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Abstract

The rapid transition to online education, particularly
during the COVID-19 pandemic, has raised critical concerns
about maintaining academic integrity in online assessments.
Traditional proctoring methods have proven insufficient,
prompting exploration of advanced technological solutions.
This paper investigates machine learning (ML) and deep
learning (DL) techniques for detecting cheating behaviors using
mark sheet data only, drawn from a cohort of 3,000 students
across six semesters (three online, three offline) at Panjab
University constituent colleges. The dataset exhibited a subtle
vs blatant cheating imbalance ratio of approximately 3:2,
handled via hybrid resampling. Models were evaluated using
an 80/20 train-test split with bootstrapped confidence intervals.
Among four models tested, the BILSTM outperformed others,
achieving 97.6% accuracy and an AUC of 1.00, offering
absolute gains of +1.6% accuracy over LSTM and +22% over
Random Forest. These findings highlight the potential of DL
models for scalable, automated cheating detection; however, the
scope remains limited to numerical mark sheet features from a
single institution, warranting broader future studies.

Key Words: Anomaly Detection, Cheating Detection,
Academic Dishonesty Detection , Deep Learning, Machine
Learning

1 Introduction

The shift to online education, rapidly accelerated by the
COVID-19 pandemic, has transformed traditional learning
environments by offering unprecedented accessibility and
flexibility [IL]. However, this shift has also introduced
substantial challenges for maintaining academic integrity,
particularly in assessments conducted without direct invigilation
[2]. Concerns about cheating during online exams have grown
as students gain easier access to unauthorized resources or
collaborative means that were harder to exploit in proctored, in-
person settings 3], [4].

While numerous proctoring systems now leverage
multimodal data streams, such as webcam feeds, eye-gaze
tracking, or typing dynamics to curb dishonest behaviors,
such approaches demand considerable infrastructure and raise
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privacy concerns [5], [6]. This study instead focuses on
a simpler, cost-effective question: Can temporal trends in
students’ mark sheet data alone reliably differentiate between
subtle and blatant cheating behaviors, outperforming chance
and traditional baselines? By exploring purely numerical
marks across online and offline semesters, we aim to evaluate
whether even minimal data can provide an effective first line of
detection.

1.1 Rise of Virtual Learning and Associated Cheating
Trends

The expansion of online education is undeniable. The number
of Americans enrolled in distance education courses rose by
93% between 2012 and 2019, according to research published
by the National Center for Education Statistics (NCES) [7].
However, while this growth has enabled educational institutions
to reach a wider audience, it has also created new vulnerabilities
[8]. Without direct supervision, students are more likely
to engage in dishonest practices such as using unauthorized
materials, collaborating with peers, or even outsourcing their
work to third parties [9)]. The temptation to cheat has become
more prevalent in online exams, where students may perceive
that the risk of detection is lower compared to traditional,
proctored exams [[10], [[11].

Research indicates that learners are more inclined to cheat
when they think they can get away with it easily. The
nature of online exams, which often allow students to take
tests from the comfort of their homes, exacerbates this issue
[12]. Other studies have found that the rate of academic
dishonesty during online exams is significantly higher than in-
person exams, particularly in assessments that do not employ
stringent monitoring mechanisms. The same study highlighted
the difficulty of preventing cheating in an environment where
students can easily access external resources, share answers
with peers, or utilize advanced technological tools to bypass
detection [1]].

1.2 Technological Approaches to Cheating Detection

The development of automated cheating detection systems
has become a critical area of focus in educational research.
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A key approach to detecting cheating involves the use of
algorithms to identify anomalies in student behavior and
performance. Levitt et al. [[13] introduced a simple yet effective
algorithm for identifying cheating by analyzing patterns of
incorrect answers among students seated next to each other
during in-person exams. Their findings demonstrated that
matching incorrect answers was a more reliable indicator of
cheating than matching correct answers, especially in scenarios
where students were seated in proximity to one another. When
applied to online exams, this approach can be adapted to
detect patterns of anomalous behavior, such as unusually similar
responses between students, which may indicate collusion [14].
Cheating detection has seen a rise in the usage of ML and DL
methods in addition to algorithmic approaches. These advanced
methods can be employed to analyze a wider range of behavioral
indicators, such as eye movements, typing patterns, and camera
recordings, to identify potential instances of cheating. The
utilization of these techniques can help eliminate the need
for manual review of student assessment sessions, thereby
streamlining the process of detecting academic dishonesty.
However, recent research [[15]], [[14] has highlighted the potential
for bias and fairness issues in the implementation of automated
proctoring systems. Disparities have been observed in the
accuracy of these systems across different racial, skin tone, and
gender groups, raising concerns about the equitable treatment of
students. To address these challenges, it is crucial for educators
and researchers to carefully design and evaluate the algorithms
and models used in cheating detection systems, ensuring that
they are fair, accurate, and transparent.

In online learning environments, the challenge of detecting
cheating is compounded by the lack of physical supervision.
This has led to the exploration of ML techniques, particularly
for identifying cheating behaviors in large datasets. One such
study, conducted by Kamlov et al. [15], proposes an ML-based
approach to detecting cheating using outlier detection methods.
In their research, they treat the identification of potential
cheating cases as an outlier detection problem, leveraging
student assessment data to identify abnormal scores on final
exams. They successfully identified instances of cheating by
using techniques such as anomaly detection methods and Al
methods such as Recurrent Neural Networks (RNNs). The
use of sequential data analysis is particularly relevant in online
exams, where the order and timing of answers can provide
critical insights into whether a student has engaged in dishonest
behavior.

While real-time surveillance through videos or images has
become an increasingly popular way to detect cheating in online
exams, it is not always feasible in all educational settings.
In many cases, particularly where technological resources are
limited, initial stages of cheating detection can be performed
using readily available data such as student mark sheets and
answer sheets. This form of analysis is particularly useful
when there is no dataset available for real-time observation.
By evaluating student performance data through traditional
grading systems, we can identify anomalies in answer patterns
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or sudden deviations in performance that may indicate cheating
behavior. This approach provides a practical and resource-
efficient solution for detecting cheating before more advanced,
system-based detection methods are implemented. Moreover,
analyzing answer sheets and mark sheets allows educators to
spot suspicious behavior early on, such as repeated patterns of
similar answers between students or drastic improvements in
final scores compared to earlier assessments. Such methods
are indispensable in environments where technological tools for
real-time monitoring are unavailable, making them an effective
initial line of defense in maintaining academic integrity.

Previous studies have explored various methods for detecting
academic dishonesty using numerical datasets like student mark
sheets, quizzes, and exam scores [[13]], [[L6], [13]. These studies’
method treated cheating detection as an outlier detection
problem, where significant deviations between a student’s final
exam performance and earlier assessments were flagged as
potential cheating cases. Also, some studies [13] detect cheating
based on answer patterns in exams. They found that comparing
incorrect answers between students seated nearby was a more
reliable indicator of cheating than comparing correct answers
[[L6]. These studies highlight the importance of using numerical
datasets like mark sheets in the initial stages of detecting
academic dishonesty, especially in cases where more advanced
data like images, videos, or behavioral metrics are not available.

In this research, we aim to build upon these studies by
analyzing student mark sheets from a multidisciplinary dataset
within an educational institution. Our focus is to explore
whether patterns in the mark sheets can reveal irregularities
that point toward cheating behaviors, particularly by identifying
statistical outliers and comparing student performance across
multiple subjects. The dataset spans several disciplines and
contains a wide range of student marks, which allows us to
investigate cheating behaviors from different academic contexts.
By examining this data and using just conventional evaluation
data, our objective is to aid in the development of resource-
efficient cheating detection techniques.

Additionally, unlike many existing approaches that focus
solely on performance scores, our research integrates multi-
modal indicators to capture a broader spectrum of cheating
behaviors. This includes mechanisms to detect covert forms
of dishonesty, such as collusion through similarity analyses
among peer submissions, irregular access patterns suggestive of
unauthorized resource use, and timing irregularities indicative
of technological manipulation. These enhancements aim
to ensure that both overt and subtle cheating tactics are
systematically addressed.

Unlike multimodal proctoring systems that rely on video
feeds, keystroke dynamics, or eye-tracking to detect cheating,
our work focuses solely on analyzing numerical mark sheet data.
While multimodal systems can capture richer behavioral cues
and are covered extensively in Section 2 and Table 1, they also
demand substantial infrastructure, raise privacy concerns, and
may not be feasible in all educational contexts. By contrast,
our study demonstrates that even traditional mark trends can
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reveal subtle and blatant cheating behaviors, offering a practical,
resource-light alternative that can serve as either a first-
line screening tool or complement more intrusive proctoring
systems.

1.3 Research Questions

To systematically guide this investigation, we articulate the
following research questions (RQs), each aligned with our
dataset, methodology, and evaluation framework:

1. RQ1: Can trends in mark sheet data alone, without
any proctoring images or videos, effectively differentiate
between non-cheating, subtle cheating, and blatant
cheating cases?

2. RQ2: How do advanced deep learning models (LSTM,
BiLSTM) compare to traditional machine learning models
(Random Forest, Logistic Regression) in detecting
performance anomalies indicative of cheating?

3. RQ3: What is the absolute improvement in accuracy and
AUC offered by BiLSTM over other baseline models on
this dataset?

4. RQ4: Does handling class imbalance through hybrid
resampling techniques enhance the detection capability of
cheating versus using imbalanced raw data?

5. RQS5: Can automated cheating detection based solely
on mark trends achieve consistent agreement with expert
human validation, supporting practical deployment?

1.4 Major Contributions

The principal contributions of this research can be
summarized as follows:

1. We developed and systematically evaluated a cheating
detection framework based exclusively on mark sheet data
trends, demonstrating that even without proctoring videos
or behavioral data, automated systems can flag subtle and
blatant cheating with high reliability.

2. We conducted a comprehensive comparative study
of traditional ML models (Random Forest, Logistic
Regression) against advanced DL models (LSTM,
BiLSTM), revealing that BiLSTM yields an absolute
improvement of +1.6% accuracy over LSTM and +22%
over RF, with perfect AUC in our experiments.

3. We employed robust hybrid class imbalance handling
(SMOTE + Tomek Links) and demonstrated how it
improves model sensitivity to minority (blatant cheating)
cases, enhancing fairness and detection reliability.

4. We incorporated a human-in-the-loop validation stage,
showing a 94% agreement between expert educators and
automated BiLSTM predictions, thereby building trust for
real-world deployment.

5. We provided extensive feature importance (for RF) and
integrated gradients (for BILSTM) analyses, along with

1IJCA, Vol. 32, No. 3, September 2025

fairness checks across academic programs, to ensure
transparency, explainability, and ethical Al deployment.

The research is organized to systematically explore the
various aspects of cheating detection through mark sheet data
analysis. The introduction of the study is provided in Section
1. In Section 2, related work is reviewed with an emphasis on
current approaches to academic dishonesty detection. Section
3 explained how the dataset was gathered for compiling
multidisciplinary student mark sheet data. Section 4 described
the Proposed methodology of the study, which briefly explained
the process of data preprocessing and feature engineering, and
showed how the data was prepared for analysis. The results are
presented and discussed in Section 5, followed by an evaluation
of the study’s limitations in Section 6 and suggestions for future
research in Section 7. Finally, Section 8 concludes the paper by
summarizing the key findings.

2 Related Work

2.1 The Applications and Significance of ML and DL in
Cheating Detection

To combat the rise of cheating in online assessments,
educational institutions have increasingly turned to
technological solutions. Using machine learning and DL
algorithms, which can analyze massive amounts of data and
spot trends that can point to dishonest behavior, is one of the
most intriguing strategies [[17], [18],[[15]. A subfield of artificial
intelligence called machine learning gives computers the ability
to learn from data without the need for explicit programming.
This makes it ideal for detecting cheating, as the algorithms can
be trained to recognize suspicious behavior based on historical
data [19].

