g.,
customers, merchants, transactions) and edges represent
interactions (e.g., payments, refunds). Node types T include
“Customer,” “Merchant,” and “Transaction,” while edge types
R include “Pays,” “Receives,” and “Refunds.” Node attributes
X include features such as transaction amount, timestamp,
customer demographics, and merchant category.

The dataset is preprocessed as follows:

¢ Graph Construction: Transactions are modeled as nodes
connected to customer and merchant nodes via typed
edges. For each transaction node d’, the set of source nodes
D(d") includes the associated customer and merchant.

* Feature Normalization: Continuous attributes (e.g.,
transaction amount) are standardized to have zero mean
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and unit variance. Categorical attributes (e.g., merchant
category) are one-hot encoded.

* Handling Missing Data: Missing attributes are imputed
using the mean (for continuous features) or mode (for
categorical features) of the respective node type.

e Graph Partitioning: For large datasets, the graph is
partitioned into subgraphs using community detection to
facilitate scalable processing.

The preprocessed graph ensures that node and edge types are
preserved, and attributes are in a suitable format for the encoder.

4.2 Encoder for Heterogeneous Graph

Based on the study by [15], a heterogeneous graph encoder
for the autoencoder has been designed (Figure 4). For each
destination node d' € V and its source nodes D(d") € V, the
encoding process f°"° is applied as follows:

129

4.3 Decoder for Heterogeneous Graph

The decoder reconstructs the graph’s structure and attributes,
accounting for its heterogeneous nature. For each node d’, a
. /
node decoder fye. reconstructs attributes d '

d" = faee(hly) (6)

The decoder is a multi-layer perceptron (MLP) with type-
specific parameters to handle different node types. The loss
function is defined as:

L=Y Y LOSS(d",d") (7

VN Vt

The loss function is specified as the mean squared error
(MSE) for continuous attributes:

LOSS(d',d") = ||d' —d"|} (8)

hfjl = freparam (Lineardt (f?vl; D) (hlvr_l e, hi]t_ ! )) S2) h?,, , mean(hi't_l )s 10gff’ép_ éé&:gorical attributes, cross-entropy loss is used. The total

(1
Here, [ = 1,2,...,E; represents the encoder layer, with
a maximum of E; layers, and initial values are set as

(h%,e",h%) = (v',e",d"). The function Lineary : R i — Rdim
denotes a linear projection.

The encoding process f°"° is defined as:

enc _ Attent (.t r gt\  ¢Mssg/ t r gt
Sviep(a) —Wég(d[)(f (We',d) - R e d )) 2)

The attention mechanism is:

FAtEnt (1 o gty = SOftmax(HAtt"(v’,e’,d’)) 3)
Vke[1,H|
Inspired by [42], the attention for each edge e” is calculated
using k-heads:

Attf (v ", d") = LinearSF (hi 71> WAL (Lineaer (hiﬁl ) ) !
@
Here, LinearS¥ and LinearD¥ map from RY™* to Rlem, and
WAL ¢ R is a learnable edge matrix for edge type r.
The message passing function is:

MG e d) = |

LinearM (hlvrl)W,M”g (5)
Vke[1,H]

The reparameterization function freparam, inspired by [21],
models the latent variable probabilistically:

hijr = Jfreparam (mean(hiﬂ)’ IOg(hfi’ )>
1
= mean(hldx) +€£-exp (2 -log(hﬁp)>

where € ~ .A47(0,1).

loss combines losses across all node types, weighted by their
prevalence in the dataset to address class imbalance.

4.4 Algorithm

Algorithm 1 Fraud Detection on a Heterogeneous Graph

Require: Heterogeneous Graph G
Ensure: ‘Fraud’ or ‘Not Fraud’
1: ford' € Gdo

2: (hg,,er,hg,) +— (Ve d") > Initialization
3: for / < 1to E; do > Message Passing Layers
4: for v/ € D(d") do > Neighborhood of d"
5: hl, = Lineary (fer<(hl; ' em nl 1)) & hY,

6: end for

7: = freparam (mean(hii,),log(hld,)) >

Reparameterization

8: end for

9; d'= faee (L) > Output Layer
10: end for

11: L=L0SS(d",d")

