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Abstract

purpose: Leveraging ontologies to manage, analyze and
understand the semantic context surrounding data generated by
interconnected devices, sensors, and people in the Internet of
Everything ecosystem. Provide early warnings for potential
risks, such as health deterioration or unsafe behaviours.

Methodes: Ontology-based querying using chronological
events enhances activity recognition and predicts future issues.
Using temporal ontology and semantic reasoning ensures that
queries are accurate and relevant.

Results: Combining spatial and temporal data with
contextual awareness allows the system to assess the
environment dynamically, perform adaptive processing, predict,
and adjust its context-sensitive analyses.

conclusion: Contrary to the temporal Description Logic
frameworks for dynamic context/event recognition and
spatiotemporal concept representation, our Spatio-temporal
querying approach further refines the system’s responsiveness,
enhances efficiency, and personalises relevant human-machine
interaction.

KeyWords: Temporal ontology, activity recognition,
context-aware, ontology-based querying, description logic,
intelligent system, IoE ecosystem

1 Introduction

The promising research trends in Internet of Everything
applications areas have led to the emergence of the known
Internet of Robotic Things. In these environments, robots are
designed to ensure complex cognitive tasks such as assisting
and supervising dependent persons. These tasks require the
manipulation of knowledge about the properties of objects
and performing complex actions. An intelligent system must
have advanced cognitive abilities to interpret context, recognize
user activities and intentions, and make adequate decisions.
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Therefore, it is necessary to delve in human behaviour and
understand why actions occur in specific sequences (i.e., time
points and intervals) and spaces. As stated by the philosopher,
Noël Carroll [1], the causality of later events and/or states of
affairs depends on the earlier events. Consequently, finding
correlations between events over time is an important aspect
that leverages ambiguities of interpretation, which allows
building up a kind of causal explanation automatically. Recent
studies have addressed ontologies as a de facto solution for
implementing intelligent systems for activity recognition and
planning functions, tasks, and service composition ( [2],
[3], [4], [5]). Indeed, ontologies provide a vocabulary of
concepts and properties, fostering a shared understanding of
semantics among humans and machines. Although various
methods for representation and reasoning over temporal data
( [6], [7], [8], [9]) developed, they only deal with specific
time intervals or time points. Even so, time points and
semantic relationships between two- or a-time interval and a
time point are not what they are designed for. Furthermore,
we must handle that connectivity, such as event causality
and goal. Despite this, no proposals for n-ary relations are
included in OWL . Due to significant issues that remain
unhandled by Ontology Web Language, it remains unsuitable
for dynamic context/event recognition and spatiotemporal
concept representation, expressing a chronological ordering
between events and contexts. These points highlight the
limitations of current methods ( [10], [11], [12], [13])
and underscore the limitations of temporal description logic
frameworks. One method to address this issue would be to
use n-ary predicates to represent the evolution of knowledge
and the chronological relationships between events and their
contexts in both present and past. A statement like: ”The
robot observed that a person turned on the stovetop and left
the kitchen towards the bathroom where he spent more than 25
minutes” is a complex task requiring consideration as a single
indivisible entity. So, it can be challenging to fully describe
this type of information using the usual binary Semantic
Web languages such as Ressource Description Framework
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and OWL. However, explanatory role properties should then
be necessarily introduced to represent a context fully. This
paper has three contributions. First, the semantic annotation
layer aims to describe an approach that permits the semantic
description of heterogeneous entities that can change over time
and interact with each other. Moreover, this layer deals with
the semantic modelling of raw sensor data extracted from
different sources, facilitating better analysis and reasoning.
The second contribution is the usefulness of the narrative
model of the narrative knowledge representation (NKRL) used
for the first time in ambient intelligence ( [14], [15]). It
consists of adding to the usual ontologies of concept HClass
(Hierarchical Class) as generalisation/specialisation structure,
the ontology of events called HTemp (hierarchical Temporal)
ontology. The third contribution is designing a Query-
Processing Mechanism (QPM) about activity recognition and
dynamic events/contexts,figure1. The QPM uses hierarchical
structures of semantic predicates and functional roles in HTemp.
Therefore, NKRL overcomes the disadvantages of Semantic
Web Language by providing the HTemp ontology.

NKRL provides a means to reconstruct the context from
the potential semantic relationships about events occurrences
in both past and present time, as well as their spatial-
temporal dependencies, demonstrating its adaptability to
various scenarios in Internet of Everything ecosystems. The
QPM relies on two kinds of rules: transformations and
hypothesis to determine contexts and recognise human activities
and intentions. The rules are concisely described based on
the application domain and specific sensor outputs. When it
is impossible to find explicit knowledge within the knowledge
base using hypothesis rules, the QPM combines the two
classes of rules to discover all the possible implicit information
associated with the original context. Transformation rules try to
adapt the search pattern (query1 = intial query) by automatically
transforming query1 into one or more sub-queries q11, q12 , ...,
q1n that are not strictly equivalent but only semantically close
to the initial query. The paper is structured as follows: Section 2
presents a general-related work on ontology-based knowledge
representation and query processing for activity recognition.
Section 3 introduces a novel knowledge representation and
query processing for IoE ecosystems. Section 4 describes
the method for recognising activities using specific scenarios.
Section 5 presents an evaluation and scalability of the proposed
approach. Finally, section 6 outlines discussion, a conclusion.