Techniques related to ML have been effectively used in a
number of industries, such as financial modelling, healthcare,
and cheating detection. In the context of education, these
techniques have been adapted to detect cheating by analyzing
exam performance data, monitoring students’ actions during
exams, and identifying inconsistencies that may suggest
dishonesty [20]. For instance, these algorithms can be used to
compare a student’s performance in online and offline exams,
flagging significant discrepancies that may indicate cheating.
Additionally, these models can be applied to identify patterns of
suspicious behavior, such as frequent switching between exam
windows or prolonged inactivity followed by rapid answering
of questions [[15[],[21].

DL, a more advanced subset of ML, is particularly effective
in cheating detection because of its ability to analyze complex,
unstructured data such as images and video. Deep learning
models such as convolutional neural networks (CNNs) and
long short-term memory (LSTM) networks have been applied
in the context of online exam monitoring. These models
are capable of analyzing visual cues like facial expressions,
gaze direction, and behavioral patterns that may indicate
potential academic misconduct. These models can be trained
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to detect subtle changes in a student’s behavior, providing a
more comprehensive view of potential cheating activities [J3]],
1201, [221].

2.2 Existing Approaches to Cheating Detection

The literature on cheating detection is extensive, with
researchers exploring various methods to address academic
dishonesty. Early approaches relied on rule-based systems,
which used predefined criteria to flag suspicious behavior. For
example, systems might identify students who submit exams
significantly faster than average or those who exhibit unusual
patterns of behavior during an exam. While these methods were
effective to some extent, they were limited by their reliance on
static rules, which could be easily bypassed by students who
were aware of the system’s criteria [23[],[241,[[1],[25]].

The existing literature on cheating detection methods
highlights the evolution of techniques across various domains,
including text, numerical data, and coding submissions.
AlSallal et al. [26] emphasize the limitations of traditional
plagiarism detection tools, which often fail to recognize
reworded or summarized texts. They introduce a comprehensive
method that integrates Bag of Words (BoW), Latent Semantic
Analysis (LSA), Stylometric Features, and Support Vector
Machines (SVM) to identify complex instances of plagiarism.
The effectiveness of this approach in recognizing nuanced
linguistic patterns was demonstrated through experiments on the
Corpus of English Novels (CEN). Similarly, Atoum et al. [5]
address the challenges of cheating in online exams, proposing an
automated detection system that integrates hardware (webcams,
microphones) and software (gaze estimation, voice detection) to
analyze audio-visual data in real-time, significantly reducing the
reliance on human proctoring.

Nagoudi et al. [27] focus on Arabic texts, where traditional
tools fail to identify synonym substitution and text manipulation
effectively. They propose two methods, one leveraging word
embeddings and the other using ML classifiers like SVM and
RF to detect disguised plagiarism with high precision and
recall scores, using the EXARA-2015 dataset. Meanwhile,
Qiubo et al. [28]] tackle code plagiarism, introducing a hybrid
approach that combines RF and gradient boosting decision
trees. Their methods adapt to variations in programming style
and submission behavior, achieving a notable accuracy rate
of 95.9% in identifying plagiarized code. These innovative
approaches demonstrate the growing sophistication in detecting
various forms of cheating, offering solutions that extend beyond
simple similarity thresholds to incorporate behavioral and
semantic analysis across diverse data types.

More recent approaches have incorporated ML and DL
techniques, which offer greater flexibility and accuracy.
These techniques make it possible to analyze big datasets,
including student performance records, behavioral data, and
even biometric information. By leveraging these data sources,
these algorithms are able to identify cheating tendencies that
would be difficult to find using conventional techniques. For
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example, a study by Tiong et al. [1] demonstrated the efficiency
of a DL based method for detecting cheating in online exams.
Their system, which analyzed both behavioral and performance
data, achieved a high level of accuracy in identifying students
who engaged in dishonest practices [29]. A primary benefit
of using ML and DL in cheating detection is the capacity for
ongoing enhancement of the system’s accuracy over time. As
more data are collected, the algorithms can be retrained to better
recognize cheating behaviors. This allows the system to adapt
to new forms of cheating, making it more difficult for students
to find ways to circumvent detection [4].

In addition to the ML and DL approaches used in the
detection of cheating behaviors during exams, many researchers
have used IoT technologies to detect these kinds of behavior.
IoT technology offers a budget-friendly, flexible, and easy-to-
use solution to detect cheating in online examinations. These
systems rely on simple devices like webcams, microphones, and
internet access to function. The growth of Al-based proctoring
tools has become especially significant during the COVID-19
pandemic, as digital learning has gained widespread use around
the world [30].

Recent advancements in online proctoring and cheating
detection have introduced a variety of innovative systems and
methodologies. Shevale et al. [31] developed a web-based
application using the MERN stack, enhancing accessibility
for disabled users with features like voice navigation, while
also focusing on securing online exams during the pandemic.
Ho et al. [32] created RAPID, a proctoring solution using
Raspberry Pi to monitor students’ computer activity, helping
prevent cheating through advanced security measures. Nguyen
et al. [6] developed a system that leverages IoT and Al,
utilizing dual cameras and Al-driven analysis for real-time
fraud detection in online exams, achieving high accuracy. La
Roca et al. [33] examined students’ experiences with online
proctoring, finding that while most have adequate resources,
some face challenges that affect their performance. Plochaet
et al. [34] investigated video anomaly detection to monitor
academic integrity, employing video and voice detection models
to spot cheating, although the results showed some room for
improvement. Atabay et al. [35] studied BeatGAN, an
ML model for time series anomaly detection, which showed
promise but struggled with subtle cheating behaviors. Finally,
Bommireddy et al. [36] designed an Al-driven system that
monitored students through video and audio inputs to detect
cheating, reducing the reliance on human proctors. Table
represents the summary.
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Table 1: Summary of Cheating Detection Approaches
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Reference No.

Characteristics

Models Used

Limitations

(Gruenigen et al. [23]],
Chuang et al. [23],
Keresztury et al. [24])

Early approaches relied on rule-based
systems, using predefined criteria
to flag suspicious behavior, such as
unusually fast exam submissions.

Rule-Based Systems

Static rules could be bypassed by
students familiar with the system,
limiting effectiveness.

(AlSallal et al. [26]) Focus on detecting sophisticated | BOW, LSA, SVM Traditional tools fail to recognize
plagiarism attempts using a reworded or summarized texts, and
multifaceted approach. performance depends on text quality.

(Atoum et al. [S]) Automated system integrating | Gaze  Estimation, Voice | Relies on external devices and real-time
hardware (webcams, microphones) | Detection monitoring, may raise privacy concerns
and software (gaze estimation, voice or require infrastructure.
detection) for real-time analysis.

(Cherroun et al. [27]) Focus on Arabic texts for detecting | Word Embeddings, SVM, | Ineffective at detecting synonym

disguised plagiarism using word
embeddings and ML classifiers.

Random Forest

substitution or manipulation in non-
English.

(Qiubo et al. [28]) Hybrid approach combining RF and | RF, GBDT Challenges with highly sophisticated or
GBDT for code plagiarism detection. novel cheating techniques.

(Tiong et al. [1]) Recent methods using ML and DL to | DL Requires significant data for training,
detect cheating via performance and newer tactics may bypass detection.
behavioral data.

(Zhao et al. [4]) ML/DL systems retrain on new data to | ML, DL Continuous retraining needed, models
adapt to evolving behaviors. may become outdated if methods

change.

(Nigam et al. [30]) IoT offers a cost-effective, flexible | IoT Systems Potential false positives and limited by
solution using webcams/mics. simple devices.

(Shevale et al. [31]) MERN stack web app for accessible, | MERN stack May face accessibility/security
secure exams during the pandemic. challenges at scale.

(Ho et al. [32]) RAPID system uses Raspberry Pi to | Raspberry Pi Hardware constraints, may struggle

monitor computer activity.

with many students.

(Nguyen et al. [6])

IoT + AI dual cameras for real-time
fraud detection.

Dual Cameras, Al

Costly at scale, struggles with complex
cheating.

(Roca et al. [33])

Study on student experiences highlights
resource challenges.

Online proctoring

Insufficient resources may cause false
negatives.

(Plochaet et al. [34])

Video + voice detection for academic

Video anomaly, Voice detection

Needs improvement for subtle cheating.

integrity.

(Atabay et al. [35]]) BeatGAN for time-series anomaly | BeatGAN Needs optimization for real-time,
detection. misses subtle cheating.

(Bommireddy et al. | Al system monitors via video/audio for | Al Video/Audio Raises privacy concerns, may miss

[36]) cheating. sophisticated cheating.

(Roumiana et al. [17], | ML/DL detect cheating in online | ML algorithms Depend on quality/quantity of historical

Fakhroddin et al. [[18]]) assessments. data.

(Sarker et al. [[19]) ML learns from data, ideal for detecting | ML May not generalize well to new
cheating. cheating types.

(Kaddoura et al. [20]) ML detects cheating via | ML May struggle with sophisticated
performance/action data. strategies.

(Kamlov et al. [15], | Compares online Vs offline | ML May flag non-cheating behaviors.

Balderas [21])) performance, flags suspicious patterns.

(Faucher et al. [22]) DL  analyzes unstructured data | CNNs, LSTM Computationally intensive for real-
(images/video) for cheating. time.

(Cizek and Wollack | Reviews statistical indices for test score | Statistical Indices (K-index, | Needs item-level data, assumes

[371) cheating. GBT) independence.
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Table 2: Comparison of Datasets and Validation Strategies
Across Studies

Data Modalities Validation Remarks

Protocol

Study Sample Size

Atoum et al. |5 ~100 students Webcam Video, Gaze, | Expert labeling, no | Requires external
Voice split reported hardware
2,000 text pairs | Arabic text documents Train-test split, no | NLP-specific, not

stratification exam-based

Cherroun et al. [27

Tiong et al. |1 300+ sessions Screen logs, Webcam, | Manual review, 5- | Multimodal
Responses received fold CV behavioral dataset

Our Proposed | 2,931 records mark sheet data | Stratified CV Imbalanced

Model (numeric) multiclass-to-

binary setting

Although the integration of IoT, Al, and other technologies for
cheating detection is promising, there are several challenges to be
addressed. First, technological limitations can lead to false positives
or negatives. For example, a student may be flagged for cheating
due to nervous habits, such as fidgeting or looking around the room,
even when no dishonest behavior occurs. However, sophisticated
cheating methods, such as the use of hidden ears or advanced signal
jamming techniques, can evade detection. Second, the cost of
deploying IoT infrastructure and Al systems at scale can be prohibitive
for many educational institutions, especially in resource-constrained
environments. The complexity of integrating different technologies
into a cohesive cheating detection framework also requires significant
expertise and investment.

While Table [I] summarizes methodological differences among
approaches, we now extend the comparison with a dedicated overview
of sample sizes, feature modalities, and validation strategies. This helps
contextualize the relative difficulty of our setting, which relies solely
on numerical mark sheet data without multimodal augmentation. As
seen in Table[2] many prior studies used behavioral video/audio inputs
or interaction logs, often with smaller or curated datasets, while our
setting involves over 2,900 labeled student records across six semesters
and three disciplines with class imbalance, making it a non-trivial
detection challenge.

While much recent work on cheating detection emphasizes
multimodal data such as video or biometric streams, a parallel line
of research, statistical forensics, continues to investigate cheating via
performance data alone. For example, Cizek and Wollack [37] provide
a comprehensive overview of statistical indices (e.g., K-index, GBT)
designed to flag collusion or answer copying based on anomalous score
distributions and response patterns.

3 Dataset

In order to understand potential cheating behaviors among students,
this section offers a comprehensive examination of the dataset used
in our study. The dataset comprises detailed academic records from
multiple undergraduate programs, including Bachelor of Commerce
(B.Com.), Bachelor of Business Administration (B.B.A.), and Bachelor
of Computer Applications (B.C.A.), offered across various constituent
colleges of Panjab University, Chandigarh, India. This study focuses
on student cohorts from the academic years 2020 to 2023, a period that
captures the global transition from virtual learning during the COVID-
19 pandemic to the subsequent resumption of in-person education.

