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Smart Warehouse: WMS, AI, IoT and Digital Twin Integration.
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Abstract

In this paper, the development of our innovative smart
warehouse system, integrating cutting-edge technologies to
optimize warehouse operations was presented. Our solution
combines a robust hardware platform with an advanced
Warehouse Management System (WMS), Artificial Intelligence
(AI), Internet of Things (IoT) and Digital Twin (DT)
capabilities. This seamless integration enhances real-time data
visibility and improves operational efficiency. By leveraging
AI-driven analytics and IoT connectivity, our smart warehouse
offers greater accuracy, flexibility, and scalability, setting a new
standard for modern supply chain and logistics management.
This transformative approach paves the way for the future of
automated warehousing.

Key Words: Smart warehouse, IoT, AI, WMS, Logistics,
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1 Introduction

In the early 2020s, the global supply chain underwent
transformational changes, driven in particular by the COVID-
19 pandemic, which significantly increased the demand for
online shopping. This shift challenged both traditional and
hybrid logistics companies to adapt, as conventional warehouse
management methods and their ability to meet market demands

*Mechanical and Mechatronics Department, Eastern International
University, Binh Duong Province, Viet Nam. Email: huan.le@eiu.edu.vn.

†Industry 4.0 Innovation Center, Eastern International University, Binh
Duong Province, Viet Nam. Email: giap.nguyen@eiu.edu.vn.

became outdated. The obsolescence of technology and non-
standardized infrastructure led to rising maintenance costs,
while inefficient picking processes—accounting for 55% of
total operating costs [4] —further strained logistics operations.
As a result, modernizing logistics activities has become an
urgent necessity.

Vietnam, which is a developing country with an average
annual e-commerce growth rate of around 18% and a market
size expected to reach 26 billion USD by 2024 (recognized
by E-Commerce Analytics) as the fastest-growing e-commerce
market in the ASEAN region, reflects positive economic trends
[20]. However, this rapid growth also increases the demands
on supply chain and logistics management. While 52.8% of
shippers opt for domestic logistics services [10], logistics costs
represent nearly 20.9% of Vietnam’s GDP (2022) [25]. This
highlights the urgent need to modernize and optimize warehouse
systems to boost export competitiveness and strengthen the
economy, both for businesses and for Vietnam as a whole.

Warehouses serve as the foundation of logistics systems and
play a crucial role in ensuring the efficient movement, storage,
and tracking of goods [11]. Modernizing warehouse systems
directly translates to improving logistics service quality. The
imbalance between investment and operational efficiency in
traditional warehouses stems from challenges such as space
management, goods handling, poor management practices, and
excessive reliance on machinery [21][29]. These warehouses
often depend on manual processes that require significant
human involvement and lead to high operational costs, slow
processing speeds, and reduced accuracy, scalability, and
transparency of information [8].
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Emerging Industry 4.0 (I4.0) technologies—such as the IoT,
AI, and Machine Learning (ML)—are reshaping warehouse
operations by enabling ”smart” warehouses with real-time
data collection, resource allocation, and error reduction.
For example, Radio Frequency Identification (RFID) systems
facilitate automated identification and real-time tracking and
reduce costs, and increase efficiency, while Automated Guided
Vehicles (AGVs) enhance order picking and batch processing
for operational optimization [17]. In addition, technologies
such as IoT, Big Data, and Cloud Servers play a crucial role
in the shift toward Smart Warehouses [8][1]. IoT technologies,
including QR and RFID applications, allow businesses to
monitor, trace, and update large volumes of goods data
in real-time [14][2]. It enables rapid responses to market
fluctuations and saves 80-99% of processing time and boosts
operational efficiency by up to 91% through cross-docking [15].
Furthermore, the strong growth potential of AI, predicted to
contribute a 1.2% increase to GDP annually [18], makes Big
Data the backbone of advanced deep learning applications,
which help identify trends and issues early, thereby enhancing
productivity and management efficiency [7][23].

Despite these advancements, several challenges remain
including high implementation costs, data security concerns,
training requirements, and infrastructure upgrades—all of
which create significant barriers, especially for small and
medium-sized enterprises (SMEs) [4][28]. Case studies further
highlight additional obstacles, such as Sri Lanka’s slow
adoption of AI due to limited technological knowledge and
resource delays [5]. These issues are commonly encountered in
research related to information and communication technology
(ICT) applications in warehouse management, alongside
limitations in experimental environments.

