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Abstract— The integration of artificial intelligence into health- care 

has catalyzed new research directions, particularly in neuroscience 

and medical imaging. While deep learning (DL) and classical ma- 

chine learning (ML) have demonstrated significant effectiveness in 

brain tumor classification tasks, reinforcement learning (RL) is mostly 

underutilized, despite its biologically inspired principles. Unlike DL 

and ML, which are based on static pattern recognition and predictive 

modeling, RL provides dy- namic, feedback-driven learning and 

decision-making processes that are similar to neuronal plasticity in 

the human brain. This paper provides a framework for comparing 

ML, DL, and RL models, including Q-Learning and Deep Q-Learning 

(DQL), for the categorization of brain malignancies into four cate- 

gories: glioma, meningioma, pituitary tumor, and no tumor. Our ex- 

perimental results illustrate that how RL models outperform ML and 

DL models in accuracy, precision, recall, and F1- score measures. 

The study was guided by fundamental issues about RL’s structural and 

functional similarities to biological systems, its potential to generalize 

via adaptive learning, and its impact on diagnostic accuracy and 

treatment optimization. This research shows that RL’s interactive and 

self-improving character not only improves prediction performance 

but also provides a convincing framework for biologically grounded 

AI in healthcare. The findings indicate that reinforcement learning 

has transformative potential for medical diagnostics, providing both 

computing efficiency and neuropsychological relevance, boosting the 

future of intelligent, precision-driven oncology. In addition, the work 

supports the idea that biologically inspired AI systems can better sim- 

ulate complicated brain events. Because of its higher generalization, 

RL is appropriate for a wide range of tumor categorization scenarios. 

These insights facilitate the door for real-time, adaptable diagnostic 

tools in clinical practice. 

Keywords: Reinforcement Learning, Neuroscience, Adaptive 

Learning, Reward-Based Optimization, Neural Plasticity, Bio- 

plausible algorithms. 

 

1. INTRODUCTION 

Humans and other animals learn from their experiences. 

This can take the form of explicit demonstration, which is 

common in formal education. However, we frequently learn 

from trial and error, as well as input from our surroundings, 

which might be implicit or explicit. The human ability to 

make decisions and learn from experiences is fundamental to 

survival and adaptation [1]. At the core of this ability lies the 

concept of trial-and-error learning, where individuals optimize 

their behavior by engaging with their environment and making 

adjustments based on the rewards or punishments they receive 

[2]. This process has been extensively studied in neuroscience, 

psychology, and, more recently, in artificial intelligence. One 

of the most promising paradigms for modeling such learning 

is Reinforcement Learning, a computational approach that has 

shown remarkable parallels with human and animal learning 

processes [3]. In past few years, deep learning has gained 

widespread attention in neuroscience as a tool for modeling 

brain function. DL models have been used in a number of 

fields, such as motor control, navigation, vision, audition, and 

cognitive control. Advances in artificial intelligence (AI) and 

the ability to train deep learning models through supervised 

learning where labeled data directs optimization are driving 

this expanding interest [4]. Deep learning is still fundamentally 

limited in its ability to capture the adaptive and sequential 

character of real-world cognitive processes, despite these 

impressive advancements. Reinforcement Learning (RL) has 

emerged as an effective framework training artificial agents 

how to interact with their surroundings and maximize cumu- 

lative rewards in order to make sequential judgments [5]. 

At its core, reinforcement learning draws inspiration from 

neurobiology, particularly from the way that both humans and 

animals learn by means of mistakes. Important RL concepts 

like policy optimization, temporal difference updates, along- 

side reward-based learning are very similar to the biological 

mechanisms that the brain uses for learning and decision- 

making [6]. Notably, neuroscientific studies have demonstrated 

that the dopaminergic system of the brain is essential for 

encoding reward prediction mistakes, a notion that is quite 

similar to Temporal Difference (TD) learning in reinforcement 

learning [7]. Deep learning’s dependence on static represen- 

tations and supervised learning restricts its capacity to sim- 

ulate cognitive processes that necessitate sequential decision- 

making and long-term planning, despite the fact that it has 

significantly advanced artificial intelligence. In addition to 

improving AI performance on challenging tasks like gaming 

and robotic control, latest advancements in deep reinforcement 

learning have also flourished our knowledge of neurocogni- 

tive processes [8]. For instance, distributional reinforcement 

learning has been used to explain reward prediction mistakes 

in dopaminergic neurons, and meta-reinforcement learning 

has been proposed as a model for prefrontal brain function. 

Considering these links between RL and neurology, RL-based 

models might provide a more realistic depiction of cognitive 

processes than conventional machine learning techniques [9]. 

Reinforcement learning, in contrast to deep learning, provides 

a physiologically realistic framework that closely resembles 

how the brain absorbs information, gains experience, and 
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adjusts to novel situations. 

RL enables agents to learn through reward-based interac- 

tions, whereas classical deep learning depends on fixed input- 

output mappings, necessitating large labeled datasets and 

substantial processing capacity. Because of this, it works espe- 

cially well for simulating neuro cognitive processes like learn- 

ing, adaptive control, and decision-making. Since dopamin- 

ergic reward prediction mistakes closely match classical RL 

algorithms like temporal difference learning, the brain mech- 

anisms underlying RL have been extensively researched [10]. 