2 Related work

Some significant conceptual and practical issues still plague
the use of W3C languages regarding the creation and processing
of rules. Despite the important contribution these languages
have made, for example, in simplifying the management
and interpretation of contexts through the use of semantic
representations and querying/reasoning tools. Description
Logic (DL) has become a formalism in symbolic knowledge
representation because it offers complete reasoning and is

supported by tools (e.g., Pellet)). OWL 2 have extended the
original OWL 1 with a few practical features. The three OWL
2 profiles can offer some advantages in particular application
scenarios but are more restrictive than the full OWL 2 DL. OWL
2 QL enables conjunctive queries to be answered similarly to the
standard relation database principle. In this last case, reasoning
will always be sound, but it may not be complete (that is, it
is not guaranteed that all correct answers to queries will be
computed). Researchers have explored expanding the DL is
syntax to include the OWL language.

2.1 Knowledge representation

Key-value-based techniques have been proposed by [16]
using a simple data structure to describe a sensor’s outputs
and, therefore, trying to represent an activity. Moreover,
[17] proposed hierarchical structures relying on deep neural
networks. Unfortunately, all those approaches are very limited
in handling the interoperability in activity recognition systems.
Various research for activity recognition approaches combining
ontolgies and rule-based models or machine learning, such
as [18]. Authors have relied on naive Bayesian models
to represent objects to infer the possible actions on these
objects and, thus, deduce the associated activity. This
approach is based on the semantic relations between everyday
actions that can be executed through these objects. However,
the authors did not use an ontology but a taxonomy of
concepts and did not implement an ontology of roles. A
several symbolic representations of the user environment and
ontological reasoning have been proposed in the literature to
deduce activities according to a set of preselected actions
using the OWL ontology. They exploited human-object
interaction and, therefore, events using the flow of sensors
for activity recognition. These systems are excellent at
contextualising activities by establishing connections between
objects, actors, and environments, a skill that is essential
for accurately interpreting human behaviour. However, the
ontology paradigm historically emphasises structure and lacks
behavioural components such as role. Recent research
underscores the pivotal role of ontologies in enhancing robotic
autonomy. An in-depth review delves in to their contribution
to knowledge representation, task planning, and adaptability
in dynamic environments, empowering robots to reason about
their environment and act reliably [19]. In the Internet of
Things (IoT), a context-aware edge computing framework,
CONTESS, harnesses context to optimize resources by reducing
latency and adapting processing at the network’s edge [20].
The semantic representation of robotic manipulations has also
made significant strides through knowledge graphs. A multi-
layer model describes objects, actions, and effects, facilitating
automatic task planning [21]. In parallel, motion planning
in dynamic environments benefits from context-aware human
trajectory prediction, enabling robots to anticipate behaviors
and avoid collisions [22]. This idea is extended to autonomous
driving, where a multimodal framework uses neural networks to
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Figure 1: General activities and intentions recognition platform.

predict trajectories in heterogeneous environments, considering
social intentions and interactions [23]. The integration of
ontological frameworks in robotic task management is a
significant advancement that promotes greater autonomy. For
instance, one system proposes robotic task processing based
on semantic modeling, which combines perception, reasoning,
and execution [24]. This means that the robot can understand
its environment, make decisions based on that understanding,
and execute tasks accordingly. The ORKA ontology takes
this a step further by formalizing the acquisition of knowledge
from sensors and perceptions, enabling coherent information
exploitation [25]. This work is further strengthened by
approaches that combine ontologies and rules for collaborative
task planning, such as disassembly in remanufacturing, where
human and robotic roles are optimally coordinated [26].
In mixed reality, OWL ontologies have facilitated semantic
mediation between humans and robots, enabling seamless and
contextualized interaction during collaborative assembly [27].
This logic extends to ethical considerations, with proposals
for the standardization of ontologies aimed at framing the
decisions and behaviors of autonomous systems from a moral
point of view [28]. This significant innovation also consists
of integrating language models such as ChatGPT into robotic
architectures (ROS), making possible a more intuitive and
expressive interaction with users [29]. The latter is based on
ontology formalism but does not integrate negation or define
spatiotemporal relationships. Contextual gestural interactions
also make an essential contribution. For instance, a dual-
flow model allows the efficient recognition of control gestures.

This model uses two streams of information, one for the
hand’s trajectory and the other for the hand’s shape, to
strengthen human-robot cooperation in complex environments
[30]. Finally, an advanced approach to contextual indoor
navigation for robots integrates semantic, spatial and temporal
dimensions, allowing intelligent exploration of unknown
environments with increased adaptability thanks to context
modeling Incorporating ontological frameworks into robotic
task management promotes greater autonomy. For example,
one system proposes robotic task processing based on semantic
modeling, combining perception, reasoning, and execution [31].
These contributions, derived from diverse work, demonstrate a
convergence toward intelligent, adaptive, and human-centered
robotic systems, supported by robust semantic structures and
advanced contextual processing, and remain a relevant and
promising avenue for better context management.