This paper aims to provide deeper insights into the value
of applying AI, IoT, and Digital Twin (DT) technologies to
electronic warehouse management systems (E-WMS) through
the Smart Warehouse (SWH) model, developed by our center at
a 1:10 scale compared to real warehouse systems. By leveraging
digitalization, data collection, and real-time analytics, this
model enhances remote management capabilities and improves
supply chain responsiveness to fluctuations. It also supports
decision-making and management strategies with optimized
costs and increased operational efficiency.

2 Literature Review

An early demo of ChatGPT was released at the end of 2022
bringing the definition of “AI” closer to the general public.
However, applied AI research in real life was earlier than that
a long time ago, such as:

• Education: AI-powered tutoring applications that support
individual learning. For example, “ELSA Speak” uses AI
to teach and correct English pronunciation errors.

• Aviation: AI assists in pilot training through simulation
tools and tactical decision-making.

• Financial Security: Banks use AI for algorithmic trading
and enable fast and efficient transactions without human
intervention.

• Healthcare: Computer vision is used to detect
abnormalities in the body, such as deformities or cancer,
through imaging.

• Personal Use: Technology companies equip virtual
assistants powered by AI, like Siri on iOS and Google
Assistant on smartphones, to help users manage finances
and access information more easily.

AI applications for warehouse management have been
explored for quite some time. Due to some limitations in
technology and infrastructure, it wasn’t until Industry 4.0 was
fully developed, with advances in IoT enabling faster and
easier data collection and analysis, that the application of AI
in warehouse systems began to accelerate. Additionally, the
impact of the COVID-19 pandemic on the supply chain, causing
a shortage of human resources, further accelerated this process
to modernize warehouses and address human limitations.

Modernizing warehouse systems is now driven not only
by economic efficiency and operational performance but
also by the demand for sustainable logistics and by reducing
environmental impact with strategies aimed at achieving Net
Zero globally. JD.com serves as an example of the effectiveness
that Industry 4.0 technologies bring, integrating AI solutions
and clean energy, allowing for same-day or next-day deliveries
while reducing carbon emissions. Similarly, Alibaba’s Cainiao
warehouse powered by AI in Tianjin has reduced human labor
by 70% and increased speed and efficiency. Amazon uses
AGVs and AI to optimize demand forecasting, enable same-day
deliveries, and drive revenue growth [12].

For e-commerce warehouses, there are technical
requirements to operate 24/7 to keep up with rapid delivery
demands. Before delving deeper into the technologies
explored by the group when building SWH at the center for
modernization and AI application in E-WMS, the group will
first present the basic operational processes of an optimized
warehouse, which include:

1. Receiving Goods: This is the first and crucial step in
warehouse management, where the quantity and condition
of the goods must be controlled to match the delivery time.
[4][30]

2. Storage: The process of placing goods in suitable storage
locations helps optimize storage space and retrieval costs.
[4][30]

3. Order Picking: The activity of collecting goods in the
warehouse to deliver them to consumers. [4][30]

The receiving process is crucial for businesses as it allows
them to assess the condition of products before storing them,
and enables the identification of defective products and avoids
responsibility for them. The storage method and location
of goods play an equally significant role, as an efficient
management system that allows for easy retrieval can help
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businesses optimize transportation, storage costs, and order
search. Thus, it enhances management performance. Finally,
during the order picking process, based on the recorded
information, orders are gathered at a consolidation point before
being shipped to customers that account for up to 55% of
the total operational costs of a warehouse [4]. Therefore,
selecting appropriate processes, technologies for retrieval,
and management systems will enable the creation of a smart
warehouse and reduce substantial costs while increasing
efficiency and customer satisfaction, which in turn enhances the
competitiveness of the business.