12: if L < Threshold() then
13: return ‘Non-Fraud’
14: else

15: return ‘Fraud’

16: end if

> Loss Calculation

The algorithm depicted in Algorithm 1, outlines the method
for detecting fraud in a heterogeneous graph structure. Here’s a
detailed breakdown of each step:

1. Input (Heterogeneous Graph G): This represents
the financial transaction network, containing nodes
(customers,  merchants, transactions) and edges
(interactions) with their respective types.
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Figure 4: Encoder Unit for Heterogeneous Graphs. ¢’ and ¢’ denote edges from source nodes vtll and v’22 to destination node d’. At

I = 0, it represents the initial encoder layer, producing hgll,, and so on. k ranges from 1 to H,

denotes addition, and ® indicates dot product.

2. Output: “Fraud” or “Not Fraud”: The algorithm
classifies the transaction associated with the input graph
as either fraudulent or legitimate.

3. Algorithm Steps:

* For each node d' in the graph G, node d' is initialized
with (h%,e",hY). It includes the features of the node
itself h?l,, the connecting edge type e”, and the initial
representation of the source node h(V),.

* Message Passing Layers (L Layers):

— This loop iterates through a predefined number
of layers (£r) in the GNN architecture.
— Within each layer /:

* For each node V' in the neighborhood of the
current node d':

- A message function f° (Equation 2)
aggregates information from the source
node’s hidden representation hf;l, the
edge type €’, and the previous hidden
representation of the destination node
hiﬂ_l. The message undergoes a linear
transformation with Lineary as per
equations (3-5).

- By utilizing the attention mechanism, the
messages undergo transformation and are

signifies concatenation, §

subsequently combined with the initial
hidden representation of the destination
node hg, through element-wise addition
(D).

+ The message passing happens iteratively for
all neighbors of d'.

+ The updated hidden representation hldt is
subjected t0 freparam (Equation 1) after
message aggregation. Mean and logarithm
are utilized in hidden representation to
ensure greater stability during training.

4. Output Layer: The final hidden representation hil, is passed
through the decoder function fg.. (Equation 6) to produce
the prediction vector d”.

5. Loss Calculation: The difference between the predicted
output d" and the original node feature d’ is evaluated
using a loss function LOSS. The LOSS function can use a
metric such as mean squared error or any other appropriate
loss function.

6. Fraud Classification: The threshold for anomaly detection
is determined using a validation set of non-fraudulent
transactions. The reconstruction errors are computed, and
the threshold is set as:

Threshold = u + 20 9)
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where 1 and o are the mean and standard deviation
of the reconstruction errors, respectively. This ensures
that approximately 95% of non-fraudulent transactions are
classified as “Non-Fraud.” The threshold is tuned on the
validation set to balance precision and recall.

Algorithm 1 explains the entire framework of the model,
which is designed to identify if a specific data point is linked to
fraudulent behavior, resulting in one of two possible outcomes:
‘Fraud’ or ‘Not Fraud.” The algorithm calculates a loss value
to measure the difference between the original transaction node
and its decoded version. The computation of this loss relies
on a loss function that has been predetermined. The next step
in the process is for the algorithm to compare the resulting
loss with a predetermined threshold, once all the calculations
have been completed. In the case where the loss falls below
the designated threshold, the data point is classified as ‘Not
Fraud’. The overall time complexity of the algorithm can be
approximated as &'(nE) by summing up these components, with
n representing the number of nodes in the graph.

5 Experiment

This paper assesses the effectiveness of the proposed model
through a series of experiments on credit card fraud datasets
and a comparison with other existing machine learning and deep
learning models.

5.1 Performance Metrics

In order to evaluate the performance of various models, this
article employed evaluation metrics that include the precision
rate (PR), the recall rate (RR), the ROC curve, and the F1 score.
These metrics are defined as follows:

PR— P __
TP + FP

TP
RR=—
TP+ FN

In this context, true positive (TP) and false positive (FP)
indicate the number of correctly and incorrectly predicted
instances of fraud, respectively. Conversely, true negative (TN)
and false negative (FN) correspond to the count of transactions
accurately and inaccurately predicted as non-fraudulent.