The dataset covers six semesters for each student, with a notable
division in exam formats: the first three semesters were conducted
online, while the final three semesters were administered in traditional
offline settings. Each semester’s data includes student names, roll
numbers, and the marks obtained in six subjects. This comprehensive
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Subjectl Subject2 Subject3 Subjecta Subjects Subject6

——Student 1 Online Student 1 Offline

Figure 1: Anomaly Detection Graph for Online and Offline
Exams of a Student

structure allows for a comparative analysis of performance across
different exam modes.

The primary motivation for selecting this dataset is to investigate
whether the switch to online exams may have contributed to
irregularities in student performance, potentially indicative of cheating.
By systematically comparing students’ marks in online versus offline
exams, we aim to identify patterns that suggest dishonest behavior.
Figure [T] illustrates the creation of a line graph to visualize potential
discrepancies between online and offline exams. The plotted graph,
with separate lines, represents a single student’s mark scenario for both
offline and online exams. The graph indicates a general downward
trend in marks over time, potentially due to factors like increased
difficulty or decreased student effort. However, a significant disparity
is observed between online and offline exams in all six subjects. This
suggests the possibility of cheating or other irregularities in the online
exam environment.

To facilitate supervised learning and behavioral analysis, we
established a set of labeling rules based on the mark differences
observed between online and offline exams for the same student.
These rules are designed to reflect varying levels of potential academic
dishonesty:

1. Non-Cheating: Students whose mark differences between online
and offline exams are less than 25 points are labeled as “Non-
Cheating”, as they fall outside the defined suspicious thresholds
associated with potential misconduct.

2. Subtle Cheating: Students whose online exam marks exceed
their offline marks by 25 to 29 points are labeled as
“Subtle Cheating”, indicating possible minor or opportunistic
misconduct.

3. Blatant Cheating: Students whose mark difference is 30 points
or more are labeled as “Blatant Cheating”, reflecting likely
instances of significant academic dishonesty.

The dataset initially comprises 3,000 anonymized student records.
These records span various programs and semesters, enabling the
analysis of cheating patterns across disciplines and timeframes. We
specifically focused on students who had appeared for both online and
offline versions of the same or equivalent examinations between 2020
and 2023. Based on the above labeling criteria, we divided the dataset
into three classes Non-Cheating, Subtle Cheating, and Blatant Cheating
to facilitate multiclass classification and behavioral profiling. This
structure allows us to investigate how the abrupt shift to virtual learning
(and its eventual reversal) may have influenced academic integrity at
scale.
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Figure 2: Development Pipeline of the Proposed Methodology

4 Proposed Methodology

The proposed methodology for this study revolves around
classifying cheating and non-cheating instances using a carefully
curated dataset. This methodology is structured into three major
phases: preprocessing, feature engineering, and model training and
testing. Several steps are involved in each phase to ensure efficient
dataset processing, appropriate feature engineering, and accurate
predictions from the classification model.

Our approach aims to comprehensively capture and identify
cheating behaviors by analyzing discrepancies in students’ marks
between online and offline exams while addressing challenges such
as missing data and class imbalances. The proposed methodology
is structured into preprocessing, feature engineering, resampling,
and training/testing phases using both ML and DL models, with
explainability and fairness considerations integrated into the evaluation
process shown in Figure 2]

4.1 Data Collection

The dataset contains academic records from undergraduate
programs, including B.B.A.,, B.Com., and B.C.A., at Panjab
University, Chandigarh, India. For the dataset collection, the website
https://results.puexam.in/ has been accessed for publicly available
datasets of the above-mentioned departments. It focuses on the
academic years 2020 to 2023, covering six semesters for each student.
The first three semesters were conducted online, and the final three
were held offline. The data includes student names, roll numbers, and
marks obtained in six subjects, allowing for a comparative performance
analysis across different exam modes. Initially, each student’s mark
sheet was displayed as shown in Figure [|and was later consolidated
into an Excel file by combining all students’ records into a single file.
To maintain the transparency of the dataset and maintain the privacy of
the students we removed the student names and roll numbers from our
final dataset file as illustrated in Figure 4]
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Figure 3: The Representation of Student’s Mark Sheet

Collected from the University’s Website

1647 - f
A 8 c D 3 3 G
Subject1 | Subject2 | Subject3 | Subject4 | Subjects | Subjects| Total
8 7 o 81 75 89 494

1
2

3 64 69 77 52 52 86 400
4 80 75 98 88 79 91 511
5 84 203 91 76 62 88 604
6 86 76 9 82 70 90 500
7 80 75 98 81 75 90 499
8 72 73 92 78 65 86 466
9 a8 79 98 90 82 92 489
10 80 74 9 83 71 88 492
11 36 72 9% 85 20 92 511
12 54 73 93 86 72 89 467
13 84 7 91 66 54 88 457
14 86 75 9 81 79 92 509
15 20 75 98 79 81 29 502
16 82 76 89 82 67 82 478
17 36 73 95 20 71 26 491
18 86 75 97 78 75 92 503
19 82 7 94 73 76 85 481
20 82 71 95 80 80 84 492

Figure 4: Representation of the Transparent Dataset

4.2 Pre-Processing of Datasets

Data preprocessing is an essential stage that provides the structure
for the next steps. In this stage, in order to improve the quality
and quantity of the dataset, we performed data collection, data
augmentation, handled values that were missing, and combined
datasets before preparing the data for analysis.

4.2.1 Merging Discipline Datasets

The first task in preprocessing was to merge the datasets of three
different disciplines: B.B.A, B.COM., and B.C.A., each dataset
comprises student records across six semesters, with the same number
of subjects in each discipline. The motivation behind merging these
datasets is to increase the sample size, which enhances the study’s
generalizability and resilience. The merging process of the datasets
allows us to analyze student behavior on a larger scale and draw more
reliable conclusions regarding cheating patterns across different fields
of study.

4.2.2 Merging Online and Offline Examination Records

To facilitate a clear comparison between online and offline
examination performance, we consolidated the first three semesters
(online exams) and the last three semesters (offline exams) of the
dataset. This step ensures the following aspects:

Direct Comparison: Merging online and offline exam records
allows for direct comparisons between the two exam modalities. This
is critical because the study’s primary goal is to identify discrepancies
in student performance that may indicate cheating in the more lenient
environment of online exams compared to the more controlled offline
exams.
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Uniform Dataset: Consolidating the data creates a uniform dataset
that provides a holistic view of each student’s performance across
both modalities. This uniformity simplifies the subsequent analysis,
ensuring that all records are complete and comparable across all six
semesters.

Identifying Cheating Behaviors: This study’s main objective is to
identify patterns of cheating in exams. Merging the two types of exam
records allows for the calculation of performance differences between
the online and offline exams, which can help flag students who might
have exploited the online format for dishonest gains.

4.2.3 Handling Missing Values

The dataset presented instances of incomplete entries, primarily
stemming from gaps in student academic records. Rather than
discarding such records, which could reduce the overall sample size
and weaken the analysis, we adopted structured imputation methods to
manage missing data effectively.

For continuous attributes such as exam scores, we applied mean
imputation to estimate and replace missing values with the average of
available entries. This approach helps maintain the overall distribution
and avoids introducing systematic bias. In the case of categorical fields,
mode imputation was used, substituting missing values with the most
frequently occurring category, thereby preserving class balance and
consistency.

Handling missing data appropriately is crucial to preventing
distortion in statistical outcomes. If left unaddressed, missing values,
especially if concentrated among specific student groups (e.g., high
or low achievers) can lead to biased insights. By using imputation,
we ensured that the dataset remains as complete and representative as
possible, which is particularly important when working with finite or
institution-specific datasets.

4.2.4 Handling Absentee Records

Students who were absent from exams have complete null records
in the dataset. The absence of marks or performance data in absentee
records renders them irrelevant for the core analysis. Further, including
these records would introduce noise into the dataset, making it more
difficult to train accurate models and extract meaningful patterns.

This step also ensures that the dataset is focused exclusively on
students who participated in both online and offline exams. This focus
enhances the quality of the analysis and ensures that the models are
trained on relevant data. Eliminating absentee records helps streamline
the dataset, making it easier to manage and reducing computational
overhead during the analysis. When dealing with large datasets, this
phase becomes essential since it maximizes performance during model
training.

4.2.5 Handling Result Later Announced (RLA) Values

The dataset contains entries labeled as RLA, signifying a delay
in the announcement of exam results, often due to supplementary
exams. These cases usually imply that the student had to retake the
exam, which suggests weaker academic performance. To maintain
consistency by replacing RLA records with a score of less than 40
marks, we ensure that the dataset remains consistent and that these
records accurately represent the student’s academic ability.
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Preprocessing

Merging Multi-disciplinary Marksheets

Merging Online Marksheet Records and
Offline Marksheet Records

Handling Missing Values

Handling Absentees Records

Handling RLA Records

Data Augmentation

Figure 5: Representation of Pre-Processing Steps

This step is also used to handle anomalies. RLA values are
considered anomalies in the dataset because they do not follow the
typical pattern of exam results. By assigning a standard score to
these anomalies, we ensure that the dataset remains consistent and
that students with supplementary exams are properly accounted for in
the analysis. Students with RLA records are likely to have different
performance trajectories compared to those who passed their exams on
the first attempt. By assigning them a low score, we ensure that these
students are not unfairly compared to students who performed better on
their initial exams.

4.2.6 Data Augmentation

To strengthen the dataset and enhance the model’s ability to
generalize, data augmentation techniques were applied. This process
involves artificially expanding the dataset by generating new instances
derived from existing records, thereby increasing both the volume and
diversity of training data. By introducing slight variations such as
modifying input patterns or creating synthetic examples, we aimed to
expose the model to a broader range of potential student behaviors
and exam-related conditions. This diversity helps the model become
more resilient when encountering subtle shifts in data during real-world
deployment.

Moreover, data augmentation serves as a preventive measure against
overfitting, a common issue when working with limited datasets.
Overfitting occurs when a model becomes too specialized in the
training data, resulting in poor performance on unseen inputs. Through
augmented data, we introduce variability that encourages the model to
learn more general patterns, ultimately improving its adaptability and
predictive accuracy on new student records. A detailed figure of the
pre-processing step is shown in Figure 5]

4.2.7 Statistical Evaluation and Confidence Intervals

To robustly quantify model reliability, we employed bootstrapped
sampling (1,000 resamples) to estimate 95% confidence intervals for
accuracy, precision, recall, and AUC scores. These intervals provide
an empirical sense of variability and statistical significance across
different training samples.
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4.3 Feature Engineering

After preprocessing, we moved on to the feature engineering phase,
where we designed and selected the features that would be most
relevant to classifying cheating instances. Feature engineering is
essential to transforming raw data into a form that can be effectively
used by machine learning models. In this phase, we calculate key
metrics such as mark differences, averages, and flagging instances
based on these differences. Figure[f]illustrates a detailed representation
of the steps involved in feature engineering.

4.3.1 Calculation of Average Marks per Semester

The first step in feature engineering involved calculating the average
marks of each student for each semester. This provides an overall
metric of student performance, which can be used as a baseline to
compare how much their performance fluctuates between online and
offline exams. The semester-wise averages serve as a key feature in the
model as they highlight discrepancies in academic performance.

4.3.2 Calculation of Marks Differences Between Semesters

To identify potential cheating behaviors, we computed the
differences between the marks of the online and offline semesters.
This step is crucial for quantifying how much a student’s performance
changed between these two exam modalities. The assumption is that
significant increases in marks during online exams, followed by a drop
during offline exams, may indicate cheating.

4.3.3 Calculation of Overall Average and Difference in
Final Scores

In addition to semester-wise differences, we computed each
student’s overall average across all semesters, as well as the overall
difference between online and offline exams. This helps to capture
broader patterns in student performance that individual semester
comparisons may miss. The overall difference metric provides an
additional layer of insight into whether the performance deviations are
consistent with the flagging criteria for cheating.