In addition to building a WMS to standardize operational
procedures, smart warehouse systems utilizing ICT, with
the ability to link through IoT and Cyber-Physical Systems
(CPS), not only facilitate the coordination and synchronization
of processes but also create added value through real-time
data processing [29][13][24]. By promoting automation with
modern robots such as AGVs [24], and utilizing Automated
Storage and Retrieval Systems (AS/RS) [11] the transportation
and storage stages, the system enhances efficiency. The use
of RFID/Barcode systems, synchronized with WMS, helps
identify, track, and transmit information within the warehouse.
Furthermore, AI and Digital Twin applications, in addition to
supporting decision-making from data analysis [4][5][27][19],
also help address challenges such as Storage Location
Assignment Problems (SLAP), Order Picking Problems (OPP)
[6], and the development of Engineer-To-Order (ETO) strategies
[16]. This reduces manual errors, supports more effective and
accurate transportation, storage, and order picking, minimizes
operational costs, increases business competitiveness, and
enhances customer satisfaction.

Based on the analysis and synthesis from Table 1, this serves
as the foundational base to help the team begin the project of
building a SWH integrated with ICT and automation, based
on previous ideas, with a focus on smoothly integrating highly
adaptable technologies such as IoT, AI, and DT into the SWH
warehouse model. By developing AGVs for transportation
within the warehouse, implementing RFID in management
and data retrieval, and building CPS along with a database
system to monitor and update in real-time across multiple
platforms. This research seeks to explore in more depth
the potential that Reinforcement Learning (RL) offers for
optimizing storage location decisions from equipment and aim
to reduce energy consumption and equipment depreciation.
Additionally, the research will look into the development of
a DT model to support the Engineer-To-Order (ETO) process
for the warehouse, create a flexible warehouse environment,
remove the limitations of management analytics, and enhance
creativity and adaptability to new global trends.

3 Methodology

3.1 Hardware Requirements

3.1.1 Radio Frequency Identification - RFID

The RFID reader/writer ANT 513, which operates at a
high frequency of 13.56 MHz and complies with the ISO
15693 standard, is utilized. This device supports a maximum
read/write range of 60 mm. It covers both the front and sides
and makes it ideal for precise object identification in Smart
Warehouse systems.

To track the position of pallets in the SWH, RFID tags are
attached to each pallet. Eight ANT 513 RFID readers are used
for inbound logistics management: one at the import gate for tag
encoding and seven positioned along the inbound conveyor. The
RFID writer retrieves optimized ID codes from the E-WMS,
based on factors such as weight and storage duration. The RFID
readers at each station then verify the tag information and direct
the pallets to the optimized storage cells. This allows users to
track the entire storage process, improving accuracy, enhancing
management efficiency, and reducing operational errors.

Figure 1: RFID ANT 513 Device and RFID Tag.

3.1.2 Navigation Conveyor System

The navigation conveyor system is used to accurately
determine the position of the pallet during the inbound and
outbound processes, helping to prevent unnecessary errors.
Infrared sensors play a critical role in detecting, tracking, and
locating pallets on conveyors, ensuring precise positioning at
RFID encoding areas.

During the process of determining the location of goods at
each station, the system of navigation conveyors receives signals
from optical sensors and RFID data to navigate the goods to
the correct station. When pallets are transferred to the inbound
conveyor, the infrared sensors halt the navigation conveyor
system mechanisms and signal AGVs to retrieve the pallets.

Digital Fiber Optical Sensors are installed on AGVs to ensure
precise management of goods handling in SWH. They detect
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Table 1: List of technologies referenced in warehouses

Technology Applications Key Benefits Examples Citations

Autonomous
Robots

Loading, unloading, and
packaging tasks

Reduced labor costs,
improved safety, and
operational efficiency

Amazon, JD.com,
Alibaba, Ocado

[29][3]

RFID Real-time inventory
tracking and tracing

Enhanced traceability and
data accuracy

Coca-Cola’s
inventory systems

[6]

IoT Connecting devices and
data sharing across logistics
nodes

Real-time monitoring and
automation

IoT-enabled smart
warehouses

[24][6]

AI Demand prediction,
anomaly detection,
operational optimization

Cost reduction, improved
accuracy, sustainable
practices

Amazon: Same-
day delivery;
Alibaba: 70%
labor reduction in
Cainiao warehouse

[5][9]

Computer
Vision

Inventory monitoring and
material handling

Increased precision and
speed

JD.com, Amazon [29][5]

Cloud
Computing

Hosting WMS and real-
time data access

Scalability, accessibility,
and cost savings

AWS, Firebase,
Auto-Identify
Technology (AID)

[8]

CPS Real-time integration of
physical and computational
systems

Enhancing decision-
making and operational
synchronization

Integrated robotics
and IoT systems in
logistics

[24]

Digital Twin Research and development
to address ETO challenges

Improving supply chain
visibility and predictive
maintenance

Focchi’s warehouse [16]

pallets, identify empty positions, support AGVs’ autonomous
operations, and reduce dependency on human intervention.