2.2 Query-processing mechanism

Few works have been done on developing query languages
and inference rules based on temporal description logic, and
Most of these works are based on Allen’s temporal logic.
Among these works, a temporal language TL-OWL an OWL-
2 DL ontology of temporal concepts based on the idea of
time interval and combing 4-D fluents [32]. Nevertheless, 4D-
fluents maintain OWL expressiveness and reasoning support
but still suffer from data redundancy [12]. Furthermore,
unfortunately, TL-OWL ontology does not support temporal
relations or consistency checking and is not compatible with
OWL inferencing and querying tools. The authors of [10] have
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developed a semantic geospatial database system, introducing
two sub-languages built on top of RDF and SPARQL query
language. They have introduced t-SPARQL, an extension
that can be directly mapped to standard SPARQL to express
temporal queries. While t-SPARQL has not yet managed
the temporal features, its potential for future development is
promising. The principle of reification in ( [6], [7], [13], [33],
[37]), which depicts n-ary relations, has a significant problem
of data redundancy. The authors in [34] propose knowledge
reification as a solution for representing complex relationships
and multilevel abstractions using the property graph model. The
SWRL and SQWRL [35] rules languages are employed in both
approaches [7], [33]. Using inference rules is a fundamental
part of knowledge management and a crucial component of the
reasoning process. These rules are either written in the SWRL
language or incorporate the Horn clause and an OWL- DL.
SWRL Temporal Ontology, a significant extension of the SWRL
language, allows the annotation, reasoning and querying of
temporal knowledge bases. This ontology’s proposition, instant,
and time interval concepts are crucial for presenting temporal
knowledge. It is important to note that the representation
knowledge may be complex and better suited for describing
temporal entities than the temporal context. Moreover, SWRL
raises several limitations, such as the lack of negation. The
OWL-Time , a W3C recommendation since October 2017,
is a powerful tool that provides a vocabulary for expressing
facts about topological (ordering) relations among instants and
intervals. OWL-Time does not support dynamic events for
representing object properties that change over time. To the
best of our knowledge, no reasoning tools allow us to infer new
temporal data. Despite these constraints, OWL- Time is still
a valuable resource for describing the temporal content of web
pages and the temporal properties of web services. The main
reasons are: 1) OWL and RDF language are based on binary
relations that supply connect two instances, and 2) It cannot be
combined with the existing OWL tools [36].

3 Methodology

3.1 Modeling knowledge

HClass is an ontology of concepts. It encompasses
more than 2700 concepts. It is identical to the binary
OWL ontology. A generalization/specialization structure can
be created by using HClass to represent general concepts.
The process of naming a concept involves using lowercase
symbolic labels and an underscore, like human being, artifact,
doctor, sensor and robot . Like OWL, HClass also contains
instances (individuals) which are represented in the upper
case, including an underscore symbol; For example, BLOOD-
SENSOR-PRESSURE-2 SENSOR- ECG-1 are examples of the
body sensor concept, and WHEEL-CHAIR-3 is an example of
the artefact concept. The nodes in HTemp are hierarchically
connected as n-ary structures. This ontology is defined as
the formal depiction of elementary events. Our approach
distinguishes between an elementary event and a complex

event, which describes an entity’s behaviour (motions, actions,
temporal events, etc.). For example, turning on the coffee
machine early in the morning and opening the door are
elementary events. However, if the robot moves towards the
space where a human is located and interacts with him, it
is a complex event. Figure2 depicts the general structure of
HTemp ontology divided into seven branches called templates
or predicates (MOVE, PRODUCE, RECEIVE, EXPERIENCE,
BEHAVE, OWN, EXIST). The BEHAVE predicate, a crucial
concept in our understanding of actions and behaviours,
represents the actions or behaviours of one or more individuals.
On the other hand, EXIST indicates an entity’s presence in a
given space. EXPERIENCE is typically employed to describe
an event that affects an individual, like illness, success, accident,
etc. MOVE, a versatile predicate, describes many actions like
moving, sending, etc. The OWN predicate can represent the
notion of ownership between entities or the state of an entity.
The PRODUCE predicate describes the execution of a task,
activity, or other action. RECEIVE describes events related to
the reception of information.

Table 1: Elementary events (ioe.e85) vs complex events
(ioe.m156).

Description narrative event

The robot gives its assistance by
moving itself towards the bathroom
where a human is localized and
tries to interact with him.

ioe.m156) MOVE
SUBJ ROBOT KOMPAI: (KITCHEN 1)
OBJ ROBOT KOMPAI: (BATHROOM 1)
MODAL speech interaction
CONTEXT potential risq
date-1: 2024/11/25/15:25
date-2:

On 2024/11/25, at 14:40, the system
observes that a stovetop in the kitchen is
turning on in the kitchen denoted
respectively by the symbols
STOVETOP 1 and KITCHEN 1.

ioe.o145) OWN
SUBJ STOVETOP 1:(KITCHEN 1)
OBJ property
TOPIC TURN ON
{obs}
date-1: 2024/11/25/14:40
date-2:

On 2024/11/25, at 14:58, the system
observes that the temperature on the
kitchen stovetop has risen

ioe.e85) EXPERIENCE
SUBJ (SPECIF temperature KITCHEN 1)
OBJ growth
{obs}
date-1: 2024/11/25/14:58
date-2:

Each Template can be customized to derive the new
templates that could be needed for a particular application.
HTemp ontology contains 165 templates. Each branch
of template contains seven generic roles (subject(SUBJ),
object(OBJ), SOURCE, MODAL, TOPIC, CONTEXT,
Beneficiary (BENF)). The space where an event/situation
occurs and temporal knowledge are respectively described by
location and modulators (described in more detail in the next
section). Modulators represent the (start, end, duration) of a
given event/context. A role or a variable defined in square
brackets ([ ]) are optional elements. In figure 2, the SUBJ,
MODAL and TOPIC roles and (var1, var3, var5 and var6) are
mandatory, while SOURCE, CONTEXT, roles, and variables
(var2, var4, var7) are optional. The variables var1, ..., and
var7 represent constraints allowing us to check that the values
assigned to each variable when a Cognitive Behaviour Template
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Figure 2: General HTemp ontology structure and Cognitive Behaviour structure.

is instantiated correspond to (concept, sub-concepts) defined
in the HClass ontology. Table 1 depicts three examples of
elementary events and complex vents. Where each template has
a unique symbolic label (SymL) identifying a given template,
some examples of SymL : (ioe.m156), (ioe.o145).

3.2 Spatio-temporal representation

According to [37] narrative events are those that take place
in reality. As for [38], a narrative event provides the classical
theory of narratology. A logical and chronological sequence of
events makes up the fabula entity. The story entity is a fragment
of fabula arranged into a new sequence. Finally, the narrative
describes how events are narrated in a given language, media,
signal, etc. In our approach, the Allen interval’s logic can be
recreated relying on two properties (date 1) and (module):

1. 1. The property (date 1) represents the event that begins at
timestamp t1;

2. Date 2 is the property that signifies the maximum time limit
for the event at timestamp t2;

3. Temporal attributes can be associated with temporal
modulators like begin, end, and observe (obs) to mark the
start or end of an event;

4. Point time is a time stamp that indicates that the date
associated with date-1 is solely a specific point in the
temporal interval associated with the event. The second

property, date-2, is empty;

Table 2 shows two examples, the narrative event denoted by
(ioe.b148) expresses that the symbol DAVID-1, which is used as
filler of the SUBJ(ect) role, represents a human who is localized
at the bathroom denoted with the symbol BATH-ROOM-1,
the user filler of the Modal role describes that INDIVIDUAL-
PERSON-1 is performing the activity ( using the bathroom’s
shower tap) described in the TOPIC role as SHOWER-TAP-1.
The property (date 1) depicts a specific time-point within the
temporal interval corresponding to an event. As for (ioe.o25),
throughout the scenario, DAVID-1 is the house owner denoted
with HOUSE-1.

3.3 Chronological Knowledge representation

Binding narrative, a structure used to link together several
events/contexts, taking into account semantic linking, are
formalized by the binding operators. These operators, such
as GOAL, COORD(ination), and CAUSE, play a crucial role
in formalizing the logical semantic link between the narrative
events using their symbolic labels (SymL). Furthermore, they
allow describing complex IoE scenarios. The binding narrative
can be expressed as follows:

(bind.operator [ SymL1 o SymL2 o SemL3... SemLi]) (1)
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Table 2: The location where the scenario takes place is depicted in this narrative event. The house referred to as HOUSE 1 here
belongs to INDIVIDUAL PERSON 1

narrative event
ioe.b148) BEHAVE SUBJ DAVID 1: (BATH ROOM 1) MODAL user TOPIC SHOWER TAP 1 date-1: 2024/11/25/15:03 date-2:

Behave:CognitiveBehaviour
ioe.o25) OWN SUBJ INDIVIDUAL PERSON 1 OBJ HOUSE 1 date-1: 2024/05/25/10:00 date-2: Own:ConcreteResource

Formul 1 denoted a binary structure under the list of
arguments SemL. The SymL corresponds to a symbolic label or
recursively to sets of labelled lists in (Equation1). For instance,
the narrative event ioe.b148 allows the robot to determine
David’s presence in the bathroom. Simultaneously, the narrative
ioe.e85 indicates that the oven is in use, Table 1. In response, the
robot sends a proposal to turn off the stovetop, a crucial action
to prevent a potentially hazardous issue. This decision depicts
a complex event that should be separated into three formal
elementary events (derived from three different templates of the
HTemp ontology):

• The temperature on the kitchen stovetop has risen (ioe.e85,
Table 1);

• The robot takes note that David is not in the kitchen since
he is in the bathroom (ioe.b148, Table 2);

• Provide an early warning, the robot moves towards
BATHROOM 1 where the person is localized (ioe.m156
depicted in Table 1);

Using the COORD operator, the narrative events (ioe.m148) and
(ioe.e85) can be linked to represent the entire narrative described
by (ioe.c1), Table 3. So, the full description of these events is
represented by the unique narrative event (ioe.s2).

4 Experiment and results

This section provides a detailed explanation of how the
inference process is implemented. We, therefore, exclude
aspects such as modelling and rule editing tools that are not
necessary for the system to run, as they are mostly used during
the design phase. We explain thorough knowledge acquisition
methods, the process of integrating perceptual information into
the knowledge base, and general query processing. Context
recognition requires the fundamental knowledge provided by
HClass and HTemp ontologies. The HClass ontology comprises
2700 concepts, while the HTemp ontology features 165
templates.