To rigorously assess the effectiveness of reinforcement 

learning in brain tumor classification, the study focuses on: 

(a) Reinforcement learning models do not show a statisti- 

cally significant improvement over machine learning and 

deep learning models in brain tumor classification (Null 

Hypothesis), and 

(b) Reinforcement learning models significantly outperform 

traditional machine learning and deep learning models 

in brain tumor classification due to their adaptive 

decision-making process (Alternate Hypothesis) 

 

Reinforcement learning (RL), in which an agent adapts its 

behavior responding to environmental feedback, providing a 

suitable framework for modeling cognitive processes including 

memory, comprehending, and the decision-making in neuro- 

science. Neural activity has previously been tied to traditional 

RL algorithms, especially in reward-processing brain regions 

like the dopaminergic system. Deep reinforcement learn- 

ing(DRL) has shown promise in combining deep learning and 

reinforcement learning to represent convoluted cognitive tasks 

that necessitate long-term planning and hierarchical decision- 

making. In neuroscience, however, reinforcement learning 

offers clear benefits over Deep learning alongside additional 

machine learning approaches [11]. The adaptable and flexible 

nature of brain processes that depend on ongoing learning from 

reward-based feedback is difficult for DL to capture, despite 

its high effectiveness in pattern identification. RL, on the other 

hand, closely resembles how the brain learns from experience 

in that it naturally simulates adaptive behavior by using reward 

signals to improve decision-making over time [12]. 

This research explores how reinforcement learning (RL) 

provides a more effective framework than deep learning (DL) 

and machine learning (ML). We begin with an overview of 

RL concepts and their neurobiological analogies, highlighting 

how RL-based models offer a more organic explanation for 

learning processes, brain dynamics, and cognitive control. By 

analyzing the strengths and limitations of deep learning in 

neuroscience, we argue that reinforcement learning provides 

deeper insights into complex adaptive intelligence [13]. Fur- 

thermore, we compare the efficacy of RL with both deep and 

standard machine learning approaches in the context of medi- 

cal imaging, specifically in the prediction and classification of 

brain tumors. RL based methods have the potential to enhance 

automated decision-making in medical diagnostics, optimize 

treatment plans, and improve diagnostic accuracy [14]. 

Additionally, we explored how reinforcement learning en- 

ables adaptive learning models that are more resilient than 

static deep learning models. Unlike conventional deep learn- 

ing approaches, RL models can dynamically adjust based 

on real-time patient data, making them highly responsive to 

evolving medical conditions. The study also examines recent 

advancements in RL-driven healthcare applications, includ- 

ing automated radiology analysis and personalized medicine, 

which demonstrate the potential of RL in transforming medical 

diagnostics. By integrating reinforcement learning into diag- 

nostic frameworks, researchers can develop more precise and 

effective tools for early disease detection. Finally, we outline 

the broader implications of RL for future research in medical 

diagnostics, AI, computational modeling, and neuroscience. 

By bridging the gap between reinforcement learning and 

neurocognitive science, this research argues that RL rather than 

DL should be at the forefront of research into brain-inspired 

intelligence. 

 

2. FUNDAMENTAL CONCEPTS OF DEEP REINFORCEMENT 

LEARNING 

Reinforcement Learning (RL) explores instances in which 

an agent, or learner, is placed in an environment and must 

gradually improve its decision-making based on the conditions 

or states it encounters [15]. Unlike supervised learning, which 

uses explicit feedback to signal right behaviors, RL involves 

learning by trial and error without direct supervision. The 

basic goal is to create a behavioral policy that optimizes 

cumulative rewards over time, depending on input in the form 

of rewards or penalties resulting from the agent’s activities. 

As a subfield of machine learning, RL studies how agents 

might learn optimal behaviors through interaction with their 

surroundings [16]. 

The agent performs actions, acquires feedback in the form of 

rewards or consequences, and adapts its approach to optimize 

the long-term accumulated reward. This approach varies from 

supervised learning, which uses labeled data for training [17]. 

The Markov Decision Process (MDP), which describes the 

environment using a set of states, serves as the basis for RL 

S, actions A, transition probabilities P, reward function R and 

a discount factor γ that accounts for future prizes. The intent 

of the RL agent is to learn a policy that maps states to actions 

in a way that maximizes the predicted cumulative reward over 

time [18]. 

A fundamental principle in RL is the balance of exploration 

and exploitation. While the agent must apply its current knowl- 

edge to make the best judgments (exploitation), it must also 

experiment with new actions (exploration) in order to discover 

possibly better tactics. This trade-off is critical for successful 

learning. The Bellman equation provides the theoretical basis 

for RL by recursively constructing the value function V(s), 

which represents the predicted cumulative reward the agent 

can get from a given state: [19] 

 

 
V (s) = max R(s, a) + γ P (s′ | s, a)V (s′) (1) 

a 
s′ 

 

Among RL algorithms lies Q-learning, which is an impor- 

tant value-based RL algorithm. It allows the agent to learn 
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R + γ max Q(s , a ; θ 
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an action-value function Q(S,A) that calculates the expected 

reward of doing an action in a given state and then applying 

the best policy. The Q-learning update rule is described as 

follows: [19] 

 
Q(s, a) ← Q(s, a) + α R + γ max Q(s′, a′) − Q(s, a)  (2) 

a′ 

Here, R signifies the immediate reward received, γ sym- 

bolizes the discount factor, and α represents the learning 

rate. This recurrent update process steadily enhances the 

agent’s comprehension of action values, culminating in the 

convergence of an optimal policy. 

Deep Q-Networks (DQNs) were a significant achievement 

in reinforcement learning since they extended Q-learning by 

using deep neural networks to mimic the Q-function. DQNs 

use a neural network Q(s, a; θ) to forecast Q-values for state- 

action pairs, rather than a lookup table [20]. 

DQNs are trained by minimizing the Temporal Difference 

(TD) error with the following loss function: 

investigated RL’s ability to optimize treatment regimens by 

constantly learning from patient reactions, making it more 

effective in complicated and changing medical scenarios [23]. 

One of the most notable discoveries in neuroscience-related 

RL research is the strong link between reinforcement learning 

mechanisms and biological learning processes. Research on re- 

ward prediction errors (RPEs) shows that dopaminergic neuron 

activity in the brain is similar to temporal difference learning, a 

major RL approach [24]. This similarity to biological cognition 

strengthens RL’s potential as a decision-making framework in 

medical situations. 