3.1.3 AGV System

The smart warehouse model system consists of seven AGVs,
designed on a 1:10 scale. At each station, an AGV system is
responsible for transporting goods to racks that can store up to
196 slots at the same time (1372 slots across 7 stations).

The standard pallet size is designed at a ratio of 1:10 of
real pallets, measuring 120mm x 120mm x 175mm, with a
maximum delivery weight of 1.5 kg. Each slot in the rack,
designed with dimensions of 120mm x 120mm x 300mm, has a
load capacity of 3 kg (1.5 x 2 for safety factor).

The AGV dimensions are 858 mm x 158 mm x 1957 mm
(LxWxH). The operating range of the AGV is defined by its
movement on three axes: - X-axis: -144mm to 2280mm - Y-
axis: -150mm to 1240mm - Z-axis: -165mm to 165mm

3.2 Software Design

The primary activities in a warehouse system include
identifying and receiving orders, counting product quantities,
recording storage locations, and delivering goods to the correct
cells. With modern technologies, smart warehouses provide
enhanced capabilities for monitoring and managing goods more

Figure 2: The design of storage racks and AGV system.

accurately and efficiently than traditional warehouses. Based on
the generalized model in Fig. 3, the components are as follows:
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Figure 3: Workflow diagram of the Smart Warehouse.

(1) The E-WMS is the central system for managing and
organizing order lists, which can be input manually or provided
via Excel files. It optimizes storage locations and assigns RFID
tags to orders. Additionally, it serves as the main interface
for displaying data, including product quantities (inbound and
outbound), available storage slots, and more [22].

• The system incorporates Reinforcement Learning
(RL) algorithms to optimize pallet positioning in the
warehouse. This optimization minimizes spatial and
energy consumption by providing the most efficient cell
and path for automated AGVs. RL focuses on long-term
reward-based decision-making.

• Deep Q-Learning (DQN), a type of reinforcement learning,
leverages deep neural networks (DNNs) to predict values
and address large-scale problems [26]:

Q(s,a) = R(s,a)+ γ ∑
s′

P(s,a,s′)max
a′

Q(s′,a′) (1)

• The AI model is trained using three main input
datasets: weight, import/export dates, and frequency of
import/export for each type of product. In the enhanced
E-WMS, the environment is the warehouse with a fixed
storage space, the agent is the AGV, and the state
is the AGV’s current position with the reward of that
position. The pallet information (weight, import/export
dates, frequency) also serves as the policy for evaluating
the algorithm.

– The AGV’s current position.
– A list of occupied and available storage slots
– Pallet information (weight, import/export dates,

frequency) which also serves as the input data for the

algorithm.

Actions a involve the AGV moving pallets to an appropriate
location. Rewards r evaluate the efficiency of these actions:
storing a pallet in the correct position yields a high reward, while
incorrect actions result in lower rewards (Fig. 4).

Figure 4: Integration of AI models into Warehouses.

(2) SQL serves as the database system for processing and
storing all general information in the system which is a crucial
node for data exchange between the WMS and the automated
support systems.

(3) PLC Master: The PLC Master acts as the central brain
of the automated support system. It processes data from the E-
WMS via SQL, sends execution requests to subsystems (e.g.,
AGVs, conveyors, and RFID), and updates system states back
to the WMS.

The E-WMS system manages and optimizes storage locations
by analyzing order data (via Excel file or manual input) and
using AI algorithms to determine optimal pallet positions based
on storage time and available slots. SQL database stores and
exchanges real-time order and warehouse status data between
the E-WMS and the SWH systems. The PLC Master acts
as the central controller and processes data from E-WMS and
the SWH systems to navigate AGVs and conveyors. RFID
readers and sensors continuously track pallet locations, while
PLC Slaves execute actions like transporting pallets according
to the orders from the PLC Master.

3.3 Calculation of Travel Time and Energy Consumption
for AGVs

To research the performance of smart warehouses before and
after AI integration, equations (2) and (3) were developed based
on analyses of the collected and measured dataset.