4.1 A use case scenario

The following will describe a scenario demonstrating
the proposed approach in a practical, real-world context.
Identifying situations and providing customized assistive and
monitoring services in elderly healthcare can be challenging for
any system if it cannot capture and comprehend chronologically
related events. In our scenario, the robot not only gathers real-
time information about the senior citizen’s actions but relies on

narrative querying-processing, demonstrating the effectiveness
of a high level of understanding of the activities. The system
is responsible for identifying the activity the person is engaged
in and interpreting the associated risks. Let us now assume
that David, a senior citizen living alone, wishes to prepare a
meal which involves using appliances such as a stovetop and
various kitchen utensils like pots and baking dishes. After 20
minutes, David heads to the bathroom and opens the shower
tap. A sensor installed on the shower tap confirms when it’s
open, which allows the robot to determine David’s presence in
the bathroom. At the same time, the oven’s temperature sensor
detects an increase in temperature, which indicates that the oven
is in use and there is no one around. The robot concludes that
David cannot be in two different locations simultaneously since
David is taking a shower in the bathroom and the stovetop is
turning on. The robot, acting as a vigilant companion, moves
towards where David is localized and tries interacting with
David by sending an audio notification to suggest turning the
stovetop off. David did not respond immediately. Two minutes
later, the robot tries to ensure everything is okay and tries to
confirm David’s health condition. Establishing dialogue-based
interaction with David will help collect information about his
health. If David does not interact with the robot, he is considered
unconscious, and consequently, the current context corresponds
to an emergency. Let us clarify why these analyses are crucial.

1. Chronological analysis involves understanding the
sequence of events, such as moving from the kitchen to the
bathroom and the time spent there;

2. If the person stops moving, the system will recognize a
potential issue and react accordingly;

3. Consider suggesting or taking action, like turning off the
stovetop, based on a time interval (e.g., after a long cooking
session or be a while in the bathroom);

4. The chronological analysis significantly enhances safety
by proactively preventing forgotten cooking sessions,
thereby ensuring a secure environment free from potential
fires or accidents;

4.2 General Querying-processing mechanism

The following equation governs the handling of all inference
rules:

S i f f Y 1 and Y 2 :: Y n (2)

Where S is the event/context to infer and Y1,..., Yn represent
the reasoning steps. X, Y1,..., and Yn are modeled as instances
of the template (narrative event). Y1 is called condition in
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Table 3: Binding narrative events.

It is clear that there is a logical connection between ioe.e85 and ioe.b148. ioe.c1) (COORD ioe.b148 ioe.e85)
ioe.c1 triggers the narrative event that is described in ioe.m156 ioe.s2) (CAUSE ioe.c1 ioe.a156

hypothesis rules and called antecedent in transformation rules.
A transformation rule contains an antecedent (i.e., a left-hand
side) representing the search query to transform and one or more
consequents (i.e., right-hand sides) representing search patterns
for which a QPM will substitute the query.The reasoning step
Yi is started once the reasoning step Yi-1 has succeeded. The
Yn (Equation 2) denotes the leaf in the tree structure, which
symbolizes the success of the reasoning process. A QPM
(figure1) component converts during a reasoning steps a search
pattern derived from the variables and their values into search
patterns Si that attempt to match and unify these queries with the
knowledge stored in the knowledge base. The ontology HClass
which represents a higher-level abstraction within the system
allow adapting each concept/individual that occurs in the query
to all subsumed concepts/indivduals.

Query Formulation: In this context, the antecedent refers to
the condition or situation that prompting the system to create a
query to understand the situation better. For example, the senior
person has not moved from the bathroom for an unusually long
time. This would involve applying semantic and chronological
analysis, as well as correlating other factors, such as health
status, time, and location.

4.3 Chronological and Semantic Analysis of Events

David’s failure to hear the audio notification message results
in his unawareness of the robot’s interaction. This breakdown
in communication disrupts the robot’s on David’s interaction,
leading it to assume that David is in danger and the situation
is an emergency. This scenario underscores the need for deep
reasoning about spatiotemporal events, semantic analysis, and
past and ongoing events. It also reiterates the importance
of human-robot communication in the robot’s decision-making
process, as it is a key take away from the scenario.

4.4 Extraction of implicit observations

The hypotheses rules and transformation rules explain the
causal reasoning by extracting and transforming relevant
information from the knowledge base. The first query is
adjusted to obtain relevant information or infer new causal
relationships from existing data, enabling the creation of a
narrative that explains the triggering alarm.

X1) Initial request (search pattern)
PRODUCE

SUBJ(ect): robot
OBJ(ect): triggering
TOPIC: alarm/control tool

Table 4: Since David did not respond, the robot triggered an
alarm

Description Narrative event
Narrative event representing
the initiator (agent) who
triggers the alarm

ioe.p158)PRODUCE SUBJ ROBOT KOMPAI

OBJ triggering
TOPIC emergency alarm

CONTEXT EMERGENCY SITUATION 1

date-1: 2024/11/25/15:28
date-2:

is instance of Produce:PerformTask/Activity

The NKRL search patterns operate like database queries
in conventional systems, such as those used in information
retrieval (IR). Similar to database query (e.g., in SQL),
a pattern in NKRL enables systems to query and obtain
answers directly from the knowledge base. Nevertheless, in
our approach, a pattern is a formalized representation of a
query that may involve logical relationships, constraints, and
conditions expressed in a knowledge representation language
as instances of HTemp ontology. The pattern is used to
search for information, facts, or relationships within a semantic
or knowledge-based system. Therefore, when the reasoning
process is performed, the explicit variables in the template
are replaced with concepts (abstract categories like ”person,”
”robot,” or ”location”) or individuals (specific entities like
”DAVID ” ”BATH ROOM 1,” or ”STOVETOP 1”). The
constraints imposed on these variables ensure that the substitute
is consistent with the knowledge base. For instance, if a
template has a variable ”vari” that represents a ”location,” only
concepts or individuals classified as a location in the knowledge
base would be valid replacements for this variable. In a
narrative-based knowledge base, all events might be represented
as structured statements or facts, often involving temporal or
causal relationships (e.g., David be present in the bathroom
since 15h03, The temperature increase, David heads to the
bathroom and opens the shower tap). For example, if the search
pattern asks for events involving David, the system will also
check if the symbol ”DAVID ” is a valid instance of the person
concept or any of its subclasses (like human being, owner ,
etc.).