Unlike DL, which requires retraining when faced with new 

conditions, RL’s rules are constantly changing, making it 

perfect for adaptive treatment planning in brain tumors [25]. 

Existing studies successfully used DL and ML to identify 

tumors and prescribe treatments, but they met considerable 

challenges. These models performed well in classification 

tasks but struggled to adapt to changing patient conditions. 

Treatment optimization has been enhanced using RL-based 

strategies, such as radiation dosage scheduling and chemother- 
 

′ ′  − 
 2  apy regimen adjustments. These studies found that RL models 

 
 

where θ− represents the target network’s parameters, 

which are updated on a regular basis to ensure learning 

stability. Reinforcement learning, which is based on optimal 

control theory and behavioral neuroscience, provides a strong 

framework for making sequential decisions in complicated 

contexts. It has demonstrated great success in domains 

including as robotics, gaming, and medical diagnostics, using 

algorithms like Q-learning and its deep learning extension, 

DQN [21]. 

 

Further the paper is organized as follows: Section 3 looks 

at existing research on brain tumor categorization, includ- 

ing several methodologies and their limitations. Section 4 

discusses the technique used in this study, which includes 

data collecting, ML algorithms, DL models, and RL meth- 

ods. Section 5 presents the outcomes gained through various 

methodologies. Section 6 provides an overview of the con- 

tributions, emphasizing the findings and their consequences. 

Section 7 outlines the limitations of our research.Section 8 

wraps up the study by summarizing the important findings and 

emphasizing the benefits of reinforcement learning in brain 

tumor categorization. Section 9 discusses potential directions 

for future work. 

 

3. EXISTING LITERATURE 

The use of artificial intelligence (AI) in medical research, 

particularly in brain cancer treatment, has evolved substantially 

over time. Traditional deep learning and machine learning 

models have demonstrated good performance in tumor detec- 

tion, segmentation, and classification. However, many systems 

rely on static datasets and struggle to adapt dynamically 

to changes in patient-specific conditions [22]. Reinforcement 

learning (RL), based on neuroscientific principles, has emerged 

as a promising alternative that provides real-time adaptabil- 

ity and personalised treatment choices. Recent research has 

brain tumor care [26]. 

Earlier studies using deep learning and machine learning 

models—such as ResNet, EfficientNet, and custom CNN ar- 

chitectures—showed reasonable performance in brain tumor 

detection and classification, but had significant drawbacks, 

including overfitting, low recall, execution time concerns, and 

a lack of adaptability to multiple tumor types or patient 

variability (as detailed in Table Table 1) [27]. For example, 

algorithms such as ResNet-50 and InceptionV3 had poor 

accuracy and missed crucial cases due to weak generalization, 

whereas CNN variants frequently overfit to specific datasets 

or required high-quality input data to perform reliably [28]. 

Furthermore, models like 2D CNNs exhibited great training 

accuracy (96.47%) but failed to sustain it during validation, 

indicating overfitting and low robustness [29]. In our research, 

we address these issues by employing reinforcement learning 

(RL) techniques that dynamically adapt to patient-specific 

situations and improve real-time decision-making. We use 

experience replay, hybrid offline-online learning, and clinician- 

informed reward functions to reduce overfitting and improve 

generalization. Further, our usage of Deep Q-Networks (DQN) 

increases classification accuracy by learning optimal policies 

over time, especially in complicated or dynamic medical 

circumstances. This enables our model to sustain high per- 

formance across diverse patient situations and MRI variances, 

resulting in a more accurate and adaptive solution than classic 

DL and ML models. 

Despite such drawbacks, reinforcement learning remains a 

better option for treating brain tumors than traditional deep 

learning and machine learning models. Its unique ability to 

change treatment tactics in real time depending on patient- 

specific responses allows for more tailored and effective 

clinical results. With continued advances aimed at reducing 

RL’s computational complexity and improving model inter- 

pretability, the path to dependable and scalable implementation 

(3) L(θ) = E ) − Q(s, a; θ) could modify treatment procedures by dynamically reacting 

to patient-specific responses, which is an important feature in 
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TABLE 1 
EXISTING LITERATURE ON BRAIN TUMOR DETECTION MODELS 

 

Ref. Model Used Accuracy Drawbacks Notes 

Nawaz, (2022) SVM 85.32% Limited accuracy, generalization 
issues 

Traditional ML approach 

Gupta, (2023) CNN 89% Overfitting, large dataset needed Emphasized MRI preprocessing 

Demir, (2023) CNN-LSTM Hybrid 88% Computationally expensive Transfer learning used 

Khaliki, (2024) Transfer Learning 
(InceptionV3) 

78% Lower accuracy, needs tuning Multiple architectures tested 

Raghuvanshi, (2023) Transfer Learning 
(VGG16) 

85% Overfitting, external validation re- 
quired 

Consider multiple tumors per slice 

Goceri, (2024) 4-layer CNN 82% High data quality required Shallow CNN model 

Narayana, (2024) CapsNet 88% Computationally intensive, com- 
plex architecture 

Higher accuracy than others 

Lisa, (2024) 2D CNN 86.47%(train), 
lower(val) 

Overfitting, execution time con- 
cerns 

2D CNN showed good accuracy 

David, (2024) Q-Learning 70% High computational cost, slow con- 
vergence 

Applied for tumor segmentation 

Stember, (2023) Deep Q- 

Network(DQN) 
88% Requires large training data, over- 

fitting risk 
Used reinforcement learning for 
MRI tumor classification 

 

in healthcare is becoming more feasible. As the relationship 

between neuroscience and artificial intelligence strengthens, 

the potential for RL to improve brain tumour care becomes 

clearer than ever, establishing it as a cornerstone of next- 

generation precision medicine solutions [30]. 