Meanwhile, the ROC curve illustrates the classifier’s ability
to differentiate between fraud and non-fraud categories. This
curve is created by plotting the true positive rate against the
false positive rate at different threshold levels. The AUC, which
ranges from O to 1, encapsulates the information from the ROC
curve. A value of O signifies that all classifier predictions are
erroneous, while a value of 1 indicates a perfect classifier.

The F1 score represents the harmonic mean of precision and
recall. Precision is the ratio of true positive predictions to the
total predicted positives and recall is the ratio of true positive
predictions to the total actual positives. It provides a single value
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that harmonizes precision and recall, facilitating a balanced
evaluation of classifier performance.

(PR*RR)
(PR +RR)

Given that the dataset is imbalanced, the F1 score is
particularly valuable because it considers both precision and
recall. This score provides a straightforward way to assess
a classifier’s overall effectiveness in accurately identifying
positive instances while minimizing false positives and false
negatives.

Another parameter used to gain insight into the model’s
performance is the Precision-Recall curve (AUC-PR) [30]. This
metric offers valuable insights, particularly in situations where
class distribution is imbalanced [29].

F1 =2«

5.2 Datasets

The dataset ([20]) used in this article simulates credit card
transactions and includes genuine and fraudulent activities that
occurred between January 1, 2019, and December 31, 2020.
The data encompass transactions carried out by 1000 customers
using credit cards issued by a variety of banks, engaging in
transactions with a pool of 800 different merchants.

| Types of Dataset | Normal Data | Abnormal Data |

1842743 | 9651 |
553574 | 2145 |

| Training Dataset |
| Testing Dataset |

Table 1: Distribution of Fraudulent Transactions on Training
and Testing Dataset

Table 1 illustrates the distribution of fraudulent and non-
fraudulent transactions in a dataset. It shows the number of
occurrences of each type of transaction, with “1” representing
fraudulent (Abnormal) transactions and “0” representing non-
fraudulent (Normal) ones. This analysis gives an indication of
the skewed and unbalanced ratio of fraudulent to non-fraudulent
transactions.

5.3 Analysis of Algorithms

In the article ([4]), some of the best machine learning
algorithms that handle fraud datasets are listed. Here is the list
used in the article:

* Linear Regression

* Logistic Regression

¢ Decision Tree

* SVM (Support Vector Machine)
¢ ANN (Artificial Neural Network)
» Naive Bayes

* DNN (Deep Neural Network)

* K-Means

* Random Forest
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* Dimensionality Reduction Algorithms
¢ Gradient Boosting (XGB) Algorithms

These algorithms cover a wide range of machine learning
(ML) aspects, including association analysis, clustering,
classification, statistical learning, and link mining. They
hold a crucial place among the essential topics explored in
research and development within the field of machine learning.
However, when evaluating these algorithms with datasets, their
performance often falls short of expectations due to the inherent
imbalance present in the data.

Performance of Machine learning (ML) Algorithms
ML Testing | Testing F1 | Test J\ Test AUC
Algorithm Accuracy Score Precision Recall
Decision| 0.99 0.29 0.22 0.43 0.82
Tree
XGB 0.99 0.33 0.27 0.43 0.96
Classifiey
ANN 0.99 0.33 0.23 0.32 0.92
Deep 0.99 0.33 0.40 0.26 0.81
NN
AE — 0.67 0.50 0.99 0.52
VAE — 0.67 0.50 0.99 0.54
Sparse || — 0.67 0.50 0.99 0.54
AE

Table 2: Performance Measurement of Few Selected Machine
Learning Algorithms

Table 2 provides the performance metrics for a few machine
learning algorithms. The table shows that the F1 score of
all machine learning algorithms is too low, suggesting that
these algorithms could not handle unbalanced datasets properly.
Since the F1 score is low and the AUC curve is high for all
ML algorithms, it indicates that these algorithms are adept at
distinguishing between abnormal and normal data, as evidenced
by the high AUC value. However, the F1 score is low due to the
models facing challenges in achieving both high precision and
high recall, attributed to the imbalanced nature of the data.

These scenarios arise when the negative class dominates the
dataset, creating a highly imbalanced situation. In such cases,
models tend to classify instances as the majority class, resulting
in high true negatives and low false positives but at the cost
of missing true positives and having low recall. To address
the challenges posed by unbalanced data, various algorithms
are explored. One of the algorithms under consideration is the
autoencoder algorithm.