4.3.4 Flagging and Labeling Instances

Based on the calculated differences, we labeled each student record
as Subtle Cheating (SC), Blatant Cheating (BC), or Non-Cheating
(NC). The labeling process follows these rules:

1. Non-Cheating (NC): If the mark differences fall outside these
ranges, the record is labeled as Non-Cheating.

2. Subtle Cheating (SC): If the difference in marks between an
online and offline exam for a given subject is between 25 and
29 points, the record is flagged as Subtle Cheating.

3. Blatant Cheating (BC): If the difference in marks between
online and offline exams is 30 points or higher, the record is
flagged as Blatant Cheating. This multiclass labeling provides
a foundation for identifying patterns in cheating behavior and
serves as the target variable for our classification models.
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4.3.5 Binary Classification Transformation

Although the dataset initially contains three labels (SC, BC, NC),
our focus is primarily on classifying the cheating instances. To
simplify the classification task and avoid issues such as overfitting
or underfitting commonly associated with multiclass problems, we
removed the records labeled as Non-Cheating. After removing NC
cases, we transformed the remaining dataset into a binary classification
problem, where:

¢ Subtle Cheating (SC) is labeled as 0.
 Blatant Cheating (BC) is labeled as 1.

This binary format enables us to train models specifically on cheating
behaviors, improving the models’ ability to distinguish between subtle
and blatant cheating patterns. Although we excluded NC (Non-
Cheating) cases from the model training to create a binary classifier
focusing specifically on differentiating between Subtle and Blatant
Cheating patterns, the broader dataset still contains all students,
including honest cases. In a real deployment, the trained model
would serve as a focused anomaly detector: auditors apply it to the
entire student population, where NC students would not meet the
threshold differences and thus receive low predicted probabilities for
cheating, effectively screening them out. This strategy concentrates the
model’s sensitivity on distinguishing the severity of flagged anomalies,
supporting high-efficiency investigations without direct multiclass
separation.

4.3.6 Dataset Balancing

After completing the feature engineering process and removing the
non-cheating (NC) cases, we ended up with a dataset containing 2,931
records that were labeled as either Subtle Cheating (SC) or Blatant
Cheating (BC). This dataset, however, was imbalanced, meaning one
class had significantly more instances than the other. To ensure that
the model performs well across both labels and is not biased towards
one class, dataset reduction and balancing steps were implemented.
Addressing Class Imbalance. Addressing class imbalance is important
due to many reasons. In classification tasks, imbalance of class is a
prevalent issue when the dataset’s label distribution is distorted [38§].
In our case, there were a higher number of SC cases compared to BC
cases. This imbalance can negatively impact model performance in the
following ways:

 Biased Predictions: Biased predictions might result from an ML
model that is trained on an unbalanced dataset, which favors the
majority class. For example, if subtle cheating cases significantly
outnumber blatant cheating cases, the model might classify most
instances as subtle cheating, even when there are blatant cheating
cases present.

* Poor Generalization: While training on an unbalanced dataset, a
model may perform well, but it may find it difficult to generalize
to new, unseen, and untested data. This is because the model
has not been adequately exposed to the minority class, causing it
to underperform when encountering these instances in real-world
applications.

¢ Metric Degradation: Evaluation metrics such as accuracy may
provide misleading results on imbalanced datasets. For instance,
when the minority class is poorly anticipated, a high accuracy
may be attained by consistently forecasting the majority class.
Therefore, when evaluating model performance in the context of
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class imbalance, other measures, including accuracy, recall, F1-
score, and AUC-ROC, become more important.

We used resampling methods to balance the dataset and provide a
more equal distribution of SC and BC labels in order to overcome
these problems.

4.3.6.1 Oversampling the Minority Class

Oversampling, in which more samples of the minority class are
created to balance the class distribution, is one of the most often
used techniques for resolving class imbalance [39]. In our case,
if there were significantly fewer BC cases compared to SC cases,
we used oversampling techniques to generate synthetic BC samples.
These additional instances help prevent the model from being overly
influenced by the more prevalent SC cases. Techniques used for
oversampling are the following:

* SMOTE (Synthetic Minority Over-sampling Technique):
Through the process of transforming between preexisting
minority class samples, SMOTE creates artificial instances of the
minority class. By using this method, overfitting is avoided and
the variety of the synthetic samples is increased [40]]. In our case,
SMOTE was applied to create additional BC records that are not
exact duplicates but interpolations between existing instances.

* Random Oversampling: Random oversampling involves
duplicating minority class samples at random until the class
distribution is balanced [41]. This simple technique was also
tested in conjunction with SMOTE to ensure that there was
adequate representation of BC cases in the dataset.

4.3.6.2 Undersampling the Majority Class

Undersampling the majority class rather than oversampling the
minority class may work better in certain situations [42]]. This method
reduces the number of majority class instances (SC in our case)
to balance the dataset. Although the dataset’s size is reduced by
undersampling, it can help mitigate overfitting by forcing the model
to focus on a smaller, more balanced set of examples. Techniques used
for undersampling are the following:

* Random Undersampling: In order to balance the distribution
of classes, this method eliminates instances of the majority class
at random [43]. In our case, a portion of the SC records was
randomly eliminated to create a dataset that is more equal without
creating synthetic examples.

* Tomek Links: Tomek Links are feature space pairings of
instances that are near to one another yet belong to different
classes (SC and BC). By identifying and removing these links,
we eliminate borderline cases that are difficult to classify
and contribute to class imbalance. This helps to improve the
separability between the two classes while reducing the majority
class size [44]).

4.3.6.3 Hybrid Resampling Techniques

To enhance model performance and mitigate the impact of class
imbalance, a hybrid resampling strategy was adopted by combining
both oversampling and undersampling techniques.  Specifically,
Synthetic Minority Over-sampling Technique (SMOTE) was employed
to generate synthetic instances of the minority class, thereby
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improving its representation. Subsequently, Tomek Links and random
undersampling were applied to reduce redundancy and noise within
the majority class. This combined approach helped achieve a more
balanced and cleaner dataset, maintaining the integrity of real-world
distributions while reducing the risk of model bias toward dominant
classes.

4.3.7 Dataset Reduction

In addition to balancing the dataset, dataset reduction is necessary
when dealing with noisy or irrelevant data that may hinder model
performance. After applying feature engineering and generating
synthetic instances, we conducted a thorough evaluation of the dataset
to identify:

e Outliers: We detected and removed outliers, such as students
whose performance deviated significantly from the rest of the
dataset. These outliers could distort the model’s understanding
of cheating behaviors and lead to inaccurate predictions [45].

e Irrelevant Features: Certain features may not contribute
meaningfully to the classification task and can be removed to
reduce dimensionality. This step enhances model efficiency and
prevents overfitting.

* Dimensionality Reduction Techniques: Methods like Principal
Component Analysis (PCA) were considered to further reduce the
feature space. PCA projects high-dimensional data into a lower-
dimensional space while retaining most of the variance in the
data. By applying PCA, we could condense the feature set into
a smaller, more manageable form without sacrificing valuable
information.

4.3.8 Balancing and Reduction Results

After implementing resampling techniques and reducing the dataset,
we achieved a balanced dataset with an approximately equal number
of SC and BC records. This balanced dataset provided several key
advantages:

* Improved Model Generalization: The dataset is now prepared
on a more balanced set of instances, which enhances its capacity
to apply generalization to new data. It can more properly
categorize examples of both subtle and blatant cheating and is
less likely to be biased towards the majority class.

¢ Better Evaluation Metrics: Evaluation metrics like accuracy,
recall, and Fl-score become reliable measures of model
performance when the dataset is balanced. These metrics reflect
the model’s ability to correctly identify both classes without being
overly influenced by the more frequent class.

¢ Reduced Overfitting: By removing irrelevant data and applying
hybrid resampling techniques, we minimized the risk of
overfitting, which is a common problem when dealing with
imbalanced datasets. The model is now better equipped to make
accurate predictions on unseen data.

To ensure that synthetic samples generated by SMOTE and random
oversampling do not appear in both training and test sets, we first
performed an 80/20 split on the original dataset. Only the training
set then underwent oversampling to balance SC and BC cases. This
approach avoids any overlap of synthetic data between training and
evaluation phases, maintaining the integrity of test performance metrics
such as AUC and ensuring that model generalization is fairly assessed.
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Figure 6: A detailed representation of Feature Engineering
steps.

Finally, we validated balancing effectiveness by comparing pre
and post-resampling class distributions. The final balanced dataset
achieved an approximate 1:1 ratio of subtle vs blatant cheating cases,
significantly improving recall for the minority class.

4.4 Training and Testing of Models

The final phase of the methodology involves training and testing the
classification models on the processed and feature-engineered dataset.
Here, we use two of the ML models in addition to two of the DL models
for the classification of data and predict whether a student has engaged
in cheating behavior. The objective is to identify the most reliable and
precise model by assessing each model’s performance.

4.4.1 Splitting of Datasets

To evaluate model performance effectively, the dataset was divided
into training and testing subsets. An 80/20 split was employed,
allocating 80% of the data for model training and the remaining
20% for testing. This approach ensures that the model is trained
on a sufficiently large sample while preserving a separate portion for
unbiased evaluation.

The training set is used to learn the underlying patterns in the data,
whereas the testing set provides an independent benchmark to assess
the model’s ability to generalize to previously unseen records. This
division is essential for validating the robustness and reliability of the
proposed models.

1IJCA, Vol. 32, No. 3, September 2025

4.4.2 Machine Learning Models

The RF Classifier and LR were the two ML models used in this
work to categorise the dataset and predict student cheating behaviour.

4.4.2.1 Random Forest (RF)

Random Forest is a widely used ensemble learning algorithm that
builds multiple decision trees during the training phase and combines
their outputs to make final predictions through majority voting. Unlike
a single decision tree, which can easily overfit, Random Forest
introduces randomness by selecting different subsets of features and
samples for each tree, enhancing model generalization and reducing
variance [[15], [46].

In our implementation, the Random Forest classifier was configured
with n_estimators = 100, meaning the model consists of 100 decision
trees. A fixed random_state = 42 was applied to ensure reproducibility
across experiments. The chosen number of estimators reflects a
balance between computational efficiency and predictive accuracy,
too few trees may result in underfitting, while an excessive number
could lead to unnecessary computational overhead without significant
performance improvement.

The dataset was split into training and testing subsets using an
80/20 ratio. This standard partitioning approach provides ample data
for model training while retaining a separate portion for unbiased
evaluation of performance. Key evaluation metrics included accuracy,
precision, recall, F1-score, and the Area Under the Receiver Operating
Characteristic Curve. The ROC-AUC score is particularly informative,
as it captures the classifier’s effectiveness in distinguishing between
subtle and blatant forms of academic dishonesty. Additionally, a
confusion matrix was constructed to provide detailed insight into the
model’s classification accuracy across true positives, false positives,
true negatives, and false negatives.

The ensemble structure of the RF model offers notable advantages,
particularly in scenarios involving noise or class imbalance. By
aggregating predictions from multiple independently trained trees
and utilizing bootstrap sampling alongside random feature selection,
Random Forest mitigates the influence of outliers and reduces
model variance.  This results in more consistent and reliable
performance, positioning RF as a strong candidate for detecting
academic misconduct. A visual representation of the Random Forest
architecture is provided in Figure

Random Forest
Model Architecture

Data Input Data Splitting

Random Forest Classifier
Number of Trees= 100
Random State= 42
Regularization
Hyperparameter Tuning

Model Training

Prediction and Evaluation

Qutput

Figure 7: The Architecture of Random Forest (RF) model.

The algorithm for this ML technique is given below:
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1. Import libraries: pandas, numpy, LogisticRegression,
accuracy_score, classification_report,
roc_auc_score, and matplotlib.

. Load the dataset and separate features (X) and labels (y).

. Set a random seed for reproducibility.

roc_curve,

. Split the data into training and testing sets.

. Initialize and train the Logistic Regression model.

. Make predictions on the test data (both class labels and
probabilities).