The travel time of the AGV is calculated from the ”Entrance”
position to the starting position of the warehouse, measured as
2.5 seconds with an energy consumption of 0.319 W·s.

The movement speed and idle power consumption of the
motor along each axis are:

• X-axis: Speed = 500 mm/s, Idle power consumption Px =
0.087 W

• Y-axis: Speed = 350 mm/s, Idle power consumption Py =
0.058 W
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The time required for movement along each axis is calculated
using the formula t = s

v :

• Movement time for each grid cell along the x-axis (row):

tx = 0.4 s (2)

• Movement time for each grid cell along the y-axis
(column):

ty = 0.86 s (3)

Since the distance from the ”Entrance” to the starting position
is equivalent to the first three rows of the first column (0.8 m ×
0.6 m), and the starting time is 2.5 s, the total travel time for one
grid cell is calculated as follows:

t = 2.5+max(tx(x−1), ty(y−3),0) (s) (4)

The energy consumption for each pallet position is influenced
by the travel time along each axis (x,y), the weight m, and the
energy coefficient a. The formula is as follows:

A = 0.319+(tx · x)Px +(ty · y)Py +m · t ·a (W·s) (5)

Where:

• a: Coefficient of increased motor power consumption for
carrying loads (varies depending on motor type).

• m: Weight of each pallet, classified into three groups with
coefficients of 0.5, 1, and 1.5, used to calculate the load
energy consumption.

3.4 Mobile Application Workflow in the Smart Warehouse
System

Figure 5: The flow of mobile application.

Current Logistics management services focus on improving
user experience and increasing information reliability. With
the advantages of applying digitalization and CIT in warehouse
data management through E-WMS and Database - these are the
advantages that SWH can bring to improve user experience. A
mobile platform developed using Flutter is integrated into the
SWH system to help Customers access real-time information
through APIs provided by the Node.js-based backend service.
Figure 5 is as follows:

[1] Users initiate tasks via E-WMS: Operations such as
inventory requests and order creation are performed
through desktop terminals or devices within the local
network.

[2] E-WMS stores data in the central database: Operational
data such as order status and product movement are stored
and retrieved from the centralized database.

[3] Node.js handles real-time data synchronization: A
backend service built with Node.js connects the database
to the mobile application via RESTful APIs, supporting
queries and user authentication.

[4] Flutter provides a cross-platform mobile interface:
Users can access key functions like task reception, order
tracking, QR/barcode scanning, and task status updates
through the mobile app.

[5] Database communicates with AGV/PLC systems: Order
details are sent to AGVs/PLCs for execution, and feedback
such as completion status and location is returned.

[6] Feedback is synchronized with the mobile app: Updates
from AGV/PLC systems are recorded in the database and
reflected immediately in the mobile interface via Node.js.

[7] Offline support and automatic synchronization: The
app caches data when offline and automatically syncs it to
the central database once the connection is restored.

3.5 Digital Twin Integration for Engineer-To-Order
Operations

Besides offering strong data accessibility, warehouse
digitalization holds significant potential in predictive analytics
and strategic decision-making through the development of a
Digital Twin model for the Smart Warehouse (SWH).

Figure 6: Digital Twin data transmission flow.

To support real-time visualization and Engineer-to-Order
(ETO) workflows, a Digital Twin architecture has been
implemented in the SWH. The overall data flow and system
integration are illustrated in Fig. 6.

[1] Sensor and encoder data collection: The physical
warehouse is equipped with sensors and encoders attached
to AGVs and machinery. These devices collect real-time
data such as position, velocity, and operational status.

[2] AGV/PLC system coordination: Raw sensor data is
transmitted to AGV/PLC controllers. These systems
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process the data to make motion control decisions
and execute automated handling tasks—forming the key
interface between the physical and digital domains.

[3] Real-time synchronization via MQTT: To enable
lightweight, low-latency communication between physical
systems and the virtual environment, MQTT (Message
Queuing Telemetry Transport) is used. It ensures efficient
and reliable telemetry data transfer from AGV/PLC to the
Unity-based Digital Twin.

[4] 3D visualization in Unity: A virtual warehouse
environment is developed in Unity, enabling real-
time visualization of warehouse operations. Through
MQTT, the 3D models dynamically reflect the current
state of physical systems, including product positions,
AGV movements, and activity flows—forming a fully
synchronized Digital Twin.