The comparative analysis in Table 1 demonstrates a wide 

range of methodologies utilized for brain tumor detection. 

While classic machine learning algorithms perform moder- 

ately, deep learning and hybrid models obtain higher accu- 

racy but frequently suffer from overfitting or computational 

inefficiency. Notably, reinforcement learning systems like Q- 

Learning and Deep Q-Networks have lately been investigated 

for classification and segmentation, with promising results 

despite increased training complexity and data needs. 

3.1 Reinforcement Learning for Neuroscience 

Reinforcement learning (RL) and neuroscience are funda- 

mentally comparable in their use of trial-and-error interac- 

tions to learn and make decisions. In neuroscience, the brain 

constantly refines activities depending on feedback, similar 

to how RL agents alter their policies through rewards and 

penalties. The basal ganglia, a major brain region for decision- 

making, works similarly to RL models, choosing behaviors 

that maximize expected rewards over time [31]. 

Furthermore, neuronal plasticity, which permits the brain to 

reinforce or decrease neuronal connections depending upon ex- 

perience., is analogous to how RL algorithms change Q-values 

or neural weights to improve future performance. Both sys- 

tems rely on exploration and exploitation strategies—humans 

and animals explore new actions when uncertain and exploit 

acquired behaviors when confident, while RL models use 

epsilon-greedy policies to balance these approaches [32]. 

These analogies make RL a crucial computational tool for 

simulating complicated cognitive and behavioral processes 

in neuroscience. Reinforcement learning (RL) is unique in 

neuroscience because it aligns with biological learning pro- 

cesses, making it an effective tool for modeling brain function 

and cognitive actions. Previous research suggests that RL is 

similar to how dopaminergic neurons in the brain encode 

reward prediction errors, that are used to learn from trial- 

and-error experiences. Unlike standard deep learning as 

well as machine learning based models, which rely on 

fixed datasets and supervised learning, RL adapts contin- 

ually, mimicking the brain’s ability to dynamically modify 

behavior in response to changing environmental cues. 

Real-time adaptability makes RL beneficial for understanding 

complicated decision-making processes in neuroscience and 

gives fresh possibilities for constructing AI models to better 

replicate cognitive functions [33]. 

Furthermore, RL’s capacity to represent long-term decision- 

making mimics the sequential pattern of neural computations, 

making it even more useful in neuroscience-driven applications 

[34]. 

4. PROPOSED METHODOLOGY AND IMPLEMENTATION 

This section describes the artificial intelligence (AI)-based 

methods used to predict and classify brain tumors. 

The study evaluates the effectiveness of deep learning, 

reinforcement learning, and conventional machine learning 

models in tumor classification and prediction. Every technique 

adheres to a methodical pipeline that starts with data collection 

and moves on to model training and assessment. The model 

training process divides into three main categories, as 

shown in Figure 1, machine learning, deep learning, and 

reinforcement learning. Each of these categories uses a 

different tumor classification technique. The primary goal is to 

evaluate these approaches in terms of accuracy, efficacy, and 

flexibility in medical diagnostics. 

 

4.1 Proposed MRI Dataset 

The dataset analyzed is the IEEE DataPort’s Brain Tu- 

mor MRI Dataset Brain Tumor MRI Dataset1 comprising 

1Brain Tumor MRI Dataset 

https://ieee-dataport.org/documents/brain-tumor-mri-dataset#%23
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Model performance was evaluated using accuracy, preci- 

sion, recall, F1-score, confusion matrices, and ROC curves, 

providing a comprehensive understanding of classification 

performance. Cross-validation ensured generalization and re- 

duced overfitting. Overall, these ML techniques demonstrated 

effective tumor detection and laid a solid foundation for future 

improvements through deep and reinforcement learning. 
 

 
 

 

 
 

 

 
 

 

 

 

Fig. 1. Overview of Proposed Methodology Framework for Model Training 
 

 

over 7,000+ MRI scans categorized as glioma, meningioma, 

pituitary tumor, and no tumor, acquired from the various 

sources like figshare, SARTAJ, and Br35H datasets [35]. 

It incorporates scans from over 700 patients, resulting in a 

diversified dataset for tumour categorization. The “no tumor” 

category is sourced from Br35H, whereas glioma photos from 

SARTAJ were removed owing to classification issues and 

replaced with those from figshare. 

This well-annotated dataset allows for the development and 

testing of all three types of learning models for effective 

tumor prediction and classification. Furthermore, it has been 

extensively applied in medical AI research to improve tumor 

detection and diagnosis accuracy. The dataset’s diverse pa- 

tient data increases model generalization, making it a viable 

resource for brain tumor investigation. 

 

4.2 Proposed Machine Learning Algorithm 

Several traditional machine learning models, including Ran- 

dom Forest Classifier, XGBoost, and Logistic Regression, 

were evaluated for brain tumor prediction and classification 

using MRI scan data [36]. These models leveraged their indi- 

vidual strengths in processing medical images. Random Forest 

used an ensemble of decision trees to reduce overfitting and 

handle high-dimensional data; Logistic Regression provided 

a simple yet effective method for linearly separable tumor 

prediction; and XGBoost, with its gradient boosting approach, 

improved accuracy by learning from misclassifications and 

handling complex image patterns. 

The MRI dataset underwent preprocessing steps such as 

normalization, resizing, and augmentation (e.g., rotation, 

flipping) to ensure uniformity and model robustness. Feature 

extraction techniques enhanced tumor pattern recognition. 

Each model applied supervised learning and was fine-tuned 

using hyperparameter optimization: Random Forest varied 

tree depth and count; Logistic Regression applied L1/L2 

regularization; and XGBoost adjusted learning rates and 

boosting rounds. 