The exploration involves simple autoencoders (AE) using
deep neural networks and their variations, such as variational
autoencoders (VAE) and sparse autoencoders (Sparse AE).
Table 2 also shows the performance of the autoencoders.
Regardless of the specific type, the model’s performance is
evaluated using key metrics. The F1 score, which harmonizes
precision and recall, yielded a value of 0.67. This suggests
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that the models have achieved a reasonable balance between
making accurate positive predictions and effectively capturing
actual positive instances. Overall, the performance is decent,
showing a well-rounded approach.

However, the narrative changes when examining the Receiver
Operating Characteristics (ROC) curve and its corresponding
Area Under the Curve (AUC). With an AUC of 0.57, it implies
that the models struggle to distinguish between fraud and
normal classes. Their ability to classify effectively in this
context appears limited and performs only slightly better than
random guessing.

In a deeper dive, the precision achieved by the autoencoder
models in the test set is 0.50. This means that roughly half of the
abnormal predictions it generates are accurate, while the other
half are incorrect. On the other hand, the recall rate is impressive
at 0.99. This means that the models excel at identifying almost
all the actual abnormal instances present in the dataset.

In summary, while autoencoder models demonstrate balanced
performance in terms of the F1 score, with commendable recall
and reasonable precision, the AUC score and precision rates
indicate room for improvement. Enhancing the discriminatory
capacity of models and refining their positive prediction
accuracy could be areas of focus to further elevate their
performance in classification tasks.

5.4 Analysis of the Proposed Model

Parameter Name Value
Size of Hidden Layers 64
Number of heads (H) 16
Number of Layers for the Encoder (/) 124
Number of Layers for the Decoder 64
Dropout Rate 0.4
Regularization Rate 0.01

Table 3: Values for different parameters used in the model.

After tuning the parameters for different hyperparameters, the
performance of the model is represented as shown in Figure 5.
Finally, the proposed model uses the parameters defined in
Table 4 to evaluate the model’s performance.

In Figure 5a, the training loss is compared with the validation
loss for positive (fraud) and negative datasets. This plot provides
insight into how effectively the model handles overfitting and
underfitting of the data. The model, using the parameters
from Table 4, demonstrates immunity to both overfitting and
underfitting, effectively managing these issues. Figure 5b
illustrates the loss distribution (histogram) generated by the
model from the dataset. This distribution shows the loss values
for both positive and negative data in the dataset. The figure
reveals that the loss for negative instances is concentrated
between 0.004 and 0.005, while the loss for positive instances
is distributed beyond 0.006.

Figure 5c defines the model’s F1 score versus the
classification threshold value. From the figure, it can be seen
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that the F1 score reaches its highest value of 0.81 at a loss value
of 0.005. Additionally, the ROC curve was plotted based on the
threshold, resulting in the ROC curve shown in Figure 5d, and
an AUC of 0.85 was obtained for the model.

The Precision-Recall (PR) curve (Figure 5e) compares the
performance of four algorithms: the Proposed Model, Graph
Sage [41], FI-GRL [41], and Baseline [41]. The Proposed
Model exhibits the highest performance with an AUC-PR
of 0.89, indicating the best balance between precision and
recall. Graph Sage follows closely with an AUC-PR of 0.87,
showing strong but slightly inferior performance compared to
the Proposed Model. Both FI-GRL and the Baseline models
have an AUC-PR of 0.84, indicating moderate performance
and similar effectiveness in maintaining precision and recall.
Overall, the Proposed Model stands out as the most effective,
followed by Graph Sage, with FI-GRL and Baseline performing
similarly but less effectively.

Again, Table 4 summarizes the performance of various graph
learning algorithms on metrics including AUC-PR, F1-Score,
and ROC-AUC. The proposed model achieves the highest AUC-
PR (0.89) and F1-Score (0.81) but has a lower ROC-AUC (0.85)
compared to Graph Sage and XBoost, which achieve a ROC-
AUC of 0.93.