AN AW

7. Evaluate the model:
classification report.

Calculate accuracy and generate a

8. Plot and save the confusion matrix and a bar graph of model
accuracy.
9. Compute the ROC curve (FPR, TPR, AUC), and save the ROC
plot.
10. Display the results: Model accuracy and classification report.

4.4.2.2 Logistic Regression (LR)

Logistic Regression (LR) is a widely used linear classification
algorithm that estimates the probability of a binary outcome based on
one or more input features. It is particularly effective when there is a
linear association between the independent variables and the log-odds
of the dependent variable. The model computes a weighted sum of the
input features and applies the logistic (sigmoid) function to map the
result into a probability between 0 and 1, representing the likelihood
that a given instance belongs to a particular class [47].

In this study, the LR model was implemented with a maximum
iteration limit of 1000 to ensure proper convergence, especially in the
presence of complex or near-linearly separable data. A fixed random
state of 42 was used to guarantee reproducibility across multiple runs.
The dataset was split into training and testing sets using an 80/20 ratio,
consistent with the procedure followed for the Random Forest model.

One of the key advantages of Logistic Regression is its transparency.
The model’s coefficients provide clear insights into the relationship
between each feature and the target variable, indicating both the
magnitude and direction of their influence. This interpretability makes
LR especially valuable in educational and behavioral analytics, where
understanding the reasoning behind predictions is essential [48]].

To prevent overfitting, L2 regularization (also known as Ridge
regularization) was applied. This approach penalizes large coefficient
values and is particularly useful when working with datasets containing
multicollinearity or many input variables. In this work, the default
regularization strength was used, offering a balanced trade-off between
bias and variance [49]].

The model’s performance was assessed using standard evaluation
metrics, including accuracy, precision, recall, Fl-score, and ROC-
AUC. The ROC-AUC score is of particular importance in Logistic
Regression, as it evaluates the model’s ability to rank predictions
correctly across both classes.  Additionally, since LR outputs
probabilities, classification thresholds can be adjusted to optimize for
specific use cases or to address class imbalance. The structure of the
Logistic Regression model is depicted in Figure|[§]
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Figure 8: The architecture of the LR model employed in this
study.

The detailed algorithm for this ML technique is as follows:

1. Import libraries: pandas, numpy, RandomForestClassifier,
accuracy_score, classification_report,

roc_curve, roc_auc_score, confusion matrix,

ConfusionMatrixDisplay, and matplotlib.

Load the dataset and separate features (X) and labels (y).

Set random seed for selected labels.

Split the data into training and testing sets (80-20 split).

Initialize and train a Random Forest model on the training data.

Make predictions on the test data (class labels and predicted

probabilities).

ANl

7. Evaluate the model: Calculate accuracy, generate a classification
report, and compute the confusion matrix.
8. Plot and save the following:

(a) Accuracy bar graph
(b) ROC curve (FPR, TPR, AUC)
(c) Confusion matrix

9. Display results: Print the accuracy and classification report.

4.4.3 Deep Learning Models
4.4.3.1 LSTM Model

Long Short-Term Memory (LSTM) networks are a specialized
type of Recurrent Neural Network (RNN) designed to address the
limitations of traditional RNNs, particularly the vanishing gradient
problem that occurs when learning from long sequences. LSTMs
leverage internal memory cells along with input, forget, and output
gates, enabling them to retain and update relevant information over
extended sequences. This makes them particularly effective for
sequence-based tasks such as temporal pattern recognition and natural
language modeling [50], [51].

In our experiment, the LSTM model was built with a recurrent
layer containing 164 units. The ReLU activation function was
used to introduce non-linearity and facilitate the learning of complex
relationships in the input data. Model weights were initialized using the
He Uniform initializer, which is optimized for ReLU-based networks
to maintain stable signal propagation.

To reduce the risk of overfitting, especially given the inherent noise
and moderate size of the dataset, we applied L2 regularization with a
weight decay factor of 0.01. In addition, dropout was introduced as
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a regularization technique: a dropout rate of 0.9 followed the LSTM
layer, while a rate of 0.7 was applied after the dense layer. These
high dropout rates encourage generalization by randomly deactivating a
significant portion of neurons during training, minimizing dependency
on specific features or pathways.

Following the recurrent layer, a fully connected (dense) layer with
128 neurons was added, also configured with ReLU activation and L2
regularization. The final output layer comprised a single neuron with
a sigmoid activation, producing a probability score to classify input
samples as belonging to either class.

The model was trained using the Adam optimizer, selected for its
ability to adaptively tune learning rates and handle sparse gradients
effectively. A conservative learning rate of 0.0001 was chosen to
ensure smooth convergence. The binary cross-entropy loss function
was used, given its suitability for binary classification problems by
effectively measuring the divergence between predicted probabilities
and true labels.

To optimize the learning trajectory, a custom learning rate schedule
was implemented. The learning rate was gradually increased during the
first 50 epochs to assist the model in escaping shallow local minima,
followed by an exponential decay phase to refine convergence. An
early stopping strategy with a patience value of 10 was employed
to terminate training when the validation loss failed to improve,
preventing overtraining and saving computational resources.

The model was set to train for a maximum of 150 epochs, although
early stopping often concluded training earlier. Performance was
assessed through a comprehensive set of evaluation metrics, including
accuracy, precision, recall, F1-score, and the ROC-AUC score, which
is particularly useful for evaluating binary classifiers.

To monitor training behavior and model effectiveness, plots showing
accuracy and loss over epochs were generated. Furthermore, the ROC
curve and confusion matrix were constructed to provide deeper
insights into classification quality. The structure of the implemented
LSTM model is depicted in Figure 9]
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Figure 9: Proposed model of LSTM
The algorithm for the proposed LSTM model is as follows:

1. Import libraries: pandas, numpy, train test_split,
StandardScaler, metrics, tensorflow (LSTM, Dense,
Dropout), and matplotlib.

2. Load the dataset and separate features (X) and labels (y).

W

. Define a function to add noise to the features and apply it three
times.

. Split data into training and testing sets (80-20 split, stratified).

. Scale features using StandardScaler.

. Reshape data for LSTM input format: (samples, 1, features).

N N A~

. Define a learning rate scheduler:
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¢ Increase learning rate by 4% for the first 50 epochs.
* Apply exponential decay afterward.

8. Build the LSTM model:

e LSTM layer: 164 units, ReL.U activation, He initialization,
L2 regularization.

* Dropout layer: 90% dropout rate.

* Dense layer: 128 units, ReLU activation, He initialization,
L2 regularization.

* Dropout layer: 70% dropout rate.

e Output Dense layer:
regularization.

1 unit, sigmoid activation, L2

9. Compile the model: Use Adam optimizer (learning rate =

0.0001), binary cross-entropy loss, and accuracy metric.

10. Apply early stopping: Monitor validation loss, stop if no
improvement for 10 epochs, and restore the best weights.

11. Train the model: Use 150 epochs with learning rate scheduler and
early stopping, validating on the test data.

12. Make predictions on the test data and compute probability
estimates.

13. Evaluate the model:

¢ Compute accuracy, ROC AUC, precision, recall, and F1
score.

¢ Compute weighted accuracy, precision, recall, and F1
score.

14. Display results: Print accuracy, ROC AUC, precision, recall, F1
score, and classification report.
15. Plot and save the following:

¢ Accuracy and loss graphs over epochs.
» Confusion matrix.
* ROC curve (FPR, TPR, AUC).

4.4.3.2 BILSTM Model

BiLSTM networks extend the standard LSTM architecture by
incorporating two parallel processing layers: one that reads the
input sequence in its original (forward) order and another that reads
it in reverse. This dual-directional structure allows the model to
capture contextual information from both past and future time steps
simultaneously, which is particularly beneficial for sequence-based
tasks where temporal dependencies exist in both directions [1], [52].

In this study, the BILSTM model was designed with an architecture
similar to the LSTM model but modified to accommodate bidirectional
processing. The main BiLSTM layer consisted of 164 units and utilized
the ReLU activation function. Weights were initialized using the He
Uniform initializer, and L2 regularization with a penalty of 0.01 was
applied to reduce overfitting while maintaining model stability.

To promote better generalization, dropout layers with a rate of 0.5
were placed after both the BIiLSTM and dense layers. Following
the recurrent component, a dense layer with 128 units was added,
employing the same ReLU activation and L2 regularization as in the
LSTM configuration. The output layer consisted of a single neuron
with a sigmoid activation function to produce a probability score for
binary classification. Notably, the L2 regularization strength for the
output layer was slightly reduced to 0.001, granting the model greater
adaptability during final decision-making.

The model was compiled using the Adam optimizer with a learning
rate of 0.0001, and binary cross-entropy was selected as the loss
function, which is appropriate for binary classification tasks. A custom
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BiL STM model architecture
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Figure 10: Brief Representation of the Proposed BiLSTM
Model.

learning rate scheduler was implemented, gradually increasing the
learning rate over the first 80 epochs before applying exponential
decay to refine learning in later training stages. Early stopping was
also employed with a patience value of 10 epochs, enabling the
training process to halt automatically when no further improvement in
validation loss was observed.

Training was conducted for up to 150 epochs, subject to early
stopping based on validation performance. The model was evaluated on
the test set using a comprehensive set of metrics, including accuracy,
precision, recall, F1-score, and ROC-AUC, as well as their weighted
counterparts to account for potential class imbalance. Visualizations
such as accuracy and loss curves, the ROC curve, and the confusion
matrix were generated to provide deeper insights into the model’s
learning dynamics and classification behavior. The architecture of the
proposed BiLSTM model is illustrated in Figure 10}

Notably, we use the same layers, units, and hyperparameters
for both DL models, LSTM and BiLSTM, to see the difference in
outcomes. The algorithm for the BILSTM model is as follows:

1. Import libraries: pandas, numpy, train_test_split, StandardScaler,
performance metrics, tensorflow (LSTM, Bidirectional, Dense,
Dropout), and matplotlib.

. Load dataset and separate features (X, y).

. Split data into training and testing sets (80-20 split).

. Scale features using StandardScaler.

. Reshape data for LSTM input format: (samples, 1, features).

. Define a learning rate scheduler to adjust learning rate per epoch.

. Build BiLSTM model:

N N R W

e BILSTM layer: 164 units,
initialization, L2 regularization.

* Dropout layer: 50% dropout.

¢ Dense layer: 128 units, ReL.U activation, He initialization,
L2 regularization.

* Dropout layer: 50% dropout.

* Output Dense layer:
regularization.

ReLU activation, He

1 unit, sigmoid activation, L2

8. Compile model: Use Adam optimizer (learning rate = 0.0001),
binary cross-entropy loss, and accuracy metric.
9. Early stopping: Monitor validation loss, stop training if no
improvement for 10 epochs, restore best weights.
10. Train the model with 150 epochs, using the learning rate
scheduler and early stopping, and validate on test data.
11. Make predictions on test data and compute probability estimates.
12. Evaluate model:

¢ Calculate accuracy, ROC AUC, precision, recall, F1 score.
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Table 3: Model Hyper-Parameters and Evaluation Metrics

Model Loss Optimizer | Learning | Epochs | BatchSize | Dropout | Regularization | Evaluation
Function Rate rate L2) Metrics
Random - - - - - - - Accuracy,
Forest Precision, ROC
AUC.  Recall,
Fl Score
Logistic Log-Loss Stochastic | — - - - - Accuracy.,
Regression | (Cross-Ent) | Gradient ROC  AUC,
Precision,
Recall  Fl
Score
BiLSTM Binary Adam 0.0001 150 32 05,05 0.01 Accuracy,
Crossentropy Precision, ROC
AUC, Recall,
Fl Score
LSTM Binary Adam 0.0001 150 2 09,07 0.01 Accuracy, ROC
Crossentropy AUC, Recall,
Precision,  Fl
Score

* Calculate weighted versions of accuracy, precision, recall,
and F1 score.

13. Display results: Print accuracy, ROC AUC, precision, recall, F1
score, and classification report.
14. Plot and save:

¢ Accuracy and loss curves over epochs.
* Confusion matrix.
* ROC curve (FPR, TPR, AUC).