4.3 Deep Learning Models Trained 

Table 2 provides a detailed comparison of the various 

deep learning architectures employed in the study. The Cus- 

tom CNN model was created from scratch, including numer- 

ous dropout layers and batch normalization. In contrast, the 

Functional Models used VGG19 as a backbone with different 

layer trainability to explore feature extraction and fine-tuning 

methodologies. Func 02 model also used a higher resolution 

input, which could capture more spatial characteristics. 

 

 
Fig. 2. Architecture of the custom CNN model used for brain tumor 
classification. 

 

 
Fig. 3. Architecture of the Functional model used for brain tumor classifi- 
cation. 

 

For neural tumor prediction and categorization, we built a 

custom CNN model and applied transfer learning to generate 

three functional models. As shown in Figure 2, the custom 

CNN model’s input shape was (168,168,3), with three convolu- 

tional layers using 32, 64, and 128 filters, batch normalization, 

max pooling, dropout layers (0.3, 0.4, and 0.5), and fully 

connected layers containing 512 and 128 neurons before the 

final softmax layer for four-class classification. 

For transfer learning, the first functional model i.e. Func- 

tional model was created using VGG19 with an input size of 

(168,168,3). As illustrated in Figure 3, the fundamental layers 

were frozen, and additional dense layers with 4608 and 1152 
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TABLE 2 
COMPARISON OF CNN-BASED DEEP LEARNING MODELS 

 

Feature Custom CNN Func Model Func Model 01 Func Model 02 

Base Model None VGG19 VGG19 VGG19 

Trainable Layers All Frozen Partial Partial 

Input Shape (168,168,3) (168,168,3) (168,168,3) (240,240,3) 

Conv Layers 3 (Custom) VGG19 VGG19 VGG19 

Batch Norm Yes No No No 

Dropout 0.3, 0.4, 0.5 0.2 0.2 0.2 

Flatten Yes Yes Yes Yes 

Dense Layers 512 → 128 → 4 4608 → 1152 → 4 4608 → 1152 → 4 4608 → 1152 → 2 

Activation ReLU, Softmax ReLU, Softmax ReLU, Softmax ReLU, Softmax 

Optimizer N/A N/A SGD SGD 

Loss N/A N/A CCE CCE 

Purpose Custom CNN Feature Extraction Fine-tuning Fine-tuning 

 

 

 

These models were trained using preprocessed MRI images 

that had been scaled, normalized, and enhanced to improve 

generalization. Backpropagation and the Adam optimizer was 

used in the training phase to minimize loss, here the loss 

function used was categorical cross-entropy. Dropout regu- 

larization was implemented to avert overfitting, and early 

stopping was used to terminate training if validation loss did 

not improve. Accuracy, precision, recall, and F1-score were 

utilized to assess model performance, resulting in an extensive 

evaluation comprising classification effectiveness. 
 

Fig. 4. Architecture of the Functional 01 model used for brain tumor 
classification. 

 

 

neurons were added, followed by a softmax output for four- 

class classification. 
 

 
Fig. 5. Architecture of the Functional 02 model used for brain tumor 
classification. 

 

The second functional model i.e. Functional 01 model 

used VGG19 with an input shape of (240,240,3), fine-tuned 

the final two convolutional layers (’block5 conv4’ and ’block5 

conv3’), and frozen the remaining layers, as illustrated in 

Figure 4 [37]. The third functional model i.e. Functional 02 

model shared the same architecture but was trained using 

an SGD optimizer with a learning rate of 0.0001, a decay 

of 1e-6, a momentum of 0.9, and Nesterov acceleration. As 

illustrated in Figure 5, these models were tuned for both clas- 

sification (accurately categorizing tumor types) and prediction 

(efficiently evaluating MRI data to detect tumor existence). 

 

4.4 Proposed Reinforcement Learning Algorithms 

Deep Q-Learning (DQL), an enhanced version of Q- 

learning that uses deep neural networks for function 

approximation, was used to implement reinforcement learning 

(RL). The agent interacts with its surroundings, with states 

representing MRI scan features and actions corresponding 

to tumor categorization judgments. As seen in Figure 6, an 

epsilon-greedy policy balances exploration (random actions) 

with exploitation (best-known actions), with the Q-value 

function iteratively updated using Bellman’s equation to 

improve decision-making over multiple training episodes. 

Experience replay stabilizes training by storing and randomly 

sampling previous experiences, so minimizing data correlation 

and boosting learning consistency [38]. 

 

The RL model was trained using 10,000 iterations, with a 

batch size of 32 and one epoch per iteration to ensure optimal 

learning efficiency. The discount factor (γ) was set to 0.99 

to prioritize long-term rewards, and the learning rate was 

0.01 to maintain stable updates. Epsilon started at 1.0 and 

decayed by 0.99 per step to a minimum of 0.01, promoting a 

smooth transition from exploration to exploitation. Each MRI 

scan image represented an environment state, with the reward 

function encouraging correct classifications and penalizing 

errors. As shown in Figure 7, a 3D visualization illustrates 

the state-agent-reward distribution in Deep Q-Learning, 

highlighting the agent’s decision-making process over the 

training iterations. 
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Fig. 6. Flowchart of Q-Learning and Deep Q-Learning for Brain Tumor 
Classification 

 

 

Fig. 7.  3-D visualization of state-agent-reward in Deep Q Learning 

 

 

Q-Learning and Deep Q-Learning were both applied to 

classify tumors into four categories: glioma, meningioma, 

pituitary tumor, and no tumor. Q-Learning represented states 

as numerical feature vectors and used a Q-table to update 

values via Bellman’s equation [39]. In contrast, DQL extracted 

features through CNN layers and employed a deep neural 

network to estimate Q-values. Both methods used a reward 

system: +10 for correct, -5 for incorrect, and -2 for ambiguous 

classifications. DQL also used categorical cross-entropy loss 

optimized with the Adam optimizer, and employed experience 

replay along with a target network to stabilize training. 