Performance of Graph Learning Algotihms
Graph Algorithm AUC- | F1 ROC-
PR Score | AUC

Proposed Model 0.89 0.81 0.85

Graph Sage and | 0.86 0.80 0.93

XBoost ([41])

FI-GRL([41]) 0.84 0.70 0.92
Baseline([41]) 0.84 0.74 0.91

Table 4: Performance Measurement of Graph Learning

Algorithms. AUC-PR provides sufficient information
to assess performance due to the imbalanced nature of
the dataset used.

Finally, Figure 6 showcases the following algorithms:
Proposed Model, Graph Sage and XBoost, FI-GRL, Baseline,
Decision Tree, XGB Classifier, ANN (Artificial Neural
Network), and Deep NN (Deep Neural Network). This radar
chart highlights the exceptional performance of the Proposed
Model, with high scores in F1 score, AUC-PR, and ROC-AUC,
demonstrating a strong and balanced performance.

While Graph Sage and XBoost show great performance
in class discrimination with high ROC-AUC, their AUC-PR
is slightly lower, suggesting a trade-off when dealing with
imbalanced datasets. Both FI-GRL and Baseline demonstrate
strong classification performance with high ROC-AUC, but they
may prioritize precision or recall at the expense of balance,
resulting in a lower F1 score.

The Decision Tree and XGB Classifier face challenges
in their competition, as the Decision Tree exhibits overall
weakness, and the XGB Classifier lacks balance despite its
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Performance of Machine Learning and Graph Learning Algorithms

—— Proposed Model
Graph Sage and XBoost
—— FI-GRL
—— Baseline
—— Decision Tree
—— XGB Classifier
ANN
—— Deep NN

AUC-PR

FlL Score

Figure 6: Performance Radar Chart. It compares several
machine learning (ML) algorithms, including the
Proposed Algorithm, using three key metrics:
F1 Score, AUC-PR (Area Under the Precision-
Recall Curve), and ROC-AUC (Area Under the
Receiver Operating Characteristic Curve).  This
visualization highlights the strengths and weaknesses
of each algorithm across these important performance
metrics, providing a comprehensive view of their
comparative effectiveness.

strong classification ability. Finally, ANN and Deep NN
exhibit moderate performance across all metrics, lacking a clear
specialization. With its balanced performance, the Proposed
Model stands out as a strong candidate for general use, unlike
other algorithms that focus on specific needs.

5.5 Conclusion

This paper presents a novel heterogeneous graph autoencoder
with an attention mechanism to extract meaningful patterns
from complex graph structures.  The encoder generates
node embeddings, which are used to form a probabilistic
distribution via a variational autoencoder, capturing uncertainty
and enabling diverse node sampling. This addresses the
first research question effectively. A deep neural network
then processes these embeddings to reconstruct the original
node representations, enhancing their quality within the
heterogeneous graph. Reconstruction errors from the decoder
are analyzed to distinguish fraudulent from non-fraudulent
transactions, with a simple search algorithm determining an
optimal threshold, addressing the second research question.
The proposed model is benchmarked against state-of-the-art
methods, including GraphSAGE and FI-GRL, consistently
outperforming these baselines and resolving the third research
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question.

Despite its strengths, the model has limitations. Scalability
is a challenge for very large graphs, as time complexity
remains high despite optimizations like neighbor sampling.
Performance depends heavily on hyperparameter tuning,
including embedding dimensions, attention heads, and network
depth. The model’s generalizability to datasets with different
structural properties or domains beyond finance is untested. It
also relies on rich node and edge attributes, which may be
unavailable in some real-world scenarios. Additionally, the
static graph assumption limits its ability to capture evolving
fraud patterns, and the model lacks interpretability, hindering
explanation of predictions. The Gaussian-based thresholding
approach may be suboptimal for datasets with non-Gaussian
error distributions.

These limitations suggest several directions for future work.
Advanced sampling techniques, automated hyperparameter
optimization, and transfer learning could enhance scalability,
robustness, and adaptability. Incorporating temporal graph
modeling would enable detection of dynamic fraud patterns,
while attention visualization and explainability methods could
improve interpretability. Replacing static thresholding with
adaptive or non-parametric approaches may improve anomaly
detection. Finally, integrating the autoencoder with supervised
or rule-based methods could boost performance and practicality
in real-world fraud detection systems.
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