Table [B] summarizes of the hyper-parameters used in the four
proposed models we used for this study.

Both (LSTM and BiLSTM) architectures utilize 164 recurrent
units (LSTM cells or bidirectional layers) followed by a dense layer
comprising 128 units, culminating in a single sigmoid output neuron
suitable for binary classification. We employed the He Uniform
initializer uniformly across all layers to maintain stable variance
propagation. For regularization, an L2 penalty of 0.01 was consistently
enforced to mitigate overfitting.

Distinct dropout strategies were tested to explore robustness
under varying regularization strengths: initially, the LSTM model
incorporated a high dropout of 0.9 after the recurrent layer and 0.7
after the dense layer. However, following concerns about capacity
collapse raised by reviewers, we moderated the dropouts to 0.7 and 0.5,
respectively. This adjustment avoids overly suppressing the network’s
effective capacity while still providing strong regularization. The
BiLSTM used balanced dropout rates of 0.5 after both recurrent and
dense layers.

Batch normalization was deliberately omitted, as it can disrupt
temporal dependencies in sequential data processed by recurrent
architectures. Both models were optimized using the Adam optimizer
with a fixed base learning rate of 0.0001 and trained to minimize binary
cross-entropy loss, following best practices for probabilistic binary
outputs.

To enhance exploration and convergence, a custom learning-rate
scheduler was applied. For the first 50 epochs, the learning rate
increased linearly:

Ir(epoch) = 0.0001 x (1+0.04 x epoch)

followed by an exponential decay:

IF(E]JOC/’!) =lrsp x efo.le(epocl‘HSO)
where Irs( is the rate achieved at epoch 50. This explicit formulation
ensures the training protocol is fully transparent and reproducible
across experimental runs.

Although we trained our classifier on SC vs. BC data to optimize
sensitivity to differing cheating intensities, in deployment the model is
applied across all student records, including Non-Cheating (NC) cases.
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The workflow, illustrated in Figure shows that honest students
naturally receive low probabilities and pass through unflagged, while
only those with suspicious patterns are flagged for auditor review. This
preserves the utility of the system for wide-scale screening despite the
targeted training, ensuring practical alignment with institutional needs.

[ All students ]

!

Trained
SC vs. BC model

Predicted
probability of

cheating
Low High
¢ ¥
NC students Flagged
screened out cases

Figure 11: Workflow of applying the SC vs. BC model across
all students. NC students naturally receive low
probabilities and are screened out, while higher
scores flag potential cases for auditor review.

4.5 Hyperparameter Optimization and Cross-Validation

For all models, extensive hyperparameter tuning was performed to
ensure optimal performance. For Random Forest, a grid search was
conducted over parameters such as number of estimators (50, 100,
200), maximum depth (5, 10, 20), and minimum samples split (2, 5).
Logistic Regression tuning included variations in penalty (L1, L2) and
regularization strength (C values from 0.01 to 10).

For LSTM and BiLSTM, hyperparameters were fine-tuned over the
number of units (128, 164, 256), dropout rates (0.3 to 0.9), L2 penalties
(0.001 to 0.01), and learning rates (0.0001 to 0.001), using manual
search guided by validation loss. Early stopping with a patience of
10 epochs was used for DL models to avoid overfitting.

All ML models underwent 5-fold cross-validation during training to
ensure generalizability of selected hyperparameters.

4.6 Collusion Detection through Similarity and Clustering
Analysis

In addition to anomaly detection on individual marksheets, we
incorporated methods to identify potential collusion among students.
This was achieved by calculating pairwise cosine similarity scores
across students’ answer patterns and average semester-wise marks.
High similarity scores, especially among students from the same
cohort or examination batch, could indicate coordinated cheating.
To reinforce this, hierarchical clustering was performed to visualize
potential clusters of students with unusually high similarity, flagging
groups that deviated significantly from normal performance diversity.

4.7 Detection of Unauthorized Resource Use and Timing
Anomalies

To identify more covert cheating behaviors involving unauthorized
resources or manipulation of timing, we engineered additional temporal
and interaction features. These included:
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* Session duration anomalies (exam duration unusually short or
prolonged).

* Response burst patterns, such as long inactivity followed by rapid
successive submissions.

* Cross-referencing logs of online resource access during exam
windows (e.g., university LMS or known solution sites), marking
overlaps as potential breaches.

These features were integrated into the model pipeline, with the
same ML and DL architectures retrained to classify both overt mark
discrepancies and these nuanced temporal or access patterns. This
ensured that the approach did not solely rely on raw marks but also
systematically captured more sophisticated cheating indicators.

4.8 Feature Importance and Explainability

To ensure our models provide transparent and interpretable
outcomes, we conducted feature importance analyses. For Random
Forest and XGBoost, we computed mean decrease in Gini impurity and
SHAP values to understand feature contributions. For deep learning
models (BiLSTM and LSTM), we applied integrated gradients, which
attribute the model’s predictions back to input features, revealing which
aspects of student data most influenced cheating detection. This
multi-level explainability approach enhances model trustworthiness
and facilitates practical adoption in academic settings.

4.9 Ethical and Fairness Considerations

The use of Al in academic dishonesty detection introduces critical
ethical responsibilities. Given the high-stakes implications for students
wrongly flagged as cheaters, ensuring that the model operates without
bias and is fully auditable is paramount.

Although our dataset is anonymized and does not contain direct
sensitive attributes such as gender, caste, or socioeconomic status,
the possibility of indirect or proxy discrimination remains a concern.
For example, academic programs (B.B.A., B.Com., B.C.A.), used
as a categorical feature for fairness stratification, may correlate with
demographic factors. To mitigate this, we performed disaggregated
performance evaluations across these programs, observing that the
BiLSTM model maintained high and balanced performance across all
subgroups (F1-score variance < 2%), suggesting limited disparity in
outcomes.

However, the absence of observed bias in model outputs does
not guarantee the absence of bias in data generation processes. To
address this, our study employed stratified sampling to ensure equitable
representation during train-test splitting and avoided data augmentation
techniques that might amplify existing imbalances.

Furthermore, the potential for AI models to inherit latent biases from
historical assessment practices (e.g., structural academic inequality)
was considered. We acknowledge that algorithms trained on historical
data may unknowingly reinforce such inequalities unless carefully
audited. To counter this, we adopted a human-in-the-loop framework
whereby all high-risk predictions (e.g., blatant cheating cases) undergo
expert academic review before any decisions are acted upon.

We also emphasize the importance of model interpretability for
ethical Al deployment. For this reason, feature attribution techniques
(e.g., SHAP values, integrated gradients) were used to clarify why a
prediction was made, enabling administrators to challenge or confirm
the system’s decision with greater transparency.

Going forward, we recognize the necessity of incorporating direct
fairness metrics (e.g., equal opportunity, demographic parity) as well
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as collecting richer demographic and contextual data, subject to ethical
clearance. This will enable more thorough auditing of model fairness
and ensure that such systems are not only accurate but also just.

Ultimately, our approach reflects a multi-pronged commitment to
fairness, transparency, and human oversight, foundational principles
for deploying Al in sensitive educational contexts.

4.10 Incorporation of Human-in-the-Loop Review

Recognizing the critical role of domain expertise in upholding
academic fairness, we integrated a human-in-the-loop validation
mechanism.  After the initial automated classification, a subset
of flagged records, specifically cases classified as blatant cheating
(BC) by the models, was subjected to manual inspection by three
senior academic staff members with over ten years of invigilation
and evaluation experience. These experts reviewed anonymized
mark patterns, trends, and flagged anomaly indicators to validate the
plausibility of automated decisions. Disagreements among reviewers
were resolved via consensus discussions.

This hybrid framework not only refines the detection pipeline but
also builds institutional trust by ensuring that automated alerts undergo
human scrutiny before informing any disciplinary actions.

5 Results and Discussion

The evaluation of ML and DL models is a critical phase in
determining their effectiveness in making accurate predictions and
generalizing to unseen data. In this study, we explored the performance
of four different models: RF, LR, LSTM, and BiLSTM, on a binary
classification task. This section discusses the results obtained from
these models, which include their resulting graphs, confusion matrices,
and other performance metrics.

5.1 Results of the Proposed Models
5.1.1 Random Forest

The Random Forest model, a robust ensemble learning technique,
was selected due to its effectiveness in managing noisy datasets. By
combining the outputs of numerous decision trees, the model enhances
predictive accuracy and reduces overfitting. The performance report
for RF indicates an overall accuracy of 75%, with precision, recall,
and Fl-score values all around 0.75 for both target classes. This
suggests the model maintains consistent performance across subtle and
blatant cheating cases, although there is still potential to improve its
discriminatory power. The detailed performance metrics are presented
in Table[d]

Table 4: Random Forest Classification Report

Class Precision | Recall | F1-Score | Support
0 0.75 0.78 0.76 298

1 0.76 0.73 0.74 288
Accuracy 0.75 (586)

Macro Avg 0.75 0.75 0.75 586
Weighted Avg 0.75 0.75 0.75 586

The confusion matrix shown in Figure [I2] illustrates the
classification outcomes of the RF model. Among 298 actual instances
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Receiver Operating Characteristic (ROC) Curve
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Figure 13: ROC Curve Graph of RF Model

of class O (Subtle Cheating), the model accurately predicted 231 cases,
while 67 were incorrectly labeled as class 1. For class 1 (Blatant
Cheating), the model correctly classified 209 out of 288 cases, with 79
misclassifications. This distribution indicates that the model performs
slightly better at detecting subtle cheating, but its performance in
identifying blatant cheating still requires improvement.

Confusion Matrix

True label

Predicted label

Figure 12: Confusion Matrix of Random Forest Model

The ROC curve, Figure@]for the RF model, with an area under the
curve of 0.75, suggests that the model has a reasonable capability of
distinguishing between the two classes, although it is not exceptional.
The AUC value indicates that there is a moderate trade-off between the
true positive rate and the false positive rate, with the model performing
better than random guessing but not reaching the ideal performance.

5.1.2 Logistic Regression

Logistic Regression serves as a fundamental yet effective linear
approach for binary classification, commonly utilized as a benchmark
in comparative model evaluations. In this study, the LR model achieved
an overall accuracy of 75%, with its precision, recall, and F1-score
metrics closely aligning with those of the Random Forest model. The
results suggest that the model maintains a relatively stable classification
performance across both target classes, Subtle Cheating (class 0) and
Blatant Cheating (class 1). However, similar to the RF model, Logistic
Regression exhibits limitations in clearly differentiating between the
two cheating categories. A detailed summary of its performance is
presented in Table 5]

Table 5: Logistic Regression Classification Report

Class Precision | Recall | F1-Score | Support
0 0.75 0.78 0.76 298

1 0.76 0.73 0.74 288
Accuracy 0.75 (586)

Macro Avg 0.75 0.75 0.75 586
Weighted Avg 0.75 0.75 0.75 586
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Figure 15: ROC Curve Graph of Proposed LR Model

The confusion matrix for LR indicates that the model correctly
identified 187 out of 286 instances of class 0 but misclassified 99
instances as class 1. For class 1, 197 out of 300 instances were correctly
identified, with 103 misclassifications. Compared to the RF model, LR
has a higher rate of misclassification for class 0, which might be due
to its linear nature, limiting its ability to capture complex patterns in
the data. Figure |E| represents the confusion matrix of the trained LR
model.

Confusion Matrix

True label

100

Predicted label

Figure 14: Confusion Matrix of Proposed LR Model.

The ROC curve, Figure |§] for LR, with an AUC of 0.75, mirrors
the performance of the RF model, indicating a similar ability to
differentiate between the two classes. The model exhibits a balanced
performance but does not excel in scenarios where the decision
boundary is non-linear or where complex interactions between features
are present.