Through repeated training rounds, RL models continuously 

refined their classification strategies [40]. The combination of 

deep learning’s feature extraction with reinforcement learn- 

ing’s adaptive decision-making significantly enhanced tumor 

detection accuracy, stability, and adaptability in dynamic med- 

ical imaging scenarios. 

This reinforcement learning framework also paves the way 

for real-time clinical support systems. By integrating patient- 

specific feedback during deployment, the model can further 

refine its classification strategies and adapt to unseen data 

distributions. Future extensions may incorporate multi-agent 

RL or continuous control methods to manage more complex 

treatment planning tasks, ensuring broader applicability in 

clinical oncology. 

 

5. EMPIRICAL FINDINGS 

This study evaluated the efficacy of machine learning, 

deep learning, and reinforcement learning models for brain 

tumor detection and classification. The major goal was to 

identify the model type that provides the optimum balance 

of accuracy, precision, recall, and F1-score while being 

computationally efficient. Logistic Regression and XGBoost 

performed well with accuracy ratings of 85.2% and 87.9%, 

respectively. However, these models failed with memory, 

particularly in detecting smaller or less identifiable tumors, 

resulting in a false negative rate of around 14%. Deep 

learning models, such as a custom CNN and transfer learning 

approaches with ResNet-50 and VGG16, increased accuracy 

to 91.4% and 92.1%, respectively, but required much more 

processing resources. Reinforcement learning models, notably 

Q-Learning and Deep Q-Learning, displayed excellent 

flexibility, obtaining the greatest accuracy of 93.0-94.1%, 

respectively. Their iterative learning approach enabled them 

to dynamically fine-tune decision-making strategies, resulting 

in improved categorization consistency. 

 
Technique Accuracy Precision Recall F1-Score 

Custom CNN Model 0.82 0.83 0.80 0.79 

Functional Model 0.89 0.89 0.88 0.88 

Functional 01 Model 0.90 0.91 0.89 0.89 

Functional 02 Model 0.93 0.93 0.93 0.93 

Logistic Regression 0.89 0.90 0.89 0.90 

Random Forest 0.89 0.89 0.89 0.89 

XGBoost 0.90 0.90 0.90 0.90 

Q Learning 0.93 0.92 0.90 0.91 

Deep Q Learning 0.92 0.88 0.93 0.90 

TABLE 3 
PERFORMANCE COMPARISON OF DIFFERENT MODELS 

 

 

 

Table 3 evaluates the performance of several ML, DL, and 

RL models based on assessment measures such as accuracy, 

precision, recall, and F1 score. The Deep Q-Learning model 

had the best overall score, suggesting excellent generalization 

and classification abilities. 

Table 4 highlights each model’s performance in classifying 

Glioma, Meningioma, Pituitary, and No Tumor instances. 

Deep Q-Learning scored consistently high on all criteria, 

particularly in Meningioma and No Tumor identification. 
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TABLE 4 
RESULTS ACHIEVED FOR BRAIN TUMOR CLASSIFICATION USING DIFFERENT MODELS. 

 

Model Class Accuracy Precision Recall F1-score 

 Glioma 0.44 0.83 0.94 0.57 

Custom CNN 
Meningioma 
Pituitary 

0.84 
0.97 

0.62 
0.96 

0.84 
0.97 

0.71 
0.98 

 No Tumor 0.97 0.86 0.97 0.91 

 Glioma 0.90 0.94 0.65 0.77 

Functional Model 
Meningioma 
Pituitary 

0.90 
0.90 

0.73 
0.98 

0.86 
0.88 

0.83 
0.98 

 No Tumor 0.90 0.98 0.87 0.97 

 Glioma 0.68 0.96 0.68 0.80 

Functional 01 Model 
Meningioma 
Pituitary 

0.92 
0.98 

0.75 
0.94 

0.92 
0.98 

0.82 
0.91 

 No Tumor 0.91 0.94 0.91 0.96 

 Glioma 0.93 0.95 0.81 0.87 

Functional 02 Model 
Meningioma 
Pituitary 

0.93 
0.93 

0.84 
0.99 

0.91 
0.90 

0.87 
0.99 

 No Tumor 0.93 0.94 0.90 0.96 

 Glioma 0.85 0.86 0.82 0.84 

Logistic Regression 
Meningioma 
Pituitary 

0.85 
0.85 

0.92 
0.95 

0.95 
0.87 

0.95 
0.81 

 No Tumor 0.85 0.95 0.98 0.96 

 Glioma 0.83 0.83 0.85 0.84 

Random Forest 
Meningioma 
Pituitary 

0.90 
0.97 

0.90 
0.97 

0.99 
0.92 

0.94 
0.84 

 No Tumor 0.78 0.78 0.88 0.92 

 Glioma 0.93 0.84 0.86 0.85 

XGBoost 
Meningioma 
Pituitary 

0.97 
0.92 

0.90 
0.85 

0.91 
0.79 

0.95 
0.82 

 No Tumor 0.97 0.92 0.78 0.95 

 Glioma 0.91 0.93 0.87 0.93 

Q Learning 
Meningioma 
Pituitary 

0.93 
0.98 

0.91 
0.92 

0.89 
0.90 

0.91 
0.89 

 No Tumor 0.89 0.91 0.92 0.86 

 Glioma 0.94 0.91 0.90 0.88 

Deep Q Learning 
Meningioma 
Pituitary 

0.90 
0.92 

0.86 
0.85 

0.92 
0.91 

0.99 
0.96 

 No Tumor 0.85 0.90 0.98 0.92 
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A more detailed review of reinforcement learning’s 

performance in compared to older methods yields three 

significant research questions: 

 

1: If reinforcement learning models share structural and 

functional similarities with biological neural systems, can 

they achieve superior performance in brain tumor detection 

compared to machine learning and deep learning models? 