[5] Database integration and product mapping: In addition
to telemetry data, product-specific information—such as
SKU codes, order IDs, and storage locations—is retrieved
from the database. This data is used to annotate the
3D models, providing contextual insights for warehouse
operators and planners.

[6] Support for Engineer-to-Order (ETO) operations:
The Digital Twin offers an interactive interface that
supports ETO operations by enabling real-time tracking
of custom orders, verifying product routing, and ensuring
configurations meet customer-specific requirements.
Engineers can simulate logistics scenarios, monitor
performance, and instantly adjust control parameters
within the virtual model—shortening the feedback loop
between design and execution.

This Digital Twin framework enhances monitoring and
decision-making, bridging the gap between the physical
warehouse and digital control systems, and supporting adaptive
smart warehouse management tailored to ETO scenarios.

4 Results and Discussion

Our warehouse system significantly reduces energy
consumption by nearly 25% and improves overall operational
efficiency by cutting travel time by 15%. Testing on 98
warehouse positions demonstrates the superior effectiveness of
this approach compared to traditional management processes
and verifies the feasibility of AI technology in warehouse
management (Fig. 7).

Figure 7: Integration of AI models into Warehouses.

To compare the efficiency of SWH, E-WMS with AI
has proven to be more efficient in warehouse management
than the previous version which used a traditional algorithm
without RL, as evidenced by a depreciation comparison after
one week between the two solutions. According to the
data, energy consumption and travel time have decreased
significantly compared to traditional methods. Travel time
was reduced by nearly 10 seconds (approximately 14%), travel
energy consumption decreased by 1.02 (W.s) (10.3%), and load
energy consumption dropped by 30% during pallet transport.
After the R&D phase, the Mobile application has successfully
implemented basic monitoring and control features with a
detailed interface as shown in Fig. 8.

Figure 8: Mobile application for SWH.

1. Connect status: Displays the application’s connection
status with the server.

2. Tab station: Allows switching between dashboards for 7
stations.

3. Chart section: Displays charts to manage the status and
quantity of cells in each station.

4. Grid cells section: Shows the grid of cells within a station
for interaction.

5. Cell status:
5.1 Green indicates a cell containing goods.
5.2 Yellow indicates a cell in the process of loading or

unloading goods.
5.3 White indicates an empty cell.
5.4 Gray indicates a pending cell status.

Figure 9: Optimized pallet location information by AI.

In addition to information updated from the database
regarding detailed inventory and current locations, Fig. 9
illustrates that the AI model has achieved the projected



IJCA, Vol. 32, No. 2, June 2025 157

arrangement strategy as shown in Fig. 4. Pallets are allocated
based on designed levels of storage time ( less than 30 days,
from 31 to 60 days, and over 60 days ) and weight categories
(0.5 kg, 1 kg, 1.5 kg).

Figure 10: Smart Warehouse after AI and IoT integration.

The integration of AI into the warehouse model has been
evaluated using key metrics:

• Import time for the nearest pallet (01): 22s, and the farthest
pallet (98): 35s.

• Export time for the nearest pallet (01): 25s, and the farthest
pallet (98): 38s.

• Conveyor time for the nearest station (G07): 18s, and the
farthest station (A01): 53s.

Compared to traditional warehouse systems, the smart
warehouse demonstrates significant efficiency improvements in
order processing, from retrieval to transportation (Fig. 10).
By optimizing pallet allocation to positions, the system saves
energy across all stations, ensures more balanced distribution,
reduces excessive equipment operation, and enhances economic
benefits.

Figure 11: Digital Twin Model of SWH in Unity.

Currently, this DT model has successfully received data
in parallel with the SWH and has successfully simulated the
movement of AGVs within the SWH (Fig. 11). It can also
communicate with the AI-integrated WMS. In the future, the
team will collect additional data from sensors and databases
to further refine the model and support the development of
Engineer-To-Order (ETO) for AI specifically tailored to the

SWH, as well as management applications related to energy
and risk management.