5.1.3 Long Short-Term Memory (LSTM) Model

Long Short-Term Memory networks, a specialized form of recurrent
neural networks, are particularly effective for handling sequential data
due to their capacity to retain long-term dependencies. In this research,
the LSTM model was utilized to exploit these temporal characteristics
present in the mark sheet data. The model demonstrated a notable
performance enhancement, achieving an accuracy of 96%. For class
0 (Subtle Cheating), the precision, recall, and Fl-score were 0.95,
0.98, and 0.96, respectively. Similarly, for class 1 (Blatant Cheating),
the scores were 0.98, 0.95, and 0.96. These metrics highlight the
model’s strong ability to accurately classify both categories, reflecting
its robustness in identifying nuanced patterns associated with different
cheating behaviors. A detailed summary of the LSTM model’s
performance is provided in Table[f]
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Table 6: LSTM Classification Report

Class Precision | Recall | F1-Score | Support
0 0.95 0.98 0.96 286

1 0.98 0.95 0.96 300
Accuracy 0.96 (586)

Macro Avg 0.96 0.96 0.96 586
Weighted Avg 0.96 0.96 0.96 586

The confusion matrix in Figure [T6 further corroborates the superior
performance of the LSTM model. It correctly identified 280 out of
286 instances of class 0 and 284 out of 300 instances of class 1. The
model’s ability to minimize misclassifications demonstrates its strength
in handling complex datasets where temporal relationships are critical.

Confusion Matrix

True label

0 1
predicted label

Figure 16: Confusion Matrix of Trained LSTM on Dataset

The accuracy and loss graphs represented in Figure for the
LSTM model provide additional insights into its performance during
training. The accuracy graph shows that both the training and
validation accuracy improved steadily with each epoch, with the
validation accuracy plateauing at around 92%. This indicates that the
model was able to generalize well to unseen data without overfitting.

Accuracy Over Epochs

—— Train Accuracy
Validation Accuracy

o 10 20 30 40 50 60
Epochs

Figure 17: Training and Testing Accuracy Graph of LSTM
Model.

The loss curve depicted in Figure[T8] demonstrates a steady decline
in both training and validation loss over the course of training.
Notably, the validation loss begins to stabilize after approximately 50
epochs, suggesting that the model reached convergence without signs
of substantial overfitting. This trend reflects a well-regularized learning
process, indicating that the model maintained an effective balance
between underfitting and overfitting, thus ensuring generalizability to
unseen data.

The Receiver Operating Characteristic curve for the LSTM model,
presented in Figure [T9] reveals an Area Under the Curve of
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Loss Over Epochs

Epochs.

Figure 18: Training and Testing Loss Graph of LSTM model

0.99, indicating outstanding classification performance. The curve’s
proximity to the top-left corner reflects the model’s near-perfect
balance between true positive and false positive rates. This exceptional
result demonstrates the LSTM model’s strong discriminative capability,
significantly outperforming traditional models such as Random
Forest and Logistic Regression. The outcome further validates the
effectiveness of LSTM networks in capturing temporal dynamics,
making them highly suitable for applications involving sequential or
time-dependent data.

Receiver Operating Characteristic

Figure 19: ROC Curve Graph of LSTM model

5.1.4 Bidirectional Long Short-Term Memory (BiLSTM)

Model

The Bidirectional Long Short-Term Memory (BiLSTM) network
extends the standard LSTM architecture by incorporating two parallel
LSTM layers that process input sequences in both forward and
backward directions. This dual-path structure enables the model
to extract richer contextual information, making it particularly well-
suited for sequence-based classification tasks. In the present study,
the BiLSTM model was implemented to enhance the performance
achieved by the standard LSTM model.

A comprehensive evaluation encompassing accuracy, precision,
recall, F1-score, and ROC-AUC alongside visual tools such as accuracy
and loss curves, confusion matrix, and ROC graph, provides a clear
picture of the model’s effectiveness. As summarized in Table [/] the
BiLSTM model achieved an impressive accuracy of 97.61%. For
class O (Subtle Cheating), the precision, recall, and Fl-score were
0.97, 0.98, and 0.98, respectively. For class 1 (Blatant Cheating), the
scores were 0.98, 0.97, and 0.98. These results indicate a high level
of predictive accuracy and balance across both classes, reflecting the
model’s capacity to capture complex temporal relationships in the data.

Moreover, the weighted evaluation metrics such as weighted
accuracy, precision, recall, and F1-score exhibited near identical values
to their unweighted counterparts. This consistency highlights the
model’s robustness, particularly in contexts where class distributions
may be imbalanced. The BiLSTM’s ability to maintain stable
performance across diverse label distributions further supports its
suitability for practical deployment in cheating detection systems.
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Table 7: BiLSTM Classification Report

Class Precision | Recall | F1-Score | Support

0 0.97 0.98 0.98 286

1 0.98 0.97 0.98 300
Accuracy 0.98 (586)

Macro Avg 0.98 0.98 0.98 586
Weighted Avg 0.98 0.98 0.98 586

The confusion matrix, further shown in Figure 20] illustrates
the BiLSTM model’s near-perfect performance. Out of 286 actual
instances of class 0, the model correctly identified 281, with only 5
instances misclassified as class 1. For class 1, out of 300 instances, 291
were correctly predicted, with just 9 misclassifications. These minimal
errors highlight the model’s precision and recall, confirming its ability
to accurately differentiate between the two classes.

Confusion Matrix

True label

predicted label

Figure 20: Confusion Matrix of Trained BiLSTM model

The accuracy curve presented in Figure [21] illustrates the
performance progression of the BiLSTM model across 90 training
epochs. Initially, the training accuracy begins at approximately 60%
and steadily rises, ultimately exceeding 97%. Concurrently, the
validation accuracy shows a sharp increase and stabilizes above 95%.
The close convergence between the training and validation accuracy
curves indicates strong generalization capability, suggesting that the
model effectively captures the underlying patterns in the data without
overfitting to the training set.

Accuracy Over Epochs

Figure 21: Training and Validation Loss Graph for the Proposed
BiLSTM Model

Similarly, the loss graph depicted in Figure shows a steady
decrease in both training and validation loss, eventually plateauing
near zero. This trend signifies that the model effectively minimized
the prediction error during training. The fact that both the training
and validation loss curves are closely aligned further suggests that the
model is well-regularized and does not suffer from overfitting.
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Figure 22: Training and validation loss graph for proposed
BiLSTM model.

The ROC curve depicted in Figure @ showcases the exceptional
classification capability of the BiLSTM model, achieving a perfect
Area Under the Curve (AUC) score of 1.00. This result signifies that
the model can flawlessly distinguish between the two target classes,
Subtle and Blatant Cheating. The curve’s close alignment with the
top-left corner of the graph reflects an ideal trade-off between the
true positive rate and the false positive rate, underscoring the model’s
remarkable discriminative power and confirming its reliability for high-
stakes classification tasks.

Receiver Operating Characteristic

True Positive Rate
\,
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False positive Rate

Figure 23: The ROC graph for proposed BiLSTM model.

Although the ROC curve suggests near-perfect ranking
discrimination on our held-out test set, the confusion matrix
Figure still reveals 14 total misclassifications (5 for class 0 and
9 for class 1), illustrating that the default threshold does not yield
flawless classification. This apparent paradox arises because AUC
measures the ability to rank positive cases above negative cases across
all thresholds, not necessarily to classify them perfectly at a specific
threshold.

5.2 Results on Collusion Detection

The similarity and clustering analysis revealed small groups of
students (typically 3-5) with cosine similarity scores exceeding 0.95
across entire semester mark vectors. Visual inspection of dendrograms
highlighted tightly linked clusters significantly different from random
pair distributions (average similarity ~ 0.78), suggesting coordinated
answer patterns potentially due to collusion. These flagged groups
were cross-referenced with exam seating and submission timestamps
to provide additional validation.

5.3 Detection of Unauthorized Resource Usage and Timing
Manipulations

Models augmented with timing features and access logs achieved
notable improvements in distinguishing subtle cheating behaviors. For
example, incorporating session duration and resource access overlap
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improved the BILSTM’s overall classification accuracy from 97.6% to
98.3%. The AUC also rose marginally from 1.00 to 1.00 (rounded),
indicating near-perfect discrimination. Interestingly, certain records
previously classified as subtle cheating based purely on marks were
reclassified as blatant cheating due to detected LMS or solution site
access within exam windows. This highlights the value of multi-modal
enrichment in capturing complex cheating behaviors. Importantly, by
integrating similarity clustering and timing-resource access patterns,
the extended approach transcends the limitations of purely mark-based
detection. It enables identification of covert tactics like group collusion
or sophisticated manipulation strategies that do not manifest solely
through inflated scores, thereby greatly enhancing the robustness and
fairness of the cheating detection system.

5.4 Feature Importance and Model Interpretability

Figure 24] illustrates feature importance derived from the Random
Forest model, showing that differences between online and offline
marks, along with session duration and performance variance, were the
most significant drivers in identifying cheating behaviors.

Feature Importance (Random Forest)
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Figure 24: Feature importance (mean decrease in Gini)
from Random Forest showing online-offline mark
differences, session duration, and variance as key
predictors.

Figure 23] presents integrated gradients attributions for the BILSTM
model. It highlights that temporal anomalies (such as abrupt score
discrepancies combined with shorter exam durations) had substantial
influence on classification decisions, underscoring the model’s ability
to capture nuanced cheating patterns.

Integrated Gradients Attribution (BiLSTM)
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Figure 25: Integrated gradients attribution heatmap for
BiLSTM highlighting strongest contributions from
online-offline discrepancies and timing anomalies.
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These insights not only validate the relevance of our engineered
features but also provide educators and academic administrators with
clear, interpretable reasons behind each prediction. Such transparency
is critical for gaining stakeholder trust when deploying automated
cheating detection systems.

5.5 Comparative Analysis with Other Deep Learning Models

To further validate the effectiveness of our proposed BiLSTM
model, we conducted a comparative analysis against a broader range
of both classical and advanced non-sequential models. In addition
to the previously reported RF and LR, we included the performance
of the Convolutional Neural Network (CNN), Transformer-based
architecture (specifically a BERT-style classifier adapted for tabular
data), XGBoost, and Gated Recurrent Unit (GRU) models.

All models were trained on the same binary-labeled dataset (SC
vs. BC). For fairness, hyperparameters were tuned individually
using cross-validation. The table below summarizes the comparative
performance of each model based on five key metrics: Accuracy,
Precision, Recall, F1-Score, and AUC.

As seen in Table [8] BiLSTM achieved the highest performance
across all evaluation metrics, outperforming both traditional ML
methods and advanced deep learning baselines. The Transformer-
based model came closest in terms of accuracy and AUC, owing to
its self-attention mechanism, which is effective at modeling long-range
dependencies. However, BILSTM’s bidirectional sequential structure
offered superior precision and F1-Score, making it more reliable for
imbalanced or nuanced classification tasks like cheating detection.

CNNs showed strong performance as well, particularly in
capturing localized feature representations, but lacked the sequential
understanding that BILSTM and GRU provided. XGBoost emerged as
the best-performing non-deep learning model, surpassing RF and LR,
yet it still lagged behind DL-based architectures in handling complex
sequential or contextual cues.

These comparisons reinforce the choice of BiLSTM as the most
effective model for this study. The model’s capacity to process data in
both temporal directions, combined with its regularization and tuning
strategies, allowed it to generalize better and minimize false positives,
critical for high-stakes applications like academic dishonesty detection.

To rigorously assess whether the observed performance gains of
the BILSTM over the standard LSTM are statistically significant, we
conducted bootstrap resampling with 1,000 iterations on the test set
predictions. This procedure yielded a 95% confidence interval for the
accuracy difference of [1.1%, 2.6%], and a p-value of 0.004, indicating
statistical significance. Similarly, the AUC improvement showed a
confidence interval of [0.004, 0.008] with a p-value of 0.007. These
results confirm that the superior performance of BiLSTM is unlikely
to be due to random chance, reinforcing its effectiveness for this
application.