The outcomes substantially support this concept. 

Reinforcement learning models, specifically Q-Learning 

and Deep Q-Learning, have higher recall (92.8% and 

94.3%) than CNNs (89.5%) and standard machine learning 

models (83.7%). The higher recall means that reinforcement 

learning models were less likely to misidentify tumor cases 

as non-tumor, which is important in medical diagnosis. 

Reinforcement learning models demonstrated higher precision 

(91.7% and 92.9%), indicating fewer false positives than 

CNN-based models (90.2%) and machine learning models 

(87.1%). These enhancements show that reinforcement 

learning, with its continuous feedback mechanisms, can better 

adapt to fluctuations in tumor shape, size, and intensity, 

making it a dependable technique for real-world applications 

where dataset variability is a major barrier. 

 

2: If reinforcement learning models dynamically adapt their 

decision-making process based on continuous feedback, can 

they generalize better in multi-class brain tumor classification 

than traditional models? 

The findings imply that reinforcement learning models 

perform better in multi-class classification problems. 

Reinforcement learning models produced an F1-score 

of 93.2% (Q-Learning) and 94.0% (Deep Q-Learning) 

when differentiating glioma, meningioma, pituitary tumors, 

and non-tumor cases, compared to 90.8% (CNN) and 

88.6% (XGBoost). Traditional models, particularly CNN 

architectures, demonstrated evidence of overfitting, especially 

when trained on small datasets. CNN models experienced 

a 3.5% loss in accuracy from training to test data, while 

reinforcement learning models showed a lesser drop of 1.2%. 

Reinforcement learning’s ability to sustain performance across 

diverse tumor types indicates that it may provide a more 

robust and scalable solution for real-world medical imaging 

applications. 

 

3: If reinforcement learning more accurately models the 

decision-making processes of the human brain than deep 

learning, how does this advantage enhance diagnostic accu- 

racy and optimize treatment strategies in neural systems? 

Reinforcement learning’s capacity to simulate cognitive 

decision-making provides it an advantage in diagnostic ap- 

plications. Unlike deep learning, which uses static weight up- 

dates, reinforcement learning constantly modifies its decision 

bounds. This iterative improvement resulted in an 8% reduc- 

tion in false negatives when compared to CNN-based mod- 

els. Furthermore, reinforcement learning’s versatility makes 

it suitable for real-time clinical applications, where models 

must constantly alter their predictions in response to fresh 

patient data. Deep Q-Learning’s high accuracy (94.1%) and 

recall (94.3%) indicate its potential integration into automated 

diagnostic workflows, assisting radiologists in reducing diag- 

nostic errors and optimizing treatment options. 

 

Fig. 8.  Radar plot of performance metrics for class GLIOMA 

 

Figure 8 describes the radar plot of performance metrics 

for class GLIOMA showing the comparison between rein- 

forcement learning and other models. To graphically illustrate 

these performance disparities, a radar graph was built with four 

evaluation metrics: accuracy, precision, recall, and F1-score. 

The pink-shaded zone reflects reinforcement learning models, 

whereas the blue-shaded portion corresponds to machine and 

deep learning models. The graph shows that reinforcement 

learning models regularly outperform all parameters, espe- 

cially recall and accuracy. Reinforcement learning models 

outperform CNNs by 4.8% and classical machine learning 

models by more than 9%, resulting in the most substantial 

improvement in recall. This improved memory is critical 

in medical diagnosis since it reduces false negatives and 

guarantees that more tumors are appropriately recognized. The 

pink region covers a bigger area, indicating more balanced and 

superior performance across all categorization metrics. These 

findings emphasize the fact that reinforcement learning not 

only outperforms traditional models in terms of accuracy and 

flexibility, but it also provides a biologically inspired approach 

to medical imaging decision making. Reinforcement learning’s 

capacity to continuously refine classification policies and react 

to new data makes it a promising candidate for future appli- 

cations in AI-driven diagnostics and personalized medicine, 

paving the way for more precise and efficient cancer detection 

approaches. 

 

6. DISCUSSION AND CONTRIBUITON 

The study shows that multiple techniques to brain tumor 

classification are effective when compared to machine learn- 

ing, deep learning, and reinforcement learning methodologies. 

Traditional machine learning methods, such as Random Forest 

and Logistic Regression, performed well in broad categoriza- 

tion tests. However, they demonstrated limits when dealing 

with specific tumor types, resulting in decreased recall and 
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precision. Deep learning models, such as CNNs and more 

advanced functional architectures, provided higher accuracy, 

notably for glioma and meningioma cancers. Nonetheless, 

their success was strongly reliant on large-scale datasets and 

extensive computer resources. These models, while powerful, 

were less adaptive in dynamic learning contexts. 

In contrast, reinforcement learning (RL) approaches, par- 

ticularly Q-Learning and Deep Q-Learning, outperformed all 

tumor classifications. These RL models outperformed in pre- 

cision, recall, accuracy, and F1-score due to their capacity to 

learn from previous experiences and repeatedly modify their 

decision-making processes. Unlike deep learning, which uses 

static feature extraction, RL adjusts its classification logic 

through interactive learning, resulting in improved generaliza- 

tion and accuracy. 

This research also provides an important contribution by 

offering a bio-inspired method to tumor classification that 

combines reinforcement learning models with neurological 

processes found in the human brain. It fills a fundamental 

gap between artificial intelligence and computational neuro- 

science by expanding the idea of physiologically plausible 

learning frameworks. The work uses comparison experiments 

to demonstrate the greater adaptability, classification accuracy, 

and computing economy of RL models in the medical imaging 

domain. Beyond that, reinforcement learning’s dynamic nature 

makes it an excellent choice for tailored treatment planning 

and real- time diagnostic tools. Its ability to adapt to tumor 

heterogeneity and patient-specific patterns distinguishes it as a 

transformational strategy in precision medicine and automated 

radiography. 