The query (X1) plays a crucial role in defining the event. The
search pattern defined by the conceptual predicates (PRODUCE
with the roles of SUBJ and TOPIC) will result in a set of
narrative events that match with the specified concepts (i.e., the
output of the query will consist of all instances where the robot
is associated with the production of an alarm/control tool).

The system symbolised by (ioe.p158, Table 4) depicts that
ROBOT KOMPAI is the agent responsible for triggering the
alarm. The consistency-checking mechanisms validate the
symbol robot in Table 4 by relying on the HClass ontology and
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the constraint associated with variable var1 in the hypothesis
rule. This component checks that the robot symbol is an
instance of the alarm/control tool concept and establishes a
hierarchy of concepts from the generalisation/specialisation
relationship between the emergency alarm concept and the
alarm/control tool concept. The inference process continues
its reasoning by attempting to verify the step indicated by Y1,
which corresponds to condition 1 of the hypothesis rule. The
new pattern is produced (see pattern (Y1)) by utilising the value
var2 = human being and the var1 = robot symbol. Condition 1
is used to check that the filler represented by ROBOT KOMPAI
is an agent (i.e., subconcept of control tool) and monitoring
system.

Y1: condition 1) PREDICAT: OWN
SUBJ(ect): ROBOT 1
OBJ(ect): control
BENF: human being

4.5 Using a transformation rule

Based on an ontology-based system, the query (Y1), the
robot tries to find direct matches or relevant data. Since the
direct search might not yield a valid or concrete result, the
robot employs a transformation rule. This rule infers implicit
knowledge not directly available in the knowledge base but
can be derived logically. Applying the transformation rule,
the system finds a form of knowledge not directly queried as
implicit knowledge. The narrative event (ioe:p159), Table 5
denotes a specific event where someone is in the bathroom. The
property detection is a role that holds the ”object” of the event
as a filler of the OBJ(ject) role. DAVID represents an individual
human being. So, DAVID is the filler of the Topic. Thus, the
querying processing infers that DAVID (a human being) is in the
bathroom. The latter knowledge is not directly found through
the query but is derived through implicit knowledge inferred
from the system’s transformation rule. The first condition of
the hypothesis rule has been satisfied, and the reasoning process
can now proceed with the processing of condition 2. In this step,
the inference engine tries to find within the knowledge base any
information indicating that the robot has attempted to establish a
dialogue with DAVID (i.e., David as a person), thereby creating
the search pattern (Y2).

Table 5: Results for transformation rule 1

Description Narrative event
Narrative event specifying
that DAVID is located in the
bathroom.

ioe.p159) PRODUCE SUBJ ROBOT KOMPAI
OBJ detection : BATH ROOM 1
TOPIC DAVID
date-1: 2024/11/25/15:03
date-2:

is instance of Produce:Assessment/Trial

The first condition of the hypothesis rule has been satisfied,
and the reasoning process can now proceed with the processing
of condition 2. In this step, the inference engine tries to find
within the knowledge base any information indicating that the
robot has attempted to establish a dialogue with DAVID (i.e.,

David as a person), thereby creating the search pattern (Y2).

Y2) PREDICATE BEHAVE
SUBJ(ect) :ROBOT KOMPAI :
MODAL(ity) : user
TOPIC : robot
CONTEXT : (SPECIF control DAVID )

Actions/Relations: Semantic Representation

• Communication (Robot, David: The robot plays a
crucial role in the communication process, being the entity
responsible for interacting with David;

• Modality (Robot, Touch Screen, David): The robot’s
touch screen serves as a powerful tool, enabling DAVID
to communicate effectively;

• Notification (David, Touch Screen, Help): A message
was sent to David to inform him that he can request
assistance using the robot’s touch screen.

Transformation Rule 2

The following formal representation provides a clear and
concise explanation of how the message is transmitted, who
receives it, and the communication mode.

• MOVE(ROBOT KOMPAI, DAVID , ”You can use the
touch screen to request help”): DAVID is being notified
by the robot that he can use the robot’s touch screen to
request help;

• BENF(ROBOT KOMPAI) : It is evident that
ROBOT KOMPAI is the intended recipient of the
message if DAVID responds;

• MODALITY(touch screen) : states that the robot’s touch
screen is the communication mode;

Table 6: Results for transformation rule 2

Description Narrative event
David can use the touch
screen to interact with the
robot

ioe.m145) MOVE SUBJ DAVID :BATH ROOM
OBJ confirmation statement
BENF ROBOT KOMPAI
TOPIC (SPECIF assistance ROBOT KOMPAI

)
date-1: 2024/11/25/15:25
date-2:

Produce:Assessment/Trial

var4 = emergency button in (Y3). The search pattern (Y3)
is designed to explore past events (according to their temporal
interval) and find narrative events that indicate DAVID should
press the emergency button. The search pattern (Y4) aims to
retrieve explicit knowledge indicating that the emergency button
is an actuator embedded in the robot.