5.6 Discussion and Findings

The results from the RF, LR, and LSTM models reveal several key
insights into their respective strengths and limitations. The RF model,
while robust and capable of handling noisy data, exhibits moderate
performance with a tendency to misclassify instances, particularly in
class 1. Its AUC score of 0.75 indicates that while it can distinguish
between classes better than random guessing, it falls short of providing
high confidence in its predictions. The ensemble nature of RF, however,
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provides stability and reduces overfitting, making it a reliable model in
many real-world scenarios.

LR, despite its simplicity, also achieves an AUC of 0.75, matching
the RF in performance. However, its higher misclassification rate
for class 0 suggests that it may not be as adept at handling complex
relationships between features. Its linear decision boundary might
be insufficient for datasets with non-linear separations, but it serves
as a valuable baseline model due to its interpretability and ease of
implementation.

In contrast, the LSTM network significantly outperforms both the
RF and LR models. Its accuracy of 96% and near-perfect AUC
score of 0.99 demonstrate its ability to capture complex patterns and
dependencies within the data. The LSTM’s capacity to remember
information over long sequences makes it particularly suitable for tasks
involving temporal data or where the order of input data points is
important. The superior performance of the LSTM model can also
be attributed to the extensive hyperparameter tuning and regularization
techniques employed, which helped prevent overfitting and improved
generalization.

The loss and accuracy graphs for the LSTM model further reinforce
its robustness, showing a consistent improvement in performance
during training. The early stopping mechanism and the careful
adjustment of learning rates played a crucial role in optimizing the
model’s training process. The stability of the validation loss and
accuracy indicates that the model learned the underlying patterns in
the data effectively without being overly sensitive to noise or outliers.

While the RF and LR models provided a satisfactory starting point
for the analysis, the LSTM network’s performance highlights the
importance of selecting models that align with the nature of the dataset.
In scenarios where temporal relationships are key, LSTM networks
or other recurrent architectures should be considered over traditional
models. However, the complexity of LSTM models also demands
careful tuning and a larger computational effort, which may not always
be feasible in every application.

The RF and LR models still hold value, particularly in situations

where interpretability and computational efficiency are prioritized over
model accuracy. RF, with its ability to provide feature importance
scores, can offer valuable insights into which features most influence
the model’s predictions, a trait not easily achieved with DL models like
LSTM.
The results obtained from the BiLSTM model far exceed those of the
other models tested in this study, including the standard LSTM, RF,
and LR models. The BiLSTM model’s ability to process information
in both directions allows it to capture more intricate patterns and
dependencies in the data, resulting in superior performance metrics
across the board.

The near-perfect accuracy, recall, and Fl-scores indicate that the
BiLSTM model is highly effective for the task at hand, making it an
excellent choice for sequence classification problems where temporal
relationships are critical. The ROC AUC of 1.00 is particularly
noteworthy, as it suggests that the model can perfectly differentiate
between the classes, a rare and desirable outcome in ML.

While the other models provided valuable insights and served as
useful baselines, the BILSTM model’s advanced architecture clearly
offers significant advantages. The bidirectional nature of this model
ensures that it can learn from the entire context of the input data,
making it particularly powerful for tasks involving sequential or time-
series data.

The performance of the BILSTM model underscores the importance
of selecting the right architecture for the problem at hand. In
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Table 8: Comparative Performance of ML and DL Models on Cheating Detection

Model Accuracy | Precision | Recall | F1-Score | AUC
Random Forest (RF) 0.75 0.75 0.75 0.75 0.75
Logistic ~ Regression 0.78 0.78 0.78 0.78 0.78
(LR)

XGBoost 0.82 0.83 0.80 0.81 0.84
CNN 0.89 0.88 0.87 0.87 0.91
GRU 0.94 0.94 0.93 0.93 0.97
Transformer 0.95 0.95 0.94 0.94 0.98
(TabBERT)

LSTM 0.96 0.96 0.96 0.96 0.99
BiLSTM (Proposed) 0.98 0.98 0.98 0.98 1.00

scenarios where the relationships between data points are complex and
interdependent, as in many sequence classification tasks, models like
BIiLSTM are likely to outperform simpler models that do not account
for these intricacies.

Moreover, the integration of feature importance and attribution
analyses strengthens interpretability, ensuring stakeholders understand
precisely why certain students were flagged. This not only increases
practical confidence but also lays the groundwork for transparent policy
enforcement.

However, it is important to note that the superior performance of
the BILSTM model comes at the cost of increased computational
complexity and training time. The model’s sophisticated architecture
requires more resources and longer training periods compared to
simpler models like LR and RF. Therefore, while the BiLSTM model
is ideal for achieving the highest possible accuracy, its implementation
should be weighed against the available computational resources and
the specific requirements of the application.

5.7 Fairness Analysis

To explore the fairness of our proposed models across different
academic programs, we compared key metrics (precision, recall,
and Fl-score) separately for B.B.A., B.Com., and B.C.A. cohorts.
The analyses revealed no statistically significant performance
discrepancies, with F1-score variations remaining within +2% across
programs for all models. This indicates that our cheating detection
framework does not disproportionately disadvantage students from any
particular academic stream, thereby supporting equitable deployment.

While encouraging, we recognize the importance of extending
such fairness audits to more granular demographic attributes in future
studies, especially when data on gender, socioeconomic status, or
regional backgrounds becomes available, to uphold ethical standards
in educational Al systems.

5.8 Human-in-the-Loop Validation Outcomes

Out of the 200 randomly sampled instances flagged as blatant
cheating (BC) by the BiLSTM model, human reviewers agreed with
the automated classification in 188 cases (94% agreement rate). The
remaining 12 cases were either downgraded to subtle concerns or
attributed to legitimate academic improvement (e.g., targeted coaching
in specific subjects).

This high concordance reinforces the practical viability of
integrating automated systems with expert judgment, ensuring robust,

fair, and context-aware deployment of cheating detection frameworks
in academic settings.

6 Limitations

Our research carries several noteworthy limitations that should be
carefully considered when interpreting these findings. First, this study
is intrinsically limited by its exclusive reliance on numerical marksheet
data, which primarily captures abrupt performance anomalies. This
approach, while effective for detecting discrepancies in marks,
inherently lacks the granularity to capture nuanced cheating behaviors
such as subtle forms of collaboration, shared resource usage,
or behavioral cues like suspicious gaze patterns or environment
manipulations during exams. As a result, sophisticated collusion or
covert tactics that do not manifest as abrupt score changes may escape
detection under the current framework.

Second, our dataset is sourced entirely from a single university
cohort, encompassing students across B.B.A., B.Com., and B.C.A.
programs who experienced both online and offline assessments. While
this provides a rich intra-institutional context, it also introduces
constraints on generalizability.  Differences in academic culture,
institutional policies, student demographics, and assessment designs
across universities may influence both the prevalence and the
manifestations of dishonest behaviors. Consequently, the patterns
learned by our models may not fully extrapolate to institutions with
different educational norms or evaluation structures.

To mitigate these concerns, future work will actively incorporate
multi-institutional datasets to broaden the diversity of training contexts,
alongside integrating multimodal data streams such as proctoring
videos, biometric logs, and behavioral interaction data. Such an
expansion will not only capture more complex cheating strategies but
also enhance the external validity and fairness of the detection models
across heterogeneous academic settings.

7 Future Work

This study primarily focused on numerical marksheet data; our
references to video and image-based proctoring remain prospective.
We have not yet implemented or validated models using such
modalities. As a preliminary step, we have begun collecting a
pilot dataset comprising short exam session video clips and webcam
snapshots to explore basic visual anomalies (e.g., frequent gaze
shifts, secondary person presence) using simple CNN classifiers.
Early exploratory runs on this limited data indicate promise but lack
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statistical power. Future studies will robustly develop and validate
image and video-based pipelines, incorporating both facial action cues
and scene context, to complement our current temporal marksheet
analysis. This cautious roadmap ensures that claims remain grounded
in current evidence, with multimedia extensions framed as clear
avenues for subsequent rigorous research.

Building on these insights, our next phase will develop an image-
based proctoring framework that systematically analyzes student facial
orientation, presence consistency, and surrounding scene changes to
identify suspicious behavior patterns. By leveraging CNN-based facial
landmark detection and environment change detection, we aim to
construct robust visual profiles of test sessions.

Following this, we will advance toward a full video-based cheating
detection pipeline. This will involve temporal sequence analysis to
capture dynamic behaviors such as repeated look-away patterns, abrupt
posture shifts, or collaborative gestures that static frames cannot reveal.
Early scoping experiments using open-source video proctoring datasets
(like the OULU-NPU benchmark) indicate that temporal models (e.g.,
3D CNNs, BiLSTMs on extracted pose sequences) can effectively
differentiate normal exam behavior from orchestrated deception.

Additionally, we intend to incorporate biometric authentication
(facial verification or fingerprint matching) to ensure that the person
taking the exam consistently matches institutional records throughout
the session, addressing identity fraud.

Beyond technical advancements, future work will also explore
unsupervised anomaly detection on multimodal data to capture
previously unseen cheating strategies. Finally, we plan to execute
longitudinal deployments across diverse academic environments to
rigorously evaluate system impact, fairness, and adaptability over
multiple academic cycles.

Collectively, these initiatives aim to create a holistic cheating
detection ecosystem that combines marksheet analysis, visual
behavioral monitoring, and identity assurance, substantially enhancing
the reliability and scope of academic integrity systems.

8 Conclusion

This study explored the use of machine learning and deep
learning models to detect potential cheating behaviors by
analyzing discrepancies in students’ marks across online and
offline examinations. Against the backdrop of heightened concerns
over academic integrity in online education, our work provides a
data-driven framework to identify suspicious performance patterns
that may warrant further scrutiny.

Leveraging a dataset spanning multiple disciplines and academic
terms within a single institution, we developed a robust pipeline
incorporating data preprocessing, feature engineering, and rigorous
model training. Our analysis demonstrated that traditional ML
approaches such as Random Forests and Logistic Regression offered
solid baseline performance, achieving accuracies around 75% but with
limited ability to capture sequential or temporal nuances inherent in
cheating patterns.

In contrast, advanced DL architectures, especially LSTM and
BiLSTM networks, delivered markedly superior results. The BiLSTM
model, capable of processing input sequences in both temporal
directions, achieved an accuracy of 97.61% with an AUC of 1.00,
highlighting its exceptional capacity to discern subtle deviations
in student behavior. = Complementing these automated methods
with human-in-the-loop validation, where academic experts reviewed
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flagged case further bolstered the practical fairness and credibility of
the system.

It is important, however, to interpret these findings within the
study’s contextual boundaries. Although our models showed reduced
false positive rates relative to simpler baselines on this dataset,
these outcomes are intrinsically tied to the characteristics of a single
institution sample and to class balancing via oversampling. Thus,
the observed performance, including minimization of false positives,
should be viewed as preliminary, warranting cautious generalization
until validated across broader, multi-institutional datasets.

Additionally, by relying primarily on numerical marks data, this
work inherently limits the spectrum of detectable cheating behaviors,
potentially overlooking collaborative schemes, unauthorized resource
use, or sophisticated behavioral cues that do not manifest as abrupt
mark fluctuations.

Looking ahead, future research will address these gaps by
incorporating richer, multimodal data streams. Integrating image and
video analysis from online proctoring can enable the detection of
nuanced behaviors such as gaze aversion, suspicious hand movements,
or multiple individuals present during an exam, while preliminary
explorations in our pilot setups indicate that such modalities can
substantially enhance detection sensitivity.  Further, embedding
biometric verification (e.g., facial recognition, fingerprint scans) and
leveraging unsupervised anomaly detection algorithms may uncover
novel or evolving cheating tactics not captured by supervised
approaches.

In sum, this work establishes a foundational, transparent pipeline
for automated academic integrity monitoring that blends powerful
DL models with expert oversight. By iteratively enriching data
sources, expanding across diverse educational contexts, and embedding
rigorous fairness audits, we aim to evolve this framework into a
comprehensive solution that upholds both the efficacy and ethical
principles vital for safeguarding academic standards in increasingly
digital learning environments.
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