Limitation:

The current implementation is limited to a 1:10 scale
prototype, which does not fully capture the complexity and
challenges of deploying and operating such systems in real
warehouse environments. Moreover, the machine learning
model is currently constrained by a limited dataset, which
indicates significant potential for further optimization of
both the model architecture and control policies. To fully
evaluate the impact of integrating WMS, IoT, AI, and a
dynamic Digital Twin in real-world scenarios, substantial
infrastructure—including RFID systems, AGVs, IoT devices,
and Computer Information Technology (CIT) platforms—is
required. This poses challenges in terms of time and cost,
particularly for small and medium-sized enterprises (SMEs).
A complete transformation would demand a progressive
digitalization process, moving from WMS-based workflows
to semi-automated or automated systems, followed by the
integration of CIT/IoT technologies, and eventually achieving
full DT implementation.

Future works:

In the near future, the research team aims to expand
the capabilities of the DT environment to support predictive
maintenance (PM) and testing solutions. By developing
comprehensive testing tools within the DT framework, it will
be possible to simulate and evaluate various warehouse layout
strategies and policies, that enable the identification of the most
effective machine learning models. This will also facilitate
the collection of valuable operational data to support the
development of predictive maintenance algorithms.

Additionally, the mobile application will be further enhanced
with advanced security features and deployed in real warehouse
environments to assess its effectiveness and impact on
warehouse management performance. Future versions of
the app will also include integrated chatbot functionalities to
improve user interaction and service quality in inventory and
workflow management.

5 Conclusions

In addition to the proven benefits in operational
efficiencies—such as faster inbound and outbound
processes—and energy optimization—through reduced
consumption and minimized machinery depreciation—the
integration of RFID, AI, DT and mobile applications with
the E-WMS software, coupled with synchronization with the
database system, establishes a comprehensive and intelligent
seamless process. The SWH is one of steps for us to shift
the focus from human-intensive to technology-intensive. It
emphasizes strategic management and sustainable development.
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The proposed solution represents a step toward the
advancement of Industry 5.0, with a focus on sustainable energy
practices and a more human-centric approach to technological
development. Leveraging the current capabilities of modern
sensor systems and database infrastructures, the potential of
SWHs extends into predictive maintenance and digital twin
technologies. These innovations enable the identification
and mitigation of potential issues before they arise, facilitate
improved risk management and proactive responses to market
changes through predictive scenario modeling.
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Čereška. Research on Impact of IoT on Warehouse
Management. Sensors 2023, Vol. 23, Page 2213,
23(4):2213, feb 2023.

[8] Dr. Ali Kamali. Smart Warehouse vs. Traditional
Warehouse - Review. Automation and Autonomous
System, 11(1):9–16, 2019.

[9] Aswin M Kumar. Smart Warehouse Governance using
AI and Raspberry Pi. International Journal of Recent
Technology and Engineering (IJRTE), (9):2277–3878,
2020.

[10] Pham Nguyen My Linh and Nguyen Thi Thu Huong. The
Supply Chain and Logistics of Vietnam in the Context
of International Economic Integration. International
Business Research, 13:27, may 2020.

[11] Kamran Mahroof. A human-centric perspective exploring
the readiness towards smart warehousing: The case of a
large retail distribution warehouse. International Journal
of Information Management, 45:176–190, apr 2019.

[12] S Marino. Delivering smart warehousing in Australia.
23:131–138, 2023.

[13] Hokey Min. Smart Warehousing as a Wave of the Future.
Logistics 2023, Vol. 7, Page 30, 7(2):30, may 2023.

[14] S. P. Plakantara, Athanasia Karakitsiou, and T. Mantzou.
Managing Risks in Smart Warehouses from the
Perspective of Industry 4.0. Springer Optimization
and Its Applications, 214:1–47, 2024.

[15] Mehrdokht Pournader, Hadi Ghaderi, Amir
Hassanzadegan, and Behnam Fahimnia. Artificial
intelligence applications in supply chain management.
International Journal of Production Economics,
241:108250, nov 2021.

[16] Alessandro Pracucci. Designing Digital Twin with
IoT and AI in Warehouse to Support Optimization
and Safety in Engineer-to-Order Manufacturing Process
for Prefabricated Building Products. Applied Sciences
(Switzerland), 14(15), aug 2024.

[17] Om Prakash Satyam and Wakil Kumar. Study on IoT &
AI for Smart Warehouse Management for Green Supply
Chain Management. 9, 2022.
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