Y3) PREDICATE PRODUCE
SUBJ(ect) : DAVID
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OBJ(ect): button pushing
TOPIC: emergency alarm

Y4) PREDICATE OWN
SUBJ(ect): SOS BUTTON 1
OBJ(ect): property

TOPIC:(SPECIF part of (SPECIF alarm/control tool
ROBOT KOMPAI)

The search pattern (Y3) derives the answer depicted in
Table 7. The oblig(action) modulator expresses obligations,
permissions, and prohibitions in formal logic to validate an
emergency situation. The narrative event (i.e., ioe.o24) indicates
that the SOS BUTTON 1 button is part of the robot’s touch
screen, and this relationship is established using a ”part of”
property. After treating condition 5 of the hypothesis rule,
the inference engine will verify that David did not press the
emergency button to explain why the alarm was triggered. The
(Y5) search pattern below is used to infer this knowledge.

Y5) PREDICATE PRODUCE
SUBJ(ect) : DAVID
OBJ(ect): button pushing
TOPIC: SOS BUTTON 1

{negv}
A crucial aspect of our work is the reasoning process, which

is significantly driven by a formal narrative representation.
Modulator negv is a formal narrative mark of negative events in
our querying-processing system. It represents negation denoting
an event’s negation (in this case, not pushing the emergency
button). The rule processing hypothesis, derived from the (X1)
initial request, plays a pivotal role in recognizing the emergency
context situation. The successive reasoning process, crucially
involving the consideration of missed actions and the overall
chronological of events, is instrumental in understanding the
sequence of events that led to the triggering an emergency
situation. According to the knowledge base’s ioe.m160, Table 6
event, the robot offered David assistance, but he didn’t respond,
as evidenced by the ioe.p161 event, Tables 7.

Table 7: Formal narrative mark of negative events in our
querying-processing system

Description Narrative event
Narrative event specifying
that the emergency state
has been triggered because
David did not push the
emergency button after the
fall has been observed.

ioe.p161)PRODUCE SUBJ DAVID
OBJ button pushing

TOPIC DAVID

CONTEXT LIVE SAVING BUTTON 1

{negv}
date-1: 2024/11/25/15:05
date-2:

is instance of Produce:PerformTask:Activity

5 Evaluation and scalability

The purpose of the use case is to assess the proposed
framework’s performance in real-time, with a focus on response
time and emergency context processing as follows:

• Detecting Inactivity

1. Goal: Determine if the system can recognize when
someone has left an activity, interrupted it, or been
inactive for a specified period, and categorize it as a
potential emergency;

2. Expected Action 1: In order to respond, the system
should activate an emergency protocol;

3. Expected Action 2: To ensure user safety and
prevent accidents, the system should recommend
preventative safety measures (such as turning off the
stovetop;

• The Framework’s evaluation criteria
1. Real-Time Responsiveness: What is the system’s

response time to recognizing inactivity or dangerous
contexts and taking action?

2. User Trust and Intervention: User Trust and
Intervention : The system’s ability to suggest or take
preventive actions without constant user intervention
is dependent;

Through our narrative querying-processing approach, the
system can be both responsive and able to prevent accidents in
real time, while also taking into account the safety of the user.
The narrative model balances a trade-off between reasoning
time and the amount of context knowledge inferred. The
model can infer a broader and deeper understanding of implicit
knowledge while taking more time to combine hypothesis rules
with transformation rules. Recognizing complex situations or
removing doubts is crucial in emergency management. The
effectiveness of this approach lies in its ability to recognize
complex and specific contexts, particularly in scenarios that
do not require immediate response times but require deep
contextual understanding. Emergency management and doubt
removal require a response time of 3.8 seconds to recognize
context figure 4, part (b). The querying-processing approach
operates efficiently for real-time applications because it falls
within an acceptable range. The response covers the time it
takes an Abstraction Layer to process sensor outputs, encode
them, and add facts to a knowledge base.

Our evaluation of scalability regarding sensor outputs was
comprehensive. We developed a set of synthetic scenarios that
incorporate HClass concepts and up to 30 hypothesis rules. We
also included 24 transformation rules. The number of sensors
ranged from 50 to 500. We conducted rigorous testing of the
platform multiple times for each scenario and measured the
average execution time across various parts of the architecture.
The effectiveness of the proposed representations is measured
by relying on both time intervals and points to recognize an
activity effectively. Therefore, elementary events containing
points and intervals were exploited to measure the response
times of the reasoning process. First, we sought to infer contexts
based solely on hypothesis rules. Subsequently, the semantic
relationships extracted from the hypothesis rules were combined
with transformation rules. The experiments were conducted on
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(a) Real time Semantic Annotation (b) Average reasoning time with hypothesis rules.

Figure 3: Evaluate the scalability of a system concerning sensor outputs while considering only hypothesis rules.

a PC with the Intel Core i5 processor, Dell Latitude 5550 15p,
16GB of RAM, and a 500GB SSD. It is crucial to point out that
all the executions were done in a single-threaded way. Each test
run was designed to contain 6-30 hypothesis rules and 12-24
hypothesis and transformation rules.