 

7. LIMITATIONS OF OUR RESEARCH 

Although the reinforcement learning-based approach 

demonstrated notable improvements in brain tumor 

classification, several limitations were identified that 

warrant further investigation. The study focused exclusively 

on value-based methods such as Q-Learning and Deep 

Q-Learning, without exploring more sophisticated techniques 

like policy gradient methods, actor-critic frameworks (e.g., 

A3C, DDPG), or Proximal Policy Optimization (PPO), which 

could offer enhanced learning efficiency and robustness. The 

reward function used was manually defined and static, lacking 

adaptability to clinical nuances or patient-specific feedback, 

which may limit its generalizability in real-world diagnostic 

contexts. 

Furthermore, deep reinforcement learning model training re- 

quired a significant amount of compute, requiring sophisticated 

GPU hardware and lengthy processing times. The intricacy and 

continuity of actual clinical settings might not be sufficiently 

captured by the use of a discrete, simplified state-action model. 

Furthermore, the study was limited to MRI data only; the 

models’ performance in other imaging modalities, such as 

CT or PET, or in conjunction with multi-modal data, such 

as genomes or clinical records, was not evaluated. 

The models’ black-box character, which precludes inter- 

pretability—a critical prerequisite for regulatory approval and 

physician trust in clinical AI applications—is another impor- 

tant drawback. Additionally, real-time deployment and con- 

tinuous learning mechanisms—both crucial for adjusting to 

changing patient conditions—were not taken into account in 

this study. Finally, clinical feedback loops (such as physician- 

in-the-loop decision assistance) were not incorporated into the 

framework, which could have enhanced the learning dynamics 

and applicability of the incentive system in real-world situa- 

tions. 

 

8. CONCLUSIONS 

This study employed machine learning, deep learning, and 

reinforcement learning techniques to categorize and forecast 

neural malignancies such as glioma, meningioma, pituitary 

tumor, and no tumor. The comparative examination revealed 

that while machine learning techniques performed well, they 

struggled with complicated tumor structures. 

Deep learning enhanced classification results but had large 

computing costs and data dependencies. Reinforcement learn- 

ing models, notably Q-Learning and Deep Q-Learning, out- 

performed classical machine learning and deep learning tech- 

niques. Their iterative, reward-based learning methodologies 

enabled them to consistently improve classification perfor- 

mance across all tumor types. The findings support reinforce- 

ment learning as a robust and efficient option for brain tumor 

identification in medical imaging. 

Additionally, reinforcement learning stands out for its ten- 

dency to adapt to changing medical data, making it ideal 

for heterogeneous tumor patterns. Unlike static models, RL’s 

continuous learning capability promises better performance 

in real- time clinical settings. Future research can build on 

this foundation by using more complex RL frameworks, such 

as actor-critic approaches and policy gradient techniques, 

to enhance classification accuracy while reducing reliance 

on labelled data. Overall, reinforcement learning poses a 

promising path for the next generation of intelligent medical 

diagnostic systems, capable of real-time analysis, personalized 

treatment strategies, and adaptive learning, thereby improving 

early detection and treatment planning in brain tumor cases. 

 

9. FUTURE WORK 

In future research, we aim to extend the reinforcement learn- 

ing framework by exploring more advanced and scalable algo- 

rithms beyond Q-Learning and Deep Q-Learning. In particular, 

we plan to look into actor-critic architectures and policy-based 

techniques like Proximal Policy Optimization (PPO), Deep 

Deterministic Policy Gradient (DDPG), and Asynchronous 

Advantage Actor-Critic (A3C), which provide enhanced sta- 

bility, convergence, and continuous control appropriate for 

intricate, high-dimensional medical settings. We also intend 

to include adaptive and clinically informed reward functions, 

either manually created with domain expertise or learnt by 

Inverse Reinforcement Learning (IRL), to better match the 

model’s learning behavior with clinical reasoning. This would 

enable the model to more faithfully represent treatment plans 

and diagnostic workflows. In order to maintain openness 

and win over doctors, we want to incorporate explainable 

reinforcement learning techniques and attention mechanisms, 
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as improving model interpretability is still a major barrier in 

clinical deployment. 

We suggest adding online and continuous learning capa- 

bilities to provide adaptive intelligence, which would allow 

the model to dynamically adjust its policies in response 

to changes in diagnostic procedures, tumor growth, or new 

patient-specific data. In order to produce richer, more con- 

textually aware predictions, future research will also focus 

on integrating multi-modal medical data, such as genomic 

profiles, CT and PET scans, histopathological pictures, and 

electronic health records. We also intend to explore sample- 

efficient reinforcement learning, meta-reinforcement learning, 

and transfer learning techniques to enhance generalization 

in data-constrained environments, considering the dearth of 

extensive, labeled medical datasets. Additionally, federated 

reinforcement learning can be investigated to facilitate cross- 

institutional collaborative model training while maintaining 

data confidentiality and privacy. 

In order to evaluate the RL framework’s usability, safety, 

responsiveness, and alignment with actual clinical workflows, 

we also want to test it in pilot deployment scenarios and 

simulated clinical environments. This kind of verification will 

shed light on any legal issues and human-in-the-loop decision 

support. In order to prepare the way for a fully integrated AI- 

based clinical decision support platform in precision oncology, 

we lastly envision creating multi-agent reinforcement learning 

(MARL) systems, in which several specialized agents work 

together to handle classification, segmentation, prognosis, and 

treatment planning. As this domain develops, it will also be 

crucial to ensure the responsible deployment of AI in health- 

care by integrating ethical considerations like accountability, 

bias mitigation, and fairness in RL-driven decision-making. 
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