Our approach is versatile and can be applied across domains
where sensor data plays a pivotal role in decision-making. For
instance, a system with around 250 sensors dispersed in a
home automation environment can maintain adequate context
awareness without causing a bottleneck, thanks to the short
time interval between sending two sensors’ outputs, figure3.
The figure also illustrates how data annotations in semantic
representation enable actions to be executed in near real-time,
ensuring the system’s responsiveness. The annotation process
is significantly influenced by each sensor’s signal transmission
time differences; the time annotations decrease when there is a
longer gap between two sendings. For example, a door/window
sensor may not need to transmit a signal every second, as it
only matters when the state changes (open/closed). Similarly,
for human health monitoring, wearable sensors can transmit
updates every 180-300 seconds, providing sufficient data for the
application without overburdening the system.

6 Discussion and Conclusion

6.1 Discussion

OWL, the de facto ontological language for defining concepts
and reasoning about static relationships, is currently limited
in its potential for building advanced inference engines due
to its lack of variables. This is a significant limitation that
needs to be addressed. OWL’s strengths lie in classification and
subclass reasoning, but its static nature hinders its ability to fully
capture the complexity of real world phenomena, particularly
those that change over time or depend on specific temporal
conditions. Our approach is focused on managing, analysing,
and understanding interconnected devices, sensors, and people
in the Internet of Everything (IoE) ecosystem. We believe that
narrative models are essential for understanding and processing

the semantic, spatio-temporal context, enabling us to provide
early warnings for potential risks, such as health deterioration
or unsafe behaviors. Introducing temporal reasoning and event
modeling in OWL often leads to redundancy in the ontology,
making it more challenging to maintain, error-prone, and
inefficient, as both the static and dynamic aspects must be kept.
Modifying existing static ontologies to incorporate dynamic
reasoning necessitates significant changes to the ontology
structure. We underline that one of the key drawbacks of
the approaches discussed earlier is the challenge of defining
predicates of any arity to represent the temporal dimension of
properties. This challenge underscores the need for further
research in the field, as temporal reasoning often requires the
representation of time-dependent relationships between entities,
a task that is complex and difficult to achieve within the
structure of a typical ontology or logic system. Combining
OWL with SWRL never tackles the issues below. Indeed,
SWRL raises several limitations. First, SWRL does not natively
support negation and does not have built-in support for negation
as a primitive feature. Therefore, we can not say David
did not push the emergency button or express any negation
statement. As an alternative approach, SWRL uses the DL
safe rule, where negation is allowed on the variables in the
head of the rule, which restricts negation when an application
must exclude any fact. Moreover, in OWL 2 DL, The
owl:NegativePropertyAssertion is used to represent a negative
property assertion (i.e., state that there is no relation between
two individuals), such as Robot Kompai does not assist David.
Formerly, the owl:NegativePropertyAssertion relies on three
RDF components: Subject, Predicate and Object. The subject
concerned the individual involved in the relation; the predicate
represents the negative relation, and the object represents the
relation’s target.

6.2 Limitations

While the proposed spatio-temporal ontology-based querying
approach enhances context-aware reasoning and adaptive
activity recognition, several limitations remain. First, the
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(a) Average reasoning time combining hypothesis and
transformation rules

(b) Robot and push button are used to detect and confirm early
warning contexts

Figure 4: Assess the proposed framework’s performance in real-time. Response time to recognizing inactivity or dangerous contexts
and taking action.

current system has been evaluated in controlled or small-scale
IoE environments; scalability to large, heterogeneous, and
noisy deployments has not yet been demonstrated. Second,
the ontology’s conceptual scope is limited to predefined
spatio-temporal and contextual dimensions, which may restrict
adaptability to new domains or unforeseen events. Third, the
reasoning process relies on deterministic temporal logic, which
may be less effective in handling uncertainty, incomplete data,
or contradictory sensor readings.

6.3 Future work

Scalability and real-time deployment – Evaluate the system’s
performance when deployed at large scale in heterogeneous IoE
environments with high-frequency data streams, ensuring low-
latency reasoning and response.

Integration of richer contextual dimensions – Extend
the ontology to incorporate psychological, social, and
environmental factors, allowing more nuanced activity
recognition and risk prediction.

6.4 Conclusion

We present an ontological querying-processing approach that
leverages narrative querying and event correlation analysis to
monitor and ensure senior person safety in a smart environment.
Ontology querying-processing allows gathering information
from sensors (e.g., cameras, directly through voice interaction
or robot’s embedded tools) and a dynamic understanding of the
environment. Relying on context-based questions (”Was there
an unusual change in the human behaviour?”), the system can
evaluate real-time actions or interruptions. Moreover, using
a temporal ontology (HTemp) to perform a chronological and
semantic analysis of events might track a sequence like cooking,
taking a shower, moving to the bathroom, and an unexpected
behaviour change. The system can then determine if an activity
interruption (e.g., doesn’t finish cooking) is abnormal and needs

preventive actions. Lastly, contextual awareness has different
safety implications according to location and activity in the
person’s environment (e.g., bathroom, kitchen). The system
must know about the expected activities in each area (such
as cooking in the kitchen); thanks to the hypothesis rules and
transformation rules, the system should be able to determine if
the activity is interrupted or if the person is not performing as
expected.
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